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Abstract

State-of-the-art membership inference attacks (MIAs) typically require training
many reference models, making it difficult to scale these attacks to large pre-
trained language models (LLMs). As a result, prior research has either relied
on weaker attacks that avoid training references (e.g., fine-tuning attacks), or on
stronger attacks applied to small models and datasets. However, weaker attacks
have been shown to be brittle and insights from strong attacks in simplified settings
do not translate to today’s LLMs. These challenges prompt an important question:
are the limitations observed in prior work due to attack design choices, or are
MIAs fundamentally ineffective on LLMs? We address this question by scaling
LiRA—one of the strongest MIAs—to GPT-2 architectures ranging from 10M to
1B parameters, training references on over 20B tokens from the C4 dataset. Our
results advance the understanding of MIAs on LLMs in four key ways. While (1)
strong MIAs can succeed on pre-trained LLMs, (2) their effectiveness, remains
limited (e.g., AUC<0.7) in practical settings. (3) Even when strong MIAs achieve
better-than-random AUC, aggregate success metrics conceal per-sample prediction
instability; many individual predictions are so unstable that they are statistically
indistinguishable from a coin flip. Finally, (4) the relationship between MIA success
and related privacy metrics is not as straightforward as prior work has suggested.

1 Introduction

In a membership inference attack (MIA), an adversary aims to determine whether a specific data
record was part of a model’s training set [52, 62]. MIAs pose a significant privacy risk to ML
models, but state-of-the-art attacks are often too computationally expensive to run at the scale of
pre-trained large language models (LLMs). This is because strong MIAs require training multiple
“reference” models to calibrate membership predictions—and pre-training even one LLM is often
prohibitively expensive in research settings. As a result, current work makes one of two compromises:
running weaker attacks that avoid training reference models (e.g., attacks that fine-tune an LLM),
or running strong attacks that train small reference models on small datasets. However, both exhibit
notable limitations (Section 2). Weaker attacks are more practical, but they have been shown to be
brittle—often performing no better than random guessing [17, 20, 42]. Stronger attacks, when run in
simplified settings, fail to capture the complex dynamics of large-scale, pre-trained language models;
as a result, their insights do not reliably generalize to modern LLMs [37].

Results from both of these approaches leave key questions unanswered about the effectiveness of
MIAs on LLMs. In particular, are the fidelity issues of weaker attacks due to omitting reference
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models, or do they point to a deeper, more fundamental challenge with applying membership
inference to large language models? Current research has not offered an answer because, to date,
there are no baselines of how the strongest MIAs perform on large-scale, pre-trained LLMs.

In this paper, we bridge this gap by running strong attacks at a scale significantly larger than
previously explored. We pre-train over 4,000 GPT-2-like reference models, ranging from 10 million
to 1 billion parameters [30], on subsets of the C4 dataset [46] that are three orders of magnitude
larger than those used in prior MIA studies—up to 100 million samples, compared to fewer than
100,000 in previous work [39]. We use these models to conduct a detailed investigation of the
Likelihood Ratio Attack (LiRA) [5], one of the strongest MIAs in the literature. This substantial
effort proves worthwhile, as we uncover four key insights that advance the state of the art in
understanding the potency and reliability of membership inference attacks on large language models:

e Strong membership inference attacks can succeed on pre-trained LL.Ms. We are the first
to execute strong attacks at this scale, and find that LIRA—in contrast to weaker fine-tuning
attacks—can easily beat random ROC-AUC baselines (Section 3.1). Our results on Chinchilla-
optimal models (trained for 1 epoch) exhibit a non-monotonic relationship between model size
and MIA vulnerability: larger models are not necessarily more at risk (Section 3.2).

e The overall success of strong MIAs is limited on pre-trained LLMs. Even though we demon-
strate that LiRA can succeed at LLM scale, we are only able to achieve impressive results (i.e.,
AUC>0.7) when diverging from typical training conditions—specifically, by training for multi-
ple epochs (Section 4.1) and varying training dataset sizes (Section 4.2).

e Many per-sample MIA membership decisions for LLMs are statistically arbitrary. Even
when an MIA achieves better-than-random AUC, the underlying MIA decisions for individual
members are very sensitive to training randomness. Measuring per-sample prediction instability
(Section 5.1), we find that, even at modest FPR, many per-sample predictions are statistically
indistinguishable from a coin flip, rather than reflecting meaningful inference signal (Section 5.2).

e The relationship between MIA success and related privacy metrics is not straightforward.
We show that samples seen later in training tend to be more at risk (Section 6.1); however,
this trend is complicated by sample length. We also study if there is any relationship between
training data extraction and MIA, and observe no correlation with MIA success. This suggests
that the two privacy attacks may capture different signals related to memorization (Section 6.2).

Our contributions serve as an extensive benchmark of strong MIAs, and also provide some initial
answers to urgent open questions about the conditions under which MIAs exhibit a threat to privacy
for LLMs. Our work also quantifies the performance gap between weaker (more feasible) and
stronger attacks, establishing an upper bound for what weaker attacks could achieve in this setting.

2 Background and related work

Membership inference attacks (MIAs) assess empirical privacy and information-leakage risk by
asking whether an adversary can tell if a particular data point  was used to train a target model h.
Given knowledge of the target’s architecture and training setup, the attacker trains multiple reference
models f € ® on different subsets drawn from the same underlying distribution as the target’s train-
ing data. For each x, references are partitioned into those trained with  (®1y, where x is a member)
and those trained without  (®oyt, where x is a non-member). For a given « and model g (the target
h or a reference f € @), the attacker queries the model and computes an observation signal s(g, x)
from the model’s output on x (e.g., loss, logit). MIAs transform these observation signals into a mem-
bership score A(x) that is used to infer whether @ was in the target’s training data [5, 48, 57, 61, 63].

Different attacks specify different ways of turning observation signals into membership scores.
For instance, for each query sample «, the Likelihood Ratio Attack (LiRA) collects two sets of
reference signals, {s(f,x) : f € ®v(x)} and {s(f,x) : f € Pour(x)}. These sets are treated
as samples from two empirical distributions, to which density models (piy and pour) are fit. LIRA
evaluates the target statistic s(h, «) under the fitted densities to compute a likelihood ratio membership
score A(z) for  [5]. Given a score A(x), the attacker outputs a binary membership decision via
a threshold rule b(x) = 1{A(x) > 7}. In practice, 7 is typically calibrated on non-members to
satisfy a fixed false positive rate (FPR). Although membership inference is defined as a decision
problem for a single sample x, attack performance is evaluated as an average over many samples
(e.g., reporting TPR at fixed FPR). Success is typically reported with threshold-agnostic metrics



like ROC-AUC [52, 62] (Appendix A). To address this gap, we also run experiments that offer novel
insights into sample-specific attack performance (Sections 5 & 6).

The number of reference models necessary for successful attacks varies across methods—from tens
or hundreds for LiRA and Attack-R [61], to as few as 1 or 2 for RMIA [63]. While these attacks have
been successfully applied to smaller settings, they are often considered impractical for contemporary
language models due to the prohibitive computational cost of training even a single reference LLM. As
a result, prior work attempts to approximate stronger, reference-model-based attacks in various ways.

Small-scale, strong, reference-based attacks. The first work to evaluate risk in smaller language
models (RNNs) trained 10 references [53]. However, insights from such settings do not translate
to today’s LLMs [39], as the training dynamics differ significantly. Other work has used a single
reference model to attack a small, pre-trained masked language models [41], but this approach
reduces precision, as effective calibration of membership predictions is difficult with fewer references.

Larger-scale, weak, reference-free attacks. To avoid the cost of training reference models, weaker
attacks consider a range of signals to infer membership, typically leveraging black-box access to the
model. For example, Yeom et al. [62] use model loss computed on the target sample, Carlini et al. [4]
use normalized model loss and z1ib entropy of the target sample, and Mattern et al. [36] compare
the model loss to the loss achieved for neighboring samples. More recent work experiments with
token probabilities [51, 65] and changes in loss based on prompting with different context [56, 60].
Other work attempts to derive membership signal from changing the model. For instance, prior work
perturbs inputs or model parameters and observes resulting changes in target loss on the sample, or
uses (parameter-efficient) fine-tuning on domain-specific datasets to detect privacy risks [8, 20, 27,
32, 40, 42, 45, 47]. However, fine-tuning attacks introduce new data to the problem setup, which
may complicate the validity of using MIAs to detect benchmark contamination [16, 33, 34, 44] and
to draw reliable conclusions about other sensitive data issues [9, 11, 12, 14, 18, 29, 38, 51, 59, 64]. A
recent approach evaluates attacks on LLMs using post-hoc collected datasets. While prior work has
reported high success rates on a variety of models and datasets (AUC=0.8) [37, 51, 56, 60, 65], such
evaluations rely on the model’s training-date cutoff as a proxy for distinguishing between member and
non-member data points [34]. These newer data introduce distribution shift, which can undermine
the validity of the reported results [15, 17, 34, 39]. Further, when current MIAs are evaluated in a
controlled privacy game like this, they often barely outperform random guessing [17, 39].

3 Examining strong MIAs in realistic settings for pre-trained LLMs

Altogether, the limitations of prior work raise the key question that motivates our work: are the
fidelity issues of weaker attacks due to omitting reference models, or do they point to a deeper, more
fundamental challenge with applying membership inference to large language models? This is a
big question, so we break it down into smaller ones that we can test with specific experiments that
reveal different information about the effectiveness of strong MIAs on pre-trained LLMs. To start, we
determine which strong MIA method to use across our experiments. We evaluate two of the strongest
attacks in the literature—LiRA [4] and RMIA [63]—in a variety of settings. For the experiments that
follow, we use LiRA because we observed that it can achieve substantially higher ROC-AUC when
attacking pre-trained LLMs. We compare LiRA and RMIA in Appendix B.

In this section, we investigate the relationship between the number of reference models and attack
success (Section 3.1). Based on these results, we decide to use 128 reference models in all following
experiments. Then, we test the effectiveness of strong attacks under realistic settings—settings that
reflect how LLMs are actually trained. To do so, we run LiRA on models of various sizes, which
we train according to Chinchilla-scaling laws [25] (Section 3.2). Together, these experiments inform
our first key result: with respect to overall ROC-AUC, strong membership inference attacks
can succeed on pre-trained LLMs. In the following sections, we expand upon these results to
other training and attack conditions; we will refine our first key result by investigating the limits
of strong MIA success rates (Section 4), and by digging beneath aggregate metrics like AUC to
better understand attack performance with respect to individual samples (Sections 5 & 6).

General setup. For all experiments, we pre-train GPT-2 architectures of varying sizes—from 10M
to 1B—on subsets of the C4 dataset [46] using the open-source NanoDO library [30]. The training
datasets we use are 3 orders of magnitude larger than those in prior MIA studies: up to 50M samples,
compared to fewer than 100K samples in previous work [39]. We explore datasets of this size



because, while it is well established that MIA success depends on both model capacity and training
dataset size [52, 61, 62], the nature of this relationship remains unexplored pre-trained-LLM scale.
For each attack, we start with a fixed dataset of size 2V (e.g., 20M) drawn from C4, from which we
randomly subsample (with different random seeds) reference training sets of size NV (e.g., 10M). So,
for each reference f, half of the drawn samples are members and half are non-members. This yields
the different member (IN) and non-member (OUT) distributions for each sample that we use to run
LiRA. In our largest experimental setting, we use 2/N=100M. Specific experimental configurations
vary, so we introduce additional setup as needed. (See Appendix G for details.)

3.1 Warm-up: How many reference models should we use?
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Figure 1: LiRA with different references. We
attack a 140M model trained on ~7M samples.
As references increase, LiRA’s performance im-
proves (measured with ROC-AUC). However,

which the attack is equivalent to random guessing ~there are diminishing returns: AUC is effectively
(i.e., cannot distinguish between true and false unchanged from 128 to 256 IN references.
positives so TPR=FPR; AUC=0.5). We report AUC as our primary metric, as it is otherwise
challenging to visualize TPR over a wide range of fixed FPR. (For comparison, see Figure 2b,
which shows a limited range of FPR, but does not surface threshold-agnostic AUC.) We also
investigate the performance of different observation signals (Appendix B.1), and choose to use model
loss. Altogether, while LiRA clearly beats the random baseline, it is not remarkably successful in
this setting: regardless of the number of references, it never achieves an AUC of 0.7. Even though
success increases with more references, there are diminishing returns. From 1 to 8 IN references
(2 to 16 references total), AUC has a relative increase of 13.3%; for the next 8 x increase (from 8 to
64), AUC only increases 7.6%; and, doubling from 128 to 256 only yields a 0.2% improvement.We
opt to use 128 total references (64 IN, 64 OUT) in most experiments below.

3.2 Training and attacking a compute-optimal model

In practice, models are typically trained based on observed scaling laws: for a given model size,
the scaling law suggests the optimal number of tokens to use for training. To assess strong MIA
in realistic conditions for pre-trained LLMs, we attack models of various sizes, setting the number of
training samples to be optimal according to Chinchilla scaling [25]. Specifically, we set the number
of training tokens to be 20x larger than the number of model parameters and we only train for 1
epoch—a common choice in large training runs [1, 55]. Specific training recipes and experimental
details are in Appendices C and G, including the number of samples used to train each model size.

In Figure 2, we show two views of the results of attacking 10M-, 85M-, 302M-, 489M-, 604M- and
1018M-parameter models. These model sizes come from the default configurations available in
NanoDO [30]. For readability, we exclude the results for the 140M model, as we investigate this archi-
tecture above. In Figure 1, the attack on the 140M model with 128 total references has AUC=0.678,
which puts its performance below the 85M and 302M models. Interestingly, we observe a non-
monotonic relationship between model size and MIA vulnerability under these training conditions. In
Figure 2a, the 85M model shows the highest AUC=0.699, followed by the 302M (AUC=0.689), and
then the 140M (Figure 1, AUC=0.683) models. The 489M model exhibits the lowest AUC=0.547.

Figure 2b provides a different view of the same results. By model size, each line compares the TPR
for fixed settings of FPR. Our expectation was that each line would look approximately horizontal, as
the training set size is being scaled proportionally (and optimally, according to Hoffmann et al. [25])
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Figure 2: MIA vulnerability for compute-optimally trained models We train and attack 6 models
of different sizes under Chinchilla-optimal conditions for 1 epoch, using 128 references. (a) ROC
curves demonstrate varying MIA susceptibility for 10M (AUC=0.592), 85M (AUC=0.699), 302M
(AUC=0.689), 489M (AUC=0.547), 604M (AUC=0.654) and 1018M (AUC=0.553). The 85M
and 302M models shows the highest vulnerability, indicating that increasing model size does not
uniformly decrease MIA risk in this setting. (b) How TPR for each fixed FPR varies by model size.

to model size. From 10M to 302M, there is a consistent pattern of the TPR increasing with model
size; but then, at 489M, there is a significant drop in TPR. There are many reasons why this may have
occurred. First, the most pronounced differences in TPR are at extremely small values. Even subtle
differences in training runs may flip samples from correct to incorrect member predictions (Section 5),
which, in the low TPR regime, can have a large effect on overall MIA success. Second, Chinchilla
scaling [25] is not the only such law. Sardana et al. [49], Hu et al. [26], and Grattafiori et al. [22] all in-
troduce other ways to optimally select the number of training tokens for a given model. In future work,
we will investigate if these other token-size-selection methods stabilize TPR as model size grows.

As we discuss next (Section 4.2), repeating this experiment by training these architectures on the same
fixed dataset size exhibits vastly different results. We additionally test other training configurations.
In Appendix D, we alter the learning rate schedule and observe that there is a modest effect on attack
performance. (See Appendix C, where, as a sanity check, we also confirm that larger models converge
to lower loss values, reflecting their increased capacity to fit the training data.)

4 Varying compute budget and training dataset size

Even in the most successful (i.e., highest AUC) case, overall attack performance is not particularly im-
pressive when running LiRA with a large number of references on compute-optimal models trained for
1 epoch. Similar to our experiments with LiRA and varied numbers of references (Figure 1), the maxi-
mum AUC we observe remains under 0.7 for all model sizes (Figure 2). This raises a natural follow-on
question: if we free ourselves from the constraints of typical training settings, is it possible to improve
success? Can we identify an upper bound on how strong MIAs could perform on pre-trained LLMs?

To address this question, we run attacks on models trained on different-sized (not always Chinchilla-
optimal) datasets (Section 4.2) for more than 1 epoch (Section 4.1). Our experiments show that
diverging from typical settings can indeed improve attack success. However, while these experiments
are a useful sanity check, they do not suggest conclusions about the effectiveness of strong MIAs in
general. Instead, there appears to be an upper bound on how well strong MIAs can perform on LLMs
under practical conditions. In other words, these experiments inform our second main observation:
the success of strong MIAs is limited in typical LLM training settings.

4.1 Effects of scaling the compute budget (i.e., training for more epochs)

In Figure 3a, we compare MIA AUC for the 44M model under different training configurations. We
keep the total number of tokens surfaced to the model during training Chinchilla-optimal, but we alter
when these tokens are surfaced. As a baseline, we train for 1 epoch on the entire dataset, and achieve
AUC=0.620 with LiRA. (See Figure 3a, 1 of 1.) We then take half of the training dataset and train
the same architecture for 2 epochs. In both settings the total number of training tokens is Chinchilla-
optimal, however, in the latter, the model has processed each training sample twice rather than once.
For the 2-epoch model, we observe a significant increase in MIA vulnerability: AUC=0.744, which
is higher both than this model when it has only completed 1 epoch of training (AUC=0.628, 1 of
2) and than the model trained for 1 epoch on the entire dataset (AUC=0.620, 1 of 1). Increasing
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Figure 3: Studying the effect of varying epochs. (a) We compare attacking a 44M model trained
on the whole Chinchilla-optimal dataset in 1 epoch (AUC=0.620 after 1 of 1 epoch) to training for
2 epochs on only half of the dataset (AUC=0.744 after 2 of 2 epochs). (b) We attack a 140M model
trained on the whole Chinchilla-optimal dataset for 10 epochs. AUC increases with more epochs.

training epochs—even on a smaller dataset to maintain Chinchilla optimality—amplifies vulnerability
to MIA, compared to training for fewer epochs on a larger dataset. However, there is no significant
uplift in TPR at small fixed FPR between epochs 1 and 2 for the 2-epoch model. The MIA at the
second epoch is less successful than the one after 1 epoch for small FPR. As above, this is perhaps
due to subtle changes differences in runs having an impact at these small values (Sections 3.2 & 5).

To investigate this further, in Figure 3b, we show how ROC-AUC changes over the course of training
the 140M model for 10 epochs. As expected, AUC increases with more epochs, starting from 0.573
and reaching 0.797 at the end of the tenth.? As in Figure 3a, there is an FPR inflection point where
TPR for later epochs is smaller than earlier epochs. In Appendix D, we also train the 140M model on
fewer than the ~ 7M Chinchilla-optimal samples, and (similar to Figure 3a) we observe a more dra-
matic increase in MIA vulnerability. Attacking a 140M model trained on 2!9a500K samples exhibits
both greater absolute MIA success and a faster relative increase in success in the first few epochs.

4.2 Effects of scaling the training dataset size

We next run two sets of experiments to study the role of training dataset size on MIAs—beyond
training on the Chinchilla-optimal number of tokens. We train 140M models on datasets ranging from
50K to 10M samples (again for 1 epoch) and attack these models with LiRA. In Figure 4a, we show
ROC curves for the different models. As we train models on smaller datasets, for a given FPR, TPR
does not always increase. This suggests that TPR at fixed FPR is not necessarily positively correlated
with decreasing the training set size. Rather, AUC is highest for moderately sized datasets (around 1M
samples, AUC=0.753), and decreases for both very small and very large datasets (under AUC=0.7
for both). Indeed, the capacity of the model also has an effect on susceptibility to strong MIAs.

In Figure 4b, we train different model sizes with a fixed training set size of 223~8.3M samples—

significantly more tokens than is Chinchilla-optimal for several models (e.g., 10M, 44M). We plot the
mean and standard deviation of TPR at fixed FPR, where we run the attack 16 times using different
random seeds, which has the effect of dictating the batch order. For each model size, we train 16 sets of
128 reference models, and we also vary the target model over each attack. We include the associated
ROC-AUC for each model size in Appendix D, which are consistent with the MIA prediction
variability in Figure 4b. We observe a monotonic increase in TPR at different FPRs as model size
increases. This is quite different from Figure 2b, where we scale the training set size with model size.
As model capacity grows, vulnerability to MIA also grows if we keep the training set size constant.
Further, there is significantly more variance in TPR for larger model sizes and at smaller fixed FPR.

5 Uncovering per-sample predictive instability

The high degree of variance that we observe in the prior section raises a natural question: how stable
are the underlying per-sample predictions in strong MIAs? In this section, we describe the metric [13]
we use to measure per-sample prediction instability (Section 5.1). In general, this is a sensible thing

At epoch 1, AUC=0.573, which differs from AUC=0.678 in Figure 2a (also 1 epoch). This is likely
because of variance between runs (Section 5) and substantially different learning rates between the two setups.
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Figure 4: Varying sizes of training dataset and model (1 epoch). (a) We attack 140M models
trained on different-size datasets (50K to 10M samples). MIA success does not monotonically increase
with dataset size. (b) We attack different-size models trained on a fixed dataset size (=8.3M samples),
and plot how TPR varies at fixed FPR. MIA success monotonically increases with model size.

to do. While it is standard to report attack success with aggregate metrics over many samples (AUC,
TPR at fixed FPR), the MIA security game is defined with respect to an adversary being able to
determine if a particular sample x was used in training (Section 2 & Appendix A). We then show
a selection of results for the 302M model (Section 5.2), which reveal our third key takeaway: even if
aggregate metrics imply that a strong MIA on an LLM performs better than random guessing, even at
modest FPR, alarge fraction of underlying, individual membership predictions are statistically
arbitrary. For these samples, strong MIAs are not capturing reliable information about membership.

5.1 Computing per-sample prediction flip rate on calibrated membership decision rules

Let r ~ p denote a target model trained on a fixed dataset with randomness induced by the seed
controlling batch order. We train one set of references to use for all attacks on different r ~ p. Let
A, (x) € R be the r-specific LiRA score for sample x. At a fixed FPR 7, we calibrate a per-seed

threshold 7,.(n7) on non-members to form the binary membership decision rule b (x)=1{A,(x) >
7-(n)} (Section 2). Per-seed calibration mirrors the standard LiRA threat model, in which an attacker
runs the MIA on a single target [5]. Keeping the IN/OUT reference sets fixed, this also isolates attacks
variability for equally plausible targets r ~ x that is due to training randomness from the random seed.
The (population) flip rate [13] at (), ) is the pairwise prediction-disagreement probability under p:

flip,(x) = Pr_Liia0 [0 (@) # b ().

In practice, with B > 2 i.i.d. target replicas r1, ...,7rp ~ W, the canonical unbiased estimator is
—~ By—1 2B B
flip, p(x) = (2) D 1<i<j<B 1{b7("?) (z) # bv("j ()} = 70(:33) 1)(:8)’ (1

where By (x)= Z?zl bs,")(:c) and By(x)=B—DBji(x) are the counts of member and non-member
predictions for  at 77 among the B target replicas. In practice, flip, p(z) € [0, 20.5]; the finite-B
maximum exceeds 0.5 and converges to 0.5 as B—oo (Appendix E.2). Low ﬂip rate (ffi})m g(x)=0)

means the MIA decision for x is stable across equally plau51ble targets. ﬂlp (x)=0.5 means the
MIA decision is statistically indistinguishable from a coin flip: roughly half of B predictions call
x a member, and the other half call  a non-member.

Figure 5b provides an intuition. For a member x at FPR =102, we plot the reference IN and OUT
distributions, and median signal s for B=127 targets. The two distributions overlap significantly,

implying that it is challenging for LiRA to disambiguate membership for this x. @1072’127(3:)%0.5,
indicating that the 127 predictions for x using equally plausible targets are split down the middle.

5.2 Many membership predictions statistically arbitrary

Flip rate (Equation 1) lets us peer beneath average metrics to assess what strong MIAs can and cannot
conclude reliably about individual samples . We provide extensive results in Appendix E.2.5, and
focus here on identifying & for which predictions are statistically arbitrary. For the 302M model, we
train a set of 128 IN/OUT references to use for all attacks, and 127 target replicas on the exact same
~500K dataset with different random seeds to vary batch order. While the population flip,, (2)=0.5
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Figure 5: Visualizing per-sample instability. We train B=127 targets for the 302M model on 2*°
samples, and one set of 128 references. We attack each target with these references. LiRA achieves
high, stable mean AUC=0.752 £ 0.007, but many per-sample decisions are statistically arbitrary.
(left) The share of samples with arbitrary MIA decisions across FPR, (log-scale for small FPR;

flip, 5>0.487, the =0.05 cutoff, see Appendix E.2.4). Members show a higher proportion of ar-
bitrary decisions than non-members. (right) A representative ambiguous, unstable member. B target
decisions vary widely across, as the sample’s score lies near seed-specific thresholds (Appendix E.2.5).

indicates statistically arbitrary predictions for , in practice with finite replicas B, we need to deter-

mine a defensible cutoff above which flip, p signifies arbitrariness. To do so, we set up a two-sided
binomial hypothesis test: with B=127 target replicas, the MIA decision for « is statistically indistin-

guishable from a coin flip (at «=0.05) if a’s predictions exhibit fﬂ})n712720.487 (Appendix E.2.4).

Aggregate attack success is high and stable. A training set of ~500K samples is significantly
smaller than what is Chinchilla-optimal for the 302M model (~15.1M), so we expect higher overall
MIA success (Section 4.2). Indeed, mean ROC-AUC=0.752 4+ 0.007; aggregate attack success is
stable, and substantially outperforms random guessing (Appendix E.2.5). At fixed FPR, TPR is
also stable (Figure 5a, mean TPR + STD annotations). Nevertheless, it is well-known in statistics
that models r ~ pu that obtain similar overall accuracy can have very different underlying decision
rules, and therefore can disagree substantially on individual sample predictions [3] (Appendix E.2.3).

Flip rate rises at low FPR and with model size, and is systematically higher for members.
Figure 5a shows that, even at modest FPR, large numbers of membership predictions disagree so
much that they are statistically arbitrary. Across fixed FPR, we plot the proportion of samples with

coin-like flip rates, i.e., flip,, 1570.487 (a=0.05); the samples that satisfy this filter resemble the
sample in Figure 5b. At FPR=0.02, ~18.4% of members have arbitrary predictions; if we relax the
flip threshold to also include highly unstable flip; o 157>>0.4 predictions, this proportion becomes

~39.8%. (By contrast, for non-members these proportions are ~0.03% and ~0.2%, respectively.
This is unsurprising because decision thresholds are calibrated on non-members; see Appendix E.2.5.)

As FPR increases, the proportions of members and non-members with arbitrary predictions both
increase; each seed’s calibrated threshold 7,.(n) decreases into score regions where IN/OUT overlap
is more extensive. In particular for members, this shift puts 7,.(n) in regions where many sample
posteriors lie, and increases the proportion of samples whose seed-specific scores A,. are near the de-
cision boundary. As a result, small seed-induced score shifts (as well as across-seed variation in 7, (1)
itself, see Appendix E.2.5) flip predictions more often. This effect is stronger for the 302M model,
compared to the 140M model. In general, we expect to observe more statistically arbitrary decisions
with larger models, compared to smaller ones, trained on the same dataset size (Appendix E.2.5).

These results are an instability diagnostic, not a single attack. We are able to assess which
predictions are statistically arbitrary by training many different targets r ~ u, each of which is
a plausible outcome of training. However, under the standard MIA threat model (Section 2 &
Appendix A), an attacker faces a single target. Importantly, this means the attacker cannot know
which predicted positives are arbitrary. This matters, even though a true positive is an MIA success:
an arbitrary MIA decision may be correct, but it does not reflect reliable inference of membership for
that sample. For these cases, attack success is an artifact of happenstance, seed-specific idiosyncrasies,
rather than a reflection of persistent inference signal obtained from running an MIA procedure.
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Figure 6: Sample vulnerability to MIA. For the 140M model, (a) the evolution of sample vulnerabil-
ity during training, shown by sample true positive probabilities Pr(predicted as a member|member)
at each step. (b) Distributions over sample lengths, according to MIA vulnerability for the 1,000
samples that are least vulnerable, most vulnerable, and most difficult for MIA (i.e., with smallest,
largest, and closest to 0.5 Pr(predicted as a member|member).) See Appendix E.1.

Overall, our experiments show that training randomness plays a significant role in per-sample
predictions for strong MIAs on LLMs. Even at FPR=10"3, we estimate for the 302M model that
roughly 15.44-0.6% of all true positives can be ascribed to statistically arbitrary decisions (i.e., exhibit

flip;g-3 19720.487). If we expand to include highly unstable decisions (flip;y-5 127>0.4), these
constitute 42.2%+0.9% of all true positives (Appendix E.2.6).

6 Analyzing sample vulnerability to membership inference

The instability in membership predictions that we observe for individual samples suggests a natural
follow-on question: when does strong MIA succeed? Which samples are actually vulnerable to MIA,
and (how) does this vulnerability vary during training? We approach these questions by digging
deeper into our strong attacks on 140M models—trained with a Chinchilla-optimal training set (~=7M
samples) for 1 epoch—with 128 references. Samples seen later in training tend to be more vulnerable;
however, this trend is complicated by sample length (Section 6.1). While sample length has
previously been linked to extraction risk [7, 43], we observe no correlation between MIA and standard
extraction methodology (Section 6.2). Together, this analysis informs our fourth key takeaway: the
relationship between MIA vulnerability and related privacy metrics is not straightforward.

6.1 Identifying patterns in per-sample MIA vulnerability

We first investigate how sample MIA vulnerability evolves over the course of training. In Fig-
ure 6a, the scatter plot illustrates per-sample true positive probabilities by training step: we plot
how the probability of a training sample being correctly predicted as a member changes as model
training progresses, where the membership prediction for x is computed using the reference dis-

tributions, i.e., %N)b (Section 2 & Appendix A). Across samples in the batch
at each step, there is considerable variance in the underlying sample true positive probabilities
Pr(predicted as a member|member): it can vary by more than 15%, having an effect on overall
attack success. For much of training, the mean Pr(predicted as a member|member) is close to 0.5,
indicating many samples are challenging for MIA to distinguish as either members or non-members.
The density of the points shifts upward toward the end of training (around step 60,000). Unsurpris-
ingly, samples in batches that are processed in later epochs tend to be more vulnerable, as indicated
by the higher probability of being correctly identified as members. This result highlights that the
recency of exposure influences a sample’s vulnerability to membership inference.

Put differently, samples introduced earlier in training are more likely to be “forgotten” [6]: they are
less vulnerable to MIA. This is perhaps a partial reason for LiRA decision instability for targets
trained on the same dataset, but with different random seeds that control batch order (Section 5). For
some targets, a member & may be seen late in training and exhibit a high true positive probability; for
others, the same « may appear early and be “forgotten.” (i.e., result in false negatives).

While this appears to be the dominant trend, the details are more complicated. In Figure 6b, we
plot the distribution over members according to length, and partition this distribution according to
vulnerability. We consider members for which LiRA’s predictions are confident but incorrect (i.e.,



predict non-member) to be least vulnerable, and members that LiRA correctly and confidently predicts
as members to be most vulnerable. We also highlight members for which LiRA struggles to determine
membership status (true positive probabilities ~0.5). Figure 6b suggests that vulnerable sequences
tend to be longer. (See also Appendix F, which illustrates similar results for samples that have a higher
proportion of <unk> tokens and higher average TF-IDF scores.) This result is consistent with those
in Carlini et al. [7], which show that longer sequences tend to be more vulnerable to extraction attacks.

6.2 Comparing MIA vulnerability and extraction

Results such as those in Figure 6b are consistent with prior work on memorization and extraction
ML [4]. In general, it is assumed that a successful membership inference attack and successful
extraction of training data imply that some degree of memorization has occurred for the attacked
ML model. For MIA, this is assumed because the success of such attacks hinges on the model’s
tendency to behave differently for data it has seen during training (members) compared to unseen
data (non-members) (Section 2 & Appendix A). Prior work frequently ascribes this differential
behavior to the model having memorized certain aspects of the training data.

We therefore investigate whether samples that are vulnerable to strong MIAs are also vulnerable
to standard extraction attacks. In Figure 7, for the 1,000 samples identified as most vulnerable to
strong MIA in the 140M Chinchilla-optimal model (Figure 1), we use the first 50 tokens of each
sample (prefix) to see if the next 50 tokens (target suffix) is extractable. We use a sample’s negative
log-probability as a proxy for computing a probabilistic variant [24] of discoverable extraction [7]—
the standard extraction metric in research and model release reports [2, 21, 23, 43, 54]. Discoverable
extraction systematically underestimates extraction, relative to probabilistic extraction [14, 24].
We measure probabilistic extraction because we expect it to provide more reliable signal for
memorization. A smaller negative log-probability implies that a sample is easier to extract [14].

After 1 epoch, LiRA is able to identify members with better- Number of members: 713/1000
than-random AUC (Figure 1). Out of the 1,000 samples 2 »
with the highest LiRA scores, 713 are indeed members. EY *@W*‘*

The largest suffix extraction probability is ~(0.0067—for
the member sample in Figure 7 that has the (smallest)
negative log probability of ~5. Most samples—members
and non-members alike—have negative log probabilities
> 100, corresponding to probabilities on the order of 1044 e 00000
(measurements that do not register as successful extrac- O predicted a6 a membeny
tion [14, 24]). Altogether, while much prior work draws a

direct connection between MIA and extraction vulnerability ~Figure 7: Extraction for 140M. Neg-
[e.g., 4], our results suggest a more nuanced story: the suc- ative log-probability of the 50-token
cess of a strong MIA on a given member does not necessarily  suffix (given the prior 50 tokens as pre-
imply that the LLM is more likely to generate that sample fix) for the 1,000 samples predicted
than would be expected under the data distribution [14, 24].  most strongly as members.

Neg Log Prob
=
°N

10! 4

7 Conclusion and future work

We perform dozens of experiments on thousands of GPT-2-like models (ranging from 10M-1B
parameters) on enormous training datasets sampled from C4 (up to three orders of magnitude larger
than those in prior work). In doing so, we address an urgent open question in ML privacy research:
are the fidelity issues of weaker attacks due to omitting reference models, or do they point to a
deeper, more fundamental challenge with applying membership inference to large language models?
We uncover four novel groups of findings. While (1) strong MIAs can succeed on pre-trained
LLMs (Section 3), (2) their success is limited (i.e., AUC<0.7) for LLMs trained using practical
settings (Section 4). Even when attacks achieve overall non-random AUC, (3) many per-sample
target membership decisions are so unstable across random seeds that they are statistically arbitrary
(Section 5). Further, (4) the relationship between MIA vulnerability and related privacy metrics is
not straightforward (Section 6). As the first work to perform large-scale strong MIAs on pre-trained
LLMs, we are also the first to clarify the extent of actual privacy risk MIAs pose in this setting. By
evaluating the effectiveness and limits of strong attacks, we are able to establish an upper bound on
the accuracy that weaker, more feasible attacks can achieve. Together, our findings can guide others
in more fruitful research directions to develop novel attacks and, hopefully, more effective defenses.
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A Membership inference attacks

Security game, threat model, and notation. Membership inference is formalized as a security
game between a challenger and an attacker (i.e., adversary). Let D denote the underlying data-
generating distribution over samples (and labels, if applicable). The challenger draws a finite training
dataset D ~ D" and trains a target model h on D. A challenge record « is selected to be either a
member (z € D) or a non-member (z ¢ D). The attacker is given query access to h together with
auxiliary resources and outputs a guess about ’s membership; success means accuracy exceeding
random guessing.

The strong attacks we study—LiRA and RMIA (Section 3.1 and Appendix B)—assume the attacker
can (i) query h on arbitrary inputs to obtain per-sample outputs (losses, logits, or confidence scores),
and (ii) train reference models f € ® by replicating the target’s training recipe on datasets drawn
from the same population D that generated DD (in practice, from a large proxy corpus approximating
D). For a fixed query sample x, each reference’s training dataset either includes  (IN) or excludes x
(OUT), yielding a per-x partition:
Pn(x) C O, Pour(x) C P, O (x) N Pour(x) = @.

This is the online setting; the offline setting assumes access only to ®oyr(x). Neither attack
requires access to the target’s parameters or ID; only queries to h and attacker-trained references are
needed. In research settings, one often controls both target and references, which allows evaluation

across many x with known membership. It is common (though not required) to choose ® so that
|Pin(x)| = |Pour ()| for stability. We do so in this work.

Observation signals and membership scores. For any model g and query sample z, let
s(g,x) €R

denote a fixed scalar observation signal from g on x (e.g., loss, negative log-likelihood, or a
monotone transform of confidence such as a logit). A membership inference attack (MIA) maps
the available signals for  (from h, and when used, from ®) to a real-valued membership score
A(x) € R, with larger values indicating stronger evidence that « is a member.

Baseline (reference-free) loss attack [62]. Using only the target’s statistic,
ALoss(w) = - S(h7 w),

so larger Aposs () implies lower loss on @. Any strictly monotone transform preserves ranking and
therefore ROC-AUC. No reference models are used in this baseline approach. Stronger attacks use
reference models to yield improved membership signal.

Likelihood Ratio Attack (LiRA) [5]. LiRA uses references to model per-sample IN/OUT distri-
butions over the chosen score statistic s. For a fixed x, the attacker forms
{s(f,z): f€Pdn(x)} and {s(f,z):f € Pour(z)},

fits univariate models (typically Gaussians) to obtain densities pin(- | @) and pour(- | «), and
evaluates the target’s statistic s(h, ) under these densities to form a likelihood ratio:

DIN (s(h, x) ’ w)
pour (s(h, ) | z)

The online variant uses both IN and OUT; the offline variant performs a one-sided test using only
OUT. Working with log A is common for numerical stability; since this is monotone, ROC-AUC
is unchanged.

2)

Avira(z) =

Robust Membership Inference Attack (RMIA) [63]. RMIA also compares the target model’s
score statistic on the sample « to outputs for « from a set of reference models P, but uses a different
construction based on a pairwise likelihood ratio. This ratio is normalized by a reference population
Z (e.g., a calibration set drawn from D or a held-out proxy). Define

s(h,x)

a(@) = Efeo s(f @)

3)
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The expectation in the denominator is approximated empirically over the trained references. To
improve robustness, RMIA contextualizes this ratio relative to population Z. For each z € Z:

s, 2)
B ]Efeq:.S(f,Z)7

L(x,z) = M. “)

alz e

The computed membership score aggregates the pairwise tests at a threshold v > 0:
1
Awna(@) = > 1[L(@.2) 2], 5)

We focus on online (two-sided) variants of these attacks that use both IN and OUT references, as
opposed to offline variants that only use OUT references.

Decision rules and calibration. Given a real-valued score A(x) (e.2., ALoss» ALiRA, OF Armia), the
attacker outputs a binary decision about the membership of  via

b(x) = 1{A(z) = 7}.
To operate at a fixed false positive rate (FPR) 7, it is convenient to write
b(z) = HA(z) > 7(n)},

where 7(n) is calibrated for the target h using non-members (i.e., samples not in h’s training
subset D). (We will sometimes refer to the training set as Dy, when we want to refer to the set of
non-members as Doyr.)

Calibration to non-members at fixed FPR. Fix a target h, an operating point n € [0, 1], and
assume larger scores are indicate stronger evidence that « is a member. Let the non-member (OUT)
set be Doyt with size Nour = |Dour|. (The attacker can draw i.i.d. samples from the population
distribution D, or use auxiliary data from the same source, independently of the training set, to form
Dour.) Write the scores as {A(x) : @ € Doyr}. The empirical CDF of OUT scores is

We choose the right-continuous empirical (1 — 7)-quantile

T(n) = inf{t: F\OUT(ti) > 1-n}.
Equivalently, if A1) < -+ < A(ng,) are the sorted OUT scores, let k = [(1 — n) Nour], k =
max{j : Ay = Ag ), and set 7(n) = A1) (A(Nowr-+1) = +00)-

We then apply the calibrated decision rule
b (2) = 1{A(z) = 7(n)}.

By construction, this guarantees (finite-sample, with ties handled conservatively) that

> 1{A@) = ()} = 1 Four(r(n)”) < n.

xE€Dour

@(U) ~ Nour

This is because taking the right-continuous quantile ensures that any mass tied at 7(7) is counted on
the < side of the CDF. Therefore, the realized FPR on OUT never exceeds 1 (and may be smaller in
the presence of ties).

Common performance metrics. Because MIAs are typically compared across operating points, it
is typical to report ROC curves and AUC (threshold-agnostic), and—when reporting TPR at a fixed
FPR—to set 7 to achieve the target FPR. For RMIA, the internal pairwise threshold « controls
the per-comparison likelihood ratio test, while the final decision threshold 7 controls the operating
point. Calibration may be global (single 7) or conditional (e.g., per class/bucket). All monotone
transforms of A leave ROC-AUC invariant, while operating-point metrics (e.g., TPR at fixed FPR)
depend on calibration.
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Practical note. Calibrating FPR without knowledge of ground-truth membership can be challeng-
ing [64]. In our experiments, we control training and evaluation, so membership labels are known;
this enables exact calibration and measurement at desired operating points.

B Comparing membership inference attacks and signals

At the beginning of this project, we considered two candidates for strong membership inference
attacks to use in our experiments: the Likelihood Ratio Attack (LiRA) [5] and the Robust Membership
Inference Attack (RMIA) [63]. Both attacks involve training reference models (Section 2) that enable
the computation of likelihood ratios (which result in stronger attacks), though they differ in important
ways. LiRA [5] estimates membership by comparing the loss of a sample x in a target model to
empirical loss distributions from reference models trained with and without . In contrast, RMIA [63]
performs and aggregates statistical pairwise likelihood ratio tests between & and population samples z,
using both reference models and z to estimate how the inclusion of x versus z affects the probability
of generating the observed model 6 (Appendix A).

By leveraging signal from both models and population samples, Zarifzadeh et al. [63] observe that
RMIA can outperform LiRA using fewer reference models. However, no prior work has compared
these methods in the pre-trained LLM setting and with large numbers of reference models, leaving
open the question of which attack fares better under these conditions.

In this appendix, we investigate this question for the first time, and our results clearly indicate that
LiRA outperforms RMIA for a large number of reference models in the online setting (Appendix A).
We observe limited cases where RMIA can outperform LiRA if the population dataset is large
enough and the attack is performed for certain small numbers of reference models. However, we
caution generalizing about comparative performance. LiRA seems to perform better with 1 or 2 IN
references, while RMIA performs better with 4-16, and then LiRA once again outperforms RMIA
for >16 IN references.

Overall, attacks with larger numbers of references perform better, as measured by ROC-AUC. Since
our aim is to test the strongest attacks possible—to investigate an upper bound on strong MIA
performance—this makes LiRA the best choice for our experiments. For those with smaller compute
budgets that still wish to run strong attacks using ~16 IN references, in some circumstances, RMIA
may be a better choice.

Following from our discussion of the threat model for membership inference, and how it is imple-
mented with slight variations for LiRA and RMIA (Appendix A), we next discuss our experiments
comparing the performance of these two attacks.. We first show how different choices of observation
signal impact attack performance (Appendix B.1). This provides more detail about the choices we
make in our overall experimental setup throughout the paper (introduced in Section 3). Then, we
show our full results that compare the performance of LiRA and RMIA using different numbers
of reference models (Appendix B.2), which lead us to choose LiRA for the experiments that follow.

For all experiments comparing LiRA and RMIA, we train 140M-parameter models on ~7M samples,
which equates to approximately 2.8B training tokens (i.e., what is optimal for this model size,
according to Chinchilla scaling laws [25] with an over-training multiplier of 20).

B.1 Different signal observations

In our initial experiments in Section 3, we compare LiRA [5] and RMIA [63] to decide which strong
attack to use. We also investigated the efficacy of different observation signals for membership
inference. We tested model loss and model logits (averaged over the entire sequence). For example,
in Figure 8, we plot the ROC curve for using LiRA to attack a 140M model trained on ~ 7TM
samples with 128 references. The plot shows the true positive rate (TPR) against the false positive
rate (FPR) on a log-log scale, with one ROC curve each for logit and loss signals. For the logit
curve, ROC-AUC=0.576, while the loss curve has a higher ROC-AUC=0.678. This indicates that,
in this setup, using loss as the observation signal results in a more effective attack compared to using
logits. Based on results like this, throughout this paper, we opt to use loss as observation signal s.
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Figure 8: Influence of observation signal type on MIA Performance. For the 140M model,
we plot ROC curves to compare the efficacy of using model logits (AUC=0.576)and model loss
(AUC=0.678) as signals for membership inference with LiRA. In this setting, loss provides a stronger
signal for distinguishing members from non-members.

B.2 MIA attack performance for different numbers of reference models

Figure 9 compares LiRA and RMIA, showing ROC curves and ROC-AUC for different numbers of
reference models. Figure 10 provides an alternate view of the same results, plotting ROC-AUC for
both attacks as a function of reference models. LiRA’s performance generally dominates RMIA’s.
LiRA continues to improve as we increase the number of reference models, while RMIA’s ef-
fectiveness plateaus. However, with 4-16 IN references, RMIA surpasses the performance of
LiRA. It essentially matches LiRA using 16 IN references. That is, with 4 references, LiRA
exhibits ROC-AUC=0.594, which under-performs RMIA’s corresponding ROC-AUC=0.643;
but LiRA’s ROC-AUC increases to 0.678 with 64 IN references, which outperforms RMIA’s
ROC-AUC=0.658.

Also note that RMIA exhibits a distinct diagonal pattern at low FPR (Figure 11). While RMIA
aims to be a strong attack that is effective in low-compute settings, we find that a large population
Z is necessary to obtain meaningful FPR at very low FPR thresholds. In particular, for a
minimally acceptable FPR;,, RMIA requires a population size |Z| that is ﬁRmm‘ In practice,
this is quite expensive, as RMIA’s membership score is computed via pairwise comparisons with
these |Z| reference points (i.e., there are O(|Z]|) pairwise likelihood ratio tests for target record
x, see Appendix A). In these initial experiments we only used |Z|=10,000 samples. We measure
performance of RMIA on larger population sizes below in Appendix B.2.1.

Overall, as noted in Section 3, while both attacks clearly beat the random baseline of ROC-AUC=0.5,
neither is remarkably successful in this setting: regardless of the number of reference models, neither
attack achieves that meets or exceeds ROC-AUC=0.7.

B.2.1 Further experiments on RMIA

We now further investigate RMIA, decoupling its different components. We investigate removing the
dependence on the population Z, population sizes other than |Z|=10,000, and varying threshold ~.

Eliminating dependence on population Z. First, we consider the simplest form of RMIA (simple),
eliminating its dependence on a population Z and using «(x) directly as membership signal (Equa-
tion 3). Figure 11 shows the ROC curves for all three MIAs attacking one target model with 10M
parameters, trained for 1 epoch on a training set size of 2! samples. We use 128 reference models
and consider 2 x 219=220 target records x with (as elsewhere) balanced membership/non-membership
to analyse MIA. We find all three attacks reach similar ROC-AUC values.

We also gauge MIA performance by evaluating the TPR at low, fixed FPR. To understand the
values RMIA reaches for TPR at low FPR, an important subtlety arises from the entropy of the
score distribution. Attacks that produce very coarse membership scores inherently limit achievable
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Figure 9: Comparing LiRA and RMIA. We attack a 140M-parameter model, with the target and
references trained on ~7M samples. ROC curves illustrate the effectiveness of (a) LiRA [5] and
(b) RMIA [63] for different numbers of reference models. As we increase the number of references,
LiRA’s performance surpasses RMIA’s, measured by ROC-AUC. These plots show the number of
IN references. (There are 2x as many references in total, accounting for OUT.)
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Figure 10: Comparing LiRA and RMIA. As an alternative view of Figure 9, we plot the
ROC-AUC achieved by both attack methodologies for an increasing number of reference models.
As the number of references increases, LiRA’s performance continues to improve, while RMIA’s
gains saturate. Overall, LiRA is the stronger attack. This plot also only shows the number of IN
references on the z-axis (there are the same number of OUT).

TPR at very low FPR. For example, as RMIA compares a(x) to a(z) for all z € Z to compute
its membership score Armia () (Equation 5), there are maximally |Z| unique values Agrpa () can
take for all . This limits the score’s entropy and the possibility of achieving a meaningful TPR at
very low FPR. This explains the diagonal pattern for RMIA in Figure 11, where |Z|=10,000. By
contrast, both LiRA and RMIA (simple) provide a membership score that is not limited in entropy,
leading to more meaningful values for TPR at lower FPR.

Increasing the population size |Z|. We next test further increasing the size of the population Z
when computing RMIA. For the same setup as Figure 11, Figure 12 shows how MIA performance
varies with the size of Z. We observe very similar values for RMIA (simple) and RMIA ROC-AUC
for all population sizes that we test. When examining TPR at low FPR, we find that increasing |Z|
improves the MIA performance. Indeed, the increased entropy in Agrpa () now allows the attack to
reach meaningful values of TPR for FPR as low as 109, Notably, for all values of |Z| we consider,
LiRA still outperforms RMIA at low FPR, while the |Z| likelihood comparisons in RMIA for every
target record & also incur additional computational cost.

Varying threshold . Finally, we evaluate RMIA under varying threshold ~. As +y increases, in
Equation 4, it becomes less likely that «(x) sufficiently exceeds «(z) for many z € Z to count
toward the score—i.e., that a(x)/a(z) > v (Equation 5).
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Figure 11: Comparing LiRA, RMIA (simple) and RMIA. Attacking a 10M-parameter model
trained for 1 epoch with a training set size of 2!? samples.
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Figure 12: Performance of RMIA for different population sizes |Z|. We attack a 10M-parameter
model trained for 1 epoch with a training set size of 2' samples.

Again for the same setup, Figure 13 shows how RMIA performs for varying values of ~, considering
both |Z|=10,000 (Figure 13a) and |Z|=300,000 (Figure 13b). While MIA ROC-AUC remains rela-
tively stable as - increases, the TPR at low FPR varies. For |Z|=10,000, the TPR at FPR=10"*
decreases for increasing values of -, reaching 0 for y>1.1. This is due to the reduced granularity
of RMIA’s membership score: for larger v, fewer z satisfy a(x)/a(z) > ~; this constrains the
entropy of the RMIA score, making it harder to reach meaningful values of TPR at low FPR. A
larger reference population (|Z|=300,000) mitigates this issue, allowing meaningful TPR even at
low FPR for similar ~y values.

Taking these three sets of results together, we find LiRA to outperform RMIA when a sufficiently
large number of reference models is available, especially in the low-FPR regime. Since our aim is to
study the strongest attacks, we adopt LiRA as the primary attack throughout our experiments.

B.3 MIA performance in the offline setting

As stated in Section 2 and Appendix A, the literature distinguishes between online and offline settings
for reference-based MIAs [5, 63]. In the online setting, the attacker has access to reference models
trained on data including the target sample x (P1y) and excluding it(®Poyr). In the offline setting, the
attacker only has access to ®oyr. Throughout this work, we consider the strongest attacker, and thus
report all results in the online setting.
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(b) |Z| = 300,000

Figure 13: Performance of RMIA for varied v. We attack a 10M-parameter model trained for 1
epoch with a training set size of 21 samples, varying the threshold ~ used to compute Agpa.

For completeness, we instantiate MIAs in the offline setting in the same experimental setup as
considered above for our additional RMIA tests (Appendix B.2.1). We test the offline versions for both
LiRA and RMIA, as originally proposed in Carlini et al. [S] and Zarifzadeh et al. [63], respectively.

For LiRA, without ®1y, we are unable to approximate the probability piN (s(h, :c)) (Equation 2), and
s0 just consider the one-sided hypothesis test as the membership signal instead of the likelihood ratio:
ALira offiine () = 1 — pour (s(h, ).

For RMIA, we now compute the denominator in a(x) (Equation 3) by taking the expectation over
the reference models that are available to the attacker, i.e.:

s(h,x)
Efecaour S(f, :I:) ’

Note that Zarifzadeh et al. [63] propose to further adjust the denominator by using a variable a (their
Appendix B.2.2) to better approximate the Escas(f, ), when only references ®oyr are available.
We set a=1 and just compute the empirical mean across all reference models in ®oyr to approximate
the expectation in the denominator. We then compute aumine (2) and use membership inference signal

1
|Z|

Qoffline (Il? )

Qloffline (Il:)

1 [Lotine(x,2) > ], where Lggine(®, 2) = .
Z [Lottine (2, 2) = 7] fhtine (€, Z) Ctofttine(2)

ZEL

ARMIA offine ()

Figure 14 compares the MIA performance between the online and offline setting, for LiRA, RMIA
(simple) (which does not use the reference population Z, Appendix B.2.1), and RMIA; we set y=1
and |Z|=300,000. We again attack a 10M-parameter model trained for 1 epoch, using a training set
size of 219 samples. We use 128 reference models for the online setting and 64 in the offline setting
(on average, per target sample).
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Figure 14: MIA performance in the offline and online setting. We attack a 10M-parameter model
trained for 1 epoch with a training set size of 2!? samples, considering 128 references in the online
setting and only the corresponding models ®oyr in the offline setting (on average 64 references per x).

We find that, in this configuration and with this number of reference models, offline RMIA outperforms
offline LiRA, in terms of both ROC-AUC and TPR at low fixed FPR. This suggests that RMIA’s
offline variant more accurately captures membership signal compared to the one-sided hypothesis test
used in offline LiRA. In contrast, in the online setting, LiRA and RMIA achieve similar ROC-AUC,
with LiRA performing better than RMIA in the low-FPR regime.

C More experiments on Chinchilla-optimal models

In this appendix, we provide additional details on our experiments involving LiRA attacks on
Chinchilla-optimal [25] models of different sizes in Section 3.2: 10M, 44M, 85M, 140M, 489M, and
1018M. We summarize training hyperparameters in Appendix G.

Observing changes in loss during training. In Figure 15a, we show the decrease in validation
loss over a single epoch. The z-axis represents the fraction of the training epoch completed (from 0.0
to 1.0), and the y-axis shows the corresponding loss. As expected, all models exhibit a characteristic
decrease in loss as training progresses. Larger models (namely, 489M and 1018M) demonstrate
faster convergence to lower loss values, reflecting their increased capacity to fit the training data.
They also maintain a lower loss throughout the epoch compared to smaller models (10M-140M).

Investigating the role of learning rate schedule. In the Chinchilla-optimal setting, we also inves-
tigate the role of hyperparameters on MIA performance. In Figure 15b, we show ROC curves that
compare the MIA vulnerability (with LiRA) of 140M-parameter models (trained on ~7M records,
with 128 reference models), where we vary the learning rate schedule: Linear (AUC=0.676), Cosine
(no global norm clipping, AUC=0.660), Cosine (no weight decay, AUC=0.673), and standard
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Figure 15: Investigating training dynamics hyperparameters. (a) Validation throughout the 1
training epoch for our experiments involving Chinchilla-optimal trained models of various sizes. (b)
The effect of learning rate schedule on LiRA’s attack success for 140M models using 128 references.
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Figure 16: The role of duplicates on MIA vulnerability. We observe no significant differences
(particularly as FPR increases) between models trained on C4 and de-duplicated C4.

Cosine (AUC=0.675). As with all of our ROC plots, the TPR is plotted against the FPR on a
log-log scale. The ROC-AUC values for each curve are relatively close. This indicates that, while
there are some minor differences in attack performance, the choice of learning rate schedule among
those tested does not lead to drastically different MIA outcomes.

D Additional experiments exploring the limits of LiRA

In this appendix, we provide additional experiments that explore the limits of LiRA when there are
duplicate samples in the training data, and (complementing results in Section 4) when there are
varying numbers of training epochs and varied dataset size.

Investigating the role of duplicate training samples. Given the relationship between MIA and
memorization, and that prior work observes an important relationship between memorization and
training-data duplication [28], we test the relationship between MIA vulnerability and the presence
of duplicate training samples. In Figure 16, we test the Chinchilla-optimally trained 140M model on
C4 and a de-duplicated version of C4. We de-duplicate C4 according to methodology described in
Lee et al. [28], where we remove sequences that share a common prefix of at least some threshold
length. This reduced the C4 dataset size from 364,613,570 to 350,475,345 samples.

We observe that the presence of duplicates has a negligible impact on AUC: it is 0.683 for C4, and
0.680 for de-duplicated C4. In other words, at least in terms of average attack success, the presence
of duplicates does not seem to have a significant impact. However, further work is needed to assess
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Figure 17: Over-training and MIA. ROC curves demonstrate that MIA success significantly
increases as models are trained for more epochs. (a) The 140M model shows AUC rising from 0.573
(1 epoch) to 0.797 (10 epochs). (b) Attacking a 140M model trained on a smaller dataset shows a
rapid escalation in AUC, from 0.604 (1 epoch) to near-perfect membership inference (AUC=1) by
13-20 epochs, highlighting that overfitting from prolonged training severely heightens privacy risks.

how attack success changes with more stringent de-duplication, since our de-duplication procedure
only remove 10M samples from the dataset.

Varying training epochs and dataset size. In Figure 17, we reduce the training set size from
~TM (Figure 17a) 2'92500K samples (Figure 17b) on the 140M model and train for 10 (Figure 17a)
and 20 epochs (Figure 17b). Both figures show ROC curves that illustrate how MIA vulnerability
changes with an increasing number of training epochs. The goal of these experiments is to investigate
if MIA becomes better with more training epochs, and if so, how attack performance improves over
epochs as a function of training dataset size.

For the 140M model trained on ~7M samples for 10 epochs, the AUC increases with more epochs,
starting from 0.573 at 1 epoch and reaching 0.797 at 10 epochs. For the 140M model trained on
~500K samples for 20 epochs, we observe a more dramatic increase in MIA vulnerability. The
AUC starts at 0.604 for 1 epoch, rapidly increases to 0.864 by 2 epochs, 0.944 by 3 epochs, and
approaches perfect MIA (AUC close to 1.000) after 13 epochs. Of course, both of these experiments
are effectively sanity checks. We intentionally over-train in both, and use a relatively small training
dataset size in the second.

Full results for various-sized Chinchilla-trained models and fixed training set size We provide
full results for attacking Chinchilla-optimal models of various sizes for 1 epoch (Figure 2b), and
attacking various model sizes trained on a fixed dataset of ~8.3M samples for 1 epoch (Figure 4b).
Both of these figures in the main paper show how TPR varies at fixed FPR in line plots. Here, in
Figures 18 and 19, we give individual ROC curves for experimental results summarized in each
of those figures, respectively. For each subplot, each line indicates a different target model that we
attack. As discussed previously, some larger models appear to have more variance in their ROC
curves over different experimental runs. In Figure 19i, we see that although AUC is similar over
different target models, there is catastrophic failure against one model at small FPRs.
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Figure 18: ROC curves and AUC for Figure 2b. We attack different model sizes trained on the
Chinchilla-optimal number of tokens. In each subplot, each line indicates a different attacked target.
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Figure 19: ROC curves and AUC for Figure 4b. We attack different model sizes trained on the
same number of samples (=8.3M). In each subplot, each line indicates a different attacked target.
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Varying reference models for all Chinchilla-optimally trained model sizes In Figure 20, we
replicate the experiments in Figure 18, but we vary the number of references. Each row in the figure
is for a different-sized model. Each column uses a different number of total references to perform the
attack. We attack 8 targets trained on different training data subsamples in each plot.

Unsurprisingly, MIA improves as we use more references. This mirrors our findings in Figure 9a.
The key point of these figures is to show the general pattern of where the ROC curve is relative to the
reference line y=x. We also show that there is variance (in the insets) across attack runs for the same
model size. These are not to be taken as detailed results that should be closely examined. (This is
why the plots are not very large.) We investigate instability in Section 5 and Appendix E.
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Figure 20: Extended ROC curves and AUC for Figure 2b. For each subplot, each line indicates
a different target model that we attack. Each row is a different model size. Each column represents
using LiRA with a different number of total reference models. Each subplot also records the average
AUC across attacks on different targets.
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E Investigating instability in per-sample membership predictions

As noted in Section 5, we observe substantial per-sample instability in membership predictions.
We also notice significant variability in ROC-AUC across attacks in Figure 20. However, because
standard attack metrics such as ROC-AUC are aggregates over samples and decision thresholds;
they report metrics according to average FPR/TPR over many samples. As such, they can mask this
instance-level variability. We visualize and quantify individual-sample instability, and connect our
analysis to prior work in other areas of statistics and machine learning.

E.1 Variation in per-sample true positive probabilities

For the 140M model, we plot the mean and standard deviation of the per-sample true positive
probabilities, Pr(predicted as member|member) for 224=16,777,216 samples. For each sample,
we compute variance across 64 target models (for which the sample is a member); overall, this
experiment trained 128 models (140M size) on different random splits of the 224 samples. We

compute Prpredicted as a member|member, using m > 0.5 to determine if the
sample is predicted as a member (Section 6). We loop over each model, selecting it as the target
model and the remainder as reference models used for LiRA. Since each sample had a probability
of 0.5 for inclusion in the training set, for each sample, we have on average 64 target models where

the sample was in training and 64 for which it was not.

In Figure 21, we provide three plots that give different views of the same data. Figure 21a plots the
true positive probability for each member. We sort members by the mean value of their true positive
probability (i.e., the mean of Pr(predicted as member|member) over 64 target models), so member
id corresponds to this ordering. We also show the variance over the 64 target models by plotting the
standard deviation.

Together, Figures 21b and 21c¢ provide an alternate view of Figure 21a. Figure 21b plots the histogram
of the mean Pr(predicted as member|member) for members across their respective 64 target models.
The average across these mean true positive probabilities for each member is 0.543. However, note
the distribution of per-sample means: while the across-sample average of the per-sample means is
0.543, a substantial mass of members exhibits mean Pr(predicted as member|member)>0.6. The
spread is large: the average per-sample standard deviation is 0.143, with many members exceeding a
standard deviation of 0.2.

Overall, variance is significant. The individual member true positive probabilities for each target are,
when considered together, highly unstable. This variance can help explain why attack ROC-AUC is
perhaps lower than one might have hoped; there is considerable variance in the underlying sample
predictions. Altogether, this provides additional nuance concerning the extent of (alternatively, the
limits of) attack robustness.
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Figure 21: Different views of instability in per-sample true positive probabilities. For each of
224 samples @, we compute the mean and standard deviation of Pr(predicted as member | member)
across B=64 target models. (a) shows, after sorting samples by their mean, the mean and one
standard deviation band. (b) is a histogram of these per-sample means; (¢) is a histogram of the
corresponding standard deviations.
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E.2 Analyzing per-sample prediction instability

In Appendix E.1, we provide extended results for Section 6.1 on variation in per-sample true positive
probabilities, and then in Appendix E.2 we include more results and discussion on flip rate (Section 5).

Roadmap. This appendix deepens our analysis of per-sample predictive instability. We begin by
formalizing flip rate [13]—the metric we use to measure instability at the per-sample prediction
level—and its unbiased empirical estimator (Appendix E.2.1). We then explain how we measure
flip rate in the MIA setting used in our experiments, and why the metric is informative for strong
MIAs (Appendix E.2.2). We connect our results to prior work on model/predictive multiplicity [3]
(Appendix E.2.3).

Then, we derive an exact acceptance band for deciding when a sample’s predictions are statistically
indistinguishable from a coin flip; for a finite number of targets B and acceptance level o, we obtain
the resulting flip cutoff ¢, (B) that we deem the minimum required for «’s predictions to be called
“level-« arbitrary.” (Appendix E.2.4). Using these tools, we present extended empirical results for
two model sizes, 140M and 302M (Appendix E.2.5). Finally, we estimate how much of standard
attack performance (ROC-AUC) can be attributed to arbitrary predictions as opposed to reliable
inference (Appendix E.2.6).

For reference, the acceptance-band cutoff values used in the figures/tables are tg o5(125) = 0.490
and ¢0.05(127) ~ 0.487 for the 140M and 302M models, respectively.

Key points. This is a long appendix, so we summarize key points here. For a fixed sample x
and operating point 1, we care whether the binary membership decision produced by LiRA is
reliable (stable across equally plausible targets) or arbitrary (seed-dependent) with respect to training
randomness in the target. We compute flip rate with respect to the seed-induced distribution .
Our seeds reflect realistic training randomness (e.g., batch order), and aggregate metrics are stable,
indicating that p is not pathological/degenerate.

High flip rate (near 0.5) means the decision for x is effectively a coin flip across plausible targets, so
a true positive on a particular target is not evidence of reproducible inference for x; it is a lucky draw.
Aggregate ranking performance (e.g., AUC) can still be > 0.5, but that is a different claim about
averages. We call the MIA decision for « “arbitrary at level o if, under the exact two-sided binomial

test with B votes K ~ Binomial(B, ), we fail to reject Hy : 6 = 0.5, where 6 := Pr,. [be” (z) =1].
This yields a concrete cutoff ¢, (B) on fﬁ})n’ p(x) via the equal-tails acceptance region under Hy;

samples with fﬂ})n’ g(x) > t,(B) are deemed arbitrary. (See Appendix E.2.4 for the derivation; and
values we use in practice are noted above.) “Arbitrary at level o” is a standard, finite-sample exact
test with a clear, observable cutoff ¢, (B).

Another way to understand these results is to see that, if r ~ y and 6 = Pr, [by’) () = 1] ~ 0.5, then
Pr (bgjl)(:c) = bgj)(a:)) = 1—Mflip,(z) =~ 0.5.

Retraining the same pipeline on the same data would reproduce the same decision for  only about
half the time. This is the operational meaning of an “arbitrary” per-sample MIA decision. Importantly,
this claim concerning flip rate is about MIA decisions, not the underlying scores. Even if LiRA scores
for « carry some signal, decision instability can be high when the calibrated threshold 7,.(n) wanders
across seeds; AUC may remain non-trivial while flip rate is high. Our claim is specifically about the
reliability of per-sample decisions. We apply this per-sample test and report descriptive counts across
many x; the inferential claim is per sample (“‘arbitrary at level o), which is appropriate for the setup
of the MIA security game.

The classifier threshold 7,.(n) is calibrated on non-members for each target (trained with seed r),
anchoring non-member decisions to their own distribution while leaving members more exposed to
seed-induced score and 7 variation, especially where IN/OUT overlap. This is a feature of the real
attack protocol, not an evaluation artifact. With finite B, some truly non-arbitrary « could be labeled
arbitrary by chance. The exact binomial test controls Type-I error at level «; the acceptance band and
t.(B) make the rule explicit. In decompositions (e.g., contributions to TPR and AUC), we filter
only the “arbitrary” band (not all highly unstable cases like [0.4,t,(B))), so reported performance is
a conservative upper bound on reliable inference.
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E.2.1 Measuring instability of individual predictions with flip rate

To complement our measurements of typical metrics from work on MIA, we adopt a metric from
Cooper et al. [13] for measuring per-sample prediction instability. We first review this metric, then
specify our MIA-calibrated version and its unbiased estimator.

Self-consistency across a distribution of models. Let g ~ v = v 4 p denote a model drawn from
the distribution induced by training algorithm .4 (a function of a random seed) with training data from
distribution D. For a binary decision rule by(x) € {0,1} (e.g., by(x) = 1{g(x) > 7}), Cooper et al.
[13] define the self-consistency at x as the pairwise agreement probability under two i.i.d. draws:

SC(x) = g,};iu [bg(x) = by (x)]. (6)

For such binary decisions, SC(x) € [0.5, 1]: values near 1 indicate stability among predictions for
x in spite of randomness in the training process; values near 0.5 indicate that the prediction for
using this training process is effectively a coin flip—it is arbitrary [13]. A standard U-statistic yields
an unbiased estimator: E[SC(x)] = SC(x). Note that SC is defined for any . Cooper et al. [13]
estimate it for samples in a held-out test.

Flip rate on calibrated MIA decision rules. In our setting, we fix the dataset D ~ D and vary
only the training seed, which affects batch order during training. We adapt SC from p 4 p to the MIA
decisions under p 4 p calibrated at a fixed FPR.

Let r ~pu = p4p denote a target model drawn from the seed-induced distribution with the (fixed)
training dataset D. Let A,.(x) € R be the attack score (e.g., LiRA posterior, Equation 2) for sample
. For a desired false-positive rate 7 € [0, 1], define the per-seed calibrated threshold 7..(n) (e.g., the
(1 — n)-quantile of A, on non-members for that seed), and the calibrated membership decision

(@) = LA () > 7(n)} @)
(as in Section 2 and Appendix A). Unlike Cooper et al. [13], we focus on disagreement between pre-
dictions for « rather than agreement. The (population) flip rate at « under x and operating point 7 is

flip,(x) = Pr [ (z) #bP(2)] = 1-SC,(), ®)
Siid.
N
which lies in [0, 0.5] at the population level, with 0 indicating that prediction for & does not flip/
is stable across target replicas and 0.5 indicating that the prediction for « is arbitrary, behaving like
a coin flip. (The operator point 7 is left implicit in the use of SC in Cooper et al. [13], as the authors
always set 7=0.5 in practice.)

Note that we deliberately calibrate per seed, as this mirrors how MIAs are actually run in practice: a
single target is calibrated at its chosen FPR. Here, we vary the target (via seed) to expose instability
across plausible targets r ~ u using the same training recipe.

Unbiased estimator (order-2 U-statistic) and closed form. In practice, we estimate the popula-
tion flip rate (Equation 8) for a concrete number of target replicates B trained with different random

seeds that control batch order. Given B > 2 i.i.d. target replicas 71, . . . , 7p ~ p with calibrated rules
bg:]), the canonical unbiased estimator of ﬂip77 (x)is

. B\™! . .

My s@ = (5) 5 1@ A0 @)  Elp,s@)] - i@ ©)

1<i<j<B
Let By (x) = Zf;1 bg:’) (z) and By(x)=B — B () be the numbers of “member” and “non-member”
predictions among the B replicas for . Then, Equation 9 has the closed form
2 BO (:I?) B1 (:E)

B(B-1) 10

ﬂipn,B(w) =

Maximizing By (x)B;(x) under By (x)+ B (x)=DB yields the finite- B upper bound, since

T _20B/2[B/2] _ )aB-1) 2 2B-1) "M
lpn,B(w) — -

B(B—-1) B—&—l_l_{_ 1 B odd

2B 2 2B’ ’
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which exceeds 0.5 and converges to 0.5 as B — oo (e.g., B=125 = 0.504).

To see why, note that By () B; () is maximized by the most balanced vote split (i.e., Bo(x)B1(x) <
| B/2|[B/2]. If B is even, i.e., B=2k, the maximum occurs at Bo(z) = Bi(x) = |B/2| =k, so

., B . 2.(B¥4 B 1 1
BO(a:)Bl(iE) *kz - T = ﬁlpmax - B(B— 1) - Q(B—l) - §+m

If Bis odd, B = 2k + 1, the maximum occurs at (Bo(z), Bi(x)) = |B/2][B/2] = (k,k + 1), s

B -1 o _2(B-n/4)_ B-1 1 1
Pmax = "B 1) ToBB_1) 2 2B

Bo(z) B (x) = k(k+1) =

Of course, this means that at low B, flip rate can have values that are quite far away from 0.5. For
example, when B=2, the flip . =1. Nevertheless, this is the right choice of metric, as it is unbiased.
In our experiments, we ensure that the flip rate is easily interpretable by plotting results where the
minimum B=125, such that flip_,, ~0.504. We discuss this further in Appendix E.2.4.

Why the U-statistic is the right estimator (unbiasedness). Fix a sample « and an operating point
7. Write b (z) € {0,1} for the calibrated decision of target r ~ 1 4 p. Let b denote a generic draw
of b (z), and set

9 == Pr(b=1)€0,1].

Draw B > 2 i.i.d. replicas by,...,bp roy Bernoulli(f). The population flip rate at (x,7) (the
pairwise disagreement probability for two independent draws) is

flip, (z) = Pr(b#V) = Pr(b=1,b'=0) + Pr(b=0,b'=1)
= 0(1-0) 4+ (1-0)0 = 20(1—6). (11)

Because (f — )2 > 0 <= 6(1 —0) < %, we have flip, (z) = 20(1 — 0) < 1,1i.e., the population
flip rate never exceeds 0.5.

For a concrete B, the empirical estimator (order-2 U-statistic) averages the pairwise indicator over all
unordered pairs:

b, (@) = (f) S b #by),

1<i<j<B

as in Equation 9. By linearity of expectation and independence,

_ B\ !

i, @] = (5) X Eub£)
1<i<j<B
For any fixed pair (4, j) with ¢ # 7,
Because b;, b; are independent Bernoulli(6),
Pr(bl:]., b]:()) = Pr(blzl) Pr(bj:()) = 0(1 - 0), Pr(bZ:O, b]:].) = (1 - 9)9,
so Pr(b; # b;) = 20(1 — 0). Therefore every term in the sum equals 26(1 — 6), so
_ B\ !
E[flip, z(z)] = <2> Z 20(1 — 0) = 20(1 — 0) = flip, (x),
1<i<j<B

S0 ﬁi\pm p 1s exactly unbiased for all B > 2.
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Showing unbiasedness via the vote fraction. For our discussion below and in Appendix E.2.4,
it is useful to see the same result via another argument. As above in our discussion of flip rate
(Equation 1), Let

B
z) = Zbg’”(x), Bo(z) = B— By ().

By construction, By (z) is the sum of B i.i.d. Bernoulli(6) draws, so
B;(x) ~ Binomial(B, 0).
Define the vote fraction v(x) := Bj(x)/B. Therefore, we can write
B;(x) = Bu(x)
By(xz) = B(1 —v(x)).

The number of disagreeing unordered pairs is B;(x) By(x) (choose one “member” vote and one
“non-member”’ vote), SO

o) = Pt = 5w Bute) P = e i)
2B

= 51 v(m)(l - v(ac)) (12)

Since B; (z) ~ Binomial(B, §),
Elv(z)] = @ = Bg =6, and (13)
Var[v(z)] = 9(1B_ 0), (14)

because
Var[v(:n)] = Var BlBEw) Var[gé( )],

by the scaling law for variance:
Var[aX] = E[(aX — E[aX])’] = E[(a(X — E[X]))*] = a® E[(X — E[X])?] = ¢*Var[X].
Next,

Var[B;(x)] = Var

B
>-si0e)

r=1

Mm

Var [0 (2)] +2 Y Cov[bl (), b ()]

r=1 r<j

ar [bgf’)(m)] (independence: Cov(:,-) = 0 for r # j).

M=
<

1

ﬁ
I

Because b."” (x) is a Bernoulli variable with success probability 6, Var[b,(ﬁ) (z)] = 6(1—0). Therefore
Var[Bi (z Ze (1—0)=BO(1—0),
andso Var[By(z)] _ BO(1—0) 6(1—0)
ar[By (z - -

Var[v(z)] = 5 =—Z—=—5

as claimed in Equation 14. Finally, combining Equations 13 and 14 with the definition of variance,
6(1-6
E[v(z)?] = Var[v(z)] + Efv(z)]* = (B ) + 62 (15)
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Therefore, by Equations 13 and 15,

E[v(z)(1 — v(z))] = E[v(z)] — Elu(x)?] = 0 — (@ +02)
-0 9(13— 0)
:9(1—9)—%.9(1—9)

Plugging into Equation 12 gives

E[flip, 5(z)] = % Eo(2)(1 - v(e))] = % 00— 0)(1 - é)
2BO(L-6) 20(1-6)
- B-1  B-1
26(1-60)(B-1)
N B—-1

=201-0) = ﬂipn(:c),
by Equation 11. Therefore, the U-statistic is unbiased for all B > 2.

Why a quadratic surrogate for “lack of margin” is biased. As we discuss in Appendix E.2.4,
interpreting empirical estimates of the flip rate can be a bit counter-intuitive. Empirical estimates
that are very close to 0.5 may actually reflect a vote split that seems a bit far from |B/2|/[B/2].
In other words, concrete splits for a given B might “feel” somewhat far from a perfect 50/50 split
even if flip, 5 ~ 0.5. As aresult, it might seem natural to derive a metric that captures arbitrariness
by showing how far the vote fraction (Equation 14) is from a completely split vote, rather than
estimating the flip rate.

That is, consider that the raw margin from a completely split vote is v(x) — % (Note that, if

v(x) = 0.5, then the raw margin is 0; if v(a) = 1, then the raw margin is 0.5; if v(x) = 0, then the
raw margin is —0.5; and similarly, for any intermediate vote fraction.) Scaling so the range becomes
[0, 1] and taking absolute value so that there are no negative values gives

m(z) = |2v(z) - 1| € [0,1].

Therefore, m(x) = 0 at a perfect split and m(x) = 1 at unanimity. But of course, m(x) is neither
smooth nor concave. We show two convenient identities (by completing the square) that relate the
margin and the quadratic in v(x), so that we can have a smooth, concave alternative:

v(@)(1—v(@) =1 - (v(@) = 1) =L —L(2(@) - 1)" =1 (1-m@)?), 16
(@) (1—v(x)) =1 —2(v(@) — 1)* = L — Lm(a)®.

2v
So 2v(x)(1 — v(x)) is a smooth, concave, symmetric surrogate for “lack of margin” (maximal at
v(x) = 3, decreasing as the margin grows).

While this alternative seems to behave “nicely” in practice (i.e., is at most %, unlike ﬂipn’ ), itis
biased (downward) for finite B. That is,

E[2v(z)(1 — v(z))] = 2(E[v(z)] — E[v(z)?])
= 2(1[5[1}(:0)] — (Varfv(z)] + E[v(:c)]z)) (variance identity)

—2 (9 — (Varfv(z)] + 92)) (by Equation 13)
= 2(9 — (w + 92)) (by Equation 14)
_ 2(9 _ 92 o 9(1379))
—26(1 —9)(1 - %)



The population flip rate is 26(1 — 6) (Equation 11), so
E [20(2) (1 - ()] = i, (@) - (1~ %),

i.e., the quadratic surrogate metric for showing a “lack of margin” (i.e., arbitrariness of predictions
for x) is downward biased by % (.e., is % below the population flip rate) for any finite B > 2,

and becomes unbiased only as B — oo. By contrast, the U-statistic ﬂi\pn, p(x) (Equation 1) is
exactly unbiased at every B > 2. This is why we report the U-statistic, i.e., the pairwise prediction-
disagreement probability (which we informally call the flip rate).

E.2.2 Measuring flip rate for MIA

In Cooper et al. [13], the authors train B models using bootstrap replicates drawn from a dataset .
They split D into train and test sets, train B models on bootstrap subsamples of the train set, and, for
each held-out test sample, compute an unbiased estimate of self-consistency from the B predictions.

Here, we measure flip rate in a setup that mirrors strong MIA. We fix a dataset I) of size 2N =220
(so N=2'%) and train each target model on the same N-sized subset—i.e., the set of members (size
N) and non-members (size V) is identical across targets. When training targets, we change only
the random seed that determines batch order during training. Changing the batch order induces
randomness in the training process. Together with unavoidable hardware non-determinism, this yields
the variability we observe across target models [10].

For LiRA, we fix a reference set of 128 independently trained models on different N-sized subsamples,
and we use these same references for every target to compute per-sample IN and OUT reference distri-
butions, pin(- | ) and pour(- | ). Atachosen FPR 7 € [0, 1], each target model r calibrates its own
threshold 7,.(n) on that target’s non-member scores (i.e., we perform per-seed calibration), and then
applies the calibrated decision rule in Equation 7. We then compute the flip rate for a sample x over the
ensemble {r;}2 | via Equation 9, thereby isolating the effect of target-training randomness while hold-
ing references fixed. We run such experiments on two model sizes: 140M and 302M (Appendix E.2.5).

For reference, we highlight some key points about calibration that will come up repeatedly in the rest
of this appendix.

Calibration asymmetry and its consequences

What we calibrate. For each target  and fixed FPR 7, the decision threshold is 7,.(n) =
Fo_tle,r(l — 1), i.e., the empirical (1—n)-quantile of that seed’s non-member scores. This
guarantees the non-member tail is controlled at level 7 for that seed (with the usual tie convention;
see Appendix A).

Why asymmetry arises. Because 7,.(n) is re-estimated on non-members for each seed, it
“tracks” seed-to-seed shifts in non-member score distributions by construction. Members,
however, are not used for calibration, so many member scores lie closer to (and straddle) the
moving boundary across seeds (Figures 25, 26, & 27).

Empirical effect. In regions where IN/OUT scores overlap (Figures 22 & 23), small
seed-induced shifts in either the score or the boundary can flip member decisions; conse-
quently, members exhibit substantially higher flip rate than non-members at the same 7, and the
gap widens at larger 1 and with increased model size (Figures 28 & 29).

Implication. This calibration asymmetry explains why aggregate metrics (e.g., mean TPR at
fixed FPR, see Tables 1 & 2) can look stable (Figures 24 & 30), while many member decisions
are individually unstable (Tables 3, 4, 5, & 6). It also motivates our hypothesis-test cutoff ¢, (B)
for flagging statistically arbitrary per-sample decisions (Appendix E.2.4).

Interpreting flip rate for MIA. Each target model is a plausible outcome of this training process.
Any of them would be a reasonable choice for running LiRA, as they are i.i.d. draws from the same
seed-induced distribution. Measuring flip rate across targets therefore quantifies how resilient LiRA’s
per-sample decision is to randomness in target training.

If a sample’s predictions are stable (low flip), LiRA’s decision for that sample is robust to
target-training randomness and more likely to reflect persistent signal, rather than seed-specific
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idiosyncrasies. Conversely, if predictions are unstable (flip near its population maximum 0.5), the
per-sample decision is effectively arbitrary with respect to seed choice—even when aggregate perfor-
mance metrics (e.g., TPR at fixed FPR, or AUC>0.5) look stable and reasonably high-performance.
In this case, per-sample membership predictions are so influenced by randomness in the training
process that we cannot reliably conclude anything about membership.

Put differently, measuring per-sample instability lets us peer beneath high-level, average metrics—
e.g., for a fixed FPR, mean TPR over all members across plausible targets r ~ u—to assess what
strong MIAs can (and cannot) say reliably about individual samples.

E.2.3 Connections to prior work on model and predictive multiplicity

This analysis connects to broader literature in statistics and machine learning outside membership
inference. Notably, Leo Breiman’s seminal work on the “Rashomon effect” emphasized that, for
a given dataset, there often exists a multiplicity of distinct decision rules with essentially the same
overall accuracy [3]. The Rashomon set—the set of models within a small tolerance of the optimal
risk—can be surprisingly large [19, 50]. More recent work on predictive multiplicity also shows
that training processes can produce models with effectively indistinguishable overall test accuracy
that nonetheless disagree widely at the per-sample level [13, 35, 58].

To the best of our knowledge, this connection has not been made in the MIA setting. Our setup differs
in that we fix D and vary only algorithmic randomness (via seed controlling batch order for target
replicas); we then observe targets with similar overall accuracy but substantial per-sample churn,
quantified by flip rate (Appendix E.2.5). (We make no claims about the optimality of the resulting
MIA rules.) The key result of these experiments is that average attack performance can remain stable,
while individual membership decisions vary across seeds—a phenomenon that bears directly on the
reliability and validity of membership claims about specific samples (as the problem is set up in the
membership inference security game).

E.2.4 Reasoning about the minimum empirical flip rate that reflects arbitrary predictions

As noted in Appendix E.2.1, the population flip rate flip, () € [0,0.5] (Equation 8): 0 reflects
predictions that are completely stable for x (i.e., do not flip) and 0.5 reflects arbitrary predictions
for ¢ that effectively behave like a coin flip. In practice, we estimate the population flip rate with the

U-statistic for flip rate at a concrete number of target replicas B, namely flip, p(z) (Equation 9). This
empirical estimate also has a minimum of 0, reflecting completely stable predictions, but its maximum
(reflecting maximal disagreement) slightly exceeds 0.5 and converges to 0.5 as B — oo. This raises

an important question: for concrete B in practice, which measurements of flip, 5(x) reflect that

the predictions for « are arbitrary? That is, we need to determine a reasonable cutoff for fﬂ})n g(x),
indicating that the predictions for x are statistically indistinguishable from coin-flip predictions.

A principled way to determine this cutoff is to set up a hypothesis test at level a: we call the
MIA decision for a sample x “arbitrary at level «” if a two-sided exact binomial test fails to reject.
We do this for our experiments in Section 5 and Appendix E.2.5. For the experiment with the
140M model (B=125), we call the MIA decision for x arbitrary at «=0.05 if the predictions for x

exhibit ﬁi\pm g(x) 2 0.490; for the 302M model (B=127), we call the MIA decision for « arbitrary

at a=0.05 if the predictions for x exhibit ﬂi\p",B(m) 2 0.487 (Figure 5a). In the end, all this

requires is finding the minimal number of member votes & at which the CDF F'(k) of the binomial
Binomial(B,0.5) > §,i.e.,

kr, = min{k : F(k) > a/2}, 17

and computing the flip cutoff for arbitrary as > flip, 5 with By (x) = kr, and By(x) = B — kL.

In this appendix, for the reader interested in a refresher, we walk through how we set up this exact
test. We describe the hypothesis test at level o, how this results in an acceptance region (in terms of
the number of member votes), and how we convert that region into a minimum empirical ﬂipn’ g(x)

that we can defensibly interpret as arbitrary. (This depends on the the vote fraction v () discussion
from above.)
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Setting up a hypothesis test. We call the MIA decision for a sample x arbitrary if the probability
of predicting “member” equals the probability of predicting “non-member”. As throughout this

appendix, let By (x) = Zil bg?) (z) ~ Binomial(B, 6) be the number of member votes among B
target replicas for sample &, where

0 = Pr[b"(z) = 1].
Arbitrariness corresponds to § = 0.5 (i.e, behaves like a coin flip).
We set up the null hypothesis
Hy: 6 =0.5 (two-sided exact binomial test at level «). (18)
If we fail to reject Hy, then we do not have sufficient evidence to say that the MIA decision for x
is not arbitrary, and so we deem the decision arbitrary. The significance level o means that, if H
is true (i.e., the decision is arbitrary), the probability that we incorrectly reject Hy (i.e., say that the

decision is not arbitrary) is at most c. Smaller o imposes a stricter standard for rejecting H (stronger
evidence is required). We will later show that, for B replicas, “fail to reject” is equivalent to

flip, 5(x) > ta(B),

with ¢, (B) computed from the binomial acceptance region under H (Equation 23).

Deriving the two-sided exact p-value at level . For B replicas and operating point 7, each replica
r outputs a prediction 5" (x) € {0,1}. Going forward, we denote the member-vote count

K = Z b(n)

Under the “arbitrary” null hypothesis Hj in Equation 18, each target replica’s prediction behaves
like a fair coin, so
K ~ Binomial(B, 0.5).

Intuitively, the further K is from the center B/2 (i.e., a split vote, indicating arbitrariness), the
stronger the evidence against Hy.

More formally, let the binomial PMF and CDF under H, be, respectively,
k
B B
Pr(K =i) = (,)2—3, F(k) = Pr(K <k) = (,)2—3. (19)
0

Because (V) = (}2.).
Pr(K =i) = Pr(K =B—i) foralli,
and so the distribution is symmetric about B/2.

‘We can reason about the tails of this distribution in terms of a concrete vote k£ and the CDF, i.e.,
k B
F(k) =Pr(K < k) ZPr = Pr(K=B-i)= Pr(K = j)
i=0 j=B—k
:Pr(KzBfk:). (20)

Thus the left tail at k equals the right tail at B — k. This follows from a change of variable, setting
j=B—i(wheni=0,j = Band wheni = k, j = B — k, so the index runs in reverse and

Zf:o Pr(K =B —i)= Z]'B:Bfk Pr(K = j)).
And so,
Pr(K >k)=1-Pr(K<k—-1)=1-F(k—-1)
=1-Pr(K>B—-(k—1)) (byEquation20 withk — k—1)
=Pr (K <B—k). (21)
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Intuitively, a two-sided p-value measures how surprising the actual observed count K =Fk is under the
arbitrary null hypothesis (Equation 18): it sums the probabilities of outcomes at least as far from the
center B/2 as k, in both tails. Because the binomial with p=0.5 is symmetric and unimodal about
B/2, “equally or more extreme” corresponds to the union of the left tail up to k and the symmetric
right tail from B—Fk upward (or the mirror statement when £ is on the right). So, to derive p-value at
k, there are two cases to consider.

Case I: k < |B/2|
Here, the left tail is K < k and the right tail is X' > B — k. Therefore,
p-value(k) = Pr(K <k)+Pr(K > B —k)
=2 -Pr(K <k) (by tail symmetry, Equation 20)
=2-F(k) (by definition of the CDF, Equation 19).

Case 2: k > [ B/2] Here, the right tail is K > k and the left tail is X' < B — k. Therefore,
p-value(k) = Pr(K > k) +Pr(K < B—k)
=2 -Pr(K > k) (by tail symmetry, Equation 21)
—2.(1-F(k—1)).

From this, we derive the standard form of the two-sided exact p-value. That is, because the binomial
is symmetric and unimodal about B/2, this can be written as

p-value(k) = zmin{ Pr(K < k), Pr(K > k) }

which means we double the smaller tail in order to capture both-sided extremeness. Alternatively,
using Pr(K > k) =1—Pr(K <k—1)=1-— F(k — 1) (Equation 21), this becomes
2 F(k), k< [B/2],
p-value(k) =
2(1-F(k—1)), k=>[B/2].

Finally, to handle discreteness at the exact center (even B and k = B/2, which counts the mass at k
twice), we cap p-values at 1:

p-value(k) = min{ 1, 2 min(F(k), 1 — F(k — 1))}. (22)

These equal-tail formulas handle discreteness conservatively: the acceptance region is defined so

that p-value(k) > « inside the region and p-value(k) < « outside, with § in each tail. Because the

binomial is discrete, the equal-tail construction is slightly conservative. We follow the convention
“reject if p < o’ and fail to reject if p > «, so boundary points with p-value = « remain inside the
acceptance region.

Using Equation 22, the acceptance region for member votes k at level « is constructed by finding
k, = min{k €{0,...,|B/2|}: F(k) > a/2},

and then setting
Ay = {kL, ky+1, ..., B*k’L},

sothat K € A, <= p-value(K) > « (fail to reject). By symmetry, the upper endpoint is B — ki,
and so the acceptance region is a symmetric band around B/2 (Equation 20).

Equivalently, the critical (rejection) region is
{KSkL—l} U {KZB—]CL-i-l},
so K € A, < p-value(K) > « (fail to reject), and K ¢ A, <= p-value(K) < « (reject).

And so, for a fixed B and given k, we can check if F(k) > «/2 simply by computing
F(k) = Zf:o (?)2*3 > «/2, as in Equation 19. For a=0.05 and B=127, k=52 (and
B — kp,=75) with F'(52)~0.02524; for «=0.05 and B = 125, it is also the case that k;,=52 with
F(52)~0.03661 (but B — k,=73).
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From the acceptance band to a concrete flip cutoff. For fixed B and operating point 7, the
empirical flip at (a, n) as a function of the member-vote count K is

2K (B - K)
B = ——
¢5(K) B(B-1) '
where ﬁi\me (x) = ¢p(K) (to preserve notation/ defining ﬁi\pn’B on x and continue using K, as

in the rest of this section). Since this is just a rewrite of the empirical flip rate at K,
¢(K) =¢p(B—K) (symmetry about B/2).

This function is symmetric in X about B/2 and unimodal. A one-step discrete difference shows it is
strictly increasing on the left half:

2[B-2K —1] B-1
—B(B—l) > 0 forK < 5

A(K) = ¢p(K+1) — ¢p(K) =
Moreover, A(K) = 0at K = £ and A(K) < 0 for K > £:1, 50 ¢ increases up to the center
and then decreases (unimodal).

Therefore, on the symmetric acceptance band
Aa:{KlkLSKSB—RL},

the minimum flip occurs at the endpoints K = ki, or K = B — ky,, and both give the same value by
symmetry. And so, the empirical flip cutoff at level « is

2k, (B — k)
to(B) = —————= 23
Equivalently, similar to Equation 12, in vote-fraction form with vy, = &1,/ B,
2B
ta(B) = B_1 U1, (1 — UL).

We declare the MIA decision for sample x arbitrary at level o if
fiip, p(@) > ta(B).

Because the binomial is discrete, equal-tail tests are slightly conservative. We follow the convention
“reject if p < a” and “fail to reject if p > «,” so boundary points with p-value = « lie inside the

acceptance region. This yields the monotone flip rule fTiI)m g(®) > to(B).

For the experiments in Section 5 and Appendix E.2.5, we set a=0.05. For the 302M model we have
B=12T7 target replicas and for the 140M model we have B=125 target replicas, respectively:

e B=12T7: k;,=52 (so the acceptance band is K € [52, 75]) and

2-52-75

127) = —— =~ 0.487.

t0.05(127) 127196 0.487
e B=125: k1, =52 (acceptance band K € [52, 73]) and
2-52-73

tOAO5(125) = m ~ 0.490.

(For B=125, our threshold is more conservative in part because the discrete CDF lands at k;,=52,
but a normal continuity-corrected approximation puts it closer to 51.6.)

E.2.5 Extended results on flip rate

We provide results for two model architectures: 140M and 302M. We use the same training dataset
size for both: overall 2N =220, s0 models are trained on N=2'9=524,288~500K samples each. Note
that for both architectures, this training dataset size is significantly smaller than what is Chinchilla
optimal (=7M for the 140M model and ~15.1M for the 302M model). As a result, we expect
attack success to be higher (as measured by ROC-AUC) compared to Chinchilla-optimal trained and
attacked models (Sections 3.2 & 4.2). For each model, we train one set of 128 reference models (with
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Figure 22: Different sample ‘““archetypes” for the 140M target models. We plot the per-sample
x’s reference distributions (IN and OUT), median target signal s (and IQR) for « across the 125
targets at FPR=10"2 for four different «: (a) clear, stable member; (b) clear, stable non-member;
(c) ambiguous, stable sample; and, (d) ambiguous, unstable sample. We annotate each plot with the
sample’s true label and empirical flip rate. For this architecture, we also provide snippets for the text
of each sample in the main text.

0.5 probability that each sample is included as a member, so that member and non-member classes
are balanced). To measure flip rate, we then train many target models on the exact same training
dataset (i.e., the member and non-member samples are the same for all targets). The only difference
across models is the random seed, which controls the batch order in which samples are surfaced to
the training algorithm.

We intended to train 128 target replicas for each architecture; however, some runs crashed, so in all
we have 125 targets for the 140M model and 127 for the 302M model. As noted in Appendix E.2.4,

the minimum values that we consider arbitrary for fTiI)m 5 are tg.05(125)~0.490 for the 140M model
and ¢¢.05(127)=<0.487 for the 302M model.

An intuition for per-sample flip rate. Flip rate captures a sample x’s membership inference
instability, computed across a set of target models where the only difference is the random seed
that controls batch order. For a given z, it captures how much cross-prediction disagreement there
is—how much the predictions for x flip between both classes for equally plausible targets r ~ p.

To give a sense of how this can happen, we provide plots at the sample-level that show where
target membership observation signals for a given x fall in relation to ’s IN and OUT reference
distributions, piy(+-|&) and poyr (-|x)—fitted from the signals obtained for « using the reference sets
@y and @oyr, respectively. We plot four “archetypes” that capture different patterns in sample-
specific prediction behavior, in relation to reference distributions: (a) clear, stable member; (b)
clear, stable non-member; (c) ambiguous, stable sample; and, (d) ambiguous, unstable sample. We
identify these archetypes at FPR=10"2. In Figure 22, we plot all four archetypes for the 140M
architecture. In Figure 23, we plot archetypes (b)—(d), as we are unable to find clear, stable members
at FPR=10"2. Even for the 140M model, we have to relax the flip rate in our search filter to allow

for %1072’125 <0.2 to identify a “stable” member (when arguably, such a flip rate is not particularly
stable). We are unable to satisfy this relaxed filter for the 302M architecture.
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Figure 23: Different sample ‘““archetypes” for the 302M target models. We plot the per-sample
a’s reference distributions (IN and OUT), median target signal s (and IQR) for x across the 127 targets
at FPR=10"2 for four different x: (a) clear, stable non-member; (b) ambiguous, stable sample; and,
(c) ambiguous, unstable sample. We annotate each plot with the sample’s true label and empirical

flip rate. We are unable to identify a clear, moderately stable (fTi\pm_z)127 < 0.2) member sample.

Note that, for both model sizes, the IN and OUT reference distributions overlap considerably for
member samples. This overlap is a reasonable explanation for prediction instability: if LiRA has
difficulty between establishing differential signal between members and non-members, then this will
understandably impact the reliability of predictions. Across targets trained on different random seeds,
this can also manifest as the prediction flipping from one class to the other. In contrast, we identify
cases for non-member samples where there is clear separation of IN and OUT reference distributions
(Figures 22b & 23a).

For the 140M archetypes, we include short snippets of the text for each sample:

140M: clear; stable member. “Whether it’s your first time looking for a Personal Trainer and you are
just starting out, or you are a veteran who has been around a long-time, SINA Fitness can help you
reach your fitness goals. Our Trainers are experienced, friendly and very energetic. We will help you
set your fitness and lifestyle goals and most importantly help you achieve them. ...”

140M: clear, stable non-member. “A Release Notes: Al War is an entirely unique large-scale RTS with
aspects of TBS, tower defense, and grand strategy. It features single or cooperative play with as many
as 8 humans against a pair of powerful, intelligent Als. These Als are driven by an AI Progress stat
that players contribute to through aggressive actions such as taking control of planets and destroying
key units, forcing tough decisions regarding which targets are worth capturing or destroying. ...”

140M: ambiguous, stable sample. “The Gingrich commentary came hours after The Wall Street
Journal reported that Mueller empaneled a grand jury.

“The Mueller threat has probably been the most deadly, he has the power of the law, he has the ability
to indict people, the ability to negotiate and let some people off if they’ll testify against other people,”
said Gingrich, also a Fox News contributor. ...”

140M: ambiguous, unstable sample. “Winner of the Junior Australian Open 2015 Tereza Mihalikova
(20), who is going to participate at EMPIRE Women’s Indoor 2019 tournament, had spent the entire
2018 season under the guidance of tennis coach Martin Hromec. At the end of the year, the well-
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Figure 24: Averaged ROC curves and AUC across targets. We plot the mean ROC across targets
(B=125 for the 140M architecture; B=127 for the 302M architecture), and =1 STD across seeds.
Both models are trained on substantially fewer samples than is Chinchilla optimal (=500K, compared
to ~7M and ~15.1M, respectively). Mean ROC-AUC is higher than for Chinchilla-optimal models
(as in Section 4.2). For the 140M model (left), ROC-AUC=0.706 % 0.004; for the 302M model
(right), ROC-AUC=0.752 4+ 0.007. These are not typical attack ROC curves, as they average over
results for multiple targets. In the standard MIA threat model, the attacker only has access to a single
target. These plots give a sense of the stability of overall attack performance, as computed over
equally plausible targets r ~ p where the only difference in targets is the seed controlling batch order.

known fitness coach Jozef Ivanko, strengthened the team. Ivanko worked with Top 10 players in
WTA ranking already. ...”

Aggregate attack performance for MIA flip-rate experiments. While our main focus here is
to measure per-sample instability, as a point of comparison, we also include measurements about
attack averages. For both model sizes, we include mean (cross-seed) ROC-AUC metrics and curves

(Figure 24) and associated tables that show average (cross-seed) accuracy and error rates by class at
fixed FPR (Tables 1 & 2).

We again emphasize that the models we attack in these experiments were not trained on the Chinchilla-
optimal number of tokens (=7M and ~15.1M samples, for 140M and 302M models, respectively;
see Section 3.2 & Appendix C). Both sets of experiments involved training models on only ~500K
samples. As a result, we expect (and do observe) attack performance (in terms of ROC-AUC)
to be higher than in the Chinchilla-optimal setting (Section 4.2 & Appendix D). For the 140M
architecture, we observe average AUC=0.706 £ 0.004 across the 125 targets (Figure 24a); for the
302M architecture, we observe average AUC=0.752 + 0.007 across the 127 targets (Figure 24b).
In both cases, AUC is stable across targets (as indicated by the low standard deviation). This same
pattern of stability in overall attack metrics is also clear in Tables 1 and 2: accuracy and error exhibit
low standard deviation, with respect to these rates being aggregated across all samples (conditioned
by class) and averaged across targets trained with different seeds.

For an alternate view of these results, we also include direct comparisons of attack performance (as
measured by average TPR =+ standard deviation at fixed FPR) and variability in the underlying
decision rule (with respect to threshold 7) across targets. In Figure 25, we provide these comparisons
for both the 140M and 302M model sizes. Of course, as is also surfaced by ROC curves (Figure 24)
at very low fixed FPR, the TPR is also low. Here, we also show how this naturally results in a
very high decision threshold 7, which also exhibits low variability. As we increase FPR, TPR
also increases and remains stable, with respect to low standard deviation. However, the underlying
decision rules for the targets can vary considerably; the underlying targets can have very different
7. This result is consistent with prior work on model and predictive multiplicity (Appendix E.2.3):
models with similar overall accuracy can have very different underlying decision rules. As we address
further below in this appendix and in Section 5, even when overall accuracy is similar, the different
decision rules can result in very different/disagreeing membership predictions for the same samples.
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Table 1: 140M-parameter model error rate metrics. We report accuracy-related metrics as a
function of fixed FPR. Entries are rates (not percentages), as elsewhere in this paper. We report mean
4+ STD where applicable. Since we fix FPR, there is no STD to report. Since 1 — FPR = TNR,
similarly, there is no STD to report. ACC = W, with 2N=1,048,576. Typically reported

log-scale FPR rows are highlighted in gray.

ACC FNR FPR TNR TPR
FPR All Members Non-members Non-members Members
107° 0.501 £ 0.0 0.998 £ 0.001 0.0 1.0 0.002 4 0.001
10~% 0.504 4+ 0.001 0.992 + 0.001 0.0 1.0 0.008 £ 0.001
102 0.515+0.001 0.97 £ 0.002 0.001 0.999 0.03 £ 0.002
1072 0.547 £0.002 0.896 =+ 0.005 0.01 0.99 0.104 £ 0.005
0.02 0.564 £0.003 0.852 4+ 0.005 0.02 0.98 0.148 4+ 0.005
0.05 0.593 £0.003 0.764 & 0.006 0.05 0.95 0.236 4 0.006
10! 0.618 £0.003 0.664 =+ 0.006 0.1 0.9 0.336 + 0.006
0.2 0.64 =0.003 0.52 & 0.006 0.2 0.8 0.48 & 0.006
0.5 0.633 £0.002 0.234 4+ 0.004 0.5 0.5 0.766 + 0.004
0.75 0.582 £ 0.001 0.085 % 0.002 0.75 0.25 0.915 4 0.002
10° 0.5+ 0.0 0.0+ 0.0 1.0 0.0 1.0+ 0.0

Table 2: 302M-parameter model error rate metrics. We report accuracy-related metrics as a
function of fixed FPR. Entries are rates (not percentages), as elsewhere in this paper. We report mean
+ STD where applicable. Since we fix FPR, there is no STD to report. Since 1 — FPR = TNR,
similarly, there is no STD to report. ACC = W, with 2N=1,048,576. Typically reported

log-scale FPR rows are highlighted in gray.

ACC FNR FPR TNR TPR
FPR All Members Non-members Non-members Members
10=® 0.505 + 0.001 0.991 =+ 0.003 0.0 1.0 0.009 + 0.003
10=* 0.514 +0.003 0.973 £ 0.005 0.0 1.0 0.027 £ 0.005
1072  0.536 £ 0.005 0.927 & 0.009 0.001 0.999 0.073 £ 0.009
102 0.585 + 0.007 0.819 + 0.013 0.01 0.99 0.181 +£0.013
0.02  0.608 £0.007 0.765 =+ 0.014 0.02 0.98 0.2354+0.014
0.05 0.642 £0.007 0.667 +0.014 0.05 0.95 0.3334+0.014
10~ 0.668 £0.007 0.565 + 0.014 0.1 0.9 0.435+0.014
0.2 0.685 £ 0.006 0.43 4+0.013 0.2 0.8 0.57+0.013
0.5 0.655 £0.004 0.191 4 0.008 0.5 0.5 0.809 + 0.008
0.75 0.588 £0.002 0.075 4 0.004 0.75 0.25 0.925 4+ 0.004
10° 0.5+ 0.0 0.0+ 0.0 1.0 0.0 1.0£0.0
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Figure 25: Comparing attack performance and decision thresholds at fixed FPR. Row shows
results for model architectures: 140M and 302M The left column shows mean =+ standard deviation
of the attack TPR at different fixed FPR, computed across B targets. The right column shows the
decision threshold 7 range (and IQR) at fixed FPR across B targets, where the decision threshold
for each target is calibrated with respect to non-member samples (Section 2 & Appendix A). As is
also surfaced by ROC curves (Figure 24) at very low fixed FPR, the TPR is also low. Here, we also
show how this naturally results in a very high decision threshold 7, which consequently exhibits low
variability. As we increase FPR, TPR also increases and remains stable, with respect to low standard
deviation. However, the underlying decision rules for the targets start to vary considerably; the
underlying targets can have very different 7, which (as we address in this appendix and in Section 5)
can result in very different/disagreeing membership predictions for the same sample .
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Sample flip rate variation at a single fixed FPR. We provide three complementary views (by
class) at fixed FPR to characterize per-sample instability: (left) complementary CDFs (CCDFs)
of flip rate; (middle) flip rate vs. mean absolute distance to the calibrated decision boundary; and
(right) flip rate vs. mean LiRA posterior. We show these results for the 140M and 302M models in
Figures 26 and 27, respectively, each for FPR € {1075,107%,1072,1072,101}.

For the middle and right columns, the z-axis uses equal-count (quantile) bins so that each plotted
point aggregates (essentially) the same number of samples; points are therefore directly comparable
across the curves. Together with Tables 3 and 4, these plots support our main takeaway in Section 5:
aggregate attack metrics (e.g., mean TPR at fixed FPR, ROC-AUC) can look stable while many
individual membership decisions are effectively arbitrary.

We organize observations by theme:

o Flip rate rises with FPR. As is clear from the complementary CDFs for flip rate (left column),
flip rate rises with FPR. This is because, as FPR grows, the per-seed calibrated threshold
7,(n) moves down (right-tail quantile of the non-member distribution), into regions where
IN/OUT distribution overlap is more extensive. This boundary shift puts 7,.(7) in score regions
where many member sample posteriors lie, and also increases the proportion of samples whose
seed-specific scores lie near the boundary. As a result, small seed-induced score shifts (as well
as across-seed variation in 7,.(n) itself, see Figure 25) flip the decision more often (i.e., increase
per-sample prediction disagreement). (More non-members will also be labeled as members, by
construction; so, too will members.)

The effect is modest at very low FPR, where 7,.(n) sits deep in the extreme tail. But it becomes
more pronounced as we increase FPR (i.e., as the boundary moves toward denser parts of the
score distribution). The CCDFs (left column) and distance plots (middle column) both show

this pattern: at FPR=10""1, ~70% of members for the 302M targets have fTi\pwfl}IWZO.él

vs. ~7% of non-members; for the 140M targets the corresponding figures for fTi})loq 125>0.4
are ~=49% vs. ~8% (see Table 4 and Figure 27, left; Table 3 and Figure 26, left).

e Mean absolute distance to the boundary is a direct proxy for instability. For each sample
x, we define per-seed distance to the decision boundary and a cross-seed measure of closeness
to the boundary, regardless of side:

dy(x) = Ar(z) = 7:(n);  [dl(z) = 5 3, |di(2)].

For associated plots (middle column), quantile bins with small |d| put the sample close to the
decision boundary, resulting in high flip rate (i.e., many predictions disagree). Quantile bins
with larger |d| are more reliably on one side of the decision boundary, which results in a lower
flip rate (i.e., more decisions concentrate). At FPR=10""! for both model sizes, member flip
rate is persistently high across a wide range of |d|—evidence that IN/OUT overlap is substantial
in the region where 7..(7) lies for many seeds (middle column). In general, members exhibit
markedly higher flip rate than non-members at the same |d|, with the differences in the two
becoming wider at higher FPR.

o Flip vs. mean posterior is non-monotone at high FPR. For the plots in the right column, we
define the mean posterior across targets as

Ax) =53, Ar(x).

Flip rate increases as A(x) approaches 7,.(n) (more seeds straddle the boundary) and then
declines once A(x) is well above the boundary for most seeds (decisions re-concentrate on
“member””). This non-monotonicity is most visible at FPR=10"" (right column). (We similarly
see this in the middle column, which directly plots distances to the boundary.)

e Members flip much more than non-members, and the gap widens with model size. Two
forces seem to drive this. First, there is structural asymmetry across classes from calibration (See
box, Appendix E.2.2). Thresholds are calibrated on non-members for each seed-specific target
(Section 2 & Appendix A), so 7,.(n) tracks seed-to-seed shifts in the non-member distribution
by design, and many non-members remain far below 7,.(n) for modest FPR. In contrast, the
threshold is not anchored to the member score distribution. Often, their scores straddle the
moving decision boundary, so, small seed-induced shifts (either in the score or the decision
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boundary, see Figure 25) can flip the decision. This effect is more pronounced for higher
settings of FPR, which push the threshold into a higher density region of the member score
distribution. Second, there is greater across-seed score variability for members. Intuitively,
training randomness primarily perturbs samples seen in training (as opposed to those that are
not). Empirically, IN/OUT reference distributions for many members overlap substantially,
while some non-members exhibit clearer separation (Figures 22 & 23). Both of these effects are
stronger for the larger model 302M (compare Table 4 vs. Table 3).

o Effect of model size. In general, the observations above show that flip rate instability is worse
for the larger (302M) model. Members flip much more than non-members, and the gap widens
with model size. These results are also consistent with model-multiplicity-related results for
higher capacity models: those with similar aggregate accuracy can exhibit more disagreement
at the individual sample level [13].

Flip rate over varied fixed FPR. We summarize across operating points in Figures 28 and 29.
Each contains five sub-plots that show, for a given flip rate range, the class-conditional proportion of
samples in each range as a function of FPR (with the corresponding mean TPR, + STD annotated
above the panels). We use the disjoint ranges [0,0.1) (very stable), [0.1,0.25) (low/mid stable),
(max)
B

[0.25,0.4) (mid/high unstable), [0.4, ¢, (B)) (very unstable), [t,(B), le\p,7 ], where for B=125

we take to,05(125)~0.490 and fﬁ};ﬁa;?:o.mzx, and for B=127 we take tg.05(127)~0.487 and
fﬁo;ﬁb;’;)zo.5o394.

Our values for g.05(125) and tg.05(127) are obtained from the exact two-sided binomial accep-

tance region (Appendix E.2.4). That is, we compute ¢, (B) = % with kp, chosen as the

smallest integer such that F'(kr) > «/2 for K ~ Binomial(B,1/2). fﬁ})ﬁfﬁx):%

(Appendix E.2.1).

These summary curves reinforce the fixed-FPR views above: flip rate increases with FPR, members
flip far more than non-members at all reasonable FPR (i.e., FPR<0.2), and the 302M model shows
larger gaps between members and non-members as well as mass in the statistically arbitrary range.
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Figure 26: Detailed flip rate results for the 140M model. For the 140M model, the number of
target replicas B=125. (rows) For different fixed FPR € {107°,107%,1073,1072, 107!}, we
provide (columns) three different views on flip rate across member and non-member samples. (left)
We plot the empirical complementary CDF (CCDF) for flip rate, conditioned on membership status.
Higher curves indicate more instability. As FPR increases, the differences in flip rate across classes
become more pronounced. While flip rate is minimal at low FPR, it is substantial—particularly for
members—at higher FPR. For example, at FPR=10""! approximately 50% of member samples

exhibit flip; -1 195>0.4, compared to approximately 10% of non-members. (middle) We plot flip
rate as a function of the mean of the magnitude of the distance (per sample) from the posterior to
the decision threshold 7. Further to the left means closer to 7. This shows instability in terms of the
distance to the threshold (regardless of direction of that distance). For higher FPR, the flip rate for
members is much higher than for non-members for the same mean absolute distance to 7. (right) We
plot flip rate as a function of the mean posterior. For higher FPR, the member and non-member flip
rates are more similar as a function of the mean LiRA posterior. For the last two columns, we use
quantile (i.e., equal-count) bucketing on the x-axis so that each plotted point is based on (essentially)
the same number of samples. That way, points on the curves are directly comparable.
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Figure 27: Detailed flip rate results for the 302M model. For the 302M model, the number of
target replicas B=127. (rows) For different fixed FPR € {107°,107%,1073,1072,1071}, we
provide (columns) three different views on flip rate across member and non-member samples. (left)
We plot the empirical complementary CDF (CCDF) for flip rate, conditioned on membership status.
Higher curves indicate more instability. As FPR increases, the differences in flip rate across classes
become more pronounced. While flip rate is minimal at low FPR, it is substantial—particularly for
members—at higher FPR. For example, at FPR=10"" approximately 70% of member samples

exhibit flip; g1 197>0.4, compared to approximately 10% of non-members. (middle) We plot flip
rate as a function of the mean of the magnitude of the distance (per sample) from the posterior to
the decision threshold 7. Further to the left means closer to 7. This shows instability in terms of the
distance to the threshold (regardless of direction of that distance). For higher FPR, the flip rate for
members is much higher than for non-members for the same mean absolute distance to 7. (right) We
plot flip rate as a function of the mean posterior. For higher FPR, the member and non-member flip
rates are more similar as a function of the mean LiRA posterior. For the last two columns, we use
quantile (i.e., equal-count) bucketing on the z-axis so that each plotted point is based on (essentially)
the same number of samples. That way, points on the curves are directly comparable.
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Figure 28: Flip rate variation by fixed FPR for the 140M model. For different ranges of fTiE)ml%,
we plot how class-conditional flip rate varies by FPR.. We annotate plots with corresponding mean
=+ standard deviation for the corresponding TPR. See main text for additional discussion.
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Figure 29: Flip rate variation by fixed FPR for the 302M model. For different ranges of fTiE)n’ B
we plot how class-conditional flip rate varies by FPR. We annotate plots with corresponding mean £
standard deviation for the corresponding TPR. See main text for additional discussion.
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Table 3: 140M-parameter model flip proportions for different FPR. For different settings of
FPR, we show the percentage of samples (by class) whose empirical flip lies in each range. Lower flip
corresponds to more stable predictions; values near 0.5 indicate near coin-flip arbitrariness. We split
the high-instability region into [0.4,0.490) and [0.490, 0.504] to isolate statistically arbitrary cases.
The max population flip is 0.5; with 125 seeds, the empirical max is ~0.504. (¢o.05(125)=20.490
is the minimum value at level a=0.05 that our hypothesis test yields; see Appendix E.2.4.) See
Appendix E.2.1. Typically reported log-scale FPR rows are highlighted in gray.

very stable low/mid unstable mid/high unstable  very unstable arbitrary
FPR flipe [0,0.1) flipe€[0.1,0.25) flip €[0.25,0.4) flip € [0.4,0.49) flip > 0.49
Non- Non- Non- Non- Non-

Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem.

107°  98.93% 100.00% 0.86% 0.00% 0.17% 0.00% 0.03% 0.00% 0.01% 0.00%
107 95.45% 99.99% 3.31% 0.01% 0.93% 0.00% 0.24% 0.00% 0.07% 0.00%
1073 83.94% 99.74% 9.47% 0.25% 4.31% 0.01% 1.63% 0.00% 0.65% 0.00%
1072 57.48% 94.88% 16.56%  4.34% 12.46% 0.66% 8.52% 0.12% 5.00% 0.00%
0.02 45.97% 88.42% 17.55%  9.24% 15.23% 1.91% 12.95% 0.42% 8.29% 0.01%
0.05 28.46% 70.12% 17.10% 20.63% 18.72% 6.88% 21.56% 2.37% 14.16% 0.01%
107" 14.37% 45.94% 14.60% 30.39% 21.69% 15.40% 30.34%  8.27% 19.00% 0.00%
0.2 2.93% 17.29% 10.51% 30.34% 24.80% 26.59% 37.46% 17.83% 24.30% 8.95%
0.5 8.85% 3.52% 25.61% 13.00% 32.29% 26.17% 24.92% 31.79% 8.34% 25.53%
0.75 49.02%  26.08% 30.66% 18.59% 15.17% 20.91% 4.32% 22.21% 0.84% 12.21%
10° 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 4: 302M-parameter model flip proportions for different FPR. For different settings of
FPR, we show the percentage of samples (by class) whose empirical flip lies in each range. Lower flip
corresponds to more stable predictions; values near 0.5 indicate near coin-flip arbitrariness. We split
the high-instability region into [0.4,0.490) and [0.490, 0.50394] to isolate statistically arbitrary cases.
The max population flip is 0.5; with 127 seeds, the empirical max is ~0.50394. (¢¢.05(127)~20.487
is the minimum value at level a=0.05 that our hypothesis test yields; see Appendix E.2.4.) See
Appendix E.2.1. Typically reported log-scale FPR rows are highlighted in gray.

very stable low/mid unstable mid/high unstable very unstable arbitrary
FPR flip € [0,0.1) flip € [0.1,0.25) flip € [0.25,0.4) flip € [0.4,0.487) flip > 0.487
Non- Non- Non- Non- Non-

Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem.

107°  94.46% 100.00% 4.17% 0.00% 1.09% 0.00% 0.23% 0.00% 0.05% 0.00%
107" 84.15% 100.00% 10.06%  0.00% 4.15% 0.00% 1.31% 0.00% 0.33% 0.00%
107°  64.59% 99.85% 16.15%  0.14% 11.01% 0.00% 5.87% 0.00% 2.38% 0.00%
1072 35.27% 95.41% 18.24%  4.14% 17.25% 0.40% 16.69% 0.04% 12.55% 0.00%
0.02 24.87% 88.61% 17.04%  9.81% 18.29% 1.39% 21.38% 0.17% 18.41% 0.03%
0.05 11.42% 67.44% 12.96% 24.64% 18.67% 6.40% 29.49% 1.27% 27.46%  0.24%
107! 3.45% 40.16% 7.67% 36.41% 18.28% 16.59% 37.22% 5.28% 33.39% 1.56%
0.2 0.26% 14.07% 3.62% 31.40% 20.97% 28.54% 42.65%  17.33% 32.49% 8.66%
0.5 11.57% 5.13% 27.88% 13.98% 37.14% 26.02% 18.81%  31.66% 4.60% 23.21%
0.75 50.77% 28.47% 31.22% 17.07% 15.27% 19.34% 2.53%  20.53% 0.22% 14.59%
10° 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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E.2.6 How many MIA true positives are statistically arbitrary, as opposed to reliable?

From the above analysis on arbitrary predictions, a natural follow-on is to attempt to estimate how
many attack true positives are statistically arbitrary. That is, when we report ROC-AUC at fixed FPR,
how much of the corresponding TPR is composed of positive predictions that are essentially a coin
flip, rather than reflecting reliable inference signal? In this appendix, we use the results from our exper-
iments in Appendix E.2.5 to estimate an answer to this question. We split members into different bins
that correspond to ranges for flip rate, and estimate the count (and rate) of true positives for each bin.

This decomposition is a post-hoc audit tool that uses target replicas. An attacker facing a single target
cannot know which of its true positives are arbitrary, when making per-sample membership claims.
Therefore, the takeaway here is about reliability of per-sample claims that an attacker makes, not
about an attacker’s observable signal. Our aim is to surface the extent of unreliability that may affect
the attacker’s claims (regardless of the attacker’s knowledge of reliability of those claims).

We perform analysis that aggregates across attacks on multiple target models, so the numbers and
figures we report are not comparable with single-attack results in the typical MIA setup. These results
serve as diagnostics to assess attack reliability. Individual attacks on specific targets of course vary
in their performance, and are not directly comparable to what we present here that aggregates over
many such attacks to try to better understand overall properties of attack behavior.

Decomposing attack TPR. into contributions from flip rate bins. Fix a dataset Dy with
|Div|=M member examples and B i.i.d. target replicas 71, ...,7rp ~ . At a fixed FPR 7, each
target replica r sets its threshold 7,.(n), calibrated on non-members (Section 2 & Appendix A).

For a member x, define the per-seed decision
Yo(z) = YA (x) > ()} € {0, 1},

(This is just the binary membership decision rule b\” (x) = 1{A.(x) > 7-(n)} € {0, 1}, calibrated
on non-members, but defined here specifically only on members for to reflect this analysis.)

So the define the seed-wise true positive count and seed-wise true TPR are

TP,
TP, = Y Y.(x), TPR, = T

e

Flip bins. Using the unbiased flip U-statistic fﬂ})n’ g(x) (Equation 9, computed once from
all B seeds), we partition members into disjoint flip bins {S;};, e.g., [0,0.1), [0.1,0.25),

(max)

[0.25,0.4), [0.4,t,(B)), and [ta(B),fTiI)mB ] with ¢, (B) from Appendix E.2.4. For example,
t0,05(127)%0.487 and t0,05(125)%0.490.

For bin j and seed r we define the bin TP count and its TPR mass:
TP, ;
TPT‘ i = r rg — J~
i = > Y.(z), TPR,; i
:ZZESJ'
By construction, TPR,. = 3 j TPR, ; for every seed r.

Across-seed means and standard deviations. All means and STDs are computed across seeds.
(We report STD across seeds, i.e., with denominator B, to match the rest of the paper.) For totals,

B B
_ 1 1 .
TPR= - > TPR,, STD(TPR)=,| Y (TPR, - TPR)?,

r=1 r=1
and the corresponding counts follow from the variance scaling law (Var[aX] = a?Var[X)):
ZTP = MTPR,  STD(#TP) = M STD(TPR).

For each bin j,

TPR, = é > TPR,;,  STD(TPR;)= \/ % S (TPR,, — TPR;)?,
T T

and analogously for bin TP counts: #TP; = M TPR; and STD(#TP;) = M STD(TPR;).
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Share of TPR from a bin: mean-of-ratios. For seed r, define the per-seed share of TPR
attributable to bin j:

TP, :
Srj = TP: (set Sr;=0if TP,=0).

In our Tables 5 and 6, we report the across-seed mean and STD of these shares:

_ 1 1 5
SjZEZSr,_ﬁ STD(S]):\/BZ(STJ_S])2

This is a mean of ratios, i.e., the average fraction of each seed’s TPR that comes from bin ;.

Alternative (ratio-of-means) and why it differs. A different but also reasonable summary is the
ratio of means,

TPR; _ 5>, TPry/M _ 53, TP,

TT TR LR, TP M LY, TP,
R; answers “what fraction of the expected true positives lie in bin j?,” whereas §j answers “for
a typical seed, what fraction of that seed’s true positives lie in bin j?” Because of seed-to-seed
variability and the correlation between numerator and denominator, R; # S, in general. Our tables
use gj (mean of per-seed shares) and its STD across seeds, as we are trying to estimate the fraction of
the average/typical seed’s true positives that lie in each bin (in particular, the statistically arbitrary bin).

Combining two bins. Let the two high-instability bins be U=[0.4,t,(B)) and
—~ (max)

A=[t.(B), ffﬁ);?lgx)} and define the combined bin C=U U A = [0.4,flip, 5 |.
For each seed r,
ST,C = ST,U + Sr,Aa TPT,C = TPT,U + TPT,A~
Therefore, means add by linearity of expectation: S¢ = Sy + S 4 and #TP¢ = #TPy + #TP 4.
Howeyver, for standard deviations,
STD(Sc) = /Var(Sy) + Var(Sa) + 2 Cov(Sy, Sa),

Since we compute C' directly from per-seed C' values, we can easily combine bins in a way that is
statistically correct. We report this combined bin in our tables.

What has no STD. Bin membership counts [S;| and their percentages |S;|/M have no across-seed

STD because bins are defined once from flip, 5 computed using all B seeds. True positives, though,
do have across-seed STD, as these are estimated for each target.

Assumptions and caveats for interpreting these numbers

1. Single-target vs. many-seed view. These numbers diagnose instability that is hidden to
an attacker with access to only a single target. A sample counted as a “TP from arbitrary
predictions” is not “incorrect”—it is a member that this seed calls positive, but whose decision
flips frequently across equally plausible seeds. Even though it is not incorrect, it does not reflect
reliable knowledge about inferring membership for that sample, since it is effectively a coin-flip
decision. We quantify how much of TPR is borne by such decisions. However, any single
target (that could reasonably be attacked by a real-world attacker) may deviate from this mean.

2. Calibration asymmetry. Again, we note that thresholds 7,.(n) are calibrated on non-members
for each seed, anchoring to non-member behavior by construction. Member decisions are
therefore more exposed to seed-induced variation. This explains large member/non-member
flip gaps and is consistent with our seed-to-seed 7 dispersion at higher 7. The true positive
decomposition analysis we perform here is consistent with these other results.

3. Finite-B effects and hypothesis testing. The acceptance region cutoff ¢, (B) is derived from
an exact two-sided binomial test at level « and is slightly conservative because of discreteness.
Borderline cases (exactly at the tails) are included (fail-to-reject rule p > «). This is important
because all claims that we make about arbitrary predictions—including the decompositions
here—hinge on the assumptions and results of this hypothesis test.

4. Extremely low FPR 7. When TPR is very small, the share S, ; can be numerically unstable;
we suppress shares when TPR = 0 and note this where appropriate.
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Table 5: 140M model: Contribution of high-flip members to TPR at fixed FPR. Shares are
computed per seed (TPs in bin divided by total TPs for that seed) and then averaged; their STDs

are across seeds. We additionally report the combined bin fTi})mm € [0.4,0.504] (“very unstable

+ arbitrary”). For the 140M model, the arbitrary flip cutoff is ¢, (125)~0.490, and %:?;5:0.504.
Typically reported log-scale FPR rows are highlighted in gray.

TPR TP Very unstable Arbitrary Very unstable + arbitrary
FPR (mean+STD) (mean+STD) [0.4,0.490) [0.490, 0.504] [0.4,0.504]
TPs Share of TPR TPs Share of TPR TPs TPR
(mean+STD) (mean+STD) (mean+STD) (mean+tSTD) (mean+STD) (mean+tSTD)
107° 0.002 + 0.001 1,114 £ 305 61+9 58%+1.4% 24+4 23%+0.7% 84+11 8.0% +2.0%
10~* 0.008 £ 0.001 4,247 £ 563 432+ 46 10.2% +0.7% 160 £13 3.8% £ 0.4% 592 +£ 55 14.1% £ 1.0%
1073 0.030 £0.002 15,826 +1,239 3,048 £304 13.3% +£0.4% 1,493 +£142 6.8% £ 0.3% 4,541 + 413 19.9% + 0.8%
1072 0.104£0.005 54,373 + 2,414 17,240 4+ 1,464 31.2% +1.0% 12,164 £ 1,070 22.8% & 1.0% 29,404 & 2,461 54.0% + 2.5%
0.02 0.1484+0.005 77,667 + 2,718 27,455 £2,031 34.7% £ 0.8% 20,609 + 1,765 27.1% +1.1% 48,064 + 3,698 61.8% =+ 3.0%
0.05 0.236 +0.006 123,864 + 2,978 47,831 + 2,742 38.7% + 0.7% 37,910 + 3,223 30.5% + 1.1% 85,742 + 5,492 69.2% + 3.2%
0.1  0.336 £0.006 176,346 £ 3,180 70,670 =+ 3,050 39.2% £ 0.6% 53,769 & 3,443 31.4% £ 0.9% 124,439 £ 6,231 70.5% £ 2.7%
0.2 0.480 £+ 0.006 251,888 & 3,256 97,926 + 2,386 39.1% + 0.3% 67,384 + 1,688 26.4% + 0.3% 165,310 + 4,489 65.6% + 1.2%
0.5 0.766 £0.004 401,354 £2,242 74,851 +£610 18.7% £0.2% 28,804 £485 7.2% +0.1% 103,655+ 807 25.8% £ 0.3%
0.75 0.9154+0.002 479,540 +882 14,674+339 3.1%+0.1% 2,644+ 75 0.6% £+ 0.0% 17,318 £ 403  3.6% + 0.1%
10°  1.000 = 0.000 524,288 + 0 0£0 0.0%=+0.0% 0+£0 0.0%=+0.0% 0+0 0.0%=+0.0%
Table 6: 302M model: Contribution of high-flip members to TPR at fixed FPR. Shares are
computed per seed (TPs in bin divided by total TPs for that seed) and then averaged; their STDs are
across seeds. We additionally report the combined bin flip, ;57 € [0.4,0.50394] (“*very unstable +
arbitrary™). For the 302M model, the arbitrary flip cutoff is £, (127)~0.487, and flip, 15,=0.50394.
Typically reported log-scale FPR rows are highlighted in gray.
TPR TP Very unstable Arbitrary Very unstable + arbitrary
FPR (mean+STD)  (mean+STD) [0.4,0.487) [0.487,0.50394] [0.4,0.50394]
TPs Share of TPR TPs Share of TPR TPs TPR
(mean+STD) (mean+STD) (mean+STD) (mean+STD) (mean+STD) (mean+STD)
107° 0.009 £0.003 4,878 + 1,496 3711+£66 8.1%+21% 122 +16 2.8% +£1.5% 493 +80 10.9% + 3.6%
10™* 0.027£0.005 14,254 4 2,631 2,233 +£349 15.8% £+ 1.0% 805+ 87 5.8% £+ 0.9% 3,038 432 21.6% +1.8%
1072 0.073+£0.009 38,414 +4,886 10,295+ 1,548 26.9% +0.9% 5,883+ 651 15.4% +0.6% 16,231 & 2,194 42.2% =+ 0.9%
1072 0.181+£0.013 94,823 £6,939 32,549 + 3,549 34.3% + 1.5% 31,866 + 3,429 33.5% + 1.5% 64,477 + 6,973 67.8% £ 3.0%
0.02 0.23540.014 123,384 + 7,183 44,612 + 3,894 36.1% + 1.3% 47,301 + 4,805 38.2% +2.0% 91,913 £+ 8,687 74.3% =+ 3.3%
0.05 0.333£0.014 174,687 £7,312 69,431 +4,149 39.7% £ 0.9% 71,632 £6,160 40.9% + 2.2% 141,062 + 10,270 80.6% + 3.1%
0.1 0.435 £ 0.014 228,106 &+ 7,209 98,285 + 4,353 42.9% + 0.6% 88,061 £ 5,522 38.6% + 1.4% 186,021 + 9,760 81.5% =+ 2.0%
0.2  0.570 £0.013 299,000 + 6,649 128,904 + 3,649 43.1% £ 0.3% 87,119 £2,415 29.1% +0.2% 216,023 + 5,982 72.2% + 0.4%
0.5 0.809 + 0.008 424,228 + 3,952 66,051 + 1,888 15.6% +0.4% 12,913 £241 3.0% +£0.1% 78,964 £+ 2,093 18.6% £ 0.4%
0.75 0.925 £ 0.004 484,974 + 1,908 9,094 +372 1.9% +0.1% 613+28 0.1% +0.0% 9,708 £394 2.0% +£0.1%
10°  1.000 £ 0.000 524,288 + 0 0£0 0.0%+0.0% 0+0 0.0%=0.0% 0£+0 0.0%+0.0%

Results of the decomposition. We show results for both model sizes in Tables 5 and 6, respectively.
They indicate very large numbers of member predictions are arbitrary or highly unstable as FPR
increases and moves the decision boundary into denser parts of the score distribution. Even at just
FPR=1073, 15.4%+0.6% of true positives for the 302M model are arbitrary—reflecting thousands
of sample predictions. If we consider both very unstable and arbitrary predictions, they are responsible
for 42.2%40.9% of true positives at this FPR.

Estimating the contribution of arbitrary predictions to ROC-AUC. We similarly can use this
type of analysis to estimate how much of ROC-AUC can be attributed to statistically arbitrary
predictions. Similarly, the point of this analysis is not to suggest that arbitrary predictions are
“incorrect;” the point is to attempt to distinguish the degree to which arbitrary predictions are
impacting overall claims about successful membership inference. To do so, we distinguish between
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the whole (averaged) ROC curve and associated mean AUC, and the mean ROC curve (and mean
AUC) computed for non-arbitrary predictions.

For a ROC curve written as TPR vs. FPR, fix an FPR interval [a,b] C (0,1) and write w = b — a.
For a given target r, denote TPR,.(17) as the true positive rate at operating point FPR=), and let
TPR(7n) be the mean across seeds.

We distinguish positives that come from arbitrary predictions as follows: at each FPR, we remove
the portion of the TPR that is supported by statistically arbitrary decisions. That is, fix B targets
and significance «; let ¢, (B) be the exact two—sided Binomial(B, 0.5) acceptance-band flip cutoff
(Appendix E.2.4). Let M = |Diy| denote the number of members. For seed r at FPR 1), write
Y, (x) € {0,1} for the membership decision on member , and let

TPRawr () = 37 3 Ye@), TPRane() = 37 3 Yolw) Uil p(@) > 1a(B)}

xeDin E SN
We define the non-arbitrary-induced TPR per seed by subtraction,
TPRnonaer (77) = TPRraw,r(n) - TPRarb,r(n)'

We compute the averages across B seeds as

B B
1 N 1
TPRraw(n) = E E TPRrawm(n)v TPRnonarb(n) = E § TPRnonarb,r(n)~
r=1

r=1

By linearity of expectation, across seeds,

TPRuonarb (77) = TPRraw(n) - TPRarb(n)- 24)

Note that TPR,onarb 1s @ diagnostic curve: it subtracts the statistically arbitrary component and is
not itself the ROC of a single threshold rule that could be produced by an attack.

We can then compare the overall ROC to the non-arbitrary ROC. It may be useful to do so for a
specific range of FPR, rather than for the entire ROC curve. To do so, note that the unnormalized
partial AUC (pAUC) over [a, b] is

b
pAUCJa,b] = / TPR(n) dn.

The normalized pAUC is the mean TPR averaged over FPR in [a, b]; it rescales to [0, 1] by dividing
by the band width:

SR —
pAUC, . mla,b] = 5 / TPR(n)dn, which equals the mean TPR over the band.
a

—a

To quantify improvement over a random classifier, we subtract the area under the by-chance curve.
For the random classifier TPR(7n) = FPR(7), so

b 2
n
ndn = —
/a 2
1, b2 —a? a+b
2

Dividing by w = b — a gives the normalized random baseline ;~— 5= =
report the lift above these random baselines:

b b? —a?

2

n=a

. We can similarly

b2 — o2
2 b

b
Lift[a,b] = / (TPR(n) —n) dn = pAUCla,b] —

a+b

b
/ (TPR(n) —n) dn = pAUC, 4y la,b] — 5

Liftnormla, b] = —

Note that Lift,orm[a, b] = 0 for a random classifier and equals the average vertical gap from chance
in [a, b].
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14%/!7: ROC vs non-arbitrary ROC (B=125, M=524,288, NM=524,288) 3021%/!7: ROC vs non-arbitrary ROC (B=127, M=524,288, NM=524,288)
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Figure 30: Decoupling overall attack success from success based on arbitrary samples. We
produce the same mean ROC curves and mean AUC as in Figure 24 for both the (a) 140M and
(b) 302M models (B=125 and B=127, respectively). At each TPR for fixed FPR, we estimate
how many true positives are attributable to statistically arbitrary predictions (¢, (125)=20.490 and
t,,(127)0.487, respectively; see Appendix E.2.4). By Equation 24, at each 7), we can then estimate
how many true positives are from non-arbitrary predictions. Consistent with our other results, As
both curves enter ranges for FPR with nontrivial TPR, arbitrary predictions make up a significant
proportion of ROC-AUC, with a greater effect for the 302M architecture.

Worked example. We apply this procedure to the ROC for the 302M model. We do so for the entire
curve in Figure 30b, which shows that ~0.059 of ROC-AUC can be attributed to arbitrary MIA deci-
sions. Of course, the region where this has the most impact is the range of 7 that moves the decision
boundary into the denser part of the score distribution where MIA calls more positives, but IN/OUT
distribution overlap is more extensive. TPR rises, but so does the share of arbitrary true positives.

We can therefore also isolate the effect on this part of ROC-AUC by setting [a,b] = [10~%,1071].
a+b

Here w = 0.0999, the normalized random baseline is e = 0.05005, and the unnormalized random

area is bzgaz = 0.004999995. With our measured areas,

pAUC™Y = (.314748, pAUCRm™> — (9190810,

norm norm

SO
Lift™ = 0.264698,  Lift"°"™ — (.140760.

norm norm

As a result, the non-arbitrary ROC retains about 3-129780 5 100 ~ 53% of the raw lift in this FPR

band, and the average TPR for the band drops by 1 — géi’giig x 100 ~ 39.4% relative to raw.
In other words, filtering out arbitrary positives yields a substantially lower pAUC in this band. A
sizable part of the apparent attack advantage in this FPR range comes from samples whose per-seed
decisions are statistically indistinguishable from coin flips (Appendix E.2.4). This weakens the

value/reliability of per-sample positives in this FPR regime.

It is important to note that this is a conservative estimate of the parts of the attack that are reliable,
as we only filter out positives that pass the arbitrary flip threshold, ¢, (B). As a result, these
numbers still include highly unstable cases (that are arguably also not reflective of meaningfully
reliable membership inference, e.g., flip in [0.4,¢,(B))). In this respect, our non-arbitrary ROC
is a conservative upper bound on reliable membership inference. Given the extent of highly unstable
predictions in this band, we would expect larger decreases in partial AUC and Lift if we filtered
those predictions in our analysis.

Caveats. Because bins are defined using fﬂ})n’ 5 pooled over B seeds, per-seed variability in bin
membership is not propagated. This makes our estimates conservative for variability, but keeps
the decomposition identity exact (i.e., the sum of the bin masses equals TPR). In our implemen-
tation, we also clip TPRyonarb,» at 0 to guard against finite-sample noise, i.e., TPRyonarb,r (1) <
max{0, TPRyaw (1) — TPRarb (1) }-
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F Additional per-sample MIA vulnerability results

Figure 6b indicates that it is often the case that vulnerable sequences tend to be longer. Beyond
sequence length, we observe that samples more vulnerable to MIA tend to have higher mean
TF-IDF scores (Figure 31a), suggesting that texts with distinctive, uncommon terms may exhibit
stronger signals for membership inference. We compute these TF-IDF scores without normalization,
collecting document frequency statistics over a random subsample of the original dataset and then
taking the mean across all tokens in each sample. Similarly, samples containing unknown tokens
(<unk>) appear more vulnerable to MIA (Figure 31b).

m [0 Most Vulnerable I Most Vulnerable
124 [ Least Vulnerable [ Least Vulnerable
0.8
10 4
0.6
> 81 z
£ @
f= =
j [
0 61 Q944
44
0.2
2
0+ 0.0 -
0.00 0.05 010 015 020 025 030 035 0 1+
Mean TF-IDF Unknown Token Count
(a) Mean TF-IDF scores by vulnerability (b) <unk> counts by vulnerability

Figure 31: Text property distributions by MIA vulnerability. The most vulnerable samples tend
to (a) have higher TF-IDF scores compared to least vulnerable samples, and (b) are more likely to
contain at least one unknown token (<unk>).

F.1 Does memorization imply strong membership inference attacks?

While memorization is a key factor that can make a model susceptible to membership inference
attacks, it does not automatically guarantee that strong MIAs will always be successful. Memorization
refers to a model learning specific details about its training data, rather than just general patterns.

When a model heavily memorizes training samples, it often exhibits distinct behaviours for these
samples, which MIA attackers, in principle, can exploit. Indeed, studies have shown that the risk of
membership inference is often highest for those samples that are highly memorized [4]. However,
our results show that the practical success and strength of a particular MIA can also depend on other
factors, such as the model architecture, the type of data, the specifics of the attack method, and
whether the memorization leads to clearly distinguishable outputs or behaviors for member versus
non-member samples. Some models might memorize data in ways that are not easily exploitable by
current MIA techniques, or the signals of memorization might be subtle for well-generalizing models,
making strong attacks more challenging despite the presence of memorization.
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F.2 Evolution of losses over different model sizes

In Figure 32, for three samples, we plot loss (target) and the per-sample reference distributions pyy ()
and pour () over different model sizes. Each of these models is trained for 1 epoch on 223 ~ 8.3M
samples. This is a sanity check that the losses decrease (on the same sample) as the model size
increases. Note that, for these samples, the distance between member and non-member reference
distributions does not significantly shift as the model size grows.
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Figure 32: Target loss and reference loss distributions for three samples. For three different sam-
ples (referenced by their IDs in the C4 dataset), we plot the reference distributions and the loss of the
sample for the target model (as a vertical red line). Each row shows results for a different model size.
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G Experiment configuration details

In Table 7, we provide pecific experimental settings. Unless otherwise stated, we used the AdamW
optimizer [31] with a cosine scheduler. The initial learning rate is set to 10~7 and increases linearly
over 750 warm up steps to a peak learning rate of 3 - 10~%, after which it decreases according to the
cosine schedule to a final value of 3 - 10~°. We typically use 128 reference models and a single target
model to measure MIA vulnerability, drawing a dataset of size 2N from C4 from which we subsample
training datasets of size /V. For each reference and target model, the training set is subsampled from
the same larger dataset of size 2/N. This means each sample in this larger dataset is a member for
~264 reference models. The batch size is fixed to 128 and sequence length to 1024; if an sample
has fewer tokens, we pad to 1024. The weight decay is set to 0.1, and a global clipping norm is set
to 1.0. Note that we can approximately convert the training set size to total number of training tokens
by multiplying the training set size by 400, as this the approximate average number of tokens within
a C4 sample. For example, this means the 1018M model was trained on 20.4B tokens in Figure 2.

Table 7: Experimental details. Experiment (figure), training set size (approximate number of
samples), model size, and specific details that diverge from default settings.

Experiment Training set size Model size Other information (which diverges from default experimental settings)
Figure 1 ™ 140M Max. 512 references
500K 10M
2.2M 44M
4.25M 85M
. ™ 140M
2
Figures 2, 15a 15.1M 302M 128 references
24.4M 489M
30.2M 604M
50.9M 1018M
. 2.2M 44M P S e
Figure 3a TIM 44M 2 different variations; 1 epoch and 2 epochs (on the same 2.2M samples, but split in different ways across epochs)
Figures 3b, 17a ™ 140M 10 epochs
50K 140M
100K 140M
. i 500K 140M § I
Figure 4a M 140M 80 warm up steps
5M 140M
10M 140M
10M
44M
85M
140M
. 3 302M
23
Figure 4b 2 495M
489M
509M
604M
1018M
Figures 5, 23, 24b,
25,27,29, 30b ™ 302M 127 target models (varying only in random seed; same training data); 128 references
Figures 6,7, 8 ™ 140M 128 references
Figure 9a ™ 140M Max. 256 references
Figure 9b ™ 140M Max. 64 references, 10K Z population size
Figure 10 ™ 140M 256 references
Figure 11 500K 10M 10K Z population size
Figures 12, 13 500K 10M 10K-300K Z population size; 64 references
Figure 14 219 10M up to 128 references (testing online and offline variants)
Figure 15b 50K 140M Learning rate schedules: cosine, cosine with 0 weight decay, cosine with no clipping, linear. We use 50 warm up steps.
Figure 16 ™ 140M Comparing to de-duplicated training dataset
Figure 17b 219 140M 20 epochs
Figure 18 - - Identical to Figure 2, where we use 16 different target models
Figure 19 - - Identical to Figure 4b, where we use 16 different target models
Figure 20 Identical to Figure 18, except varying references (up to 128).
Figure 21 223 140M Up to 64 targets, 64 references
Figures 22, 24a, 25,
26, 28, 30a ™ 140M 125 target models (varying only random seed; same training data); 128 references
Figure 31 - - Identical to Figure 6b
Figure 32 223 - 10M-302M model sizes
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The results we provide in Sections 3—6, and the Appendix provide an accurate
and nuanced treatment of the main claims introduced in the abstract and introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the introduction, we note the cost of our work, which is a limitation for
those that wish to reproduce our experiments. We document the challenges we observe with
MIA attack variability, particularly in Section 5 and the Appendix.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

o The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: While the strong attacks that we investigate in this paper are theoretically
grounded, our main contributions are empirical. In Appendix E.2, we include straightforward
theoretical results related to flip rate, the metric we adapt from prior work [13] to measure
per-sample prediction instability.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While the cost of training thousands of LLMs ranging 10M to 1B parameters
is substantial, those with the resources to do so would be able to faithfully reproduce our
main results. We thoroughly document the tools we use and our experimental configurations
throughout the paper, as well as in one centralized place in the Appendix.

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

60



In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: As discussed in the prior answer, while we do not link to our code repository,
we provide ample details on the open model architectures [30] and datasets [46] that we
used to conduct the experiments in this paper.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

o The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide extensive details on our general setup in Section 3, on more specific
experimental configurations in the following sections, and more detailed information in the
Appendix.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We discuss variability and instability across different attacks for 140M and
302M models. See Appendices D and E.2.

Guidelines:
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e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide these details in a centralized location in the Appendix.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics and confirm that the research conducted
in this paper conforms in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss and motivate our work with respect to the broader impact it has
regarding developing scientific knowledge about improving the privacy of LLMs.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

o The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source model architectures [30] and datasets [46], which we
credit in several places in the main paper, Appendix, and this checklist.

Guidelines:

e The answer NA means that the paper does not use existing assets.
e The authors should cite the original paper that produced the code package or dataset.

63



13.

14.

15.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

o Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

o For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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