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Abstract

Few-shot node classification on hypergraphs requires models that generalize from
scarce labels while capturing high-order structures. Existing hypergraph neural
networks (HNNs) effectively encode such structures but often suffer from overfit-
ting and scalability issues due to complex, black-box architectures. In this work,
we propose ZEN (Zero-Parameter Hypergraph Neural Network), a fully linear
and parameter-free model that achieves both expressiveness and efficiency. Built
upon a unified formulation of linearized HNNs, ZEN introduces a tractable closed-
form solution for the weight matrix and a redundancy-aware propagation scheme
to avoid iterative training and to eliminate redundant self-information. On 11
real-world hypergraph benchmarks, ZEN consistently outperforms eight baseline
models in classification accuracy while achieving up to 696 x speedups over the
fastest competitor. Moreover, the decision process of ZEN is fully interpretable,
providing insights into the characteristic of a dataset. Our code and datasets are
fully available at https://github.com/chaewoonbae/ZEN.

1 Introduction

Many real-world datasets are naturally modeled as hypergraphs, which generalize ordinary graphs
by capturing higher-order interactions involving more than two nodes [1} 13} [16]. Unlike traditional
graphs that represent pairwise relationships, hypergraphs allow for the modeling of multilateral con-
nections, making them particularly suitable for complex data structures. Hypergraphs are especially
useful in representing multifaceted relationships across a range of domains, such as document-word
associations, gene-disease correlations, and user-item interactions [6} 9} 29/ 33]].

Few-shot node classification—predicting node labels with only a handful of annotated examples—is
a fundamental yet challenging task, especially in the context of hypergraphs [24, [34]]. The complexity
of higher-order structures, combined with the scarcity of labeled data, makes it difficult to design
models that are both generalizable and efficient. Although a number of hypergraph neural networks
(HNNSs) have been proposed to effectively capture high-order relationships between nodes, many of
them rely on complex, nonlinear architectures with numerous parameters. Such models often suffer
from overfitting and poor scalability in few-shot scenarios [21}32].

In contrast, linear models offer strong generalization, low complexity, and are particularly effective
in few-shot scenarios [5, 18} 20, [25]. Despite these advantages, existing work on HNNs has largely
overlooked fully linear formulations, likely due to the perception that linear models cannot sufficiently
capture the structural richness of hypergraphs. This motivates us to explore if a carefully designed
linear HNN can overcome these limitations while preserving both expressiveness and efficiency.

In this paper, we propose ZEN (Zero-Parameter Hypergraph Neural Network), a model designed
to capture high-order relationships while maintaining strong generalization ability and scalability.
We begin by linearizing existing HNN models, yielding a general form characterized by a single
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propagation matrix and a single weight matrix. This formulation enables us to design two optimization
strategies tailored to this structure: tractable closed-form solution (TCS) for the weight matrix and
redundancy-aware propagation (RAP). TCS allows us to avoid burdensome iterative training by
deriving an efficient closed-form solution, while RAP eliminates redundant self-information across
multi-hop propagation. ZEN achieves the best average rank in classification performance across 11
real-world hypergraphs, while also exhibiting exceptional computational efficiency.

To summarize, our main contributions are as follows:

* We present a general form of linearizing representative hypergraph neural networks, and exhibit
similarities and differences between different HNN's excluding their nonlinearity. To the best of our
knowledge, this is the first comprehensive study on linear HNNG.

* We derive a tractable closed-form approximation for the weight matrix, the only parameter in a
linear HNN. Our solution eliminates the need for computing matrix pseudoinverses, significantly
improving computational efficiency while maintaining high classification accuracy.

* We introduce redundancy-aware propagation that effectively reduces the structural overlap across
multi-hop neighborhoods when building the propagation matrix. This leads to more efficient and
expressive information aggregation, especially uesful for complex real hypergraphs.

* We conduct comprehensive experiments on 11 real-world hypergraphs and demonstrate that our
method outperforms existing HNNs in few-shot classification while showing exceptional scalability;
our ZEN is up to 696 x faster than the fastest competitor. In addition, we conduct a case study that
shows the interpretability of ZEN arising from its linear decision process.

2 Problem definition and related work

2.1 Problem definition

We consider a hypergraph G = (V, £), where V is the set of nodes and £ is the set of hyperedges. The
incidence matrix H € RIVI*I€l encodes hypergraph connectivity, with H,; = 1if node 7 belongs to
hyperedge j, and 0 otherwise. Each node is associated with a feature vector, forming a feature matrix
X e RIVI*4 where d is the feature dimension. The class label for each node is encoded in a one-hot
matrix Y € {0, 1}/V1*¢, where c is the number of classes.

For node classification, we are given a set V., C V of training nodes and a set Viest C V of test
nodes such that Vi, N Viest = 0. We define two diagonal indicator matrices Dy, € RVI*IVI and
Diest € RVIXWVI where (Diym)ii = 1iff i € Vipn and (Dyest)ii = 1 iff i € Viest- In the k-shot
setting, we assume that exactly k labeled nodes are available per class, i.e., tr(Dy,,) = kc. The goal
of k-shot node classification is to find a model f that produces prediction Y € RIVIXe guch that:

DiestY = Dieet Y, (1

where Y = f(H,X,Dy,,,Y). That is, the model is trained using only the labeled nodes in Dy,,, Y,
and evaluated on its ability to generalize to test nodes specified by Dy.s. Note that f is a general
representation of both training-based and training-free node classifiers.

2.2 Related work

Hypergraph neural networks (HNNs) HNNs have emerged as powerful tools for modeling higher-
order relationships, where each hyperedge can connect an arbitrary number of nodes [6} [29]. This
expressive capacity enables applications in diverse domains such as recommendation systems, biolog-
ical networks, and knowledge graphs. Early models such as HGNN [6] extend graph convolution to
the hypergraph domain via spectral approximation. UniGNN [[10] provides a unified message-passing
framework for both graphs and hypergraphs, while AllSet [3]] introduces a permutation-invariant
design that separates set encoding from message propagation. More recently, ED-HNN [23]] explores
the connection between the general class of hypergraph diffusion algorithms and the design of HNNs
to improve expressiveness in hypergraph settings. Despite their representational power, these models
often suffer from overfitting or scalability issues when training labels are scarce.

Linear graph neural networks (GNNs) GNNs are highly effective for learning node representations
from relational data [8, |14} 28]]. However, their reliance on repeated non-linear transformations across



Table 1: Linearized forms of five representative HNNs. All parameters in each layer are integrated
into a single weight matrix W due to the linearization, and the [-hop adjacency matrix A; is generated
from the incidence matrix H without involving any additional parameters.

Method | Linearized form | Adjacency matrix

HGNN Y = ALXW A, = (Dy*HD;'H'D; ?)!
HNHN Y = ALXW A, = (D; HD:D_ ;H'Df)!
UniGCNII | Y = (zf;ol a(l—a)lA;+(1— a)LAL> XW | A; = (D;'HD;'HT)’
AllDeepSet | Y = A, XW ;= (D;*HD;'HT)
ED-HNN | ¥ = (S/5 a(l - a)' A+ (1- )AL ) XW | A, = (D 'HD; 'H )

A
A

layers leads to high computational costs and limited scalability. To mitigate this, several linear GNN
variants have been proposed, which simplify architecture by removing intermediate non-linearity and
decoupling transformation from propagation [7, 26]]. For instance, SGC [26] eliminates nonlinearities
and applies a fixed propagation matrix multiple times after a single feature transformation. APPNP
[7] adopts a personalized PageRank-based propagation scheme that retains a residual connection to
the input features, thereby mitigating over-smoothing without increasing parameter count. S?GC [35]]
improved SGC by manually adjusting the strength of self-loops, increasing the number of propagation
steps. More recent models such as SlimG [31]] explore the linearized form of GNNs and further
improve generalizability and interpretability. These approaches demonstrate that linear architectures
can match or surpass nonlinear GNNs in performance, especially with sparse labels.

3 Proposed method: ZEN

We introduce ZEN, a linear hypergraph neural network (HNN) for fast, scalable, and generalizable
node classification in few-shot settings. Our method builds on a unified linear formulation of existing
HNNs (Section[3.T). Leveraging this formulation, we develop a closed-form approximation for the
weight matrix (Section to eliminate iterative training and propose a redundancy-aware design for
the propagation matrix (Section [3.3) to mitigate structural redundancy.

3.1 General form of a linearized HNN

Linearization [20, 25} 26} 31] can effectively simplify the formulation of machine learning models
and reduce their computational complexity, resulting in improved robustness, scalability, and in-
terpretability. We conduct the linearization of five representative HNNs: HGNN [6], HNHN [4],
UniGCNII [10], AllDeepSets [3]], ED-HNN [23], and introduce their linearized forms in Tablem We
provide the full process of linearization in Appendix [B] We remove all non-linear functions, including
the activation functions, and integrate multiple weight matrices multiplied together into the single
equivalent matrix W of size d X c.

Then, we generalize the linearized forms of HNNs as follows:
Y = (Sh, mA) XW, @)

where A; denotes the [-hop adjacency matrix created from H, and ¢ is a hyperparameter. The matrix
A, determines how the incidence matrix is converted into an adjacency matrix between nodes, while
o determines how much information is propagated from the [-hop neighbors. It is noteworthy that
A, does not contain any learnable parameters, since all parameters are already integrated into W.
For simplicity, we denote P = >, oy A; and call it a propagation matrix in the rest of this paper.

The formulation in Eq. reveals that the performance of a linear HNN is primarily determined by
two factors: (a) the design of the propagation matrix P, which aggregates multi-hop structures A;
with appropriate coefficients o, and (b) the optimization of the weight matrix W. We elaborate on
the principled design of the propagation matrix in Section [3.3] In Section[3.2] we propose a tractable
closed-form solution for W, which eliminates the need for iterative training via backpropagation.



3.2 Tractable closed-form solution for the weight matrix W

There are two approaches to obtain the optimal weight matrix for linear HNNs. The first approach
is to iteratively update W through backpropagation until it reaches a steady state. Although it is a
popular and reasonable approach, we argue that the linear characteristic of the model is not fully
exploited in this way. The second approach is to derive a closed-form solution. Given training labels
D¢ Y, we directly compute the optimal W* as a function of Dy,,, 'Y without having any iterative
process. The limitation is its large computational complexity; it is rarely used in practice due to the
cubic time complexity O(d?) required to compute the pseudoinverse of a matrix.

Therefore, we propose a tractable approximation of the cloesd-form solution to eliminate the need for
a pseudoinverse, while maximizing its scalability by removing dependence on iterative learning. To
fully linearize the objective function, we consider the squared error (SSE) loss instead of the typical
cross-entropy loss which involves the non-linear softmax function. The closed-form solution of W,
without any approximation or optimization, is given as Lemma ]

Lemma 1. Given a linear HNN'Y = PXW and the SSE loss Lssg = |Dimn Y — Dien Y ||2, the
closed-form solution W* that minimizes Lgsg is given by

W* = ((PX)" Dy (PX))'(PX) Dirn Y, 3)
where T denotes the Moore-Penrose inverse (or the pseudoinverse) of a matrix.
Proof. The full proof is provided in Appendix |A.1 O

The problem of Eq. (@) is the pseudoinverse of matrix (PX) " Dy, (PX) € R4*4, whose compu-
tational complexity is O(d®). To avoid the pseudoinverse by safely approximating the closed-form
solution, we introduce two assumptions on the matrix PX which we call the embedding matrix of
nodes before being mapped to the class space by the matrix W.

Assumption 1. Each row vector of PX has a unit norm, i.e., (PX);.(PX)[. = 1 for all i.

Assumption 2. For any two row vectors of PX, their intra-class cosine similarity is approximately
1 — €, while their inter-class cosine similarity is approximately €. That is, (PX)L:(PX);: ~1l—e
for i, j in the same class, while (PX)Z":(PX);'; ~ ¢ for i, j in different classes, with small e.
Assumption|[I|can be easily achieved by normalizing the embedding matrix PX. Assumption [2]is
harder to satisfy, but is reasonable to assume in many cases where the node feature matrix X provides
sufficient information for classification when combined with the structural information encoded in P,
especially when we loosen the error bound €. Then, we propose Theorem I]for approximating the
closed-form solution of W with the introduced assumptions.

Theorem 1. Under Assumption[l|and[2] the following holds:

1
(PX) "Dy, Y.

€

W* = ((PX) Dyun(PX))! (PX) "Dy Y ~

Proof. The full proof is provided in Appendix [A.2] O

By Theorem [T} the burdensome pseudoinverse in the optimal weight matrix can be approximated as
(1/€)1, which is a constant matrix. Since the constant 1/e is multiplied to all dimensions, it does not
change the result of prediction; we can safely remove it from our model.

To satisfy Assumption[I} we apply the row-wise L2 normalization for the embedding matrix PX as
Jrow (PX) where the function g, denotes the row-wise normalization operator. Consequently, we
normalize the weight matrix W* as well, since it represents the embedding matrix of labels; each
column of it can be understood as the d-dimensional embedding of each label. Without normalizing
‘W, the class with a large-norm embedding gets an advantage in the prediction stage. Therefore, we
normalize both node and class embeddings, and our final method is expressed as follows:

Y = Grow (PX)gcol (grow(PX)TDtrrlY)~ “)



3.3 Redundancy-aware propagation for eliminating self-information

A key design objective in linear HNNs is to flexibly control the influence of each [-hop neighborhood
on node representations. This is achieved through a propagation matrix of the form

L
P=> A, )
=0

which denotes a weighted combination of [-hop adjacency matrix A; multiplied with the coefficient
ay. Since PX is row-normalized as shown in Eq. (Ef:]} without loss of generality, we can constrain
the coefficients to lie on the probability simplex: » ;" ; oy = 1, where oy > 0 for all [. By carefully
controlling the coefficients for each dataset, determining how much information to take from each
l-hop neighborhood, a linear HNN can exhibit superior performance. For example, «; can be large
for homophilic graphs, but small for heterophilic graphs following a typical assumption.

However, the formulation in Eq. (3)) inevitably contains redundant self-information, which hinders
the precise adjustment of neighborhood influence. We formalize this phenomenon as follows:

Definition 1. Given A; with [ > 0, we define its residual self-information as the diagonal matrix
RSI(A[) = diag(Al) S Rnxn7 6)
which quantifies the amount of information returning to each self-node.

The self-information of A; can arise not only from the self-loops, but also from cycles or return paths
in hypergraph walks if [ > 2. Such self-information is not a notable problem, but even promoted
in nonlinear HNNs which aim to avoid losing the information of initial node features when deep
layers are adopted. However, in linear HNNGs, self-information repeatedly appearing in different-hop
adjacency matrices is redundant and prevents one from fully optimizing the propagation function for
each dataset with a unique characteristic. Another problem is that the self-information in Ay, if it is
used for creating A ;s with I’ > [, results in boosting the effect of local neighborhoods in A;/, making
the self-information even stronger in later adjacency matrices.

To overcome these limitations, we propose a redundancy-aware propagation that explicitly eliminates
redundant self-information from the [-hop adjacency matrix A;. Specifically, we define the [-hop
adjacency matrix A} without redundant self-information as follows:

A} := A; —RSI(A)), (7

where A; := A1Dj_;A;_, is the normalized adjacency matrix, D}, is the degree matrix designed
specifically for the normalization method used in creating A;, and Aj := I. Then, we replace all
A; with A} in Eq. (B) and use it as our propagation matrix P* = >, oy A}. This ensures that the
self-information in P* is exactly determined by «y, and is not confounded by higher-hop structures.
As a result, it allows a precise control over self- versus neighbor- information, which is critical in
few-shot scenarios where overfitting to redundant self-signals can hinder generalization.

Normalization of adjacency matrices All linearized HNNs in Table|l{normalize the adjacency
matrix A; either by symmetric or row normalization to make it numerically stable in deep layers.
However, if we apply the same original normalization and remove self-information from normalized
A,, it makes over-normalization and gradually diminishes feature magnitudes across layers. Thus,
we re-normalize A; and derive the following matrices for i = 1, 2:

A, =D;*H(D.-1)'H'D;* 8)
A; = A7 (DI(D, - 1)7'DJ) A} ©

Avoiding dense adjacency matrices The main challenge for Eq. (7) is deriving the dense matrix
A, of size |V| x |V| for the computation of its self-information. We provide explicit expressions of
the RSI terms for [ = 1 and | = 2, since we set L to 2 in our experiments. Our derivation is based
on symmetric normalization, but the framework is readily extensible to row normalization. Detailed
derivations for the row-normalized variant are included in Appendix D}



Lemma 2. Given A, in Eq. @), RSI(A,) is given by

(RSIAD) = d! (S eno (dey = D7) o

where d,. denotes the degree of node x or the number of nodes in hyperedge x, based on the type of x,
and N (v;) denotes the set of hyperedges incident to node v;.

Proof. The full proof is provided in Appendix [A.3] O
Lemma 3. Given A* = A; — RSI(A,) and A, in Eq. ), RSI(A,) is given by

(RSI(As))i = d* (e, enton (e, = D72 (Supenon oy (o =D7)) . (D

where d,, denotes the degree of node x or the number of nodes in hyperedge x, based on the type of ,
and N (v;) denotes the set of hyperedges incident to node v;.

Proof. The proof follows by applying the same reasoning as in Lemma 2] O

From the 3-hop neighborhood onward, self-information can return through cycles rather than simple
backtracking paths, complicating both its identification and principled removal during propagation.
Additionally, deeper propagation exacerbates the computational burden and enlarges the hyperparam-
eter space. For these reasons, we restrict our model to 2-hop propagation, which strikes a balance
between expressive power and efficiency. This design choice is supported by two key observations:
(a) Increasing the number of hops introduces a linearly growing number of propagation coefficients
ay, resulting in the quadratic expansion of the hyperparameter space. (b) Empirically, most HNNs
attain competitive performance with only 1-2 propagation layers.

3.4 Summary of ZEN and its computational complexity
Putting it all together, the ZEN classifier f* can be summarized as follow:
I (H7 X, DtrnY) = Grow (P*X)gcol(grow(P*X)TDtrnY)a (12)

where P* = agAj + a1 AT + ap A with three hyperparameters o, a1, and ap, and A} denotes
the refined [-hop adjacency matrix which eliminates the redundant self-information.

The function f* is a closed-form prediction formula that directly produces label predictions for all
nodes given a small set of labeled nodes. Crucially, it eliminates the need for iterative training: the
labels of the training nodes are injected as explicit inputs rather than being implicitly encoded via
gradient-based optimization. This design enables extremely fast and stable inference, particularly
under low-resource scenarios such as few-shot settings, where traditional training-based models often
suffer from instability due to limited supervision. More importantly, by removing self-information
explicitly, ZEN avoids redundancy and enables fully optimized combinations of multi-hop structure
within the probability simplex. This capability is fundamentally absent in conventional propagation
schemes, where self-information is entangled with higher-hop structures.

The computational complexity of f* depends on the two main stages. The first is the dense matrix
multiplication between gyow (P*X) and geo1(grow (P*X) " DY), which is O(|V|dc), linear in the
number of nodes, feature dimension, and number of classes. The second is the construction of P*,
where we remove self-information from each A; for all [ > 1. This has the same time complexity as
standard message passing schemes, O(nnz(H) - dL), where nnz(H) denotes the number of non-zero
entries in the hypergraph structure, and the number L of layers is set to 2 in our experiments.

4 Experiments

We conduct comprehensive experiments on 11 real-world hypergraphs to verify the effectiveness of
ZEN. We show that ZEN consistently outperforms existing HNNs in few-shot node classification tasks
while exhibiting remarkable scalability. We then present a case study highlighting the interpretability
of ZEN, which comes from its linear decision mechanism, on a real hypergraph.



Table 2: Statistics of datasets. The first ten datasets are used as the main benchmark for evaluating
accuracy, while the Zoo dataset is used for interpretability analysis.

\ Cora Citeseer Pubmed Cora-CA 20News MN40 Congress Walmart Senate House\ Zoo

# nodes |V| 2,708 3312 19,717 2,708 16,242 12,311 1,718 88,860 282 1,290 101
# edges |£| 1,579 1,079 7,963 1,072 100 12,311 83,105 69,906 315 340 43
# classes ¢ 7 6 3 7 4 40 2 11 2 2 7
# features d 1,433 3,703 500 1,433 100 100 100 100 100 100 16

density(%) 0.5835  0.3258  0.4041 0.3959  0.0062 1.0000  48.3946 0.7868 1.1160 0.2636 | 0.4257

Table 3: Classification accuracy (%) for 5-shot node classification on real-world hypergraphs. We
report the mean and standard deviation over 10 runs. Boldfaced letters indicate the best accuracy, and
underlined letters indicate the second. ZEN achieves the highest average rank.

Methods Cora Citeseer Pubmed Cora_CA  20News MN40 Congress  Wallmart Senate House l?;’fk
HGNN 444189  40.1u65 525491 543136  T3.1i2s 947103 86.711. 39.640.4 56.8450 634143 | 5.9

HNHN } 36.7e55 360107 5l8isr 392455  A412i57 90814 Slliss  159i50 6974116 67disy | 7.9
HCHA | 44dssr  4L2:65 5294104 545ie2  T29:25 94702 86.6:15 393125  530u50  635ia6 | 59
UniGCN | 485155 416157 5424105 553143  T0diss  95.9.05 916104 401iss  6ldisy  67.9.51 | 3.9
UniGCNII ‘ 433499 389167 545484 52.0145 665146 9644104 83.5i64 23.542.4 704185 70.747.4 ‘ 5.5
AllDeepSets | 486147 426144 532458 553151 5ldiss 947105  695is7  245i57 6534103  63disy | 5.7
AllSelTransformer‘ 50.544.4 44.8197  60.4445  59.6134 703115 955102  88.241 383164  63.11107 66.3183 ‘ 3.6
ED-HNN | 484164 445i35 565ic6  588:iss  67.7usr  960s02  8lise  429:57  63lios  628:104 | 41

ZEN (proposed) | 51.9:101 49.1:48 626139 600162 0686145 976103 87.0145 439:31 7041100 73.2:63 | 17

4.1 Experimental setup

Datasets. We evaluate ZEN on a total of 11 real-world hypergraph graphs. To assess predictive
performance and computational efficiency, we use 10 standard benchmarks: Cora, Citeseer, Pubmed,
Cora_CA, 20News100, ModelNet40, Congress, Walmart, Senate, and House, following prior work
[15,23]]. For interpretability analysis, we use Zoo [15]], a small dataset whose feature attributes are
semantically interpretable. Detailed dataset statistics are provided in Table 2]

Baselines and hyperparameters. We compare ZEN with 8 representative hypergraph neural net-
works (HNN) models: HGNN [6], HNHN [4], HCHA [2]], UniGCN, UniGCNII [10], AllDeepSets,
AllSetTransformer [3]], and ED-HNN [23]. All baselines are implemented based on the official
codebase of ED-HNN, which provides a unified framework for fair comparison. All baseline are
trained using the Adam optimizer with no weight decay, and we conduct a grid search over 72 hyper-
parameter configurations: Ir € {1072,1072,107*}, epochs € {50, 100, 150,200}, num_layers €
{1,2}, hidden_dim € {64,128,256}. In contrast, ZEN requires no training hyperparameters. In-
stead, we search over 55 combinations of propagation coefficients (g, a1, o) uniformly sampled
from the 2-simplex, yielding a comparable hyperparameter space size to that of baselines. For each
dataset split, we report the test accuracy corresponding to the best validation performance. All our
experiments are conducted with NVIDIA RTX A6000 and AMD EPYC 9354.

Evaluation. We evaluate the accuracy of all models on 10 random data splits per dataset. For each
split, we allocate 5 labeled nodes per class for training, and another 5 nodes per class for validation
[12}27], making 5-shot node classification. The remaining nodes are used for testing. We report the
average classification accuracy and standard deviation across the ten splits [[11}[17,[19].

4.2 Classification accuracy

Table 3|compares the accuracy of ZEN and the baseline HNNs on 10 hypergraphs. ZEN demonstrates
competitive or superior performance across all datasets, showing the highest average rank. Despite
its simple linear architecture, ZEN achieves high accuracy even on complex hypergraph structures,
being competitive with complicated nonlinear methods. This validates the effectiveness of ZEN’s
architectural design in capturing high-order relationships, and highlights its strong generalization
ability in few-shot node classification scenarios, where model robustness is crucial.

The results also highlight intriguing trends among baseline models. In particular, early models such
as HGNN and UniGCN remain competitive, particularly on datasets such as 20News and Congress.
Their relatively simple architectures may contribute to stronger generalization in few-shot settings,



Table 4: The running time of ZEN and the baseline models, including both training and inference.
Each time is represented as a ratio over the running time of ZEN. Therefore, the lower is the better.
ZEN consistently shows the fastest runtime, up to 696 x faster than the best competitor.

Methods \ Cora Citeseer Pubmed Cora_CA 20News MN40 Congress Wallmart Senate House
HGNN | 8.65 3.81 3.00 8.95 10.54  20.05 53.10 30.16  777.14  388.05
HNHN | 7.61 2.71 3.56 7.23 15.51  13.78 42.11 2147  696.85  345.93
HCHA | 12.37 4.74 5.51 10.19 12.21  20.63 71.62 12.73 1008.85  699.41
UniGCN | 17.12 2.63 8.29 8.97 28.79  21.86 91.16 3290 716.43  292.95
UniGCNIL | 15.77 5.18 2.56 17.25 16.98  19.41 80.17 36.37  696.63  369.10
AllDeepSets | 58.11 24.92 11.01 57.56 35.52  47.51 273.58 90.16 4048.55 1748.67
AllSetTransformer | 9.76 4.30 10.98 12.37 60.21  24.94 65.59 76.89  997.43  524.15
ED-HNN | 16.04 6.06 5.46 23.55 46.71  28.70 426.91 46.31  714.73  379.41
ZEN (proposed) | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

where overfitting is a common challenge. In contrast, more complex methods such as HNHN and
AllDeepSets tend to underperform, likely due to higher complexity and reduced robustness under
limited supervision. These observations further underscore the strength of the simple yet effective
design of ZEN, producing consistently high performance in diverse hypergraph structures.

4.3 Running time

Table[d] shows the running time of ZEN and the baseline models, including both training and inference
time. All existing HNNs exhibit significantly higher computational costs over ZEN. The speedup
stands out for large complicated HNNs, such as AllDeepSets and ED-HNN, as ZEN is over 1700 x
faster than AllDeepSets in the House dataset. Even for relatively simple models such as HGNN,
HCHA, UniGCN, and UniGCNII, ZEN shows a consistent improvement ranging from 2.5 x even
to 300x. In summary, ZEN demonstrates overwhelming speed superiority across all datasets while
maintaining competitive accuracy, establishing itself as a highly efficient solution.

The efficiency of ZEN comes from its lightweight architecture, where the computational cost is linear
in the number of nodes, feature dimension and number of classes. This design leads to substantial
runtime advantages on datasets with compact input dimensions. In particular, Congress, Senate, and
House have feature dimensions that are at least 5x and up to 37x smaller, node counts up to 9x
fewer, and class counts between 2 x and 20 x fewer than other datasets. These characteristics make
them ideal for highlighting the scalability of ZEN, which achieves remarkable speedups of up to
292x on House and 696 x on Senate while maintaining competitive accuracy.

4.4 Interpretability

ZEN is inherently interpretable, thanks to its linear decision process that directly maps the feature
space to the prediction. There are two ways to interpret the learned knowledge of ZEN. First, the
(i, k)-th element of the weight matrix W™ can be understood as the importance of the ¢-th feature for
predicting the k-th class. Second, each column of W* can be understood as the embedding of class k
lying on the feature space. In this way, the relationships between class embeddings and node features
provide a deeper insight on the nature of the given dataset, along with the graphical structure.

To verify the interpretability of ZEN, we conduct a case study on the Zoo dataset, whose node features
have clear semantic meanings: each feature attribute represents a characteristic of an animal, e.g.,
hair or milk, while the target class is its species. The nodes represent animals, and the hyperedges
group together animals that share a common feature, e.g., all animals having the same hair.

TableE]Visualizes the weight matrix W*, where each value is color-coded: darker red indicates a
higher relative value compared to other classes for that feature. Since the initial input features are
all nonnegative, the resulting weight elements also remain nonnegative. For instance, the Mammal
class shows significantly higher values in Hair, Milk, and Capsize, suggesting that these features play
a key role in distinguishing mammals from other animal groups. Similarly, the Bird class exhibits
prominent values in Feathers, Eggs, Airborne, etc., reflecting biologically distinctive traits of birds.
These results demonstrate that ZEN not only achieves high predictive performance but also yields
representations that align with domain knowledge in a transparent and interpretable manner.



Table 5: Relative feature importance values learned by ZEN on the Zoo dataset under a 3-shot setting.
Darker red cells indicate higher values relative to other classes, with cells having darkness of 80% or
higher highlighted by black boxes. Refer to Section[4.4] for detailed information.

Mammal Bird Reptile Fish Amphibian Bug Invertebrate
Hair  [JOEESl 00719 00778  0.0819  0.0661  0.0800 0.0465

Feathers  0.0251 [J[EHESONN 0-0383  0.0414 00311  0.0305 0.0276
Eggs o072 OO0 0:2555  JOEOEA o.1979  0.1792 0.1850
mitk  [JOEEO 00664 00740  0.0826  0.0626 00432  0.0409
Airborne  0.0310 [JERE 0.0450 0.0456  0.0376 | 0.0979 0.0361

Aquatc  0.0807  0.0688  0.0727 [JEEEENNOEG06NY 0.0492 0.1437

Predetor | 01796 0.1054 [J0:4878 JESE o601 o.1006 0.1688
Toothed [OMFO7T 0.1001 [NOESICNNEERINOREN 0.0652  0.0745
Breathes |0.2230  JOZTGOIN[02507]] o0.1652 [702285 " 0.1939 0.1064
Venomous  0.0109  0.0141 | 0.0628 = 0.0217  0.0465  0.0415 0.171
Fins 0.0246 00272 00337 [JEEOEEH 00301 00183 0.0273
Legs | 08380 07794 07956 0.5875 [[[08520] {0033 N [00E0 N
Tail 0.1836 01522 00913  0.0963
Domestic ~ 0.0225  0.0266 00234  0.0253 00197 00179  0.0146

Table 6: Ablation study of ZEN with four baselines: three variants with a selective removal of the
ZEN components, and the linearized HGNN that lacks multi-hop message combination. Our full
model consistently outperforms all ablations, demonstrating the effectiveness of both components.

Methods Cora Citeseer Pubmed Cora_CA 20News MN40 Congress Wallmart Senate House li:v ngk

Lincarized HGNN | 427454 343404 5l7466 496169 680460 945105 837150 200ig4 558151 578465 | 45
NoTCS.NoRAP | 443.75  35.0ira  528:60 4881ss Odbirs 97.6i05 885125  223ues  TLBisy  69.0iss | 3.7
No TCS ‘ 46.945.5 378469 53.316.0 525452 69.8i75 97.8i02 87.0i25 26.6450 6721101 T71.6159 ‘ 2.7
No RAP ‘ 50.6188  48.6144 62.6142 600158 64.7149 977403 884425 406149 738152 Tldizg ‘ 2.0

ZEN (proposed) ‘5149110,1 49.1.:48 626139 60.0162 68.6448 976103 87.0448 439431 7044100 73-2i6.3‘ 1.7

4.5 Ablation study

In Table[6] we conduct an ablation study to assess the individual and combined impact of tractable
closed-form solution (TCS) and redundancy-aware propagation (RAP), two core modules of ZEN, in
the same setting as in Table[3] The results show that the removal of both components leads to notable
performance drops, while isolating TCS or RAP yields moderate gains, with TCS generally offering
more stable improvements. Our full model ZEN consistently achieves the best results, outperforming
all ablated variants with the highest average rank. These findings highlight the complementary roles
of TCS and RAP—TCS provides stability and tractability through a closed-form solution, while RAP
enhances representation by mitigating redundancy.

We observe that removing RAP or TCS can improve performance on certain datasets (Congress and
Senate for RAP, 20News and MN40 for TCS). RAP tends to degrade performance on high-density
datasets such as Congress and Senate, likely because the degree normalization reduces each node’s
relative contribution, limiting the effect of self-information. For TCS, which assumes informative
node embeddings, the impact of removal is more significant on 20News than MN40. The extremely
low density of 20News may hinder ZEN, which relies solely on propagation to refine embeddings,
from producing sufficiently informative representations. In contrast, MN40’s large number of classes
increases the relative Frobenius norm error of TCS, suggesting that the approximation becomes less
accurate as the number of classes grows, partially explaining the observed results.

5 Conclusion

In this work, we propose ZEN (Zero-Parameter Hypergraph Neural Network), a parameter-free model
for few-shot node classification on hypergraphs. By reformulating existing HNNs into a unified



linear framework with a tractable closed-form weight solution and redundancy-aware propagation,
ZEN achieves strong generalization, fast inference, and interpretable representations without iterative
training. Extensive experiments demonstrate its superior accuracy and scalability. One limitation
of our work is that ZEN is specifically designed for node classification and is not tailored to other
hypergraph tasks such as hyperedge prediction, local clustering, or hyperedge disambiguation. In
future work, we plan to extend our framework to support a broader range of hypergraph learning
tasks by designing a more general-purpose and efficient linear HNN architecture.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

 The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: To the best of our knowledge, our work does so.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: To the best of our knowledge, our work does so.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/
CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Inips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: To the best of our knowledge, our work does so.

Guidelines:
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
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Declaration of LLM usage
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scientific rigorousness, or originality of the research, declaration is not required.
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A Proofs

A.1 Proof of lemma 1

85533]3 = —2(DPX) T (DY — DY) (13)

where Y = PXW. The optimal W, minimizes Lsgg:
—2(DgPX) " (Dn Y — Dy PXW,) =0 (14)
(D:nPX) "Dy PXW, = (D PX) "Dy Y (15)
(PX) " Dyyn(PX)) W, = (PX) Dy Y (16)
W. = ((PX) Dy (PX))' (PX) Dy Y (17)

A.2 Proof of theorem 1

Without loss of generality, we can set the first k - ¢ diagonal elements in Dy,,, to be 1, and they are

ordered with their labels. Let D!, = [Ix. 0] € R**IVl, We can easily accept D{] D}, = D =
(Dy:m)? by definition.
We first prove the following four lemmas for proving the main theorem:
Lemma 4. By definition, the following holds:
D;/,Di,, = Din = (Din)? (18)
Proof. The proof is straightforward. O
Lemma 5. Under the assumptions, (D}, (PX))(D.,,(PX))T can be expressed as:
(Dgrn(PX))(D;rn(PX))T = (1 - 26) (IC ® Jk) + E(Ikc + ch) (19)
where J is an all-one matrix, i.e. Ji,. = 1 ;.wl;c, and ® denotes Kronecker product.
Proof. The proof is straightforward. O
Lemma 6. When e > 0, (1 — 2¢)(I. ® Ji) + €(Ige + Jie) has inverse matrix as follows:
_ 1 1 1
(1 =26, @Ip) + €(Tpe + Tpe)) ' = —M; + —My + —M; (20)
A1 A2 A3

where Ay = €, o = (1 — 26)k + ¢,\3 = k(1 — 2¢ + ec) + ¢, My = I, — %(IC ® Ji), My =
%(Ic ®Jk) - ﬁJk:caMB = ﬁ‘]kc

Proof. We consider the matrix M = (1 — 2¢)(I. ® J) + €(Txe + Jic). We define three mutually
orthogonal projection matrices:

My=Ti (Lod), My= (Lad) - de My=Ji @D
It is easily verified that these satisfy
M? =M,;, MM, =0(#j), M;+M;+Ms;=I. (22)
‘We now compute the action of M on each subspace:
MM, =My,
MM; = ((1 — 2¢e)k + €) Mo,
MM; = (k(1 — 2e + ec) + ) M.
Thus, M admits the spectral decomposition
M = MM + Aa2Msy + AsMs, (23)
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where

A=¢ Xl=(1-2¢k+e N=k(l-2e+ec)+e (24)

Since € > 0, all eigenvalues are strictly positive, so M is invertible. The inverse is given by
M~ =AM, + A M, + A\ M. (25)
O

Lemma 7. Under the small € < 1, the following holds:

! / — ]- / / —
((Dtrn(PX))(Dtrn(PX))T) ? ~ g((Dtrn(PX))(Dtrn(PX))T) ! (26)
Proof.
1 1 1
((Dérn(PX))(Dérn(PX))T)_l = YMI + TMQ + /\7M3 (27)
1 2 3
1 1 1
((Dérn(PX))(Dérn(PX))T)_2 = FMI + FMQ + PM?) (28)
1 2 3
When € < 1, \1 = €, \s = k, A3 =~ k. Therefore,
1
((Dérn(PX))(Dérn(PX))T)_l ~ EMI (29)
1
((Dgrn(PX))(Dérn(PX))T)_2 ~ ?Ml (30)
Thus, (Dl (PX))(D},, (PX)) )2 % (D}, (PX)) (D}, (PX))T) with small e < 1. 0

The rest of this section proves the theorem based on above lemmas. First, we can reformulate
K' = (PX) "Dy (PX)) as:

K' = ((PX)"D{/,Di,,(PX))" = (D1, (PX))" (D}, (PX)))f €1
by Lemma 4.
By definition of Moore—Penrose pseudoinverse matrix,
(D4 (PX) T (D5, (PX))) = (D}, (PX)) T (D}, (PX))(D},,,(PX))T) (Dim(Pngz)
where (D! (PX))(D.,,(PX)) T has inverse matrix by Lemma 6.
By Lemma 7,
1 !/ ! ! - !
K' ~ = (D, (PX))" (D, (PX))(D,, (PX))") " (D, (PX)) (33)
Therefore,
1 ! / / - !
W* = KTZTYU"H ~ E(Dtrn(PX))T ((Dtrn(PX))(Dtrn(PX))T) ' (Dtrn(PX))(PX)TDtrnY
(34
By Lemma 4,
1 _
~(DL,(PX)) T (D, (PX)) (DL, (PX)) ) ' (D!, (PX))(PX) Dy Y (35)
1 / / / - / !/ !/
= E(Dtrn(l)}())T ((Dtln(PX))(Dtrn(PX))T) ' (Dtrn(PX))(PX)TDt;rnDtrnDU‘HY (36)
]‘ I !/ !/ - !/ ! I /
= E(Dtrn(PX))T ((Dtrn(PX))(Dtrn(PX))T) ' (Dtrn(PX))(Dtrn(PX)) TDtrnDtrHY
(37
= (D, (PX)) D}, DY = - (PX) DD, DY = ~(PX) Dir ¥ 38)
€ € €
Therefore,
W %(PX)TD“HY (39)
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Table 7: Layer-wise formulations of five HNNs, assuming single-layer MLPs.

Method | Each layer
HGNN X = ¢ D;%HDe—lHTDV—%X(l—mW
HNHN X = ¢ (D; ,HDgo (D JH DX IW) W)

UniGCNII | X® = ¢ ((1 — @)D HD'HTX(-D 4 QX(O)) W)
AllDeepSet | X = o (D;'Ho (D;'H o (X(-DW) W) W)
ED-HNN | X() = o (((1 - @)o (D7 'Ho (D7'H o (X("DW) W) W) +aX(©) W)

A.3 Proof of lemma 2

_1 _1
We analyze the diagonal entries of the A; = D, >HD;'H D, 2. Specifically,
1 _ 1 1 _
\/TW(HDG 1HT)”TW = d—vi(HDe 'HT),; (40)
Since H;; = 1 if and only if node v; belongs to hyperedge e;, (¢, %)-th entry of HD_ 'HT corre-
sponds to the sum of edge-normalized weights over all hyperedges incident to node v;. Therefore, we
obtain: )
—1pr Ty
(HD;'H");; = > df,. (41)
e;EN(v;) 7

(A1)ii =

B Linearization of five representative HNNs

Table [7) presents the layer-wise formulations of five hypergraph neural networks (HNNs), where each
MLP block is assumed to be a single-layer perceptron. By removing nonlinear activation functions, all
weight matrices in a network can be merged into a single equivalent weight matrix, since multi-layer
perceptrons reduce to a linear transformation without nonlinearity.

Let D, and D, be the diagonal degree matrices of nodes and hyperedges, respectively. We define the
variants of degree matrices as follows:

( i = d_ Z dv]7 v a i Z d e 5 Z d
v; EN(e;) e; EN(v;) v; EN(e;)

We denote by ¢ a nonlinear function (e.g., ReLU), and by W= (1—5)I+BW aconvex combination
of the identity and a learnable weight matrix. Since W is a free parameter being updated during the

training, we can safely replace W with W under linearization.

C Error bounds in Theorem 1]

We present the relative Frobenius norm error, confirming it remains sufficiently low as e decreases. In
TCS, our approximation is given as follows:

1 1
M
2t A2 A2

where A\ = €, A0 = (1 —26)k + €, A3 = k(1 —2e+ec) + e, My = Iy — %(IC ®@Ji), My =
%(Ic ®Jg) — ﬁJ ke, M3 = ﬁ.] ke- J denotes an all-one matrix and ® is the Kronecker product.

1
2M2 + M3 Ml +—M; + M3 (42)
A1 A3

To evaluate the approximation quality, we compute the relative Frobenius norm error as follows:

M+ My + M — L (M + A My + My )|

(43)
%%Ml + )\1ng2 + %%Me,’F
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Table 8: Relative error for different values of €.

€ Relative Error
0.1 1.14%
0.01 0.10%
0.001 0.01%

For a representative case with £ = 5 and ¢ = 10, the relative errors are summarized in Table@

These results indicate that the approximation becomes increasingly accurate as e decreases. This
supports the validity of our approach, particularly in the regime where ¢ is sufficiently small.

D Row-normalized adjacency matrices

Eq. (@) and Eq. [@3) present the row-normalized adjacency matrices A; and A,. The corresponding
residual self-information terms, RSI(A 1) and RSI(A), are shown to coincide with those obtained
under symmetric normalization. This equivalence is formally established in Lemma[§]and Lemma[9]

A, =D'HD.-1)"'H" (44)
Ay = A} (D, -D7'D,) AL (45)
Lemma 8. Given A, in Eq. @), RSI(A,) is given by

(RSIAD) = di! (S enoy (dey = D7) o

where d,. denotes the degree of node x or the number of nodes in hyperedge x, based on the type of x,
and N (v;) denotes the set of hyperedges incident to node v;.

Proof. We analyze the diagonal entries of the A; = D;'HDZ'H. Specifically,

1
(A1) = T(HDngT)ii (47)
Since H;; = 1 if and only if node v; belongs to hyperedge e;, (i,%)-th entry of HD_ 'HT corre-
sponds to the sum of edge-normalized weights over all hyperedges incident to node v;. Therefore, we
obtain: .

(HDe_lHT)“. = Z - (48)
e; EN (v;) €
O

Lemma9. Given A* = A; — RSI(A,) and A, in Eq. @3)), RSI(A,) is given by

(RSI(AQ))M’ = d;il (Zejej\/(m)(dej o 1)72 (Z’UkEN(ej)\{’Ui}(d”k o 1)71)) ’ “49)

where d,. denotes the degree of node x or the number of nodes in hyperedge x, based on the type of x,
N (v;) denotes the set of hyperedges incident to node v;, and N (e;) denotes the set of nodes incident
to hyperedge ¢;.

Proof. The proof follows by applying the same reasoning as in Lemmal[§] O

E Possible approximations for deeper propagation

Some datasets may require models with higher-hop propagations for better expressivity. Without
approximation, the exact computation of RSI requires high computational cost. One possible
approximation is to estimate the probability that a random walker returns to the starting node after
steps, where is the number of hops that we aim to model. A simple pseudocode for this strategy is
provided in Algorithm I}
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Algorithm 1 Approximation via random walks

Require: Node i, walk length [
Ensure: Return probability of node ¢
1: count < 0
2: for each trial do
3: current < 1

4: fort =1toldo

5: Sample a hyperedge e incident to current uniformly at random
6: Sample a node j connected to e uniformly at random

7: current < j

8: end for

9: if current = i then
10: count < count + 1
11: end if

12: end for

13: return count/(number of trials)

Another possible approximation is to use Hutchinson’s Estimator, which provides an unbiased
stochastic estimate of the diagonal entries. The equation is given by:

m

diag(A) ~ % Y 2o (Az(k)) (50)
k=1

where m is the number of random probe vectors, each z(F) € R" is a random vector with en-
tries independently sampled from the Rademacher distribution (i.e., each entry is +1 or —1 with
equal probability), and © denotes the element-wise (Hadamard) product. The expectation satisfies
diag(A) = E[z © (Az)].

Hutchinson’s Estimator does not require explicit storage of the entire matrix A; instead, it relies solely
on matrix-vector multiplications with randomized vectors z. This characteristic renders Hutchinson’s
Estimator particularly suitable and computationally efficient for hypergraph structures. We consider
these approaches to be promising directions for extending ZEN to scenarios where deeper propagation
may provide additional benefits.

F Additional experiments

In this section, we present additional experimental results omitted from the main paper due to space
limitations.

F.1 Evaluation with increasing shots

ZEN is a parameter-free model, which gives it a particular advantage in settings where labeled data
is scarce and training is challenging. While ZEN was orginally designed for few-shot setting, our
results in Table 0] and Table [I0]show it performs strongly with more training samples as well. ZEN
achieves top average ranks in both 10-shot and 20-shot settings, suggesting it scales well beyond
few-shot scenarios.

F.2 Evaluation against additional baselines

We have additionally included eight baselines; three representative linear GNNs (SGC [26], APPNP
[7], and SSGC [33]]), three linearized hypergraph models based on UniGCNII [10]], AllDeepSets
[3l], and ED-HNN [23]], and two semi-supervised hypergraph models (LEGCN [30] and HyperND
[22]]). LEGCN utilizes a line expansion approach to adapt hypergraphs to conventional GNN
architectures, while HyperND introduces a diffusion-based mechanism for improved label propagation
in hypergraphs. For GNNs, we applied clique expansion to convert the hypergraph into a pairwise
graph. As shown in the Table[IT] ZEN demonstrates consistently strong performance, outperforming
all linear GNN and linearized hypergraph baselines on the majority of datasets.
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Table 9: Classification accuracy (%) for 10-shot node classification on real-world hypergraphs. We
report the mean and standard deviation over 10 runs. Boldfaced letters indicate the best accuracy, and
underlined letters indicate the second. ZEN achieves the highest average rank.

Methods Cora Citeseer Pubmed Cora_CA 20News MN40 Congress  Wallmart Senate House l?:fk
HGNN | 5913455  49.28431 6053170  64.94144 7554412 949040 8718109  46.85412  58.0lizs  64.30444 | 54
HNHN | 4247450 4282055 58.92i35  46.69.55 5123440 9396106 ATTTirs  1TA3405  69.74igy 7032476 | 8.0
HCHA | 58.96154 49.65129 60.02156 64.28156 75.59113 94.89102  87.23109 4711117 57.89105  63.86144 | 57
UniGCN ‘ 60.87458  51.13430 61.204609  66.87+30  73.69417  96.24102 91.35i07 4538114 6257425  70.27430 ‘ 3.7
UniGCNII ‘ 56.81451  49.18499  61.12464  63.17138 7091421  97.03402 87.72419  28.70125 7514443 T73.65409 ‘ 5.1
AllDeepSets | 5731144 50.63126  61.39151 6278141 6215193 9525103  72.63155  35.54107  69.53167  69.96131 | 6.3
AllSetTransformer ‘ 57.50450 54.074904 634ligs 67.63142 72.67114 9587401  83.09i20 4539137 7313455  70.99445 ‘ 3.9
ED-HNN ‘ 58.841443 5112498  60.59i70 64.73137 7113425  96.30402 90.73118 4717423 6644193 6249479 ‘ 4.7
ZEN (proposed) ‘ 614442 5917123 68.76134 6560139 73.04104 97.92:01 86.54406 4712130 7472419 73.90464 ‘ 2.2

Table 10: Classification accuracy (%) for 20-shot node classification on real-world hypergraphs. We
report the mean and standard deviation over 10 runs. Boldfaced letters indicate the best accuracy, and
underlined letters indicate the second. ZEN achieves the highest average rank.

Methods Cora Citeseer Pubmed Cora_CA 20News MN40 Congress  Wallmart Senate House l?:fk
HGNN 62.46.43.1 56.5741.9 69.6543.9 70.3341.9 76.6641.1 95.07+0.2 87.80+0.5 49.4642 4 60.73432  64.8312. ‘ 6.1
HNHN 4828459  50.08423 6260116 5288129 52.69:63  95.20405 4992450 2182415  T3.5lize 720044 | 8.0
HCHA 6419439  56.81401 69.44. 53 70.04119 76.68:10 95.09101 8791404 4944125  61.07433 6491403 5.7
UniGCN 6544133 5847112 7084106  71.26118  72.59:21  96.63401  91.62:03 49.00121  62.04i23  72.69109 3.9
UniGCNII 64.29129  56.97112 6892434 6855195  74.05415 9756401 8831119  32.04115  T7.59420 76.05109 4.4

AllDeepSets

\
62.37437 57.78418  67.10422 65934113 67.60425 96.69103 77.65458 4397404 73.0542.2 73 29405 ‘ 6.4
\

AllSetTransformer | 63.65416  59.49121  69.70123  69.82405 7422415  96.02102  89.20405 4929418  76.144358  75.58497 3.8
ED-HNN 64.24430 5727416  69.56134 6929416 7092419  96.69102  90.11ip;  50.61i33 7230167  T1.27437 4.8
ZEN (proposed) 6787114 6400114 7132416 71994120 73.74112 98.21:01 88.04409 51.30411 7410452 76.70404 2.0

Table 11: Comparison of classification accuracy (%) with eight additional baselines for 5-shot node
classification on real-world hypergraphs. We report the mean and standard deviation over 10 runs.
Boldfaced letters indicate the best accuracy, and underlined letters indicate the second. ZEN achieves
the highest average rank.

Methods Cora Citeseer Pubmed Cora_CA 20News MN40 Congress ~ Wallmart Senate House liA-: fk
SGC 44.09495 4042455 5719455  50.79459  58.0615, 9L58igr 724843, 241lizs 5126407 5227414 | 5.9

APPNP } 4577405 3955147 5538471 50.04eer  59.90i5s  9275i0s  09.0946s  24.70s35  TL24isa 700044 | 58
SSGC | 42602100 4060147  5T.07iso 5255007 599045 93.75x0n  8L10kay 2656154  73.00407 7L74sss | 3.3
linUniGONIT | 39.44iry  40.00i10  56.85.10 49.75u61 5945455  96.58504 T3.35as1 1790a1r 71221108 68.231106 | 538
lin AllDeepSets | 4049452 4076145 5613100 51045y 06.62450  96.62:05 9039115  2045:50 60.95.s7 651341, | 43
lin ED-HNN ‘ 41.97 456 39.64.44.2 55.8245.4 4737458 61.4746.0 97.28.40.4 78.3540.7 18.8441 6 71.1049.9 70.2049.3 ‘ 5.2
LEGCN | 3759452 8725405  581leno 3759452  494lers  932Teor  721dsgy  OOM  T125ig5 7285470 | 65
HyperND | 39.09+6.2 3526148  56.54145 41.Tdrae 5470138 9140105 7357449 13.55417 73.88475 728417, | 6.5

ZEN(proposed)‘51.85i10.1 49.08:48 62.62:39 60.04:62 6857148 9763103 86.96145 43.88:31 70.401100 73.2216,3‘ 1.7

F.3 Evaluation under standard n-way k-shot setting

To examine the generality of our approach, we further evaluate it under the standard n-way k-shot
setting. To the best of our knowledge, this setup has not been explicitly explored for general
hypergraphs. Accordingly, we designed a new evaluation protocol by drawing inspiration from the
experimental setup of Meta-GNN [34] and adopting hyperparameter configurations aligned with those
used in ED-HNN [23]. The results, summarized in Table[T2] demonstrate the strong performance of
ZEN in this setting, underscoring its effectiveness for few-shot learning on hypergraphs. Notably,
ZEN achieves competitive results even when applied solely to test episodes, revealing a promising
and underexplored direction for future research.

G Running times

The actual running times are reported in Table[I3] with all values measured in seconds. ZEN runs in
less than a second across all datasets, achieving as fast as 0.003s on the Senate dataset.
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Table 12: Classification accuracy (%) under the standard n-way k-shot setting. Results are averaged
over 10 runs. ZEN achieves superior performance across all configurations.

Methods \ Cora (2-way 3-shot) Cora (2-way 1-shot) Citeseer (2-way 3-shot) Citeseer (2-way 1-shot)
HGNN \ 644401 55.940.1 60.140.2 54.910.2
UniGCNII \ 68.0+0.1 58.940.2 65.240.1 56.841.6
AllDeepSets \ 52.3140.2 48.7402 51.140. 50.240.2
ZEN (proposed) \ 73.3101 62.6.10.1 71.5401 62.3101

Table 13: The actual running time of ZEN and the baseline models, including both training and
inference. Each time is measured in seconds. ZEN exhibits a significant speed advantage over all
baselines.

Methods \ Cora  Citeseer Pubmed Cora_CA 20News MN40 Congress Walmart Senate House
HGNN | 2.301 2.800 2.423 2.506 2.499 3.958 4.950 20.277 2.540  2.543
HNHN | 2.023 1.996 2.877 2.024 3.676 2.720 3.925 14.435 2.278  2.267
HCHA | 3.290 3.485 4.448 2.850 2.894 4.072 6.675 8.558 3.297  4.584
UniGCN | 4.553 1.932 6.693 2.511 6.825 4.315 8.497 22.121 2.342  1.920
UniGCNII 4.193 3.812 2.069 4.826 4.025 3.831 7.472 24.452 2277 2.419
AllDeepSets | 15.456  18.331 8.889 16.108 8.420 9.378 25.499 60.619  13.232 11.461
AllSetTransformer | 2.597 3.167 8.865 3.462 14.273  4.924 6.114 51.702 3.260  3.435
ED-HNN | 4.267 4.458 4.407 6.588 11.072  5.664 39.791 31.137 2.336  2.487

ZEN (proposed) | 0.266 0.736 0.807 0.280 0.237 0.197 0.093 0.672 0.003 0.007
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