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Abstract001

Retrieval-augmented generation improves the002
factual accuracy of Large Language Models003
(LLMs) by incorporating external context, but004
often suffers from irrelevant retrieved content005
that hinders effectiveness. Context compres-006
sion addresses this issue by filtering out irrel-007
evant information from context before LLM008
generation. However, existing methods strug-009
gle to adaptively adjust compression rates for010
different context, maintain low latency and in-011
tegrate information across multiple documents.012
To overcome these limitations, We introduce013
AttnComp, an adaptive, efficient and context-014
aware compression framework. By leveraging015
the attention mechanism of LLMs to identify016
relevant information, AttnComp employs a Top-017
P compression algorithm to retain the minimal018
set of documents whose cumulative attention019
weights exceeds a predefined threshold. In ad-020
dition to compression, AttnComp estimates re-021
sponse confidence by assessing the overall rele-022
vance of the retrieved content, enabling users to023
gauge response reliability. Experiments demon-024
strate that AttnComp outperforms existing com-025
pression methods and uncompressed baselines,026
achieving higher accuracy with substantial com-027
pression rates and lower latency.028

1 Introduction029

Retrieval-Augmented Generation (RAG) enhances030

the factual accuracy and reliability of Large Lan-031

guage Models (LLMs) in knowledge-intensive032

tasks by integrating retrieved context into their gen-033

eration process(Lewis et al., 2020; Borgeaud et al.,034

2022; Izacard et al., 2023; Ram et al., 2023; Xu035

et al., 2023b). However, practical RAG applica-036

tions often grapple with retrieved content contain-037

ing substantial irrelevant information, even entirely038

unrelated to the query(Sauchuk et al., 2022). This039

gives rise to three primary issues: first, LLMs can040

be misled by such noise, leading to incorrect an-041

swers(Shi et al., 2023; Jin et al., 2024a; Yoran et al.,042

2024; Wu et al., 2024a); second, LLMs struggle 043

to identify and utilize key information effectively 044

as context length increases(Liu et al., 2024); and 045

third, irrelevant content unnecessarily inflates input 046

sequences, escalating computational overhead. 047

To mitigate these issues, context compression 048

has emerged as a promising solution to filter out 049

irrelevant information before generation. Existing 050

methods can be categorized into abstractive and ex- 051

tractive approaches. Abstractive methods leverage 052

LLMs to summarize or rewrite retrieved content via 053

autoregressive generation(Xu et al., 2023a; Yoon 054

et al., 2024; Zhu et al., 2024). While achieving 055

high compression rates, they incur significant la- 056

tency due to token-by-token decoding. Extractive 057

methods instead select relevant spans from the orig- 058

inal content, offering greater efficiency(Jiang et al., 059

2024; Hwang et al., 2024; Chirkova et al., 2025). 060

However, current extractive methods typically only 061

assess the relevance of individual sentence or docu- 062

ment to the query, limiting their ability to integrate 063

information across broader context. Furthermore, 064

many such approaches rely on fixed compression 065

rates or target lengths(Xu et al., 2023a; Jiang et al., 066

2024), ignoring the variable proportion of relevant 067

content and risking under- or over-compression. 068

Consequently, we posit that an effective context 069

compression method should exhibit three key prop- 070

erties: (1) Adaptive: It should dynamically adjust 071

the compression rates based on the proportion of 072

relevant information within the context. (2) Effi- 073

cient: It should maintain low computational cost 074

and latency, ensuring rapid processing for real-time 075

applications. (3) Context-Aware: It should inte- 076

grate and synthesize information from the entire 077

retrieved content to accurately identify relevant seg- 078

ments. However, to the best of our knowledge, no 079

existing compression method simultaneously satis- 080

fies all three of these properties. 081

To bridge this gap, we introduce AttnComp 082

(Attention-guided Context Compression), an adap- 083
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Stage 1: Attention Computation Stage 2: Top-P Compression

Figure 1: Illustration of the AttnComp Framework. AttnComp consists of two stages: Stage 1 involves attention
computation, where attention weights are calculated from the query (q) to the context composed of the instruction
(Ins) and documents (d); Stage 2 applies a Top-P compression algorithm to select the most relevant documents and
generate a confidence score for the RAG response. Three cases are illustrated: (1) Documents 1 and 3 are relevant
and retained; (2) Only Document 2 is relevant and retained; (3) All documents are irrelevant and filtered out.

tive, efficient and context-aware extractive com-084

pression method that leverages the inherent atten-085

tion mechanisms of LLMs. As illustrated in Fig-086

ure 1, the AttnComp pipeline consists of two stages:087

(1) Attention Computation. Given a prompt that088

combines the instruction, retrieved documents and089

query, we compute attention weights from mid-090

dle layers of the LLM to quantify the relevance of091

each text segment to the query. (see Sec. 4.1 for092

details). (2) Top-P Compression. We aggregate093

the attention weights to compute scores for the in-094

struction and each document. Documents are then095

ranked by score, and the top ones are retained until096

their cumulative score, combined with that of the097

instruction, reaches a predefined threshold. Com-098

pared to fixed-length compression, this approach099

adjusts the retained content based on attention dis-100

tribution, allowing for flexible selection ranging101

from no documents to all documents (see Sec. 4.2102

for details).103

We observe that while the attention mechanisms104

in LLMs inherently capture relevance, they can still105

assign high attention to irrelevant content. This is106

particularly evident when all retrieved documents107

are irrelevant, as the model fails to shift attention108

away from the documents, with some irrelevant109

ones consistently receiving high attention. To ad-110

dress this, we fine-tune the cross-attention layer111

of the model to direct attention to relevant docu-112

ments when present, or to the instruction when all 113

documents are irrelevant (see Sec. 4.3 for details). 114

Experimental results on multiple QA datasets 115

highlight the superior performance of AttnComp. 116

It achieves a 1.9 point accuracy improvement over 117

the uncompressed baseline, while other compres- 118

sion methods incur at least a 3 point decrease. This 119

advantage is even more pronounced in multi-hop 120

question answering, which requires integrating in- 121

formation from multiple documents and thus places 122

higher demands on context-aware compression ca- 123

pabilities. Here, our method yields at least a 5.4 124

point improvement over other sentence-level com- 125

pression methods. Beyond accuracy, AttnComp 126

achieves a 17x compression rate, outperforming 127

all other evaluated extractive methods, and signif- 128

icantly reduces the RAG system’s end-to-end la- 129

tency to 49% of the uncompressed baseline. 130

Beyond its primary role in compression, At- 131

tnComp also offers a valuable capability for es- 132

timating the confidence of RAG responses by lever- 133

aging the attention assigned to the instruction (see 134

Sec. 4.4 for details). After training, the attention al- 135

located to the instruction correlates with the quality 136

of retrieved documents, serving as an indicator of 137

answer reliability. Experiments show a strong posi- 138

tive correlation between the confidence score and 139

actual answer accuracy, enabling users to assess 140

response trustworthiness and mitigate risks from 141
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low-quality retrieval. Furthermore, this capability142

also suggests a possible avenue for future research143

on autonomous iterative RAG(Asai et al., 2023; Su144

et al., 2024; Yu et al., 2024).145

In summary, our contributions are as follows:146

1. We propose AttnComp, a novel extractive147

compression framework for RAG that is adaptive,148

efficient, and context-aware.149

2. Our method enables confidence estimation for150

RAG responses, allowing users assess reliability151

and mitigate risks from low-quality retrieval.152

3. Extensive experiments show that AttnComp153

outperforms existing compression methods and un-154

compressed retrieval baselines, delivering higher155

accuracy and lower end-to-end latency.156

2 Related Work157

Context Compression. The compress methods158

can be broadly categorized into abstractive and159

extractive approaches. For abstractive compres-160

sion, RECOMP-abs (Xu et al., 2023a) trains a T5-161

based model to summarize the retrieved content.162

Zhu et al. (2024) leverage the Information Bottle-163

neck principle to train LLMs for summarization.164

CompAct (Yoon et al., 2024) employs LLMs to165

summarize retrieved passages and introduces an166

iterative strategy that progressively updates the rel-167

evant context as new passages are incorporated. For168

extractive compression, RECOMP-ext (Xu et al.,169

2023a) performs sentence-level semantic match-170

ing by selecting the top-k sentences whose embed-171

dings are most similar to the query. LongLLM-172

Lingua(Jiang et al., 2024) proposes a perplexity-173

based metric to assess the relevance between con-174

text and question. A critical limitation of these175

methods is their dependence on fixed compres-176

sion ratios. To allow more flexible and adaptive177

compression, EXIT (Hwang et al., 2024) employs178

LLMs to conduct binary relevance classification179

for each sentence, enabling adaptive context re-180

duction. Provence (Chirkova et al., 2025) trains181

a lightweight DeBERTa model(He et al., 2021) to182

predict sentence-level relevance scores and retains183

the sentences that exceed a predefined threshold.184

Confidence Estimation. Estimating model con-185

fidence helps mitigate the risk of unreliable out-186

puts from LLMs (Geng et al., 2024). Logit-based187

methods evaluate sentence-level uncertainty using188

token-level probabilities or entropy (Huang et al.,189

2023; Kuhn et al., 2023). Consistency-based meth-190

ods estimate confidence by measuring the agree-191

ment across multiple generations (Manakul et al., 192

2023). However, these approaches focus solely 193

on confidence estimation based on internal knowl- 194

edge, without considering the integration of ex- 195

ternal knowledge under the retrieval-augmented 196

generation (RAG) paradigm. Chen et al. (2024) 197

highlight two key latent factors influencing confi- 198

dence in RAG: the quality of the retrieved content 199

and the manner in which it is incorporated into the 200

generation process. To the best of our knowledge, 201

there are currently no methods that estimate con- 202

fidence in RAG outputs by explicitly evaluating 203

retrieval quality. 204

3 Observations 205

In this section, we present our observations on the 206

attention patterns within LLMs. Our analysis is 207

conducted on QA datasets, where inputs are con- 208

structed by concatenating the context before the 209

query. We then compute the attention score from 210

the query to different context segments as follows: 211

s =
1

|Iq|
∑
i∈Iq

∑
j∈Id

aij (1) 212

where Iq and Id denote the token indices of the 213

query and context segment, respectively, and aij is 214

the attention weight from query token i to context 215

token j. 216

We present the experimental details in Appendix 217

A. The key findings are summarized below: 218

• Certain middle-layer attention heads effec- 219

tively identify relevant information. Using the 220

LooGLE benchmark (Li et al., 2024a), a QA 221

dataset with labeled evidence sentences, we an- 222

alyze attention score assigned by each head to 223

the evidence. Figure 2(a) visualizes the atten- 224

tion scores from each head in every LLM layer 225

assigns to evidence sentences. It is observed 226

that some attention heads in the middle layers 227

consistently focus more on supporting evidence, 228

suggesting their ability to capture relevance. 229

• Attention pattern adapts to the density of 230

relevant content. The LooGLE benchmark 231

divides tasks into short- and long-dependency 232

types. Short-dependency tasks rely on a single 233

sentence or paragraph, while long-dependency 234

tasks require integrating information across mul- 235

tiple segments. We compute the cumulative 236

attention score over the top-k sentences with 237

the highest attention for both task types. Fig- 238

ure 2(b) illustrates how the cumulative attention 239
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Figure 2: Observations on attention allocation patterns. (a) Attention weights assigned by each attention head to the
supporting evidence sentences. (b) Cumulative attention over the top-k most attended sentences in short-dependency
and long-dependency tasks. (c) Attention weights on the initial token under different context settings: top 1–20
retrieved documents, top 41–60 documents, top 81–100 documents, and 20 randomly sampled documents.

score changes as the sentence count k varies. As240

shown, attention is more concentrated in short-241

dependency tasks and more spread out in long-242

dependency tasks. Figure 7 provides a more243

intuitive comparison.244

• Attention to the initial token of the context in-245

creases as context becomes less relevant. To in-246

vestigate how attention is allocated when the con-247

text is irrelevant, we sample questions from Hot-248

potQA (Yang et al., 2018) and PopQA (Mallen249

et al., 2023), and construct context settings with250

varying levels of relevance. We then record251

the attention assigned to the initial token across252

these settings. As shown in Figure 2(c), the atten-253

tion on the initial token increases as the relevance254

of the context decreases, consistent with prior255

findings on attention sinks (Xiao et al., 2023).256

4 AttnComp257

Inspired by our observations, we propose a novel258

compression framework AttnComp. In this section,259

we provide a comprehensive explanation of the260

framework.261

Problem Formulation Given a query q, a RAG262

system retrieves a set of k documents D =263

{d1, d2, . . . , dk}. A language model M then gen-264

erates an output y conditioned on the retrieved doc-265

uments and the query, i.e., M(y | D, q). Our objec-266

tive is to filter irrelevant documents from D, yield-267

ing a reduced subset D′ ⊆ D such that the size of268

D′ is minimized while maintaining or even improv-269

ing the quality of generated answer M(y | D′, q).270

4.1 Attention Computation271

Building on the finding that attention heads in mid-272

dle layers of LLMs identify relevant information,273

our compressor model comprises the first L trans- 274

former layers from the original LLM, followed by 275

an additional cross-attention layer. We first con- 276

struct the context by prefixing a predefined instruc- 277

tion to the concatenated retrieved documents. The 278

context and query are then concatenated and input 279

into the model. After processing through the first L 280

layers, we obtain the hidden states Xc ∈ Rn×dmodel 281

and Xq ∈ Rm×dmodel for the context and the query, 282

respectively, where n and m denote their lengths, 283

and dmodel is the hidden dimension. The cross- 284

attention layer then computes query-context atten- 285

tion weights A ∈ Rm×n as follows: 286

Qi = Xq ·WQ
i , Ki = Xc ·WK

i ,

A =
1

H

H∑
i=1

softmax

(
QiK

T
i√

da

) (2) 287

where H denotes the number of attention heads, 288

WQ
i ,WK

i ∈ Rdmodel×da are the query and key pro- 289

jection matrices for head i, and da is the dimen- 290

sionality of each attention head. 291

4.2 Top-P Compression 292

Motivated by our finding that the attention mecha- 293

nism exhibits adaptive patterns across varying ques- 294

tions and contexts (as shown in Figures 2(b) and 295

2(c)), we propose a Top-P compression algorithm 296

that leverages the computed query-context atten- 297

tion weights for adaptive context reduction. 298

The process commences by calculating attention 299

scores for the instruction (sins) and each document 300

(sdi), derived from aggregating attention weights 301

A, as defined in Equation 1. These scores are then 302

utilized to dynamically select critical documents. 303

Initially, documents are sorted in descending order 304

of their scores, thereby prioritizing candidates with 305
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higher attention. A cumulative sum, initialized with306

sins, is subsequently accumulated by incrementally307

adding the scores of these sorted documents. The308

selection process continues until either the cumu-309

lative score exceeds a predefined threshold p, or310

the current document’s score is below a minimum311

threshold ϵ. Algorithm 1 provides the pseudo-code312

for this procedure.313

This strategy enables adaptive behavior: when314

many relevant documents disperse attention, more315

documents are required for their cumulative atten-316

tion to reach the threshold p. Conversely, if relevant317

documents are few and attention is concentrated, a318

smaller subset is sufficient. If all documents are ir-319

relevant, attention focused solely on the instruction320

can reach the threshold, filtering out all documents.321

4.3 Attention Fine-Tuning322

Since certain attention heads can inherently focus323

on relevant context, we initialize the cross-attention324

layer using selected attention heads from layer L+1325

of the LLM. However, empirical results show that326

the untrained compressor still assign relatively high327

attention to irrelevant segments, particularly when328

all documents are irrelevant. To improve relevance329

discrimination, we fine-tune the model while freez-330

ing the first L layers and updating only the cross-331

attention layer. This lightweight approach updates332

approximately 0.5% of the total parameters, reduc-333

ing training cost while preserving generalization.334

Data Construction We prepare training data where335

each instance comprises a query q, retrieved doc-336

uments D = {d1, . . . , dk}, and binary relevance337

labels R = {r1, . . . , rk}, with each ri ∈ {0, 1}338

indicating the relevance of di to q. Upon ex-339

amining existing QA datasets, we observe that340

many contain incomplete relevance annotations,341

with only a small subset of relevant documents342

labeled. Directly training on such data yields sub-343

optimal performance, while manual annotation is344

resource-intensive. To address this, we propose an345

automated annotation pipeline based on question-346

answer pairs, comprising two stages: labeling and347

verification. In the labeling stage, we use an un-348

trained compressor to perform multiple rounds of349

Top-P compression with different document permu-350

tations. Documents that are consistently retained351

across all rounds are labeled as relevant, while the352

rest are considered irrelevant. In the verification353

stage, the query and the labeled relevant documents354

are provided to an LLM to generate an answer. The355

annotation is accepted only if the generated answer356

is correct; otherwise, it is discarded. Furthermore, 357

to enrich our training data, we also construct neg- 358

ative instances where all retrieved documents are 359

irrelevant to the query. A detailed description of 360

this annotation pipeline is provided in Appendix C. 361

Training Our training objective incorporates two 362

complementary forms of supervision: document- 363

level and instruction-level. 364

Document-level Supervision: This component en- 365

hances discrimination between relevant and irrele- 366

vant documents through binary cross-entropy: 367

Ldoc = −
k∑

i=1

[ri log sdi + (1− ri) log(1− sdi)]

(3) 368

Instruction-level Supervision: This component di- 369

rects attention on the instruction if no documents 370

are relevant, and suppresses it otherwise: 371

Lins = −
[
rins log sins + (1− rins) log(1− sins)

]
(4) 372

where rins ≜ I
(∑k

i=1 ri = 0
)

indicates whether 373

none of the retrieved documents are relevant, with 374

I(·) representing the indicator function. 375

The final objective combines both components 376

with a balancing hyperparameter λ: 377

L = Ldoc + λLins (5) 378

4.4 Confidence Estimation 379

The fine-tuned model tends to pay more attention 380

to the instruction when the overall relevance of re- 381

trieved content is low. We leverage this behavior by 382

using the instruction attention score sins as a proxy 383

for retrieval quality. Specifically, a higher sins sug- 384

gests that the retrieved content is less relevant to the 385

query. In such cases, the LLM relies more on its 386

internal knowledge, which can lead to less reliable 387

responses. Motivated by this insight, we define the 388

confidence score p of a RAG response as: 389

p = 1− sins (6) 390

5 Experiments 391

5.1 Experimental Setup 392

Implementation Details We use Llama-3.1-8B- 393

Instruct(Grattafiori et al., 2024) as the backbone 394

architecture for AttnComp, retaining L = 13 trans- 395

former layers and H = 16 attention heads in the 396

cross-attention layer. To train AttnComp, we con- 397

struct a training dataset from the HotpotQA training 398
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Methods HotpotQA 2WikiMQA MuSiQue NQ PopQA

Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc

No Retrieval
Direct - 26.5 23.6 - 26.2 34.1 - 11.4 8.8 - 27.1 23.6 - 24.1 31.3

Retrieval without Compression
All Documents 1x 46.3 42.7 1x 31.9 34.7 1x 19.3 15.5 1x 49.9 53.9 1x 43.9 64.7
Top 5 Documents 18.2x 40.4 37.9 18.3x 25.7 30.4 18.4x 16.5 13.9 18.3x 49.0 54.8 18.4x 38.1 60.9
Top 10 Documents 9.6x 42.6 40.0 9.6x 28.7 31.8 9.6x 18.4 15.5 9.6x 48.3 55.5 9.6x 39.9 64.4

Retrieval with Compression
RECOMP-ext 8.0x 40.4 37.5 8.0x 27.5 30.1 8.1x 18.6 14.5 8.4x 47.5 48.7 9.0x 31.3 51.8
LongLLMLingua 9.7x 42.5 39.1 9.7x 30.2 31.9 9.7x 17.2 13.8 9.7x 42.6 48.1 9.7x 40.1 62.1
CompAct 80.0x 45.1 40.2 82.4x 29.2 33.2 71.8x 18.0 16.5 84.2x 47.5 48.7 98.0x 39.8 58.4
Provence 10.2x 42.5 39.8 10.7x 26.8 29.3 8.7x 19.8 17.8 6.8x 41.9 50.3 6.9x 34.5 58.7

AttnComp (w/o SFT) 14.1x 45.5 42.5 17.0x 29.7 32.4 13.8x 20.9 19.5 16.1x 49.1 54.8 24.0x 39.8 62.3
AttnComp (Ours) 12.6x 48.3 45.2 18.4x 32.9 38.1 16.3x 21.4 19.6 13.5x 48.0 53.0 23.9x 41.3 65.1

Table 1: Main results. We use LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024) as the reader model and retrieve
100 documents for each query. Since our training data includes only a subset of HotpotQA, we perform zero-shot
evaluation on the remaining datasets. Comp. denotes the compression rate, calculated as: # of tokens in retrieved documents

# of tokens in compressed text .

split, consisting of 8,000 examples. Each example399

includes a question and 100 documents. For 2,000400

of these examples, all documents are irrelevant to401

the question. We train the model with the Adam402

optimizer(Kingma, 2014), using a learning rate of403

2×10−4 and a batch size of 8 for 8 epochs. The bal-404

ancing coefficient λ is set to 0.8. During inference,405

we apply the Top-P Compression algorithm with406

a threshold of p = 0.95 and ϵ = 10−2. Further407

information is provided in Appendix D.408

Datasets and Retrieval Corpus We evaluate At-409

tnComp on both single-hop and multi-hop ques-410

tion answering (QA) benchmarks. For single-hop411

QA, we use Natural Questions (NQ)(Kwiatkowski412

et al., 2019) and PopQA(Mallen et al., 2023). For413

multi-hop QA, we evaluate on HotpotQA (Yang414

et al., 2018), 2WikiMultiHopQA(Ho et al., 2020)415

and MuSiQue(Trivedi et al., 2022). Following Jin416

et al. (2024b), we use the Wikipedia dump from417

December 2018 as the retrieval corpus(Karpukhin418

et al., 2020), where articles are truncated into non-419

overlapping documents of 100 words each. For420

each query, we retrieve the top 100 documents us-421

ing the E5-base-v2 retriever (Wang et al., 2022).422

5.2 Baseline423

We evaluate AttnComp against several baseline424

methods. To ensure a fair comparison, all baselines425

employ Llama-3.1-8B-Instruct(Grattafiori et al.,426

2024) as the reader model for answer generation,427

while results using other reader models are pre-428

sented in Appendix G. The baselines are as follows:429

(1) No Retrieval: The reader model generates an-430

swers directly from the input query, without any431

retrieved context. (2) Retrieval without Compres-432

sion: All retrieved documents are concatenated433

and fed to the reader model, serving as an uncom- 434

pressed baseline. For a more fine-grained compar- 435

ison, we also report results using only the top-5 436

and top-10 retrieved documents. (3) Compression 437

Methods: We compare AttnComp against four com- 438

pression methods: RECOMP-ext (Xu et al., 2023a), 439

LongLLMLingua (Jiang et al., 2024), CompAct 440

(Yoon et al., 2024) and Provence (Chirkova et al., 441

2025). Additionally, we also compare against At- 442

tnComp without fine-tuning. Detailed descriptions 443

of these baselines are provided in Appendix E. 444

5.3 Main Results 445

We evaluate the performance of AttnComp using 446

three metrics: compression rate (Comp.), F1 score, 447

and accuracy (Acc), with the results presented in 448

Table 1. The results demonstrate that, even without 449

fine-tuning, AttnComp consistently outperforms 450

all compression baselines across all benchmarks in 451

terms of both F1 score and accuracy, while achiev- 452

ing a high compression rate. Moreover, after fine- 453

tuning, AttnComp further extends its advantage, 454

yielding an average accuracy improvement of 1.9 455

points over the uncompressed baseline. Notably, 456

AttnComp is the only evaluated method that en- 457

hances accuracy, whereas all other compression 458

baselines lead to a decrease of at least 3 points. Fur- 459

thermore, our method maintains a 17x compression 460

rate, which is higher than that of Provence (8.7x), 461

another adaptive extractive compression method. 462

6 Analysis 463

We evaluate AttnComp for its adaptiveness (Sec. 464

6.1), efficiency (Sec. 6.2), context-awareness (Sec. 465

6.3), and robustness (Sec. 6.4). We also present an 466
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ablation study (Sec. 6.5) and validate the reliability467

of its confidence estimation (Sec. 6.6).468

6.1 Adaptive Compression Analysis469

To validate the adaptive compression capability of470

AttnComp, we analyze the number of documents471

retained after compression on both the HotpotQA472

and PopQA datasets. As illustrated in Figure 3,473

the quantity of retained documents varied dynami-474

cally, ranging from 0 to 23. For the multi-hop QA475

dataset HotpotQA, our model tends to preserve a476

greater number of documents, averaging 7.5 per477

query. Conversely, on the simpler PopQA dataset,478

the number of retained documents was consider-479

ably smaller, with an average of 3.7. These results480

demonstrate that our method can dynamically ad-481

just the compression rate based on the retrieval482

context and the complexity of the question.483

6.2 Efficiency Analysis484

We evaluate the end-to-end latency of the RAG485

system, including both the compression and gen-486

eration stages, to demonstrate the efficiency of At-487

tnComp. All methods are tested under the same488

hardware conditions: one NVIDIA RTX 4090 GPU489

for compression and two for generation. We report490

average compression and generation times, exclud-491

ing retrieval latency as its impact is negligible.492

As illustrated in Figure 4, although most com-493

pression methods significantly decrease generation494

time, the compression stage itself introduces con-495

siderable latency that cannot be overlooked. For496

example, while methods like CompAct achieve497

high compression rates (up to 80x), their reliance498

on multiple LLM calls during compression incurs499

substantial latency. This leads to an overall latency500

(41.30s) that markedly exceeds the uncompressed501

baseline (2.18s). In contrast, extractive compres-502
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Figure 4: Comparison of end-to-end latency, and aver-
age accuracy across baselines and AttnComp.

sion methods such as RECOMP and Provence offer 503

lower latency but at the cost of degraded perfor- 504

mance. AttnComp achieves efficiency compara- 505

ble to Provence while delivering better accuracy. 506

With an average compression latency of 0.91 sec- 507

onds and a generation latency of 0.16 seconds, At- 508

tnComp reduces the total end-to-end latency to 49% 509

of the uncompressed baseline while simultaneously 510

improving answer quality. 511

6.3 Context-Aware Compression Analysis 512

On multi-hop datasets requiring the integration of 513

information from multiple documents, AttnComp 514

exhibits particularly notable improvements, achiev- 515

ing an average accuracy increase of 3.3 points 516

over the uncompressed baseline. Furthermore, on 517

the 2WikiMultiHopQA dataset, it surpasses the 518

sentence-level compression method Provence by a 519

significant 8.8 points in accuracy. This underscores 520

the context-aware capabilities of our approach. A 521

case study is provided in Appendix H to demon- 522

strate AttnComp’s context-aware capability. 523

6.4 Robustness Analysis 524

We evaluate AttnComp across various settings, 525

including different numbers of retrieved docu- 526

ments, top-p thresholds, and context granularities, 527

to demonstrate its effectiveness in diverse scenar- 528

ios. Experimental details are provided in Appendix 529

F, and the main conclusions are as follows: 530

Varying Number of Retrieved Documents: We 531

conduct experiments by varying the number of re- 532

trieved documents k. As shown in Figure 8(a), our 533

approach consistently achieves accuracy compa- 534

rable to or superior to the uncompressed baseline 535

across different values of k. Notably, the superi- 536

ority of our approach over the baseline becomes 537

more substantial as k increases. 538
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Arch w/o Fine-tuning Fine-tuning

Acc Comp. Acc Comp.

7 Layers 12.4 37.68x 41.8 7.8x
13 Layers* 44.2 6.2x 44.2 17.0x
14 Layers 44.1 10.4x 44.0 17.4x
23 Layers 26.2 214.8x 43.5 7.5x
31 Layers 26.1 216.2x 41.8 5.8x

Table 2: Comparison of accuracy and compression rate
across layers and training settings. Default settings are
marked with "*".

Varying Top-p Thresholds: We evaluate At-539

tnComp with different top-p compression thresh-540

olds. As depicted in Figure 8(b), the value of p541

serves as a parameter to balance accuracy against542

compression rate. Our findings indicate that At-543

tnComp consistently delivers stable and strong per-544

formance when p is set to 0.9 or higher.545

Varying Context Granularities: We evaluate At-546

tnComp beyond its standard document-level com-547

pression by assessing sentence-level compression548

performance. Results in Table 3 show that sentence-549

level compression maintained comparable accuracy550

to document-level, while achieving a superior com-551

pression rate. Additionally, visualizing the atten-552

tion distribution revealed that, despite being trained553

with document-level annotations, the model effec-554

tively focuses attention on relevant sentences and555

words, demonstrating its adaptability to different556

context granularities.557

6.5 Ablation Study558

To investigate the impact of layer selections and559

training strategies, we conduct comprehensive ab-560

lation studies across varying layer depths (7, 14,561

23, and 31), comparing them against our primary562

L = 13 layer setup. Table 2 presents the compara-563

tive results in terms of accuracy and compression564

rate. Our analysis reveals two key findings: (1)565

Without fine-tuning, only the middle layer config-566

uration (L = 13, 14) achieves optimal accuracy,567

while others (L = 7, 23, 31) perform significantly568

worse, supporting our hypothesis that middle lay-569

ers naturally develop effective filtering mechanisms570

during pretraining; (2) Supervised fine-tuning sub-571

stantially improves accuary and compression rate572

across all layer configurations, demonstrating the573

effectiveness of our training approach. It also in-574

dicates that the hidden states of LLMs retain rich575

linguistic information, which can be effectively576

leveraged for downstream tasks.577

(0,
 0.

1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

Confidence Score Bins

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

AttnComp
Uncompressed RAG

Figure 5: Average F1 score of AttnComp and Un-
compressed RAG across confidence score bins on Hot-
potQA.

6.6 Reliability of Confidence Estimates 578

To assess the reliability of our method’s confi- 579

dence estimates, we compute a confidence score 580

via Equation 6 for each test instance in the Hot- 581

potQA dataset. We then stratify these instances 582

into ten decile groups based on their confidence 583

scores. For each bin, we calculate the average F1 584

score of responses generated by both the AttnComp 585

method and the uncompressed baseline. As shown 586

in Figure 5, the results demonstrate a clear posi- 587

tive correlation between confidence and average 588

F1 score for both methods. Instances with confi- 589

dence scores below 0.1 yield an average F1 score 590

of just 0.13, while those with confidence scores 591

above 0.9 achieve a substantially higher F1 score 592

of 0.91. Further supporting this observation, the 593

Pearson correlation coefficient between confidence 594

and F1 score is 0.35 for AttnComp and 0.32 for 595

the uncompressed baseline, confirming the utility 596

of the confidence scores as an indicator of RAG 597

response reliability. 598

We believe the confidence score can be valuable 599

for future work on iterative RAG systems. By lever- 600

aging confidence estimates, we can assess the suffi- 601

ciency of the current retrieval and set the conditions 602

for further iterations. We leave the full exploration 603

of such an iterative framework to future work. 604

7 Conclusion 605

We introduce AttnComp, a novel framework that 606

leverages the attention mechanism to adaptively 607

compress retrieved documents. Additionally, At- 608

tnComp provides a confidence estimation capabil- 609

ity for evaluating RAG responses. Extensive ex- 610

periments demonstrate that AttnComp outperforms 611

existing compression methods and uncompressed 612

baseline, offering higher accuracy with significant 613

compression rates and lower end-to-end latency. 614

8



Limitations615

Our study has several limitations. First, all obser-616

vations and experiments are conducted on LLMs617

with up to 8 billion parameters due to computa-618

tional constraints, and we do not evaluate the effec-619

tiveness of our method on larger models. Investi-620

gating AttnComp’s performance across a broader621

range of model sizes may yield valuable insights.622

Second, the focus of this work is on the attention623

mechanisms of dense model architectures, leaving624

the applicability of our approach to other archi-625

tectures, such as Mixture-of-Experts (MoE) mod-626

els, unexplored. Third, our automated annotation627

strategies relied on Llama-3.1-8B-Instruct for data628

validation. Given the potential for hallucinations629

in LLMs, some errors may still exist in the con-630

structed dataset. Finally, although the quality of631

retrieved content is critical for answer generation632

in RAG systems, other factors—such as the inher-633

ent parameter knowledge in the LLM and the way634

it integrates retrieved information—also affect re-635

sponse quality(Chen et al., 2024). Our proposed636

confidence estimation method focuses solely on637

the quality of retrieved documents, which may lead638

to inaccurate assessments when other influential639

factors are at play.640
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A Detailed Observations886

In this section, we present detailed observations of887

attention behavior in LLMs, along with the corre-888

sponding experimental procedures. Through three889

carefully designed experiments, we arrive at the 890

following key findings: 891

1. Certain middle-layer attention heads effec- 892

tively identify relevant information. (Section A.1) 893

2. Attention patterns adapt to the density of 894

relevant content. (Section A.2) 895

3. Attention to the initial token of the context in- 896

creases as the overall context becomes less relevant. 897

(Section A.3) 898

A.1 Attention Heads Capture Relevance 899

Prior research has revealed that LLMs exhibit re- 900

trieval heads capable of focusing on task-relevant 901

information during text generation (Wu et al., 902

2024b; Fu et al., 2024). However, these studies 903

primarily focus on copy-and-paste behaviors occur- 904

ring during the generation phase of LLMs. Other 905

work indicates that LLMs’ attention mechanisms 906

can identify relevant information in context before 907

generation, yet these analyses often lack granu- 908

larity—such as attention-head-level insights into 909

how relevance is determined(Li et al., 2024b; Wu 910

et al., 2024b). Therefore, we address the following 911

research question: How do LLMs leverage their 912

attention mechanisms to identify question-relevant 913

information before text generation? 914

Experiment We conduct our analysis using the 915

LooGLE benchmark (Li et al., 2024a), a long- 916

context QA dataset in which each instance com- 917

prises an article, a question, and labeled support- 918

ing evidence sentences. The concatenated input 919

of the article and question is processed by three 920

models—Llama-3.1-8B-Instruct(Grattafiori et al., 921

2024), Mistral-7B-Instruct-v0.2(Jiang et al., 2023), 922

and Qwen2-7B-Instruct(Yang et al., 2024)—to 923

compute attention weights across all layers and 924

heads. Using Equation 1, we quantify the attention 925

each head allocates to the supporting evidence sen- 926

tences. Higher scores indicate stronger focus on 927

question-relevant information. 928

Results & Insights We visualize the attention 929

scores assigned by each head to the supporting 930

evidence sentences. As shown in Figure 2(a) for 931

Llama-3.1-8B-Instruct, and Figure 6 for Mistral- 932

7B-v0.2 and Qwen2-7B-Instruct, these models 933

consistently exhibit certain middle-layer attention 934

heads that assign noticeably higher attention to 935

relevant evidence. In contrast, attention heads in 936

lower and upper layers tend to show weaker fo- 937

cus. These findings suggest that middle-layer at- 938

tention heads in LLMs are particularly effective at 939

capturing question-relevant information within the 940
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(a) Mistral-7B-v0.2
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(b) Qwen2-7B-Instruct

Figure 6: Attention weights assigned by each attention head to supporting evidence sentences are illustrated for two
LLMs: Mistral-7B-v0.2 (Figure a) and Qwen2-7B-Instruct (Figure b).

context.941

A.2 Adaptive Attention Patterns942

The relevance of information within a context943

varies depending on the question and task, motivat-944

ing our investigation into the model’s cognitive flex-945

ibility: Does the proportion of relevant information946

in the context trigger distinct attention allocation947

strategies in LLMs?948

Experiment The LooGLE benchmark categorizes949

tasks into two types: short-dependency and long-950

dependency. Short-dependency tasks can be an-951

swered using a single sentence or paragraph, while952

long-dependency tasks require integrating informa-953

tion spread across multiple sentences within the954

article. In this experiment, we focus on 16 atten-955

tion heads from the 14th layer of the Llama-3.1-956

8B-Instruct model. We sample test cases from each957

task category, ensuring that the input documents958

have a similar average number of sentences. For959

each sentence, we compute the attention scores and960

analyze the proportion of attention allocated to the961

top-k ranked sentences.962

Results & Insights Figure 2(b) presents the exper-963

imental results. For short-dependency tasks, the964

attention distribution is more concentrated—only a965

few sentences receive a disproportionately high966

share of attention. In contrast, attention is967

more evenly distributed across sentences in long-968

dependency tasks. Using a cumulative attention969

threshold of 0.8 as a reference point, we find that,970

on average, the top 39 sentences account for 80% of971

total attention in short-dependency cases, whereas972

long-dependency tasks require the top 63 sentences973

to reach the same threshold. This indicates that the974

model adapts its attention distribution based on the975

proportion and dispersion of relevant information976

in the context. To provide a more intuitive illus-977

tration, we sample a representative example from 978

each task and visualize the corresponding attention 979

distribution over the context, as shown in Figure 7. 980

A.3 Attention on Initial Token 981

In practical applications of RAG, retrieved content 982

may sometimes be entirely irrelevant to the given 983

question. This leads to a key research question: 984

How do LLMs allocate attention when the retrieved 985

context is completely irrelevant to the question? 986

Experiment Inspired by prior work on attention 987

sinks (Xiao et al., 2023), which reveals that initial 988

tokens often collect significant attention scores. We 989

hypothesize that the attention allocated to initial 990

token increases with decreasing context relevance. 991

To test this, we sample questions from HotpotQA 992

(Yang et al., 2018) and PopQA (Mallen et al., 2023), 993

and construct four context settings: (1) top 1–20 994

retrieved documents, (2) top 41–60 documents, (3) 995

top 81–100 documents, and (4) 20 randomly sam- 996

pled documents from the 2018 Wikipedia corpus 997

(Karpukhin et al., 2020). For each question, we 998

pair it with these different context sets and measure 999

the attention scores allocated to the initial token. 1000

The analysis is conducted using 16 attention heads 1001

from the 14th layer of the Llama-3.1-8B-Instruct 1002

model. 1003

Results & Insights The results are shown in Fig- 1004

ure 2(c). We observe a consistent increase in at- 1005

tention scores for the initial token as context rele- 1006

vance decreases. Across different retrieved docu- 1007

ment sets, the attention to the initial token remains 1008

relatively stable. However, a substantial rise is 1009

observed when completely irrelevant documents 1010

(i.e., random samples) are used as context. These 1011

findings suggest that attention on initial token may 1012

serve as a useful signal for estimating the relevance 1013

of retrieved content. 1014

12



0 2000 4000 6000 8000 10000 12000 14000 16000
Token Index

0.00

0.01

0.02

0.03

0.04

0.05

0.06
At

te
nt

io
n 

Sc
or

e
Short-Dependency Task: Attention Distribution

0 2000 4000 6000 8000 10000 12000 14000 16000
Token Index

0.000

0.002

0.004

0.006

0.008

0.010

0.012

At
te

nt
io

n 
Sc

or
e

Long-Dependency Task: Attention Distribution

Figure 7: Examples of attention distribution for short- and long-dependency tasks. Attention is more concentrated
for short-dependency tasks (top), while it is more dispersed across the input for long-dependency tasks (bottom).

Algorithm 1 Top-P Compression Algorithm

1: Input: Instruction score sins, document scores
{sd1 , sd2 , . . . , sdk}, top-p threshold p, and
minimum score threshold ϵ.

2: Output: Compressed document set D′.
3: {d(1), . . . , d(k)} ← argsort({sdi}ki=1, desc.)
4: Initialize sum← sins, D′ ← ∅.
5: for i = 1 to k do
6: if sum ≥ p or sd(i) < ϵ then
7: break
8: end if
9: sum← sum+ sd(i)

10: D′ ← D′ ∪ {d(i)}
11: end for
12: Return: D′.

B Pseudo-code for Top-P Compression1015

The pseudo-code for Top-P Compression is shown1016

in Algorithm 1.1017

C Details of Data Construction1018

This section introduces an automated annotation1019

pipeline based on question-answer pairs, with the1020

detailed procedure outlined in Algorithm 2. Given1021

a query and a set of retrieved documents and the1022

corresponding answer, our method utilizes an un- 1023

trained document compressor to identify relevant 1024

documents. However, since such compressors are 1025

sensitive to the input document order and may as- 1026

sign high attention to irrelevant content, we per- 1027

form multiple rounds of compression with different 1028

permutations of the document order. Only docu- 1029

ments consistently retained across all rounds are 1030

labeled as relevant, while the rest are considered 1031

irrelevant. The specific model and number of itera- 1032

tions used in our final experiments are detailed in 1033

Appendix D. 1034

In each round, the model iteratively applies the 1035

Top-P compression algorithm with a high thresh- 1036

old (e.g., p = 0.95), continuing until no further 1037

reduction in document count is possible, thereby 1038

minimizing the impact of individual compression 1039

errors. 1040

To verify the correctness of the annotated rele- 1041

vant documents, we feed the query and the selected 1042

relevant documents to an LLM to generate an an- 1043

swer. If the generated answer matches the ground 1044

truth, the annotation is accepted. If there is a mis- 1045

match, we task the LLM with generating an answer 1046

using the full set of retrieved documents. If using 1047

all retrieved documents yields the correct answer, 1048
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Algorithm 2 Relevance Annotation
1: Input: Compressor Mc, Generator Mg, Cor-

pus C, Top-P threshold p, number of shuffles
N , input tuple(q,D, a) where q is query, D is
retrieved documents, a is ground truth answer.

2: Output: Data Sample (q,D+, D−) where q
is query, D+ is relevant documents, D− is
irrelevant documents.

3: for i = 1 to N do
4: Shuffle documents: Di ← permute(D)
5: while True do
6: Compute scores: {sd} ←Mc(q,Di)
7: D′

i ← Top-P Compression({sd}, p)
8: if |D′

i| = |Di| then
9: break

10: end if
11: Di ← D′

i

12: end while
13: end for
14: Get relevant docs: D+ ←

⋂N
i=1Di

15: Get irrelevant docs: D− ← D \D+

16: Generate answer: a′ ←Mg(q,D
+)

17: if Acc(a′, a) = 1 then
18: Return: (q,D+, D−)
19: else
20: Generate answer: a′′ ←Mg(q,D)
21: if Acc(a′′, a) = 0 then
22: Dsample ← RandomSample(C, |D+|)
23: D− ← D− ∪Dsample
24: Return: (q, ∅, D−)
25: else
26: Return: ∅ ▷ Discard the sample
27: end if
28: end if

the annotation derived from the compressed set is1049

deemed faulty and discarded. If even the full set1050

does not lead to a correct answer, we infer that1051

none of the retrieved documents are relevant to the1052

query and use this instance to construct a negative1053

example, where all documents are considered ir-1054

relevant. To mitigate potential errors introduced1055

by the LLM in this negative example construction1056

process, we replace the labeled relevant documents1057

with randomly sampled ones and then label the1058

entire document set as irrelevant.1059

D Implementation Details1060

We construct query-document relevance annota-1061

tions using question–answer pairs from the Hot-1062

potQA training set. For each QA pair, 100 docu-1063

ments are initially retrieved. We then apply Algo- 1064

rithm 2, setting number of shuffles set to N = 3, 1065

and using Llama-3.1-8B-Instruct as the generator 1066

Mg to validate the annotations. 1067

AttnComp is trained on four NVIDIA RTX 4090 1068

GPUs with 24 GB for 4 hours. We use the Adam 1069

optimizer with a learning rate of 2 × 10−4 and a 1070

batch size of 8. The training runs for 8 epochs. We 1071

shuffle the input document order in each epoch to 1072

mitigate mitigate potential positional bias in the 1073

attention mechanism. 1074

E Baselines Details 1075

The details of the baseline methods are as follows: 1076

(1) RECOMP-ext (Xu et al., 2023a) performs 1077

sentence-level semantic matching by selecting the 1078

top-k sentences whose embeddings are most sim- 1079

ilar to the query. We use the model trained on 1080

HotpotQA for experimen ts on HotpotQA, 2Wiki- 1081

MultiHopQA, and MuSiQue, and the model trained 1082

on NQ for experiments on NQ and PopQA. For all 1083

these experiments, we select 50 sentences from 1084

documents to ensure a fair comparison at similar 1085

text lengths. 1086

(2) LongLLMLingua (Jiang et al., 2024) removes 1087

unimportant tokens based on the perplexity scores 1088

generated by LLMs. We implement LongLLMLin- 1089

gua using the FlashRAG(Jin et al., 2024b), and set 1090

the compression ratio to 10%. 1091

(3) CompAct (Yoon et al., 2024) is an abstrac- 1092

tive compression method that leverages LLMs fine- 1093

tuned on the HotpotQA dataset to generate sum- 1094

maries of retrieved documents. We use the publicly 1095

available implementation and model released by 1096

the authors, keeping all configurations consistent 1097

with the original setup. 1098

(4) Provence (Chirkova et al., 2025) trains a 1099

lightweight DeBERTa model(He et al., 2021) to 1100

predict sentence-level relevance scores and retains 1101

only the sentences that exceed a predefined thresh- 1102

old. We use the publicly available implementation 1103

and model released by the authors, keeping all con- 1104

figurations consistent with the original setup. 1105

(5) AttnComp (w/o SFT) is our proposed method 1106

without supervised fine-tuning. We set the thresh- 1107

old p to 0.5 to ensure a fair comparison at a similar 1108

compression rate. 1109

F Details of Robustness Analysis 1110

We assess the model’s robustness through experi- 1111

ments that vary the number of retrieved documents, 1112
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(b) Top-p Threshold Analysis

Figure 8: Performance of AttnComp with varying top-k and top-p values on HotpotQA.

top-p thresholds, and context granularities. The1113

specific experimental settings and results are de-1114

tailed as follows:1115

Experiment Settings for Number of Retrieved1116

Documents: We conduct experiments on Hot-1117

potQA by varying the number of retrieved doc-1118

uments k ∈ 5, 10, 20, 50, 75, 100, while keeping1119

the top-p threshold p constant at 0.95. The results1120

are shown in Figure 8(a).1121

Experiment Settings on Top-P Threshold: We1122

conduct experiments on HotpotQA by varying1123

the top-p threshold p ∈ 0.1, 0.3, 0.5, 0.7, 0.9, 0.95,1124

while keeping the number of retrieved documents1125

k constant at 100. The results are shown in Fig-1126

ure 8(b).1127

Experiment Settings for Context Granularities:1128

We evaluate AttnComp by varying the context gran-1129

ularity by varying the context granularity, includ-1130

ing document-level and sentence-level compres-1131

sion. For sentence-level compression, we split1132

the retrieved documents into sentences following1133

Provence(Chirkova et al., 2025) and then apply the1134

Top-P compression algorithm with the threshold p1135

set to 0.95, while the minimal score threshold ϵ is1136

set to 10−3. The results are shown in Table 3.1137

G Additional Results1138

We conduct experiments using Qwen2.5-7B-1139

Instruct-1M (Yang et al., 2025) as the reader model,1140

which has stronger long-context capabilities. The1141

results are shown in Table 4. Compared to the1142

uncompressed baseline, our method still achieves1143

improvements in accuracy and outperforms other1144

compression baselines.1145

Dataset Document-level Sentence-level

Comp. Acc Comp. Acc

HotpotQA 12.6x 45.2 14.5x 43.2
2WikiMQA 18.4x 38.1 21.3x 34.4
MuSiQue 16.3x 19.6 18.5x 20.1

NQ 13.5x 53.0 16.8x 51.8
PopQA 23.9x 65.1 34.3x 65.9

Average 17.0x 44.2 21.1x 43.1

Table 3: Comparison of compression ratio (Comp.) and
answer accuracy (Acc) between document-level and
sentence-level granularity across five QA datasets using
AttnComp.

H Case Study 1146

In Table 5, we present a representative example 1147

from the HotPotQA dataset. The query is: "Who 1148

was the eldest brother of the Mexican drug traf- 1149

ficker born 12 March 1952?" Two of retrieved doc- 1150

uments provide the necessary evidence. Document 1151

A states, "Benjamín Arellano Félix (born 12 March 1152

1952) is a Mexican drug trafficker" (see the first 1153

document in the AttnComp compressed context), 1154

while Document B indicate that, "Francisco Rafael 1155

Arellano Félix is the eldest brother of Benjamín 1156

Arellano Félix" (see the third document in the At- 1157

tnComp compressed context). Importantly, the rel- 1158

evance of Document B is not evident in isolation, 1159

as it requires the contextual link provided by Docu- 1160

ment A. Without this cross-document connection, 1161

Document B is prone to being mistakenly filtered 1162

out as irrelevant. 1163

AttnComp addresses this issue by jointly pro- 1164

cessing all retrieved documents, allowing it to cap- 1165

ture semantic dependencies across documents and 1166
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Methods HotpotQA 2WikiMQA MuSiQue NQ PopQA

Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc Comp. F1 Acc

No Retrieval
Direct - 26.5 23.6 - 26.2 34.1 - 11.4 8.8 - 27.1 23.6 - 24.1 31.3

Retrieval without Compression
All Documents 1x 46.4 42.3 1x 38.5 38.8 1x 22.4 20.0 1x 42.6 51.1 1x 27.5 65.0
Top 5 Documents 18.2x 42.3 36.5 18.3x 35.4 33.1 18.4x 17.9 15.0 18.3x 48.5 51.3 18.4x 37.4 60.2
Top 10 Documents 9.6x 44.3 38.5 9.6x 38.4 36.8 9.6x 19.8 16.9 9.6x 49.0 52.7 9.6x 37.5 62.2

Retrieval with Compression
RECOMP-ext 8.0x 40.6 35.5 8.0x 37.5 35.1 8.1x 19.9 16.3 8.4x 41.8 44.8 9.0x 29.9 51.0
LongLLMLingua 9.7x 45.1 39.5 9.7x 35.7 33.2 9.7x 18.2 14.1 9.7x 39.0 41.5 9.7x 33.4 58.6
CompAct 80.0x 45.8 40.4 82.4x 34.9 35.7 71.8x 18.0 16.6 84.2x 44.7 47.7 98.0x 39.7 57.4
Provence 10.2x 44.3 39.4 10.7x 33.7 31.4 8.7x 19.5 16.6 6.8x 43.2 46.8 6.9x 30.2 55.7

AttnComp (Ours) 12.6x 50.8 45.4 18.4x 40.5 38.1 16.3x 23.4 19.6 13.5x 48.4 50.1 23.9x 39.8 63.9

Table 4: Results with Qwen2.5-7B-Instruct-1M(Yang et al., 2025) as the reader model; all other experimental
settings are kept the same as in the main results.

retain both supporting facts. In contrast, methods1167

such as RECOMP(Xu et al., 2023a), LongLLM-1168

Lingua(Jiang et al., 2024) and Provence(Chirkova1169

et al., 2025) process each document independently,1170

preventing them from integrating cross-document1171

information and often leading to the erroneous1172

exclusion of relevant content. Although Com-1173

pAct(Yoon et al., 2024) adopts an iterative inte-1174

gration mechanism, it often halts the iteration pre-1175

maturely before gathering sufficient evidence, ulti-1176

mately missing the key facts needed to answer the1177

query.1178
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Question: Who was the eldest brother of the Mexican drug trafficker born 12 March 1952?
Answer: Francisco Rafael Arellano Félix

Method: ATTNCOMP (Ours)
Compressed Context:
Doc 1(Title: "Benjamín Arellano Félix") Benjamín Arellano Félix (born 12 March 1952) is a Mexican drug trafficker
and former leader of the Mexican criminal organization known as the Tijuana Cartel or ""Arellano-Félix Organization"".
Benjamín Arellano Félix, who worked closely with his brothers, was one of Mexico’s most powerful drug lords and the
supplier of one-third of the U.S.’s cocaine. Benjamín had six brothers: He also has four sisters. Two of them, Alicia
. . .
Doc 3(Title: "Francisco Rafael Arellano Félix") Francisco Rafael Arellano Félix Francisco Rafael Arellano Félix (24
October 1949 – 18 October 2013) was a Mexican drug lord and former leader of the Tijuana Cartel, a drug trafficking
organization. He was the oldest of seven brothers and headed the criminal organization early in the 1990s alongside them.
Through his brother Benjamín, Francisco Rafael joined the Tijuana Cartel in 1989 following the arrest of Miguel Ángel
Félix Gallardo
Predict: Francisco Rafael Arellano Félix (Correct)

Method: RECOMP
Compressed Context:
(Title: "Eduardo Arellano Félix") Eduardo Arellano Félix Eduardo Arellano Félix (born October 11, 1956) is a Mexican
drug trafficker, brother of Benjamín, Ramón, Javier and sister Enedina, all drug traffickers.
. . .
(Title: "Jorge Luis Ochoa Vásquez") Jorge Luis Ochoa Vásquez Jorge Luis Ochoa Vásquez (September 30, 1950) is a
Colombian drug trafficker who was one of the key founding members of the notorious Medellín Cartel in the late 1970s.
. . .
(Title: "Ramón Arellano Félix") Ramón Arellano Félix Ramon Arellano Félix (August 31, 1964 – February 10, 2002) was
a Mexican drug trafficker whom authorities linked to the Tijuana drug cartel
Predict: Jorge Luis Ochoa Vásquez (Wrong)

Method: LONGLLMLINGUA
Compressed Context:
Doc(Title: "amín Arellano Félix display at Museo del Enervante Mexico City. currently incarcerated at United States
Penitentiary Canaan In the217 Netflix andivision series,El Chapo"", Hern Rom Benjam Avendañoa fictionalized portrayal
of Benjamín Arellano Félix)
. . .
Doc 2(Title: "Benjamín Arellano Féli Benjamín Arellano Félix Benjamín Arellano Féli (born 12 March 1952) is a
Mexican drug traff and former leader of Mexican criminal organization known as the Tijuana Cartel or ""Arellano-Félix
Organization" Benjamín Arellano Féli, who worked closely with his brothers, was one of Mexico’s most powerful lords
andlier of one-third of the U..’s cocaine. Benjamín had brothers: also has four sisters....
. . .
He has several aliases, including El 85, Saúl Ulloa Cuevas, Gerardo Sánchez Espinosa, Érick Valencia Cornelio, Ochenta
y Cinco, and Mono. His criminal profile says he is tall and weighs
Predict: This information is not available in the given documents (Wrong)

Method: COMPACT
Compressed Context:
Benjamín Arellano Félix, born on 12 March 1952, is a Mexican drug trafficker and former leader of the Mexican criminal
organization known as the Tijuana Cartel or the Arellano-Félix Organization. Benjamín had six brothers, including He
also has four sisters.
Predict: Benjamín Arellano Félix (Wrong)

Method: PROVENCE
Compressed Context:
(Title: "Eduardo Arellano Félix") Eduardo Arellano Félix Eduardo Arellano Félix (born October 11, 1956) is a Mexican
drug trafficker, brother of Benjamín, Ramón, Javier and sister Enedina, all drug traffickers.
. . .
Juan David was the elder brother of Jorge Luis and Fabio Ochoa Vásquez, powerful figures inside Born in a small town in
the state of Sinaloa, Torres Félix began working for the Sinaloa Cartel in the 1990s and later ascended to the apex of the
cartel after his brother Javier Torres Félix was arrested in 2004. He reportedly has five brothers: Nemesio, Juan, Miguel,
Marín, and Abraham.
. . .
(Title: "Enedina Arellano Félix") brother Eduardo Arellano Félix in 2008. Benjamín Arellano Félix, who worked closely
with his brothers, was one of Mexico’s most powerful drug He formed the Beltrán Leyva Cartel along with his brothers
Héctor, Carlos and Arturo.
Predict: Juan David Ochoa Vásquez (Wrong)

Table 5: Case study comparing compressed contexts and answers generated by baseline methods and AttnComp.
Relevant content and correct answers are highlighted in green, while misleading content and incorrect answers are
highlighted in red.
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