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Abstract

Antimicrobial peptides have gained immense attention in recent years due to their
potential for developing novel antibacterial medicines, next-gen anti-cancer treat-
ment regimes, etc. Owing to the significant cost and time required for wet lab-based
AMP screening, the task has been framed as an ML problem. However, traditional
models rely on the unrealistic premise of large medical data availability to achieve
significant performance levels; otherwise, they overfit, decreasing model precision.
The collection of such labeled data is a challenging and an expensive task in itself.
The current study is the first to examine models in a real-world setting, training
them on restricted and highly imbalanced data. A Fuzzy Intelligence-based model
is proposed for short (< 30 aa) AMP activity prediction, and its ability to learn on
limited and severely skewed high-dimensional space mappings is demonstrated
over a set of experiments. The proposed model significantly outperforms state-of-
the-art ML models trained on same data. The findings demonstrate the model’s
efficacy as a potential method for in silico AMP activity prediction.

1 Introduction

Most organisms generate antimicrobial peptides as part of their innate immune response to pathogens.
They are a significant resource for drug development since they represent a broad repertory of
antimicrobial agents. To some extent, recent advances in peptide engineering and careful optimization
have helped overcome AMP’s toxicity to human cells and its unstable nature [1]. However, the high
expense of peptide screening makes the AMP production process time-consuming and costly. Thus,
in silico methods were developed. However, these require large volumes of costly labeled datasets to
achieve significant levels of performance. Moreover, most deep learning and machine learning models
require a balanced dataset to train. In actual practice, collecting a large number of positive samples is
a difficult task in itself. The present work is the first to address these issues formulating Antimicrobial
peptide prediction task as a ‘fuzzy’ problem. The proposed method outperforms other state-of-the-art
ML models by a significant margin. Second, the model’s other novelty lies in its capacity to attain
high classification accuracy despite being trained on limited data samples, as proven experimentally,
in contrast to previously proposed models that need large amounts of data that is difficult and costly
to obtain. Third, another unique feature of the model lies in its robustness to high-class imbalance,
commonly seen in real-world bioinformatics data, as demonstrated in the experiments performed.
Most models, on the other hand, perform inconsistently as the imbalance in classes increases.

2 Proposed Methodology

Mapping the n−dimensional feature space. The generated feature vectors are mapped in the
n−dimensional feature space. For each sample, the feature vector is passed to the Classifying Neurons
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Figure 1: The proposed model architecture for anti-microbial peptide activity prediction

(CLN), which perform the classification of the learned data using min-max hyperboxes [2]. In this
space, discontinuous decision boundaries in the form of ‘Hyperboxes H’ are created during model
training [3]. Defining this decision boundary requires a min coordinate Vj = (vj1, vj2, ..., vjn),
and a max coordinate Wj = (wj1, wj2, ..., wjn). However, to reduce the number of model hy-
perparameters, a single parameter i.e., θ ∈ (0, 1) is defined which represents the hyperbox size.
During training, for the first input, a point H is created. Subsequently, the model tries to accom-
modate remaining training samples {ah, Ci} in the previously constructed hyperboxes belonging
to the same class Ci, provided the Hsize does not exceeds a specified maximum limit (‘θ’) [2].
Else, a new H is added to CLN , i.e., for a new training sample {ah, Ci}, a hyperbox {bj , Cj} is
found such that Cj = Ci or Cj = Co which has the highest membership value and satisfying-
(1) θmax ≥ 1

n

∑n
i=1(max(wji, ahi)−min(vji, ahi)), (2) bj is not associated with any OCN/CCN

and (3) if Ci = C0 or Cj = C0 then µj > 0. Following, the min-max coordinates of bj are adjusted
such that, V new

ji = min(V old
ji , ahi); Wnew

ji = max(W old
ji , ahi), where i = 1, 2, ..., n, and third, if

Cj = C0 and Ci 6= C0 then Cj = Ci. Moreover, if no suitable bj is present then a novel point
hyperboxH for class Ci is created with Vj = Wj = ah.

In CLNs, the neuron bj represents hyperbox fuzzy set i.e., = Ah, Vj ,Wj , f(Ah, Vj ,Wj) ∀ (Ah ∈ In).
In the middle layer of the classifier, the input nodes and the hyperbox nodes are connected together.
These connections represent the min-max coordinates V and W of the n− dimensional hyperbox
fuzzy set [2]. During training, the neurons in the middle layer are created dynamically. Connection
between the hyperbox node bj to a class node Cj is represented by matrix U , where, uij = 1 if
bj ∈ Cj else uij = 0. In CLN nodes, to compute the class memberships, activation function by [4] is
used to assign membership value = 1 when the test sample falls within the hyperbox. In other cases,
when the test sample lies outside H, the model calculates the membership-value on the basis of its
distance from the extreme coordinates of H. Increasing the Fuzziness control parameter (γ) leads to
more fuzzy classification, while decreasing it leads to a crisp classification.
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Decision Boundary Error Minimization. Since the high dimensional feature space contains all the
learned peptide features, a possible case of H overlap can occur. A reflex section is introduced
which contains the Overlap Compensation Neurons (OCN ) and Containment Compensation Neurons
(CCN ) which becomes active only when a case of hyperbox overlap and containment is encountered
respectively [5]. If Vki < Wki < Vji < Wji or Vji < Wji < Vki < Wki is true for any i ∈ 1, ..., n,
then hyperboxes (bk, bj) are isolated. If the isolation condition does not hold, the feature space
must be checked for containment, i.e., if Vki < Vji < Wji < Wji or Vji < Vki < Wki < Wji

is true for any i ∈ 1, ..., n, then Hyperboxes are contained. In such case, a CCN node is formed
dynamically. If hyperboxes are not contained, then an OCN node is created. Moreover to check
for hyperbox overlap, initially the value of δold is set as 1. A set of 4 cases are formed in for
overlap in which, if vji < vki < wji < wki, then δnew = min(wji − vki, δ

old). Second, if
vki < vji < wki < wji, then δnew = min(wki − vji, δold). Third, if vji < vki ≤ wki < wji,
then δnew = min(min(wki − vji, wji − vki), δold). Fourth, vki < vji ≤ wji < wki, then δnew =
min(min(wki − vji, wji − vki), δold). If overlaps exist (i.e., one of the above condition is true)
and (δnew − δold) > 0, then, ∆ = i else ∆ = −1 [5]. For checking hyperbox containment, if
overlap exists and is minimum along ∆ dimension, the hyperboxes are contracted using the following
given conditions i.e., if vj∆ < vk∆ < wj∆ < wk∆, then, vnewk∆ = wnew

j∆ = (wold
j∆ +vold

k∆ )/2; second, if,
vk∆ < vj∆ < wk∆ < wj∆, then vnewk∆ = wnew

j∆ = (wold
k∆+vold

j∆ )/2; third, vk∆ < vj∆ ≤ wj∆ < wk∆

and wk∆ − vj∆ < wj∆ − vk∆, then vnewj∆ = wold
k∆ else wnew

j∆ = voldk∆; fourth, vj∆ < vk∆ ≤
wk∆ < wj∆ and wk∆ − vj∆ < wj∆ − vk∆, then wnew

j∆ = voldk∆ else vnewj∆ = wold
k∆ [5]. The Reflex

mechanism is biologically inspired from that of the human brain which takes control of the body in
hazardous conditions unconsciously. The Reflex mechanism helps in obtaining more explainable
class memberships with high accuracy.

3 Experimental Settings

Dataset. Dataset was taken from [1, 6] to access the performance of the proposed model. We
calculated amino acid features based on its composition, following which, the redundant peptide
sequence samples with > 0.99 similarity were removed from the dataset.

Baseline Model Training. The work is implemented using Keras [7] with Tensorflow [8] as backend.
Nvidia K80 GPU with 12GB RAM workbench was used for conducting the experiments. Various
state-of-the-art ML classifiers are implemented on the same dataset to compare the classification
results. ‘Accuracy’ was used as the metric for optimizing the hyperparameters used for training.
‘zscore’ was used as the normalization method which is calculated as z = (x− u)/s. ‘yeo-johnson’
transformation was applied while training the ML classifiers for comparison.

Evaluation Metrics. Accuracy along with Matthews Correlation Coefficient (MCC) is used as the
evaluation metric. MCC ∈ [−1, 1] accounts for true and false positives and negatives, and is widely
considered as a fair metric that can be applied to datasets with imbalanced classes and limited training
samples [9]. A perfect forecast has a coefficient of +1, an average random prediction has a coefficient
of 0 and an inverse prediction has a coefficient of −1.

4 Experiments, Results and Discussion

Exp-01: Limited Data Subset Configuration. In the first set of experiments, the model is trained
on limited data subset configurations, i.e., n = 300, 200, 100, where n is the number of samples.
The obtained results are compared with state-of-the-art ML models trained on the same number
of data samples (see Table 01). Here, accuracy and MCC were used as the evaluation metrics for
performance comparison. Further, it is to be noted that the same data samples, feature selection, and
pre-processing techniques are used while implementing the baseline models for a fair comparison
of results. From Table 1, it is evident that the proposed model outperforms all other models for
n = 300 and 200. This demonstrates the strong ability of the model to achieve high performance on
limited datasets. Moreover, most ML models demonstrate inconsistent performance with variations
in dataset size. Though Support Vector Machine achieves comparable accuracy (although a low
MCC score than the proposed model) for n = 300, its performance drops sharply for n = 200,
with an MCC reduction of ≈ 40%. In the case of stochastic gradient descent (SGD), the model
has low performance (57% accuracy and a low MCC score of 0.15) on n = 300. However, for
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Table 1: Comparative Results with state-of-the-art models on limited data subset configuration.
Proposed model was tuned at Hyperparameters: i) n = 300 : θ = 0.40, γ = 2, ii) n = 200 : θ =
0.38, γ = 2, iii) n = 100 : θ = 0.42, γ = 2

Model n = 300 n = 200 n = 100

ACC MCC ACC MCC ACC MCC

Linear Discriminant Analysis 0.47 −0.13 0.40 −0.19 0.50 0.00
Quadratic Discriminant Analysis 0.48 0.00 0.42 0.00 0.50 0.00
Stochastic Gradient Descent 0.57 0.15 0.55 0.07 0.90 0.82
Bagging Classifier 0.58 0.21 0.62 0.29 0.55 0.12
Random Forest 0.63 0.29 0.68 0.42 0.60 0.20
Decision Tree 0.65 0.31 0.65 0.35 0.55 0.10
K-Neighbors Classifier 0.68 0.37 0.65 0.33 0.70 0.40
Support Vector Machine 0.70 0.41 0.62 0.24 0.80 0.65
Proposed Model 0.70 0.44 0.68 0.42 0.75 0.58

Table 2: Comparative Results with state-of-the-art models on imbalanced data subset configuration
(with n = 200). Proposed model was tuned at Hyperparameters: i) Imb = 0.40 : θ = 0.85, γ = 2,
ii) Imb = 0.30 : θ = 0.85, γ = 2, iii) Imb = 0.20 : θ = 0.10, γ = 2.

Model Imb = 0.40 Imb = 0.30 Imb = 0.20

ACC MCC ACC MCC ACC MCC

Decision Tree 0.53 −0.05 0.57 −0.09 0.88 0.63
K-Neighbors Classifier 0.55 −0.06 0.62 −0.19 0.85 0.53
Bagging Classifier 0.55 −0.19 0.70 0.18 0.88 0.59
Support Vector Machine 0.55 −0.19 0.55 −0.28 0.85 0.53
Quadratic Discriminant Analysis 0.57 0.11 0.55 −0.28 0.88 0.57
Random Forest 0.65 0.23 0.70 0.10 0.93 0.76
Linear Discriminant Analysis 0.78 0.53 0.57 −0.16 0.85 0.53
Stochastic Gradient Descent 0.80 0.67 0.47 −0.22 0.78 −0.08
Proposed Model 0.83 0.63 0.70 0.32 0.93 0.76

n = 100, the metric suddenly increases to 90% accuracy with a 0.82 MCC score. This is due to the
model over-fitting on limited training data. Furthermore, it is seen that as the number of training
samples varies, even the second-best performing model loses consistency, i.e., for n = 300, SVM
is the second best-performed model, its performance decreases for n = 200 where the Random
Forest takes its position and similarly for n = 100, SGD performs the best (which was ironically
7th best-performed model for n = 300). This illustrates that no single ML model exhibits robust
and consistent performance while training on limited data. On the contrary, the proposed model
has consistent performance, demonstrated by a fairly constant metric on all subset configurations
of limited data, compared to other models that either over-fit or fail to classify the complex feature
space on small training data.

Exp-02: Imbalanced Data Subset Configuration. Most antimicrobial peptide activity prediction
datasets suffer from high-class imbalance (example, 75%− 65% of positive class distribution) since
positive samples are difficult to obtain compared to the negative ones. Most deep learning and ML
models exhibit a reduction in performance on high class-imbalance. To demonstrate the model’s
robustness to class imbalance, we compare the model performance on three data subset configurations:
first with a low imbalance with Imb = 0.40 (i.e., 40% of all samples represent positives), second with
high skewness of 0.30 and third with severely imbalanced class distribution with just 20% of all
samples being positives. The obtained results (see Table 02) are compared with ML models trained
on the same subset configuration. Here, accuracy along with MCC is considered a better evaluation
metric than accuracy alone. Lack of consistency is also evident on imbalanced data configuration,
with the SGD being the worst performed model for Imb= 0.30, while the same demonstrating
second-best performance on the subset with Imb= 0.40. On the other hand, the proposed model
shows consistent performance over all subset configurations.
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5 Conclusion and Future Work

In this study, we present a fuzzy approach towards Antimicrobial peptide activity prediction. The
study demonstrates the effectiveness and consistency of the proposed model compared to currently
used state-of-the-art ML models. The presented model is capable of training on sparse datasets
with high-class imbalance (as demonstrated through experiments) and significantly outperforms
state-of-the-art ML models trained on the same data.

(a) (b) (c)

(d) (e) (f)

Figure 2: t-SNE feature visualizations for (a) complete dataset; limited training samples (b) n = 300
(c) n = 200 (d) n = 100; imbalanced subset samples (e) Imb = 0.40 (f) Imb = 0.30 (g) Imb = 0.20

The obtained results establish the model’s effectiveness and quantify that fuzzy classifier-based models
are more suited towards problems where the dataset is highly imbalanced or limited. Currently, the
present study is focused on amino acid compositions that consider the entire peptide sequence as
the feature. In the future, we plan to investigate the encoding percentage composition frequency of
dipeptide, tripeptide, etc.
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