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Summary
For the non-stationary multi-armed bandit (MAB) problem, many existing methods allow

a general mechanism for the non-stationarity, but rely on a budget for the non-stationarity
that is sub-linear to the total number of time steps T . In many real-world settings, however,
the mechanism for the non-stationarity can be modeled, but there is no budget for the non-
stationarity. We instead consider the non-stationary bandit problem where the reward means
change due to a latent, auto-regressive (AR) state. We develop Latent AR LinUCB (LARL),
an online linear contextual bandit algorithm that does not rely on the non-stationary budget,
but instead forms good predictions of reward means by implicitly predicting the latent state.
The key idea is to reduce the problem to a linear dynamical system which can be solved as a
linear contextual bandit. In fact, LARL approximates a steady-state Kalman filter and efficiently
learns system parameters online. We provide an interpretable regret bound for LARL with
respect to the level of non-stationarity in the environment. LARL achieves sub-linear regret
in this setting if the noise variance of the latent state process is sufficiently small with respect
to T . Empirically, LARL outperforms various baseline methods in this non-stationary bandit
problem.

Contribution(s)
1. This paper introduces Latent AR LinUCB (LARL), an efficient online algorithm designed

for non-stationary MABs where the non-stationarity is due to a latent, auto-regressive (AR)
state. LARL forms good predictions of reward means by implicitly predicting the latent
state using past rewards and actions. This strategy can be seen as an approximation of a
steady-state Kalman filter with ground-truth system parameters.
Context: The setting we consider is motivated by real-world applications where the
non-stationary mechanism can be modeled by a latent state, but there is no budget for the
non-stationarity. Existing approaches that consider similar settings rely on the latent state
being discrete (Hong et al., 2020; Nelson et al., 2022) or require knowing the ground truth
parameters or quality historical data to recover parameters (Liu et al., 2023; Chen et al.,
2024).

2. We present an interpretable regret bound for LARL against the dynamic oracle. The regret
bound allows practitioners to interpret the performance of LARL with respect to the level of
non-stationarity in the environment and the complexity of learning parameters online.
Context: Sub-linear regret with respect to the dynamic oracle is only possible in environ-
ments with a budget for non-stationarity that is sub-linear in T . For example, Besbes et al.
(2014) assume a finite constant (variation budget) of how much the mean rewards can change
over time and Garivier & Moulines (2011) assume a finite number of changes to the mean
reward. We show that in our setting, LARL achieves sub-linear regret if the noise variance
on the latent state process is sufficiently small with respect to T .

3. We demonstrate that LARL can outperform (achieve lower regret) against various stationary
and non-stationary baselines in the non-stationary bandit environment where reward means
change due to a latent AR state.
Context: We consider cumulative regret across time and pairwise comparisons of methods
in terms of total cumulative regret. To offer a fair comparison, baseline methods were only
considered if they implemented an online learning strategy.
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Abstract
For the non-stationary multi-armed bandit (MAB) problem, many existing methods allow1
a general mechanism for the non-stationarity, but rely on a budget for the non-stationarity2
that is sub-linear to the total number of time steps T . In many real-world settings,3
however, the mechanism for the non-stationarity can be modeled, but there is no budget4
for the non-stationarity. We instead consider the non-stationary bandit problem where the5
reward means change due to a latent, auto-regressive (AR) state. We develop Latent AR6
LinUCB (LARL), an online linear contextual bandit algorithm that does not rely on the7
non-stationary budget, but instead forms good predictions of reward means by implicitly8
predicting the latent state. The key idea is to reduce the problem to a linear dynamical9
system which can be solved as a linear contextual bandit. In fact, LARL approximates a10
steady-state Kalman filter and efficiently learns system parameters online. We provide11
an interpretable regret bound for LARL with respect to the level of non-stationarity in12
the environment. LARL achieves sub-linear regret in this setting if the noise variance13
of the latent state process is sufficiently small with respect to T . Empirically, LARL14
outperforms various baseline methods in this non-stationary bandit problem.15

1 Introduction16

In the classical formulation of the stochastic multi-armed bandit (MAB) problem (Lattimore &17
Szepesvári, 2020), the rewards are assumed to be independently and identically drawn from a fixed18
distribution. In the non-stationary formulation (Auer et al., 2002), the reward means, instead, change19
over time. While many existing approaches for non-stationary bandits allow an arbitrary mechanism20
for the non-stationarity, they rely on some budget to the non-stationarity that is sub-linear to the total21
number of time steps T . For example, in Besbes et al. (2014) there is a variation budget for the amount22
of change in the mean rewards, and in Garivier & Moulines (2011) there is a budget for the number23
of changes. In contrast, for many real-world applications, the non-stationarity mechanism can be24
modeled as a latent state with temporal dependencies, but with restless non-stationarity. For example,25
in mobile health applications, bandit algorithms are used to optimize notifications to maximize26
users’ health outcomes (rewards). User burden from using the app is an evolving latent process with27
temporal dependencies and can cause the health outcome to decline over time (non-stationarity).28

Motivated by these real-world settings, we study a non-stationary bandit problem with a realistic29
source of non-stationarity. In this problem, changes in the mean reward of the arms over time are due30
to some latent, auto-regressive (AR) state of order k. This problem is represented by the graphical31
model in Figure 1. Such a latent state causes smooth changes to the mean rewards as opposed to32
abrupt changes; however, the variation budget or the budget on the number of changes could scale33
linearly with T .34

Our approach to solving the non-stationary bandit problem in Figure 1 leverages the graphical35
structure and reduces the problem instead to the well-studied problem of linear dynamical systems36
(Section 3.3); we then show that the linear dynamical system can be solved as a linear contextual37
bandit (Section 3.4). By leveraging the structure of the non-stationarity, we can offer a finer theoretical38
analysis and design a more specific algorithm that can outperform general non-stationary algorithms.39
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Contributions. We propose Latent AR LinUCB or LARL (Algorithm 1), an online linear contextual40
bandit algorithm that maintains good reward predictions by using past history to predict the current41
latent state and to learn parameters online. The reward model maintained by LARL can be seen as an42
approximation to the steady-state Kalman filter with access to ground-truth system parameters. We43
present an interpretable regret bound for LARL against the dynamic oracle (Theorem 4.2). In our44
setting, LARL achieves sub-linear regret if the noise variance of the latent state process is sufficiently45
small with respect to the total number of time steps T . We validate in simulation studies (Section 5)46
that LARL outperforms various baseline methods in the non-stationary latent AR environment.47

2 Related Works48

2.1 Non-Stationary Bandits49

Non-stationary bandits (Auer et al., 2002) extend the standard bandit problem to one with reward50
means changing over time. Many approaches have been proposed for non-stationary bandits including51
change point detection (Mellor & Shapiro, 2013), sliding window (Garivier & Moulines, 2011;52
Cheung et al., 2019; Trovo et al., 2020), restarting (Besbes et al., 2014; Viappiani, 2013), and53
discounting the effect of past observations (Kocsis & Szepesvári, 2006; Garivier & Moulines, 2011;54
Raj & Kalyani, 2017). A majority of these methods were developed for an arbitrary mechanism for55
controlling the non-stationarity, but rely on a budget for the amount of changes that is sub-linear56
in T . For example, there is a total budget for the amount of change (Besbes et al., 2014) or to the57
number of changes (Garivier & Moulines, 2011). In contrast, our setting has a specific mechanism58
controlling the non-stationarity (i.e., a latent AR state), but the budget for the non-stationarity could59
scale linearly with T . Others have also formulated non-stationarity through a latent state. These60
works propose methods for maintaining a posterior belief over the latent state and acting according to61
it (Hong et al., 2020; Nelson et al., 2022). Nelson et al. (2022) rely on the latent state being discrete,62
as the dimension of the linear contextual bandit is the cardinality of the set of latent state values. This63
approach is not applicable in our setting where the latent state is continuous. Hong et al. (2020) use64
particle filtering to sample from the joint posterior of the latent state and model parameters. However,65
their approach would be computationally challenging in our setting, as the number of particles needed66
increases with the number of latent state values. Also similar to our work is Gornet et al. (2022)67
which implements a similar reduction to a linear contextual bandit; however, their algorithm heavily68
relies on exogenous context to predict the latent state, which is not present in our setting.69

2.2 AR Bandits70

Autoregressive (AR) processes (Brockwell & Davis, 2009) are studied extensively across many fields71
to model temporal dependencies in many real-world processes. Some bandit formulations involve72
rewards evolving auto-regressively, rather than a latent state, with fixed reward means and known73
AR order k (Bacchiocchi et al., 2022). Due to the fixed reward means, these settings are stationary74
bandits, which allows for the direct application of standard linear bandit theory. While some have75
proposed similar settings where the non-stationarity is dictated by an AR process (Liu et al., 2023;76
Chen et al., 2024), these papers assume either access to ground-truth parameters or quality offline data77
to learn these parameters. Instead, we are interested in learning AR and reward parameters online.78
Furthermore, the predictive sampling method in Liu et al. (2023) is developed for the Bayesian79
framework and their main goal is to compare to traditional Thompson sampling. At first glance, one80
may notice that the AR(1) setting presented in Chen et al. (2024) is very similar. However, their81
method relies on a stronger assumption that the agent observes the true mean reward for the same82
action taken at the previous time step. In our setting, the agent never observes the exact mean reward83
for any action.84

2



Non-Stationary Latent Auto-Regressive Bandits

z1 · · ·

r1

a1

zt−k · · ·

rt−k

at−k

zt−1 · · ·

rt−1

at−1

zt · · ·

rt

at

zT

rT

aT

Figure 1: Graphical Model for Non-Stationary Latent Auto-regressive Bandits.

3 Problem Setting85

3.1 Notation86

We introduce the following notation used throughout the paper. For some vector v ∈ Rd, we use87
∥v∥ =

√
⟨v, v⟩ to denote the L2-norm of v and v⊤ to denote the transpose of v. 1 denotes a vector88

of all 1s and ej denotes the standard basis vector with 1 in the jth component and 0s elsewhere. For89
a square matrix M ∈ Rd×d, M−1 denotes the inverse of M . λmax(M) is the largest eigenvalue90
of M . ∥M∥op = σmax(M) is the operator norm or largest singular value of M . If M is positive91
semi-definite (PSD), then M1/2 denotes the square root of M such that M1/2M1/2 = M , and92
∥v∥2M = v⊤Mv denotes the square of the weighted L2-norm of v. We use [i, j] to denote the set of93
positive integers from i to j, inclusive. I[·] denotes the indicator function. Ht−1 is the entire history94
of information observed up to, but not including, time t.95

3.2 Non-Stationary Latent Auto-regressive Bandits96

We consider a non-stationary multi-armed bandit environment (Definition 3.1) where the true under-97
lying reward depends on some latent state zt ∈ R that evolves according to an auto-regressive (AR)98
process of order at most k. See Figure 1 for the graphical structure.99

Definition 3.1. (Non-Stationary Latent Auto-regressive Bandit) Let A ⊂ N be the action space and100
initial latent states [z0, ..., zk−1] ∼ Nk(µ0,Σ0). The interaction between the environment and the101
agent is as follows. For every time step t ∈ [k, T ]:102

1. The environment generates latent state zt of the form:103

zt = γ0 +

k∑
j=1

γjzt−j + ξt, ξt
i.i.d.∼ N (0, σ2

z), (1)

where γ0, γ1, ..., γk ∈ R.104

2. The agent selects action at ∈ A without observing zt.105

3. The environment then generates reward rt given latent state zt and action at, rt(at), where:106

rt(a) = µa + βazt + ϵt(a), ϵt(a)
i.i.d.∼ N (0, β2

aσ
2
r) (2)

where µa, βa, ϵt(a) ∈ R depends on the action a and ϵt(a) is independent across actions and time107
steps.108
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4. The agent observes rt.109

Notice that in our setting, zt is not impacted by the action selected in the previous time step. Also,110
notice that in Equation 2 the noise variance of the reward has an exact structure. This structure is111
needed to simplify the reduction in Lemma 3.2. But in practice, the algorithm (Algorithm 1) we112
present later does not require this noise structure. To solve this non-stationary bandit problem, a113
natural approach is to form good predictions of zt and therefore good predictions of the reward means114
for each action. However, with no exogenous context available, the only observations one is given is115
the current history Ht−1 consisting of past actions and rewards. We will see in later sections that the116
method we develop can still perform well in such an environment, despite having limited information.117

3.3 Connecting Latent AR Bandits With Linear Dynamical Systems118

To assist with the reduction to a linear contextual bandit in Section 3.4, we first show that the latent119
AR bandit environment in Definition 3.1 is a specific case of a linear dynamic system (LDS) with120
Gaussian noise. See Appendix C for a review of linear dynamical systems.121

Lemma 3.2. (Linear Dynamical System) The latent state process (Equation 1) and the reward122
function (Equation 2) in Definition 3.1 form a special case of a linear dynamical system with123
Gaussian noise. The system has state vector z⃗t ∈ Rk which incorporates the most recent k latent124
state realizations and measurement yt =

rt−µat

βat
∈ R.125

z⃗t = Γz⃗t−1 + wt, wt ∼ Nk(γ0e1,W ) (3)
126

yt = Cz⃗t + vt, vt ∼ N (0, σ2
r) (4)

127

rt(a) = c⊤a z⃗t + µa + ϵt(a), ϵt(a) ∼ N (0, β2
aσ

2
r) (5)

where128

z⃗t :=
[
zt zt−1 · · · zt−k+1

]⊤ ∈ Rk

See Appendix A.1 for exact forms for Γ,W,C, ca.129

Proof. See Appendix A.1.130

Lemma 3.2 shows that we can rewrite the process as a linear dynamical system with Gaussian noise131
with a specific form for the measurement model. Since this LDS is in companion form (Bellman &132
Åström, 1970), the LDS satisfies structural identifiability (Bellman & Åström, 1970), and therefore is133
observable (Assumption C.1).134

A natural approach to predicting the mean reward for each action is first to predict z⃗t. Since135
Assumption C.1 holds, one may be motivated to use the steady-state Kalman filter (Appendix C.2)136
to infer z⃗t. Given the ground-truth system parameters Γ, C, γ0,W, σ2

r , the Kalman filter prediction137
z̃t is the optimal (least mean square) estimate for latent state z⃗t (Kailath et al., 2000). However,138
we do not assume agents have access to ground-truth parameters or quality batch data for learning139
them offline (Ljung, 1999). While one can learn system parameters online (Annaswamy & Fradkov,140
2021; Subbarao et al., 2016), we show in the following sections that it is not required to explicitly141
learn system parameters for forming good mean reward predictions. Instead, the reduction to a142
linear contextual bandit allows us to implicitly learn system parameters by learning a single reward143
parameter (Lemma 3.3) and to leverage the well-established theory on linear bandits for analyzing144
regret.145
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3.4 Reduction to a Linear Contextual Bandit146

To re-frame the problem as a linear contextual bandit, we use the converted LDS (Lemma 3.2) to show147
that the reward (Equation 2) can be re-written in a linear form of past history and the steady-state148
Kalman filter prediction of state. This is a modified version of the decomposition in Gornet et al.149
(2022).150

Lemma 3.3. (Linear Contextual Bandit Reduction) Let Ht−1 := σ(a1, r1, ..., at−1, rt−1) be the151
current history observed up to time t, z̃t := zt|t−1 = E[z⃗t|Ht−1] be the steady-state Kalman filter152
for z⃗t and let r̃t(a) = E[rt(a)|Ht−1] = c⊤a z̃t + µa. For a choice of s > 0 that controls the number153
of past time steps to include in the context, there exists some θa ∈ R2s·|A|+1 where the reward154
(Equation 2) for action a is:155

rt(a) = Φt(s)
⊤θa + bt(a, s) + εa;t (6)

where156

Φt(s) := Φ(Rt, At) =
[
Rt At 1

]⊤ ∈ R2s·|A|+1 (7)

157

bt(a, s) := ⟨ca, (Γ− ΓKC)sz̃t−s⟩ (8)

158

εa;t := rt(a)− r̃t(a) = ⟨ca, z⃗t − z̃t⟩+ ϵt(a) ∼ N (0, c⊤a Pca + β2
aσ

2
r) (9)

Rt :=
[
rt−se

⊤
at−s

· · · rt−1e
⊤
at−1

]⊤ ∈ Rs·|A|

159

At :=
[
e⊤at−s

· · · e⊤at−1

]⊤ ∈ Rs·|A|

Proof. See Appendix A.2.160

Equation (6) shows a standard linear contextual bandit problem with an additional bias term bt(a, s).161
Φt(s) is the current context obtained from a feature mapping of the s most recent previous actions162
and rewards; θa incorporates the underlying LDS parameters and is the parameter to learn. Notice163
that εa;t is independent of history and therefore has mean 0 conditioned on history Ht−1.164

Lemma 3.3 justifies the rationale of solving the non-stationary bandit problem through a contextual165
bandit algorithm, say LinUCB. By selecting s, one is selecting the number of recent time steps166
used to predict the current mean reward. If one had access to ground-truth θa and dynamically sets167
s = t, then such an agent’s performance is the same as an agent that predicts the mean reward168
using a steady-state Kalman filter (Appendix C.2) with ground-truth parameters. Recall that with the169
true underlying parameters, the Kalman filter estimate z̃t is the optimal estimate for latent state zt.170
However, because we do not assume access to ground-truth parameters and must learn parameters171
online, one must set s to balance bias and variance, which allows for a good approximation of the172
Kalman filter estimate. This bias-variance trade-off, controlled by s, also appears in the regret bound173
(Theorem 4.2) presented later. This linear bandit reduction is also desirable because an agent only174
needs to specify a value for s and does not need to know the ground-truth AR order k, the initial state175
z⃗0, nor the noise variances in practice for forming an estimator for θa.176
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3.5 Assumptions177

We make the following regularity assumptions on the environment.178

Assumption 3.4. (Stability and Boundedness of the AR Process) For the parameters γ0, γ1, ..., γk of179
the latent AR process, |

∑k
j=1 γj | < 1 and |γ0| ≤ c for some c < +∞180

Assumption 3.5. (Bounded Reward Parameter) For every action a ∈ A, ∥θa∥ ≤ Sa for Sa ∈ R+181

Assumption 3.4 is standard for AR processes. Assumption 3.5 is standard for theoretical results182
for linear bandits (Abbasi-Yadkori et al., 2011). More importantly, Assumption 3.4 implies the183
stability of state transition matrix Γ, a common assumption for LDS (Bertsekas, 2012). Namely, the184
parameters γ1, ..., γk of the latent AR process form Γ such that |λmax(Γ)| < 1. The stability of Γ185
is needed for the bias term bt(a, s) in Equation 6 to decrease with large s as |λmax(Γ)| < 1 =⇒186
|λmax(Γ− ΓKC)| < 1 (Anderson & Moore, 2005).187

3.6 Regret188

We define regret with respect to the dynamic oracle (Besbes et al., 2014), the standard choice in189
the non-stationary bandit settings. The dynamic oracle observes all information in the environment190
(including zt) and then acts optimally with that information. The oracle therefore knows the true191
reward means E[rt(a)|z⃗t] at every time step t for each action a and selects the optimal action for192
every t: a∗t = argmaxa∈A E[rt(a)|z⃗t]. The regret with respect to the dynamic oracle is:193

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t] (10)

where at is the action selected by the algorithm at time step t following policy π.194

Achieving sub-linear regret against the dynamic oracle is not guaranteed without assuming vanishing195
non-stationarity in the environment. Since our latent AR setting does not make this assumption, our196
goal is to provide an interpretable regret bound with respect to the non-stationarity in the environment.197
For a full discussion of the regret definition and the difficulty in achieving sub-linear regret, see198
Appendix D.199

4 LinUCB Algorithm for Latent AR Bandits200

We present our algorithm coined Latent AR Bandit LinUCB (LARL), shown in Algorithm 1. LARL201
is based on the LinUCB algorithm (Li et al., 2010; Abbasi-Yadkori et al., 2011) for linear contextual202
bandits, modified to handle our non-stationary environment. For a fixed choice of s > 0, LARL uses203
rewards and actions from the s most recent time steps to form current context Φt(s) (Equation 7). By204
carefully constructing the context Φt(s) this way, we can implicitly predict the latent state zt and205
efficiently learn the parameters θa online.206

As a review, LinUCB maintains regularized least squares (RLS) estimators for each action a at time207
step t:208

θ̂a,t = V −1
a,t ba,t (11)

where Va,t = λI +
∑t

j=1 I[aj = a]Φj(s)Φj(s)
⊤, and ba,t =

∑t
j=1 I[aj = a]rjΦj(s)209

For action-selection, LinUCB forms a confidence set Ca,t−1 using the most recent RLS estimator210
θ̂a,t−1 for every action a and selects the action with the highest confidence bound on its reward:211

at = argmax
a∈A

max
θa∈Ca,t−1

Φt(s)
T θa (12)
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Algorithm 1 Latent AR LinUCB

1: Inputs: Va,0 = λI, ba,0 = 0⃗, θa,0 = 0⃗ for all a ∈ A, s ∈ N
2: for t = 1, 2, ..., T do
3: Use rewards and actions from the most recent s time steps rt−s, ..., rt−1, at−s, ..., at−1 to

form current context Φt(s) defined in Equation 7.
4: For each action a, use most recent RLS estimator θ̂a,t−1 to form confidence set Ca,t−1.
5: Select action at:

at = argmax
a∈A

max
θa∈Ca,t−1

Φt(s)
T θa

6: Execute action at and observe rt.
7: Update history Ht = {(Φ(s)t′ , at′ , rt′)}tt′=1

8: Update RLS estimator for action at as in Equation 11:
9: θ̂at,t = V −1

at,tbat,t,
10: Va,t = Va,0 +

∑t
j=1 I[aj = a]Φj(s)Φj(s)

⊤,
ba,t = ba,0 +

∑t
j=1 I[aj = a]rjΦj(s)

11: end for

Notably, our algorithm requires no knowledge of the ground-truth AR order k, initial state z⃗0, nor212
noise variances of the state and reward processes. Notice also that for s = 0, Algorithm 1 reduces to213
the standard UCB method for stationary MABs.214

To show theoretical results for LARL, we first show that for each action a, θa lies in the confidence215
set Ca,t for all t (Lemma 4.1). The radius of this confidence set is an enlarged version of the one216
presented in Abbasi-Yadkori et al. (2011) to account for the bias term. Finally, we use Lemma 4.1 to217
prove the regret bound in Theorem 4.2.218

4.1 Confidence Set219

Lemma 4.1. [Confidence Set for Latent AR Bandits] Suppose Assumptions 3.4 and 3.5 holds. For220
given action a, with probability at least 1− δ where δ ∈ (0, 1), the true parameter θa (Definition 6)221
is in the confidence ellipsoid Ca,t centered at θ̂a,t (Equation 11), for all t ∈ [T ]:222

Ca,t := {θa ∈ Rd | ∥θ̂a,t − θa∥Va,t ≤ βa,t(δ)} (13)

where223

βa,t(δ) = R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δ/2)/λ

δ/2

)

+
√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2 (14)

where na,t =
∑t

j=1 I[aj = a] and224

τ(a, s)t =

√√√√ t∑
j=1

I[aj = a]∥Φj(s)∥2V −1
a,t

(15)

Proof. See Appendix A.3225

4.2 Regret Bound226

We now derive a regret bound for LARL (Algorithm 1). The main proof idea is to introduce an227
intermediate agent that knows the ground-truth parameters and uses the steady-state Kalman filter228
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prediction to select actions. We are able to add and subtract the mean reward obtained by such an229
agent to the instantaneous regret. The instantaneous regret therefore decomposes into the regret of the230
dynamic oracle against the intermediate agent and the regret of the intermediate agent against LARL.231

Theorem 4.2. Suppose all the assumptions mentioned in Lemma 4.1 hold. With probability at least232
1− δ where δ ∈ (0, 1), the regret of Algorithm 1 in the non-stationary latent AR bandit environment233
(Definition 3.1) is bounded as follows:234

Regret(T ;πLARL) ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(3/δ)) · T

+2βT (2δ/3)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T + 2

T∑
t=1

max
a

|bt(a, s)|

for βT (δ
′) = maxa βa,T−1(δ

′) (Equation 14)235

Proof. See Appendix A.4236

The first term of the regret represents the gap between the optimal decision-making based on the237
Kalman filter prediction z̃t and the dynamic oracle. This term also captures the non-stationarity of238
the environment as controlled by σ2

z , the noise variance of the latent AR process. The second term239
represents the complexity of learning to behave like the optimal policy based on Kalman filtering.240
The third term captures the bias in the reward function.241

The first term captures how the regret rate is ultimately dependent on σ2
z . For a fixed T in environments242

where σmax(Γ) ≤ 1− ϵ for ϵ > 0 and σ2
z = T c−2 for some constant c < 2, our algorithm achieves243

sub-linear regret. For example, if σ2
z = 1

T , then the regret is on the order of
√
T . This is congruent244

with a variety of other non-stationary bandit formulations where the non-stationarity budget is sub-245
linear in T . See Appendix D.1 for more details. However, if c ≥ 2, then σ2

z is too large and the regret246
is not sub-linear. This is because for large σ2

z , even with ground-truth parameters, the most optimal247
prediction z̃t used for predicting r̃t(a), can be far away from the realization of zt and therefore rt.248

The second and third terms describe the bias-variance trade-off the algorithm designer makes with249
the choice of s. For large s the bias decreases, as s → ∞ =⇒ bt(a, s) → 0 for any a, however, the250
dimensionality of Φt(s) increases (Lemma A.1) which increases the variance. See Appendix E.1 for251
simulations that verify this trade-off empirically.252

5 Experiments253

Through simulations, we highlight how our proposed algorithm LARL (Algorithm 1) can outperform254
various stationary and non-stationary baselines. We assess performance based on cumulative regret255
with respect to the dynamic oracle (Section 3.6). Additional experiments and results can be found in256
Appendix E.257

For all experiments, we set T = 200. We consider 2 actions A = {0, 1}, reward parameters258
µ0, µ1 = [0, 0], β0, β1 = [−1, 1], γ0 = 0, σz = 1, and σr = 1. γ1, ..., γk are drawn randomly from a259
uniform distribution and post-processed to ensure Assumption 3.4 holds. We consider environments260
that vary by the AR order k. For each environment variant, we simulate 100 Monte-Carlo trials and261
in each trial, the k values in the initial state z⃗0 are drawn randomly in every trial.262

We test the performance of LARL against various stationary and non-stationary baselines. The263
competing baselines are: (a) “Stationary”, standard UCB which treats the environment as a stationary264
multi-armed bandit, (b) “AR UCB" (Bacchiocchi et al., 2022), the UCB algorithm developed for265
stationary AR environments, (c) “SW UCB” (Garivier & Moulines, 2011), the Sliding Window UCB266
algorithm, (d) “Rexp3” (Besbes et al., 2014), which runs the Exp3 algorithm with restarts.267
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Figure 2: Our algorithm LARL (blue), with s chosen using BIC after a period of pure exploration,
consistently achieves lower cumulative regret (Equation 10) over time against various baseline
methods. Line is the average and shaded region is ± standard deviation across 100 Monte Carlo
simulated trials.

To prove theoretical results, we left s arbitrary. To select s in simulations, we implement an268
“exploration" period that selects actions randomly up to time step t′. Then using the data collected269
during the exploration period, we choose s based on the Bayesian Information Criterion (BIC) and270
commit to that s for the rest of the time-steps. For experiments, we let t′ = ⌊T/5⌋. All baseline271
algorithms that use a UCB-based strategy (including LARL), use regularization parameter λ = 1 in272
each environment.273

5.1 Results274

Figure 2 shows cumulative regret over time. Figure 3 shows pairwise comparisons between algorithms275
in terms of total cumulative regret. Our method LARL consistently outperforms baseline algorithms276
developed for stationary and non-stationary environments. Stationary and AR UCB were developed277
for stationary environments with fixed reward means and cannot adapt to the non-stationarity of the278
reward means. Although developed for a non-stationary environments, SW UCB and Rexp3 perform279
similarly to the stationary baselines because SW UCB assumes the mean rewards remain constant280
over epochs and Rexp3 assumes the non-stationarity has bounded total variation. In the latent AR281
environment (Definition 3.1), these assumptions are not guaranteed as the non-stationary budget can282
be linear in T . As k increases, the performance of LARL approaches the performance of baseline283
methods because the algorithm needs to fit more parameters, and thus requires more data to learn284
effectively.285

6 Conclusion and Future Work286

In this paper, we study the non-stationary bandit problem where the mean rewards of actions change287
over time due to a latent, AR process of order k. We propose a new online algorithm, LARL, that288
leverages the structure of the non-stationary mechanism in this setting. LARL employs the key idea289
that this non-stationary bandit can be reduced to a linear dynamical system and solved using a linear290
contextual bandit with a thoughtful design of the context space. This reduction motivates LARL’s291
linear contextual bandit strategy to implicitly predict the current latent state zt and efficiently learn292
parameters online. Furthermore, with a choice of hyperparameter s that trades off bias and variance,293
one can view the reward model of LARL as a reasonable approximation of a steady-state Kalman294
filter with ground-truth parameters.295

6.1 Future Work296

A natural extension is to generalize the present work to contextual bandits with the inclusion of297
exogenous, observed context features. Although we have proposed an initial approach for selecting298
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Figure 3: Pairwise comparisons between algorithms in the three variants of the simulation environment
where k = 1, 5, 10, respectively. Each cell shows the proportion of 100 Monte-Carlo repetitions
where the algorithm listed in the row achieved lower cumulative regret than the algorithm listed in
the column. Our algorithm LARL (top row) consistently outperforms baseline methods in pairwise
comparison.

hyperparameter s, one can explore other approaches such as running an ensemble of agents with299
different s or finding an optimal s as a function of environment parameters k, T , σr, and σz . Lastly, to300
make our ideas clear, we formulated the latent state as a scalar, but one can consider a generalization301
of our setting where the latent state is multi-dimensional.302

Broader Impact Statement303

This paper presents work whose goal is to advance the field of reinforcement learning for use in304
real-world problems such as digital health. The assumptions we make in the paper may be valid for305
some of these domains and not others.306
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A Proofs375

A.1 Proof of Lemma 3.2376

We first present exact forms for W,Γ, C, ca.377

W := diag(σ2
z , 0, · · · , 0) ∈ Rk×k

378

Γ =


γ1 γ2 · · · γk
1 0 · · · 0
...

...
...

...
0 · · · 1 0

 ∈ Rk×k

379

C =
[
1 0 · · · 0

]
∈ R1×k

380

ca :=
[
βa 0 · · · 0

]⊤ ∈ Rk

Proof. For the latent state evolution, it is fairly straightforward to compute that Equation 3 is381
equivalent to Equation 1 with the definitions of z⃗t,Γ, and wt. Notice that the second entry in z⃗t382
corresponds to the latent state value zt. Similarly, for the reward function, we can directly compute383
that Equation 5 is equivalent to Equation 2 with the definition of c⊤a .384

All that is left is to show the equivalence of the measurement model yt. Then by construction:385

yt =
rt − µat

βat

= zt +
ϵt(at)

βat

∼ N (zt, σ
2
r)

386

12

https://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
https://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
https://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
https://www.sciencedirect.com/science/article/pii/S1367578816300517
https://www.sciencedirect.com/science/article/pii/S1367578816300517
https://www.sciencedirect.com/science/article/pii/S1367578816300517


Non-Stationary Latent Auto-Regressive Bandits

A.2 Proof of Lemma 3.3387

Proof. Recall that due to Assumption C.1, the Kalman gain matrix Kt converges and the steady-388
state Kalman filter update and prediction can be combined into a single step (Gornet et al., 2022).389
Equation 19 in our setting becomes:390

z̃t = Γz̃t−1 + ΓK(yt−1 − Cz̃t−1) = (Γ− ΓKC)z̃t−1 + ΓKyt−1 (16)

Since rt(a) = r̃t(a) + (rt(a)− r̃t(a)) = r̃t(a) + εa;t, it suffices to show that r̃t(a) = Φt(s)
⊤θa +391

bt(a, s). We first show that r̃t(a) = G⊤
a Yt + µa + ⟨ca, (Γ− ΓKC)sz̃t−s⟩ where392

Ga :=
[
c⊤a (Γ− ΓKC)s−1ΓK · · · c⊤a ΓK

]⊤ ∈ Rs, Yt :=
[
yt−s · · · yt−1

]⊤ ∈ Rs

Recall by definition:393

r̃t(a) = E[rt(a)|Ht−1] = µa + c⊤a z̃t

Using Equation 16, we can continuously unravel z̃t until the sth time step before:394

r̃t(a) = c⊤a (Γ− ΓKC)z̃t−1 + c⊤a ΓKyt−1 + µa

395

= c⊤a (Γ− ΓKC)2z̃t−2 + c⊤a (Γ− ΓKC)ΓKyt−2 + c⊤a ΓKyt−1 + µa

396

= · · ·
397

= c⊤a (Γ− ΓKC)sz̃t−s + c⊤a (Γ− ΓKC)s−1ΓKyt−s + · · ·+ c⊤a (Γ− ΓKC)ΓKyt−2 + c⊤a ΓKyt−1 + µa

398

= G⊤
a Yt + µa + ⟨ca, (Γ− ΓKC)sz̃t−s⟩

399

= G⊤
a Yt + µa + bt(a, s)

Now let gja := c⊤a (Γ− ΓKC)jΓK ∈ R. Then:400

G⊤
a Yt = yt−sg

s−1
a + · · ·+ yt−1g

0
a

Using the definition of yt,401

G⊤
a Yt = rt−s

gs−1
a

βat−s

+ · · ·+ rt−1
g0a

βat−1

−
µat−s

gs−1
a

βat−s

− · · · −
µat−1

g0a
βat−1

402

= R⊤
t β̃a −A⊤

t µ̃a

where403

Rt :=
[
rt−se

⊤
at−s

· · · rt−1e
⊤
at−1

]⊤ ∈ Rs·|A|

404

β̃a =
[
gs−1
a

β1
· · · gs−1

a

β|A|
· · · g0

a

β1
· · · g0

a

β|A|

]⊤
∈ Rs·|A|

405

At :=
[
e⊤at−s

· · · e⊤at−1

]⊤ ∈ Rs·|A|,
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406

µ̃a =
[
µ1g

s−1
a

β1
· · · µ|A|g

s−1
a

β|A|
· · · µ1g

0
a

β1
· · · µ|A|g

0
a

β|A|

]⊤
∈ Rs·|A|

One can verify that by these definitions, for θa =
[
β̃a µ̃a µa

]⊤
407

Φt(s)
⊤θa = Φ(Rt, At)

⊤θa = R⊤
t β̃a −A⊤

t µ̃a + µa

Therefore we have shown:408

rt(a) = Φt(s)
⊤θa + bt(a, s) + εa;t

409

The proof for the confidence set lemma (Lemma 4.1) requires lemmas A.1 and A.3.410

Lemma A.1. [Bound on Context] Suppose Assumption 3.4 holds, then there exists some constant411
L(s, δr) such that ∥Φt(s)∥2 ≤ L(s, δr) for all t with probability at least 1− δr, where δr ∈ (0, 1).412

Proof. Notice that by construction, ∥Rt∥2 = R⊤
t Rt =

∑s
j=1 r

2
t−j and ∥At∥2 = A⊤

t At = s. So:413

∥Φt(s)∥2 =

s∑
j=1

r2t−j + s+ 1

Since every rt−j is Gaussian with variance β2
at−j

σ2
r , every rt−j is also sub-Gaussian with parameter414

βat−j
σr. Therefore by Lemma B.5,415

rt−j < µat−j
+ βat−j

E[zt−j ] +
√
2β2

at−j
σ2
r log(1/δr)) = Rmax(δr)

with probability at least 1 − δr. Since Assumption 3.4 holds, we know that the mean of the AR416
process E[zt−j ] is always bounded.417

Therefore,418

∥Φt(s)∥2 < s(Rmax(δr)
2 + 1) + 1 = L(s, δr)

419

For proofs of Lemma A.3 and Theorem 4.2 we need the following lemma.420

Lemma A.2. Let all the information observed up to and including time t − 1 be encoded in the421
filtration Ht−1 := σ(a1, r1, ..., at−1, rt−1) and z⃗t as defined in Equation 3 and z̃t = E[z⃗t|Ht−1] be422
the steady-state Kalman filter for z⃗t. Then z⃗t − z̃t|Ht−1 ∼ N (⃗0, P ) and z⃗t − z̃t ∼ N (⃗0, P )423

Proof. First notice that by construction of the steady-state Kalman filter, z⃗t|Ht−1 ∼ N (z̃t, P ) and424
z̃t|Ht−1 is a constant (i.e., not random). Therefore,425

z⃗t − z̃t|Ht−1 = z⃗t|Ht−1 − z̃t|Ht−1 ∼ N (⃗0, P )

Since N (⃗0, P ) is a fixed distribution and P does not depend on Ht−1, this implies that z⃗t − z̃t ∼426
N (⃗0, P ) as well.427
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Lemma A.3. [Noise Process Property] Let all the information observed up to and including time428
t − 1 be encoded in the filtration Ht−1 := σ(a1, r1, ..., at−1, rt−1). For any given a, the noise429
process {εa;t}t from Equation 6 is a martingale difference sequence given filtration Ht−1 and is430
conditionally R-subgaussian for some constant R ≥ 0,431

∀t ≥ 1,E[εa;t|Ht−1] = 0

∀α ∈ R,E[eαεa;t |Ht−1] ≤ exp(α2R2/2)

Proof. Fix some a ∈ A. We first show that E[εa;t|Ht−1] = 0.432

E[εa;t|Ht−1] = E[⟨ca, z⃗t − z̃t⟩+ ϵt(a)|Ht−1]
433

= c⊤a (E[z⃗t − z̃t|Ht−1]) + E[ϵt(a)|Ht−1]
434

= c⊤a E[z⃗t − z̃t|Ht−1] (ϵt(a) is independent of Ht−1 and E[ϵt(a)] = 0)
435

= c⊤a 0⃗ = 0 (Lemma A.2)

To prove that εa;t is conditionally R-subgaussian for some R, we first show that εa;t|Ht−1 ∼436
N (0, c⊤a Pca+σ2

r). Notice that c⊤a (z⃗t−z̃t)|Ht−1 ∼ N (0, c⊤a Pca) by Lemma A.2 and ϵt(a)|Ht−1 ∼437
N (0, σ2

r) since ϵt(a) is independent of Ht−1. Therefore:438

εa;t|Ht−1 = c⊤a (z⃗t − z̃t)|Ht−1 + ϵt(a)|Ht−1 ∼ N (0, c⊤a Pca + β2
aσ

2
r)

The moment generating function (MGF) for the normal random variable εa;t is:439

Mεa;t
(α) = E[eαεa;t ] = exp(α2(c⊤a Pca + β2

aσ
2
r)/2) ∀α ∈ R

Then:440

E[eαεa;t |Ht−1] = E[eαεa;t ] (as shown above, εa;t is independent of Ht−1)
441

= exp(α2(c⊤a Pca + β2
aσ

2
r)/2)

442

≤ exp(α2R2/2) ∀α ∈ R

for some R2 ≥ c⊤a Pca + β2
aσ

2
r443

A.3 Proof of Lemma 4.1444

Proof. First notice that for all actions a,445

θ̂a,t − θa = V −1
a,t

t∑
j=1

I[aj = a]Φj(s)rj − θa

446

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)(Φj(s)
⊤θa + bj(a, s) + εa;t)− θa

447

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)(Φj(s)
⊤θa + bj(a, s) + εa;t)− V −1

a,t (λI +

t∑
j=1

I[aj = a]Φj(s)Φj(s)
⊤)θa
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448

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s) + V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j − λV −1
a,t θa

For the first term,449 ∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
Va,t

=

∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
V −1
a,t

450

≤
t∑

j=1

I[aj = a]∥Φj(s)bj(a, s)∥V −1
a,t

(generalized triangle-inequality)

451

=

t∑
j=1

I[aj = a]
√
bj(a, s)2Φj(s)⊤V

−1
a,t Φj(s)

452

≤

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

√√√√ t∑
j=1

I[aj = a]Φj(s)⊤V
−1
a,t Φj(s) (Cauchy-Schwartz)

453

= τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

where τ(a, s)t =
√∑t

j=1 I[aj = a]∥Φj(s)∥2V −1
a,t

454

For the second term,455 ∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
Va,t

=

∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

By Lemma A.3, since the noise process εa;j satisfies the assumptions of Theorem B.1,456 ∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

≤

√
2R2 log

(
det(Va,t)1/2det(λI)−1/2

δβ

)
with probability at-least 1− δβ . Using Lemma B.2 (determinant-trace inequality),457

det(Va,t) ≤
(
λ+

na,tL(s, δr)

2s|A|+ 1

)2s|A|+1

where na,t :=
∑t

j=1 I[aj = a] and ∥Φj(s)∥2 ≤ L(s, δr) for all j ∈ [t] because of Lemma A.1.458

=⇒
∥∥∥∥ t∑

j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

≤ R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δr)/λ

δβ

)

For the third term,459
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∥λV −1
a,t θa∥Va,t

= λ∥θa∥V −1
a,t

≤
√
λ∥θa∥ ≤

√
λSa

since ∥θa∥2V −1
a,t

≤ 1
λmin(Va,t)

∥θa∥2 ≤ 1
λ∥θa∥

2 and using Assumption 3.5.460

Using generalized triangle inequality461

=⇒ ∥θ̂a,t − θa∥Va,t ≤
∥∥∥∥V −1

a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
Va,t

+

∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
Va,t

+

∥∥∥∥λV −1
a,t θa

∥∥∥∥
Va,t

462

≤ R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δr)/λ

δβ

)
+
√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

Finally, for readability, we let δβ = δr = δ/2. Therefore with probability at least 1− δ,463

∥θ̂a,t − θa∥Va,t
≤

R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δ/2)/λ

δ/2

)
+

√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

464

A.4 Proof of Theorem 4.2465

Proof. Using Assumption 3.5 with Lemma 4.1, it suffices to prove the bound on the event that466
true parameter θa ∈ Ca,t (Equation 13) for ∀a ∈ A and t ∈ [T ]. Recall the regret in our setting467
(Equation 10) is:468

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t]

where a∗t is the optimal action and at is the action selected by Algorithm 1 at time step t.469

To assist with the proof, we consider an intermediate agent that knows the ground-truth pa-470
rameters and therefore has the exact steady-state Kalman filter prediction z̃t and selects actions471
ãt = argmax

a
r̃t(a).472

Let ∆t := E[rt(a∗t )− rt(at)|z⃗t] denote the instantaneous regret at time t. Then:473

∆t = c⊤a∗
t
z⃗t + µa∗

t
− c⊤at

z⃗t − µat

474

= (c⊤a∗
t
z⃗t + µa∗

t
− c⊤ãt

z̃t − µãt
) + (c⊤ãt

z̃t + µãt
− c⊤at

z⃗t − µat
)

First notice that:475

c⊤a∗
t
z⃗t + µa∗

t
− c⊤ãt

z̃t − µãt = c⊤a∗
t
z⃗t − c⊤a∗

t
z̃t + c⊤a∗

t
z̃t + µa∗

t
− c⊤ãt

z̃t − µãt

476

= c⊤a∗
t
(z⃗t − z̃t) + r̃t(a

∗
t )− r̃t(ãt)

17



Under review for RLC 2025, to be published in RLJ 2025

477

≤ c⊤a∗
t
(z⃗t − z̃t)

since r̃t(a
∗
t )− r̃t(ãt) ≤ 0 by the action-selection strategy of the intermediate agent.478

Next notice that:479

c⊤ãt
z̃t + µãt

− c⊤at
z⃗t − µat

= c⊤ãt
z̃t + µãt

+ (c⊤at
z̃t − c⊤at

z̃t)− c⊤at
z⃗t − µat

480

= r̃t(ãt)− r̃t(at)− c⊤at
(z⃗t − z̃t)

481

=⇒ ∆t ≤ (ca∗
t
− cat)

⊤(z⃗t − z̃t) + r̃t(ãt)− r̃t(at)

We first focus on r̃t(ãt)− r̃t(at). Recall by Lemma 3.3 that r̃t(a) = Φt(s)
⊤θa + bt(a, s). Then:482

r̃t(ãt)− r̃t(at) = Φt(s)
⊤θãt

+ bt(ãt, s)− Φt(s)
⊤θat

− bt(at, s)

Now let θ′a,t = max{Ca,t−1} denote the max value of the confidence set Ca,t−1 constructed at time t.483
Notice that:484

Φt(s)
⊤θãt ≤ Φt(s)

⊤θ′ãt,t ≤ Φt(s)
⊤θ′at,t

where the first inequality is because θãt ∈ Cãt,t−1 and θ′ãt,t
= max{Cãt,t−1}, and the second485

inequality is by the action-selection strategy of Algorithm 1 (i.e., at = argmax
a

Φt(s)
⊤θ′a,t). =⇒486

r̃t(ãt)− r̃t(at) ≤ Φt(s)
⊤(θ′at,t − θat

) + bt(ãt, s)− bt(at, s)

487

≤ ∥Φt(s)∥V −1
a,t−1

∥θ′at,t − θat
∥Vat,t−1

+ bt(ãt, s)− bt(at, s)

(by Cauchy-Schwartz and ∥ · ∥V −1
at,t−1

≤ ∥ · ∥Va,t−1 )

488

≤ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + bt(ãt, s)− bt(at, s)

489

≤ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2max

a
|bt(a, s)|

We now focus on (ca∗
t
− cat

)⊤(z⃗t − z̃t).490

First,491

(ca∗
t
− cat

)⊤(z⃗t − z̃t) ≤ ∥ca∗
t
− cat

∥∥z⃗t − z̃t∥ (Cauchy-Schwartz)
492

≤ 2max
a

∥ca∥∥z⃗t − z̃t∥

By Lemma A.2, we know that z⃗t − z̃t ∼ Nk (⃗0, P ). By Lemma B.3, z⃗t − z̃t is sub-Gaussian with493
parameter σ2 = ∥P∥op. Finally by Theorem B.4, with probability at least 1− δz for δz ∈ (0, 1),494

∥z⃗t − z̃t∥ ≤ 4
√
∥P∥opk + 2

√
∥P∥op log(1/δz)

495

≤ 4
√

∥P∥op(
√
k +

√
log(1/δz))
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496

≤ 4
√
∥P∥op

√
2(k + log(1/δz)) (

√
a+

√
b ≤

√
2(a+ b) for a, b ∈ R≥0)

We bound ∥P∥op. Recall that for the steady-state Kalman filter, P = ΓPΓ⊤+W −ΓPC⊤(CPC⊤+497
V )−1CPΓ⊤.498

Using triangle inequality,499

∥P∥op = ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤∥op + ∥W∥op

We now show that ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤∥op ≤ ∥ΓPΓ⊤∥op. To do so, we500
show that the following three matrices are positive semi-definite (PSD): (1) A = ΓPΓ⊤, (2) B =501
ΓPC⊤(CPC⊤ + V )−1CPΓ⊤, and (3) A−B.502

A is PSD because P is PSD and using Lemma B.6.503

We now show B is PSD. Consider some vector v ∈ Rk. Then v⊤Bv = v⊤(ΓPC⊤(CPC⊤ +504
V )−1CPΓ⊤)v = (CPΓ⊤v)⊤(CPC⊤ + V )−1CPΓ⊤v = (CPΓ⊤v)2(CPC⊤ + V )−1.505

Now since C =
[
1 0 · · · 0

]
∈ R1×k, CPC⊤ = P11 ≥ 0 since P is PSD so diagonal entries506

are non-negative. Also V =
σ2
r

mina β2
a

=⇒ (CPC⊤ + V )−1 = 1

P11+
σ2
r

mina β2
a

≥ 0.507

We now show A − B is PSD. Since P is PSD we know that there exists a PSD matrix P 1/2 such508
that P = P 1/2P 1/2. Therefore A − B = ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤ = ΓP 1/2(I −509
P 1/2C⊤(CP 1/2P 1/2C⊤ + V )−1CP 1/2)P 1/2Γ⊤ = ΓP 1/2(I − ν(ν⊤ν + V )−1ν⊤)P 1/2Γ⊤ for510
ν = P 1/2C⊤ ∈ Rk.511

Notice that ν(ν⊤ν + V )−1ν⊤ = νν⊤

ν⊤ν+V
=

ν
∥ν∥

ν⊤
∥ν∥

v⊤v
∥ν∥2

+ V
∥ν∥2

= ν′ν′⊤

1+ V
∥ν∥2

where ν′ = ν/∥ν∥. Since512

ν′ is a unit vector, ν′ν′⊤ has only one non-zero eigenvalue which is 1, which implies ν′ν′⊤

1+ V
∥ν∥2

513

has one non-zero eigenvalue which is 1
1+ V

∥ν∥2
. Furthermore this implies that I − ν′ν′⊤

1+ V
∥ν∥2

has514

eigenvalues either 1 or 1 − 1
1+ V

∥ν∥2
≥ 0. Therefore, I − ν(ν⊤ν + V )−1ν⊤ is PSD and so is515

ΓP 1/2(I − ν(ν⊤ν + V )−1ν⊤)P 1/2Γ⊤ by Lemma B.6.516

Since we have shown A, B, and A−B are PSD, then by Lemma B.7, ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ +517
V )−1CPΓ⊤∥op ≤ ∥ΓPΓ⊤∥op.518

=⇒519

∥P∥op ≤ ∥ΓPΓ⊤∥op + ∥W∥op

Now,520

∥ΓPΓ⊤∥op ≤ ∥Γ∥op∥P∥op∥Γ⊤∥op = σmax(Γ)
2∥P∥op

since A and A⊤ have the same singular values for any matrix A.521

Also in our setting, W is a matrix of all 0s except for σ2
z in the first diagonal entry, so ∥W∥op = σ2

z .522
So,523

∥P∥op ≤ σmax(Γ)
2∥P∥op + σ2

z =⇒ ∥P∥op ≤ σ2
z

1− σmax(Γ)2

19



Under review for RLC 2025, to be published in RLJ 2025

Therefore, at every t, the instantaneous regret is bounded as so:524

∆t ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(1/δz))

+ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2max

a
|bt(a, s)|

So,525

Regret(T ;πLARL) =

T∑
t=1

∆t

526

≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(1/δz)) · T

+ 2

T∑
t=1

∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2

T∑
t=1

max
a

|bt(a, s)|

Now,527

2

T∑
t=1

∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) ≤ 2βT (δ

′)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T

where βT (δ
′) = maxa βa,T−1(δ

′) and
∑T

t=1 ∥Φt(s)∥V −1
at,t−1

≤
√

T ·
∑T

t=1 ∥Φt(s)∥2V −1
at,t−1

by vari-528

ant of Cauchy-Schwartz.529

For readability, let δz = δb = δr = δ/3. Then w.p. at-least 1− δ,530

Regret(T ;πLARL) ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(3/δ)) · T

+2βT (2δ/3)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T + 2

T∑
t=1

max
a

|bt(a, s)|

531

B Auxillary Theorems and Lemmas532

Theorem B.1. (Theorem 1 in Abbasi-Yadkori et al. (2011)) Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1533
be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally R-sub-534
Gaussian for some R ≥ 0. Namely:535

∀ λ ∈ R E[eληt |Ft−1] ≤ exp

(
λ2R2

2

)

Let {xt}∞t=1 be an Rd-valued stochastic process such that xt is Ft−1-measurable. Assume that536
V0 ∈ Rd×d is a positive definite matrix. For any t ≥ 1, define:537

Vt = V0 +

t∑
j=1

xjx
⊤
j St =

t∑
j=1

ηjxj
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Then for any δ > 0, with probability atleast 1− δ, for all t ≥ 1,538

∥St∥2V −1
t

≤ 2R2 log

(
det(Vt)

1/2det(V0)
−1/2

δ

)
Lemma B.2. (Lemma 10 Determinant-Trace Inequality in Abbasi-Yadkori et al. (2011)) Suppose539
x1, ..., xt ∈ Rd and ∥xj∥ ≤ L ∀ j ∈ [t]. Let Vt = λI +

∑t
j=1 xjx

⊤
j for some λ > 0. Then:540

det(Vt) ≤
(
λ+

tL2

d

)d

Lemma B.3. (Lemma 8.2 in Rinaldo & Wu (2019)) Let X ∈ Rd be a random vector that is normally541
distributed X ∼ N (0,Σ). Then X is a sub-Gaussian random vector with parameter ∥Σ∥op.542

Theorem B.4. (Theorem 8.3 in Rinaldo & Wu (2019)) X ∈ Rd be a sub-Gaussian random vector543
with parameter σ2, then with probability at least 1− δ for δ ∈ (0, 1):544

∥X∥ ≤ 4σ
√
d+ 2σ

√
log(1/δ)

Lemma B.5. (Sub-Gaussian upper tail bound) Let X be sub-Gaussian with variance proxy σ2. Then545
for any δ ∈ [0, 1] we have:546

P(X − E[X] <
√
2σ2 log(1/δ)) ≤ 1− δ

Lemma B.6. If B ∈ Rm×m is positive semi-definite, then for any matrix A ∈ Rn×m, ABA⊤ is also547
positive semi-definite.548

Lemma B.7. If matrices A,B, and A−B are positive semi-definite, then ∥A−B∥op ≤ ∥A∥op.549

C A Review of Linear Dynamical Systems with Gaussian Noise550

We provide a brief review of discrete-time linear dynamical systems (LDS) with Gaussian noise551
(Roweis & Ghahramani, 1999).552

C.1 Setting553

A discrete-time, autonomous, LDS with Gaussian noise can be described with the following two554
equations:555

(State Evolution) z⃗t = Γz⃗t−1 + wt, (17)
556

(Measurement Model) yt = Cz⃗t + vt, (18)

where z⃗t ∈ Rk is the (latent) state of the system with noise process wt
i.i.d.∼ N (µz,W ), yt ∈ R is557

some measurement that is observable with noise process vt
i.i.d.∼ N (µy, V ), and Γ, C are constant558

matrices.559

C.2 Steady-State Kalman Filter560

With knowledge of Γ, C, µz,W, µy, V , Kalman filtering is the standard approach for predicting z⃗t561
using previous measurements y1, ..., yt−1, even if z⃗t is not observed. Namely, the optimal prediction562
(in the least mean square sense) for z⃗t would be zt|t−1, where zt|j := E[z⃗t|Fj ] and Fj is the sigma563
algebra generated by previous measurements y1, ..., yj .564

A standard assumption is that the LDS given by equations (17) and (18) is observable:565
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Assumption C.1. The observability matrix, O =


C
CΓ
CΓ2

...
CΓk−1

 ∈ Rk×k, is full rank.566

Assumption C.1 leads to a steady-state solution (Ljung, 1999; Gornet et al., 2022) that is often567
employed in practice for applications involving numerous time steps (Kailath et al., 2000). For568
simplicity, let z̃t := zt|t−1. The steady-state Kalman filter is as follows, where the prediction and569
measurement update steps are combined:570

z̃t = Γz̃t−1 + µz + ΓK(yt−1 − Cz̃t−1 − µy) (19)
571

K = PC⊤(CPC⊤ + V )−1 (20)
572

P = ΓPΓ⊤ +W − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤ (21)

The prediction of z̃t is recursively computed given the prediction from the previous time-step z̃t−1573
and the most recent measurement yt−1. K is the steady-state Kalman gain matrix which acts as a574
weighting factor balancing the model’s predictions with the discrepancy between the model’s most575
recent prediction and measurement. The update for K is one that yields the minimum mean-square576
error estimate in the limit. P is the steady-state version of Pt := cov(z⃗t − zt|t), the error covariance577
for z̃t. Assumption C.1 ensures that in the limit, Pt converges to some P , which implies the Kalman578
gain matrix converges to some K (Ljung, 1999; Gornet et al., 2022).579

D Discussion on Regret580

In standard stationary bandit settings, one often proves regret bounds with respect to a “standard581
oracle" that knows the true fixed reward means µ(a) for each action and selects the optimal action582
a∗ = argmaxa∈A µ(a). In non-stationary settings, where the mean rewards change over time, many583
works compare to an equivalent oracle called the dynamic oracle (Besbes et al., 2014). The dynamic584
oracle is one that knows the true reward means µt(a) at every time step t for each action and selects585
optimal action at every time step t, a∗t = argmaxa∈A µt(a).586

Equivalently, the dynamic oracle is an oracle that observes all information in the environment and587
then acts optimally with that information. In the latent AR bandit setting, such an oracle knows the588
ground-truth parameters θ∗ = [γ0, γ1, ..., γk, µ1, β1, ..., µ|A|, β|A|, σz, σr] and observes the latent589
process (i.e., the realization of zt). With access to the ground-truth parameters and the realization of590
zt, the oracle therefore knows the true reward means µt(a) at every time step t for each action. The591
oracle selects the optimal action for every t: a∗t = argmaxa∈A µt(a). For a policy π, the regret is592
defined as:593

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t]

where at is the action selected by the algorithm at time step t following policy π. The first term is the594
mean reward obtained by the oracle (i.e., reward obtained by selecting the most optimal action for595
that time-step) and the second term denotes the mean reward obtained by the agent (where the agent596
only has information from the history up to but not including time step t). With no other assumptions,597
it is impossible to achieve sub-linear regret with respect to this oracle in the latent AR setting.598
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D.1 Sub-linear Dynamic Regret599

Sub-linear regret with respect to the dynamic oracle is only possible in environments with vanishing600
non-stationarity (i.e., there is a budget for the non-stationarity that is sub-linear in T ). For example in601
Besbes et al. (2014), the non-stationarity is formulated by arbitrary changes to the mean rewards and602
they assume a finite variation budget VT of how much the mean rewards can change over time. The603
regret bound for their method Rexp3 is on the order of V 1/3

T T 2/3. If VT scales linearly with T , the604
regret of their method would be linear in T . Similarly in Garivier & Moulines (2011), they assume a605
finite number of changes to the mean reward or breakpoints ΥT . The regret bound for their methods606
discounted UCB and sliding window UCB is on the order of

√
TΥT log T , where ΥT = O(T β) for607

some β ∈ [0, 1). If ΥT scales linearly with T , then the regret for their approaches would also achieve608
linear regret. In our setting, σ2

z , the noise variance on the latent state process, is the mechanism that609
controls the non-stationarity. We have shown in our main regret bound result (Theorem 4.2) that for610
fixed T , in environments where σmax(Γ) ≤ 1− ϵ for ϵ > 0 and σ2

z = T c−2 for some constant c < 2,611
our algorithm achieves sub-linear regret.612

E Additional Experiments613

E.1 Verifying the Bias Variance Trade-off614

We verify the trade-off with the choice of s as depicted in Theorem 4.2. Recall that hyperparameter615
s > 0 dictates the number of recent time steps of history to incorporate into the context. We consider616
three environment variants where k = 1, 5, 10. In each environment variant, we run our algorithm617
with four different values of s, where s = 1, 5, 10, 15, compared to “Stationary”, standard UCB618
which treats the environment as a stationary multi-armed bandit.619

Figure 4 shows pairwise comparisons between Stationary and our algorithm LARL with various620
choices of s. We look at the proportion of times over 100 Monte-Carlo repetitions where the621
algorithm listed in the row achieved lower total cumulative regret than the algorithm listed in the622
column. Figure 5 shows cumulative regret over time. Even when s is not specifically tuned, our623
algorithm still outperforms Stationary; however the choice of s does dictate how much our algorithm624
excels. These simulations verify the bias-variance trade off with the choice of s as shown in the625
regret bound (Theorem 4.2). If s is chosen too large, the bias term is small but our algorithm’s reward626
model is burdened with learning many parameters. If s is chosen too small, the bias term is large and627
our algorithm does not include enough history to inform the current prediction.628
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Stationary LARL s=1 LARL s=5 LARL s=10 LARL s=15
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Figure 4: Pairwise comparisons between algorithms in the environment variants where k = 1, 5, 10,
respectively. Each cell shows the proportion of 100 Monte-Carlo repetitions where the algorithm
listed in the row achieved lower cumulative regret than the algorithm listed in the column. Even when
s is not specifically tuned, our algorithm still outperforms Stationary.
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Figure 5: Cumulative regret (Equation 10) over time with varying choices of s for our algorithm
Latent AR LinUCB (Algorithm 1). For a poor choice of s (either too small or too large compared to
k) however, our algorithm performs similarly to the stationary. If s is too small, the reward model is
under-parameterized. If s is too large, the reward model is over-parameterized. Line is the average
and shaded region is ± standard deviation across Monte Carlo simulated trials.
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