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ABSTRACT

Motivated by the prevalence and success of machine learning, a line of recent work
has studied learning-augmented algorithms in the streaming model. These results
have shown that for natural and practical oracles implemented with machine learn-
ing models, we can obtain streaming algorithms with improved space efficiency
that are otherwise provably impossible. On the other hand, our understanding
is much more limited when items are weighted unequally, for example, in the
sliding-window model, where older data must be expunged from the dataset, e.g.,
by privacy regulation laws. In this paper, we utilize an oracle for the heavy-hitters
of datasets to give learning-augmented algorithms for a number of fundamental
problems, such as norm/moment estimation, frequency estimation, cascaded norms,
and rectangular moment estimation, in the time-decay setting. We complement
our theoretical results with a number of empirical evaluations that demonstrate the
practical efficiency of our algorithms on real and synthetic datasets.

1 INTRODUCTION

The streaming model of computation is one of the most fundamental models in online learning and
large-scale learning algorithms. In this model, we consider an underlying frequency vector x € R",
which is initialized to the zero vector 0™. The data arrives sequentially as a stream of m updates,
where each update at time ¢ € [m] is denoted by (¢, ;). Each oy modifies a coordinate x; of the
frequency vector for some i € [n] by either increasing or decreasing its value. The goal is usually to
compute a function f(x) of this underlying frequency vector using memory substantially smaller
than the input dataset size. The data stream model has widespread applications in traffic monitoring
(Chen et al.,[2021), sensor networks (Gama & Gaber, [2007), data mining (Gaber et al., 2005} |Alothali
et al., 2019), and video analysis (Xu et al.,|2012), to name a few. The research on data streams enjoys
arich history starting with the seminal work of |Alon et al.|(1999). Some of the most well-studied
problems in the data stream model are often related to frequency (moment) estimation, i.e., given
the frequency vector x, compute the F}, frequency [|x||7 = >~ [x;|”. A long line of work has
thoroughly explored streaming algorithms related to frequency estimation and their limitations (see,
e.g.,/Alon et al.[(1999); |Chakrabarti et al.| (2003)); Bar-Yossef et al.| (2004); Charikar et al.| (2004);
Woodruff] (2004); [Cormode & Muthukrishnan|(2005)); Indyk & Woodruff| (2005); L1/ (2008); |/Andoni
et al.[(2011); Kane et al.| (2011); |Braverman & Ostrovsky| (2013)); Braverman et al.| (2014; [2018);
Woodruff & Zhou|(2021ajb); Indyk et al.|(2022) and references therein).

For p > 2, the celebrated count-sketch framework (Charikar et al., 2004} [Indyk & Woodruffl, 2005)
can be used to achieve streaming algorithms that compute a (14 ¢)-approximation of the F), frequency

moment in O(n'=2/Pp2/ poly(e))ﬂ space (Charikar et al., 2004} Indyk & Woodruff, 2005; Andoni
et al.,[2011). The bound has since been proved tight up to polylogarithmic factors (Chakrabarti et al.,
2003}, Bar-Yossef et al.l 2004; Woodruff] [2004; [Woodruff & Zhou, [2021b). As such, for very large
p, any streaming algorithm would essentially need €2(n) space. The conceptual message is quite
pessimistic, and we would naturally wonder whether some beyond-worst-case analysis could be
considered to overcome the space lower bound.

Learning-augmented algorithms. Learning-augmented algorithms have become a popular frame-
work to circumvent worst-case algorithmic hardness barriers. These algorithms leverage the predictive

"Throughout, we use O(-) and (-) to hide polylogarithmic terms unless specified otherwise.
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power of modern machine learning models to obtain some additional “hints”. Learning-augmented
algorithms have been applied to problems such as frequency estimation (Hsu et al., 2019; Jiang
et al., 2020; |Chen et al.} 2022} |Aamand et al., [2025)), metric clustering (Ergun et al.,|2022; [Huang
et al., [2025)), graph algorithms (Braverman et al.| 2024; (Cohen-Addad et al.||2024; Dong et al., [2025
Braverman et al., 2025)), and data structure problems (Lin et al., [2022; [Fu et al.,[2025). Notably, |Jiang
et al.|(2020) showed that for the F}, frequency moment problem with p > 2, with the presence of
a natural and practical heavy-hitter oracle, we can obtain (1 & ¢)-approximation algorithms with

O(n'/2=1/? | poly(e)) space — a space bound impossible without the learning-augmented oracle.
Jiang et al.|(2020) also obtained improved space bounds for related problems such as the rectangle
F}, frequency moments and cascaded norms, highlighting the effectiveness of learning-augmented
oracles.

Time-decay streams. The results in|Jiang et al.|(2020) and related work (Hsu et al.,|2019; |Chen et al.}
2022; |Aamand et al., 2025) gave very promising messages for using learning-augmented oracles
in streaming frequency estimation. On the other hand, almost all of these results only focus on
estimating the frequencies of the entire stream. As such, they do not account for the recency effect
of data streams. In practice, recent updates of the data stream are usually more relevant, and older
updates might be considered less important and even invalid. For instance, due to popularity trends,
recent songs and movies usually carry more weight on entertainment platforms. Another example of
the recency effect is privacy concerns. To protect user privacy, the General Data Protection Regulation
(GDPR) of the European Union mandates user data to be deleted after the “necessary” duration (GDP,
2016). Furthermore, some internet companies, like |Apple Inc.|(2021), Facebook| (2021), Google LLC
(2025), and |OpenAl| (2024)) have their own policies on how long user data can be retained.

The time-decay frameworkin the stream model is a great candidate that captures the recency effect.
In this model, apart from the data stream, we are additionally given a function w supported on [0, 1]
that maps the importance of the stream updates in the past. In particular, at each time step ¢, we will
apply w on a previous time step ¢’ < t to potentially discount the contribution of the previous update,
ie,w(r) <w(l)forT >1 ﬂ Our goal is to compute a function (e.g., F},) of the frequencies with
the weighted stream after the update at the ¢-th time for ¢ € [m]. In general, algorithms for standard
data streams do not directly imply algorithms in the time-decay model. Therefore, it is an interesting
direction to ask whether the learning-augmented heavy-hitter oracle could be similarly helpful for
frequency estimation in time-decay models.

Typical time-decay models include the polynomial decay model [ Kopelowitz & Porat|(2005);|(Cormode
et al.| (2007; 2009); Braverman et al|(2019)), where the importance of the updates decays at a rate of
1/7* for some fixed constant s, and the exponential decay model |Cohen & Strauss|(2003); |(Cormode
et al.| (2008; 2009); [Braverman et al.[(2019), where the decay is much faster as a function of 1/s" for
some fixed constant s. The study of frequency estimation often appears in conjunction with the time
decay model. In addition to the space bound studied by, e.g., Kopelowitz & Porat| (2005)); Braverman
et al. (2019), several papers have approached the problem from the practical perspective Xiao et al.
(2022)); [Pulimeno et al.| (2021)). However, to the best of our knowledge, the general time-decay
streaming model has not been well studied in the learning-augmented setting.

A notable special case for the time-decay framework is the sliding-window stream model. Here, we
are given a window size W, and the time-decay function becomes binary: w(t') = 1 if ¢’ is within
a size-W window (i.e., t' > t — W 4 1), and w(t') = 0 otherwise. For this special application,
Shahout et al.[(2024) studied the learning-augmented Window Compact Space Saving algorithm in
sliding-window streams. Although a pioneering work with competitive empirical performances, the
algorithm in |Shahout et al.| (2024) suffers from two issues: 4). it does nor give any formal guarantees
on the space complexity; and ). for technical reasons, the paper deviates from the heavy-hitter
oracle as inJiang et al.|(2020), and instead used a “next occurrence” oracle that is less natural and
arguably harder to implement. Furthermore, it is unclear how their algorithm could be extended to the
general time-decay models as we study in the paper. As such, getting results for general time-decay
algorithms would imply improved results for the sliding-window model, which renders the open
problem more appealing.

“Here, step ¢’ uses w(t — ¢’ + 1) as the input. In this way, w could be defined as a non-increasing function,
e, wt—t+1)=w(l).
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Our results. In this paper, we answer the open question in the affirmative by devising near-optimal
algorithms in the time-decay model (resp. the sliding-window model) for the Fj, frequency estimation
problem and related problems. Our main results can be summarized as follows (all of the bounds
apply to polynomital decay, exponential decay, and the sliding-window settings).

» F), frequency: We give a learning-augmented algorithm that given the heavy-hitter oracle and
the frequency vector x in the stream, computes a (1 & ¢)-approximation of the F}, frequency

Ix||? = Y27, x| in O(™ o

5 P P) space.
* Rectangle F), frequency: When the universe is [A]™ and stream elements update all coordinates
in hyperrectangles, the F}, frequency moment problem for the stream is called rectangle F),

frequency. We give a learning-augmented algorithm that computes a (1 + ¢)-approximation of
Ad(1/2-1/p)
A

€

the rectangle F), frequency in 6( . poly(%7 d)) space with heavy-hitter oracles.

* (k,p)-cascaded norm: As a generalization of the F,, frequency moment problem, when the
data is given as an n X d matrix X and the stream updates each coordinate X; ;, we define
f(X) = (22;1(2?21 X [|")E/P)1/% as the (k,p)-cascaded norm (k-norm of the p-norms
of the rows). We give a learning-augmented algorithm that computes a (1 + )-approximation of
the (k, p)-cascaded norm in space O;ﬁp(nl_%_% . défi). We use O ,,(+) to hide polynomial
terms of (kp)*P, ¢, and log n. E]

By a lower bound in Jiang et al.|(2020)), any learning-augmented streaming algorithm that obtains
a (1 £ ¢)-approximation for the F,, moment would require Q(n'/271/? /c2/P) space. Since the
streaming setting can be viewed as a special case for the time-decay model, our algorithm for F},
frequency is optimal with respect to the exponent n.

Task ‘ Space Bound ‘ Model ‘ Remark
O(n1/2=1/p /gty Streaming Jiang et al.|(2020)
F, Frequency Q(nl/2=1/p /2/p) Any Lower bound, Jiang
(=2 et al.7(2020)77
not specified Sliding Window Shahout et al.| (2024)
O(n!/2=1/p . pltp [e4tp) General Time-decay This work,
(e.g., Sliding Window) Theorem 1
Rectangle F), O(AY/2=1/P) . poly(4, d)) Streaming Jiang et al.[(2020)
Frequency O(A4(1/2=1/p) -poly(’e’—:7 d)) General Time-decay This work,
(e.g., Sliding Window) Theorem 5
(k, p)-Cascaded O(n'~ %% . d%_%) Streaming Jiang et al.[(2020)
Norm Ok p(n'~ t=% .4y ) General Time-decay This work,
(e.g., Sliding Window) Theorem 6

Table 1: Summary of the results and their comparisons with existing work. The Theorem pointers are
directed to the sliding-window algorithms as an illustration.

Our techniques. Our approach is fundamentally different from previous work in learning-augmented
sliding-window algorithms, e.g., |Shahout et al.[(2024). In particular, we considered an approach
that directly transforms streaming algorithms into time-decay algorithms. Crucially, we observe
that many approaches in the time-decay streaming literature are based on smoothness of functions
(e.g.,|Braverman & Ostrovsky|(2007); Braverman et al. (2019))). Roughly speaking, these approaches
follow a framework to maintain multiple copies of the streaming algorithm on different suffixes, and
delete the copies that are considered “outdated”. The correctness of time-decay streams could follow

3For the polynomial and exponential-decay models, the computation of the (k, p)-cascaded norm requires
row arrival. For the sliding-window streams, the updates can be on the points.
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if the function satisfies some “smoothness” properties. We derived several white-box adaptations
of the algorithms under this framework. We show that as long as the learning-augmented oracle is
suffix-compatible, i.e., it is able to predict the heavy hitters of suffix streams [¢ : m] as well, the
framework would work in the learning-augmented setting in the same way as the setting without the
oracle. As such, we could apply the streaming learning-augmented algorithm in|Jiang et al.|(2020) to
obtain the desired time-decay algorithms.

We remark that another valid option would be to generalize the difference estimator framework of
Woodruff & Zhou(2021a) to incorporate advice. Although this approach gives better dependencies
in ¢, the overall algorithm is quite involved and not as easily amenable to implementation, which in
some sense is the entire reason to incorporate machine learning advice in the first place. We thus
focus on practical implementations with provable theoretical guarantees.

Experiments. For the special case of sliding-window streams, we conduct experiments for learning-
augmented F}, frequency estimation. We implement multiple suffix-compatible heavy-hitter oracles,
such as the count-sketch algorithm (Charikar et al.,|2004): this allows us to compute heavy hitters for
different suffixes of streams with minimal space overhead. We tested the F), frequency algorithms
based on and the implementations in[Alon et al.| (1999) (AMS algorithm) and [ndyk
& Woodruff] (2005) with and without the learning-augmented oracles. The datasets we tested on
include a synthetic dataset sampling from binomial distributions and the real-world internet datasets
of CAIDA and AOL. Our experiments show that the learning-augmented approach can significantly
boost the performance of the frequency estimation algorithms, and, at times, produce results extremely
close to the ground-truth. Furthermore, our approach is fairly robust against distribution shifts over
updates, while other heuristic approaches like scaling would induce performance degradation when
the distribution changes.

2 PRELIMINARIES

The time-decay and sliding-window models. We specify the time-decay model and related notation.
We assume the underlying data x € Z™ to be a frequency vector, where each coordinate x; stands for
the frequency of the corresponding item. The frequency vector is initialized as 0", and at each time,
the vector is updated as (¢, w) such that x; < x; + w.

Let m be the total number of updates in the stream. In the time-decay model, we are additionally
given a weight function w : R — R>?, and an update at time ¢ € [m] contributes weight w(m —t+1)
to the weight of coordinate i; € [n]. Here, w is a non-increasing function with w(1) = 1, and s > 0
is some parameter that is fixed before the data stream begins. We have w(7) = 1/7* for polynomial
decay and w(7) = s” for exponential decay, respectively. The underlying weighted frequency vector

of the ¢-th time for all ¢ € [n] is defined as x! = v Wt —t +1).

In the special case of the sliding-window model, we are additionally given a window size WW. At
each step t € (W — 1,m], we define x"** as the frequency vector over the last W update steps. Let
f :R™ — R be a given function, and our goal is to output f(x"'*) forall t € (W — 1,m)].

Apart from the subvectors x"** which we aim to compute, we also define x’1** as the vector obtained
by accounting for all the updates from step ¢; to 5. In particular, x'*1 and x**™ represent the
frequency vectors with the updates from the start of the stream to ¢; and from ¢ till the end of the
stream, respectively.

The functions to compute. We aim to compute the following objective functions (defined as
mappings R™ — R) in the sliding-window streaming model.

* The F), frequency function: f(x) =[x} = >, [x:|".
* The rectangle F), frequency function: this is a special case for the F}, frequency problem,
where we assume x € [A]™ for some integer A.

Furthermore, we also study the cascaded norm function for high-dimensional frequencies, i.e.,
the input “frequency” is a n X d matrix X, where each row corresponds to a generalized no-
tion of frequency. The (k,p)-cascaded norm function f : R"*¢ — R is defined as f(X) =

“The codes for the experiments are available on https://anonymous.4open.science/r/
Learning—-Augmented-Sliding—Window—-992B/
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k/p\ M/E
(Z?zl (ijl 1X511” ) > . In the streaming model, at each time ¢, an update on a coordinate

X;,; is given in the stream. We can define the corresponding inputs for time-decay and sliding-window
models analogously.

The learning-augmented framework. We work with learning-augmented streaming algorithms,
where we assume an oracle that could predict whether x; is a heavy hitter. Depending on the function
f, we have multiple ways of defining heavy hitters as follows.

Definition 1 (Heavy-hitter Oracles). We say an element x; is a heavy hitter with the following rules.
1
vn
(b). If f is rectangle F), frequency in [A]%, we say that x; is a heavy hitter if |x;|” > HX”Z JAY2,
(). If f is (k, p)-cascaded norm, we say that X; ; is a heavy hitter if [X; ;|” > || X[|7 /(d"/? -

n!=P/2k) where || X|[? is the vector norm of the vector from the elements in X.

(a). If f is F), frequency, we say that x; is a heavy hitter if |x;|” > — - [|x||7.

A heavy hitter oracle O is a learning-augmented oracle that, upon querying x;, answers whether x;
satisfies the heavy hitter definition. We say that O is a deterministic oracle if it always correctly
predicts whether x; is a heavy hitter. In contrast, we say that O is a stochastic oracle with success
probability 1—¢ if for each coordinate x;, the oracle returns whether x; is a heavy hitter independently
with probability at least 1 — 4.

For the purpose of time-decay algorithms, we also need the oracle to be suffix compatible, i.e., able to
return whether x; is a heavy hitter for all suffix streams [t : m|, ¢ € (0, m — 1]. We formally define
such oracles as follows.

Definition 2 (Suffix-compatible Heavy-hitter Oracles). We say a heavy hitter oracle O is a deter-
ministic (resp. randomized) suffix-compatible learning-augmented oracle if for each suffix of stream
[t : m] fort € (0, m — 1] and each frequency vector x(¢ : m), O is able to answer whether x(t : m);
is a heavy hitter (resp. with probability at least 1 — §).

Additional discussions about suffix-compatible heavy-hitter oracles. Learning-augmented algo-
rithms with heavy-hitter oracles were explored by [Jiang et al.[(2020). Our setting is consistent with
theirs, and similar toJiang et al.|(2020)), such oracles are easy to implement for practical purposes. In

we provided a general framework for the learning of such oracles.

We note that |Shahout et al.| (2024) discussed certain difficulties for using bloom filters to obtain
predictions for every window. We emphasize that the suffix-compatibility property does not require
the prediction for every window, but rather only the suffixes of the streams (only n — W + 1 such
windows). This is a much more relaxed setting than the issues discussed in [Shahout et al.| (2024).
Furthermore, our experiments in show that the suffix-compatible oracles can be easily
learned via a small part of the streaming updates.

3 ALGORITHM AND ANALYSIS FOR THE SLIDING-WINDOW MODEL

We first discuss the special case of sliding-window algorithms since the algorithm and analysis are
clean and easy to present. For this setting, we take advantage of the smooth histogram framework
introduced by |Braverman & Ostrovsky| (2007). At a high level, a function f is said to be smooth if
the following condition holds. Let x 4 and x be two frequency vectors for elements in A and B,
where B is a suffix of A. If f(x4) and f(xp) are already sufficiently close, then they remain close
under any common suffix of updates, i.e., by appending C to both A U C and B U C' and getting new
frequency vectors x 4 and x g, the difference between f(x4uc) and f(xpyc) remains small.
Braverman & Ostrovsky|(2007) already established the smoothness of F}, frequencies, and we further
prove the smoothness properties for rectangle F), frequencies and cascaded norms.

We now discuss the framework in more detail, starting with the introduction of the notion of common
suffix-augmented frequency vectors.

Definition 3 (common suffix-augmented frequency vectors). Let x 4 be a frequency vector obtained
from a suffix of xp. Furthermore, let X be the frequency vector of a common suffix of x4 and
xp. We say that x4uc and xpyc are pair of common suffix-augmented frequency vectors if
XAuc = XA +Xc and Xpuc = XB + Xc.
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In other words, let A, B, C' be the streaming elements of x 4, X, and x¢, respectively. In[Definition 3]
we have A C B, and the streaming elements of x 4y¢ and xg o are AU C and B U C. We are now
ready to formally define («, §)-smooth functions as follows.

Definition 4 ((«, §)-smooth functions, Definition 1 of Braverman & Ostrovsky| (2007))). A function
f : R™ — R for frequency vectors is («, 8)-smooth if the following properties hold.

* f(x) > 0 for any frequency vector x.
* f(x) < poly(n) for some fixed polynomial.
e Let x4 be a frequency vector obtained from a suffix of xp, we have
(1) f(xp) 2 f(xa).
(2) Forany € € (0, 1), there exits « = a(f,¢) and 5 = 5(f, e) such that
c0<B<ax<l
o If f(x4) = (1 - 8)f(xB), then for any common suffix-augmented frequency vectors

X auc and xpe as prescribed in[Definition 3| there is f(xauc) = (1 — @) f(XBuc)-

Using the definition of («, 3)-smooth functions, we are able to derive the following framework that
transform streaming algorithms to sliding-window algorithms in the learning-augmented regime.
Lemma 3.1. Let f be an («, 3)-smooth function, and let ALG be any learning-augmented streaming
algorithm that queries the heavy-hitter oracle O with the following properties:

* ALG outputs f'(x) such that (1 —¢) - f(x) < f'(x) < (1 4+ ¢) - f(x) by the end of the
stream with probability at least 1 — §;

* O satisfies the suffix-compatible property as prescribed by|Definition 2} and

* ALG uses g(e, d) space and performs h(e, ) operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG' that computes a (1 £ (o + ¢€))-

approximation of the sliding-windows with probability at least 1 — § using O(w)

’
space and O(W) operations per stream update, where §' = 1jgﬁn'

We defer the discussion and the proof for[Lemma 3.1|to|Appendix Al Next, we show how to use the
framework in[Lemma 3.1 to obtain learning-augmented sliding-window algorithms. We remark that
the bound provided by the framework is independent of the window size W. As such, our bounds
in this section do not include the W parameter. Limited by space, we only present our results for
F), frequency moment estimation in this section, and defer the results for rectangle I}, frequency

moment estimation and cascaded norms to [Appendix Al

Our learning-augmented sliding-window algorithm for F}, estimation for p > 2 has the following
guarantees with both perfect and erroneous oracles.

Theorem 1 (Learning-augmented F}, Frequency Moment Algorithm). There exists a sliding-window

streaming algorithm that, given a stream of elements in a sliding window, a fixed parameter p > 2,
and a deterministic suffix-compatible heavy-hitter oracle O (as prescribed by [Definition 2)), with

T/2—1/p

probability at least 99/100 outputs a (1 + ¢)-approximation of the I, frequency in O(™—5—
ptP . loghn - log(2)) space.
Theorem 2 (Learning-augmented £}, Frequency Algorithm with Stochastic Oracles). There exists a

sliding-window streaming algorithm that, given a stream of elements in a sliding window, a fixed
parameter p > 2, and a stochastic suffix-compatible heavy-hitter oracle O with success probability

1—6 (as prescribed by[Definition 2)), with probability at least 99/100 outputs a (1 + ¢)-approximation

of the I, frequency moment in space

e O(WL T plr gt n - log(R)) bits if 6 = Q(1/y/n).
nl/2-1/p

e O(L . p+r log* n - log(2)) bits if § = O(1/ /).

For any constant p and ¢, the space bound for the sliding-window F}, frequency moment estimation

problem becomes 5(n1/ 2-1/P) for any learning-augmented oracle with a sufficiently high success
probability. This bound is optimal even in the streaming setting by Jiang et al.| (2020); as such, we
obtain a near-optimal algorithm for the learning-augmented F}, frequency estimation problem.
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At a high level, the algorithm is an application of the learning-augmented [}, frequency streaming
algorithm in [Jiang et al|(2020) to the framework we discussed in The guarantees of the
algorithm in Jiang et al.| (2020) can be described as follows.

Lemma 3.2 (Jiang et al.|(2020)). For any given stream, a fixed parameter p > 2, and a stochastlc
heavy-hitter oracle O with success probability 1 — 6, with probability at least 99/100, |Algorithm 2|
computes a (1 + €)-approximation of the F,, frequency using space

o O(WL " og? ) bits if 5 = Q(1/y/n).
. O(w log? n) bits if § = O(1//n).

To apply the reductions of we need to understand the smoothness of the F), frequency
function, which is a standard fact established by previous results.

Lemma 3.3 (Braverman & Ostrovsky|(2007)). The F), frequency function is (e, &P /pP)-smooth.

Finalizing the proof of| and] We apply to the algorithm of

with the smoothness guarantees as in For the success probability, we argue that the
algorithm in[Lemma 3.2|could be made to succeed with probability at least 1 — ¢ with O(log(1/4))
multiplicative space overhead. This can be accomplished by the classical median trick: we run
O(log(1/6)) copies of the streaming algorithm, and take the median of the frequency output. By a
Chernoff bound argument, the failure probability is at most 6.

e . 1/2-1/ .
Let 3 = P /pP; for the deterministic oracle case, we could use g = "—; . log? n and failure

probability &' = O(8/logn) to obtain that the space needed for the streaming algorithm is at most

) nl/2—1/p ) nl/2=1/p
ole.) = 0 (" ogt - log(n/9)) < 0 (" 1o n - log(/e) )

nl/2=1/p

Therefore, the space we need is O (g(s, o) - 10%) =0 ( PP log*n - log(g)), as
desired. Finally, for the case with the randomized learning-augmented oracle, we simply replace the
n!/2=1/P term in the bound with (nd)*~*/?, which would give us the desired statement. O

4 THE ALGORITHMS AND ANALYSIS FOR GENERAL TIME DECAY MODELS

In this section, we describe our algorithms for the general time-decay setting, where an update at
time ¢’ € [m] contributes weight w(t — ¢’ 4 1) to the weight of coordinate i; € [n] at time ¢. The
underlying weighted frequency vector x! at step ¢ is defined as

X! = Z w(t—t +1).
t'Eft]ig=1
The formal definition of the time-decay model and functions could be found in W Given
a non-decreasing function G : R — R?? with G(0) = 0, we define G-moment estimation as the
problem of estimating
= Z G(XL)

When the context is clear, we also use the lower-case x as the input to the function G.

We introduce a general framework that transforms a linear sketch streaming algorithm for the problem
of G-moment estimation into a time decay algorithm for G-moment estimation.

Definition 5 (Smoothness in time-decay models). Given £ > 0, the weight function w and the
G-moment function G are said to be (e, v, )-smooth if:

(1) There exists an integer m,, > 0 such that m,, < min;ezzo w1 (1 +7)"+1/2) —w™((1 +
n)") and G((1 +n)x) — G(x) < § - G(x) for all z > 1. In other words, all updates within
blocks of size m,, will have weight within (1 + 7).

(2) There exists an integer m,, > Osuchthat >, ;. .o w(i) <vand G(z +v) — G(z) <
$-G(1) for all z > 1. In other words, all updates that arrived more than m,, previous

timesteps can be ignored.
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The next theorem provides a framework for polynomial- and exponential-decay models.

Theorem 3. Given a streaming algorithm that provides a (1 + €)-approximation to G-moment
estimation using a linear sketch with k rows, functions G and w that satisfy the (g, v, n)-smoothness

condition (Definition 5|, there exists an algorithm for general time-decay that provides a (1 + ¢)-
approximation to G-moment estimation that uses at most O (E log n log l) bits of space.
n v

Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle O is
suffix-compatible.

We can apply on the F}, moment estimation for the polynomial-decay model. We have

described in[Section 3[the algorithm for F;, estimation (Proposition 3}, and we could apply [Theorem 3]
to|Proposition 3|to obtain the following result.

Theorem 4. Given a constant p > 2, an accuracy parameter € € (0, 1), and a heavy-hitter oracle O

Sor the data stream, there exists a one-pass algorithm that outputs a (1 + €)-approximation to the

. . ~ [ Ad(1/2-1/p)\ .
rectangular I, moment in the polynomial-decay model that uses O (%) bits of space.

We defer the proof of and the rest of the results to

5 EMPIRICAL EVALUATIONS

Experimental Setup. To demonstrate the practicality of our theoretical results, we compared non-
augmented sliding window algorithms with their augmented counterparts. We implemented |Alon
et al. (1999)’s algorithm for £ norm estimation, which we refer to as AMS, and Indyk et al.[(2022)’s
Selective Subsampling (SS) algorithm for /5 norm estimation. We utilized three different oracles for
our augmented algorithms: (Charikar et al.|(2004)’s CountSketch (CS) algorithm, a ChatGPT/Google
Gemini Large Language Model (LLM), and an LSTM trained for heavy hitter prediction. We refer to
the augmented algorithms as AMSA and SSA, respectively.

Datasets. We tested our implementations on three datasets:

(1) A synthetic, skewed random-integer distribution generated by sampling a binomial distribu-
tion with p = 2 - ¢/+/n, where ¢ is the desired number of heavy hitters and n is the number
of distinct integer values, i.e. the universe size.

(2) CAIDA dataseﬂ which contains 12 minutes of IP traffic; each minute contains about 30M
IP addresses. We used subsets of the first minute to test our implementations. Each IP
address was converted to its integer value using Python’s ipaddress library.

(3) AOL datasetﬂ which contains 20M user queries collected from 650k users. Each query
was associated with an anonymous user id; we used a subset of these ids to test our
implementations.

Limited by space, we only show the results for the CAIDA dataset, and defer the results for the other

datasets to We also provide additional experiments details in

Computing Devices. We implemented our experiments in Python 3.10.18. The experiments were
performed on an Apple MacBook Air M2 with 16GB of RAM. Experiments on CAIDA that varied
window sizes took 1100 - 1400 minutes. Experiments that varied sample selection probabilities took
400 - 600 minutes.

5.1 AMS AND LEARNING-AUGMENTED AMS ALGORITHMS

compares the estimation results from our two algorithms to the actual ¢, norm over various
timesteps. Note that n refers to stream length (not universe size) in[Ta] fa] and[3a] The “timesteps” on
the x axis correspond to window sizes: estimates starting at timestep O consider all 1M stream items,

3Available on https://www.caida.org/catalog/datasets/passive_dataset
® Available on https://www.kaggle.com/datasets/dineshydv/
aol-user-session-collection-500k
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AMSA/AMS Estimation on CAIDA (n=1e6)

AMSA/AMS Estimation Error on CAIDA (n=1e6)
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Fig. 1: Experiments for #2 norm estimation on CAIDA. Note on the notation: the variable n in figures
refers to stream length (which is m at other places of the paper) .

i.e. W = m, while subsequent estimates use the most recent 1M — timestep values. In other words,
W = m —t;, where t; is a timestep and m is stream length. As seen in[Ta] AMSA estimates are
much closer to the ground truth than AMS estimates over all selected window sizes, indicating that
the augmented algorithm consistently produces a more accurate estimate. This is further validated
by[Ib] which plots the ratio of estimates to the ground truth over various window sizes. As shown,
AMSA estimates are within a factor of 1.2 over all window sizes, while AMS estimates vary between
factors of about 1.25 and 2.3. Additionally, AMSA estimates deviate from the ground truth by a
somewhat consistent margin, while AMS estimations seem to get closer to the ground truth as the
window size decreases, indicating that the augmented algorithm is more precise over a variety of
window sizes. AMSA’s precision is confirmed by the flatness of its error curve in[Ib|over all window
sizes, especially when compared to the AMS error line.

5.2 SS AND LEARNING-AUGMENTED SS ALGORITHMS

SSA/SS Estimation on CAIDA (m=2.0e+06) SSA/SS Estimation Error on CAIDA (m=2.0e+06) SSA/SS Estimation on CAIDA (m=2.0e+05, W=1.0e+05)
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Fig. 2: Experiments for /3 estimation on CAIDA using multiple oracles

[2a] compares the estimation results from SSA and SS to the actual £3 norm over various window
sizes. All three oracles provide useful augmentation, allowing SSA to estimate norms much closer
to the ground truth than the baseline SS algorithm over all window sizes. Like for AMSA, the SSA
error curve is closer to 1 and flatter than the SS error curve, indicating that SSA is more accurate and
precise than its non-augmented counterpart.

compares the estimation results from SSA and SS to the actual {3 norm over various sample
selection probabilities. Again, all three oracles help augment the baseline algorithm, providing an
estimation closer to the ground truth across all selection probabilities. Using a higher selection
probability roughly corresponds to higher memory usage since more elements must be stored in the
estimate sample. The SSA estimation performs particularly well for very low memory usage and
largely outperforms SS for higher memory usage, meaning that augmentation is beneficial even when
the baseline algorithm has larger estimate sample sizes.
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A MISSING DETAILS OF[SECTION 3]

A.1 THE SLIDING-WINDOW FRAMEWORK AND THE PROOF OF[LEMMA 3.1|

Braverman & Ostrovsky|(2007) gave a reduction from sliding-window streaming algorithms to the
vanilla streaming (approximate) algorithms for («, §)-smooth functions. The statement for such
reductions is as follows.

Proposition 1 (Exact algorithms, Theorem 1 of Braverman & Ostrovsky| (2007)). Let f be an
(«, B)-smooth function, and let LG be a streaming algorithm that outputs f(x) by the end of the
stream, where x is the frequency vector of the stream. Suppose ALG uses g space and performs h
operations per streaming update.

Then, there exists a sliding-window streaming algorithm ALG' that computes a (1 £ «)-approximation

(g+logn)-logn hlogn
((tiognylog n) hlogn

of the sliding-windows using O space and O( 3 ) operations per streaming update.
Proposition 1|takes exact and derterministic streaming algorithms. It turns out that the framework
is much more versatile, and we could obtain similar results using approximate and randomized
streaming algorithms. The new statement is as follows.

Proposition 2 (Approximate algorithms, Theorem 2 & 3 of |Braverman & Ostrovsky|(2007)). Let
f be an («, B)-smooth function, and let ALG be a streaming algorithm that outputs f’(x) such that
(I1—¢)- f(x) < f'(x) < (1 +¢)- f(x) by the end of the stream with probability at least 1 — 6,
where x is the frequency vector of the stream. Suppose ALG uses g(e, ) space and performs h(e, d)
operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG' that computes a (1 + (a + ¢€))-

approximation of the sliding-windows with probability at least 1 — § using O(w)

space and O(%) operations per stream update, where §' = lfgﬁ —.

At a high level, the algorithm of Braverman & Ostrovsky| (2007) uses the idea of smooth histograms.
The algorithm to construct smooth histograms is by running the streaming algorithms with different
starting times and discarding the redundant copies. An overview of the algorithm is given as follows.

Algorithm 1. The algorithm for the framework prescribed in [Propositions 1|and 2|
Input: a stream of elements with m updates; window size V.

Input: a streaming algorithm ALG with g(e, 0) space and h(e, ) update time
Maintain a set A of surviving copies of ALG
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* For each update ¢ € [m]:
(1) Initiate a new copy of ALG (call it ALG")) starting with the t-th update.
(2) Update all ALG € A with (¢, 0%).
(3) Pruning:
(a) Starting from the algorithm ALG € A with the smallest index /.
(b) Find the largest index & such that ALGF > (1 — ) - ALG),
(c) Prune all algorithms in .4 with indices (¢, k& — 1].
* Delete all algorithms that contain expired updates, i.e., algorithms started before t — W'.

Lemma 3.1. Let f be an («, 5)-smooth function, and let ALG be any learning-augmented streaming
algorithm that queries the heavy-hitter oracle O with the following properties:

* ALG outputs f'(x) such that (1 —¢) - f(x) < f'(x) < (14 ¢€) - f(x) by the end of the
stream with probability at least 1 — §;

* O satisfies the suffix-compatible property as prescribed by [Definition 2} and

* ALG uses g(g,0) space and performs h(e,0) operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG' that computes a (1 + (a + ¢€))-

approximation of the sliding-windows with probability at least 1 — § using O((Q(E’Ww)

space and O(%) operations per stream update, where §' = 155 —.

Proof. By Braverman & Ostrovsky| (2007), as long as we could maintain the smooth histogram using
the algorithm in[Algorithm 1} the reductions in [Proposition 1] and [Proposition 2| remain true. By
Algorithm 1} we only need to maintain copies of the algorithms starting at different times ¢ € [m — 1].
Therefore, as long as the oracle O is suffix-compatible, every copy of the algorithm can get the
oracle advice it needs, and the smooth histogram could be maintained. This is sufficient to guarantee
[Proposition 1|and [Proposition 2| O

A.2 MISSING DETAILS OF THE SLIDING-WINDOW Fp ALGORITHM

We provide a brief description of the algorithm as in[Algorithm 2} which, in turn, uses the following
result as a black-box.

Proposition 3. [Alon et al.|(1999); Indyk & Woodruff] (2005)); /Andoni et al.| (2011))] There exists
a randomized algorithm such that given x € R™ as a stream of updates, computes a (1 + ¢)-

approximation of ||x||§ with probability at least 99/100 using a space O(:;%f//: -log? n) space.

Algorithm 2. The algorithm for learning-augmented streaming 7, moment.
Input: x given a stream of updates

Input: independent copies ALG; and ALG for the algorithm in
* For each element update on x;:
(1) Query whether x; is a heavy hitter, i.e., [x;|" > ﬁ Il
(2) If Yes, use ALG; for items with predictions |x;|” > ﬁ (Il
(3) Otherwise, compute the F}, frequency of the non-heavy hitters as follows.
(a) Sample x; with probability p = 1/+/n.

(b) Let x be the frequency vector obtained from the sampled non-heavy hitter
elements.

(c) Compute the F), frequency of X using ALGy and re-weight with p.
e Summing up the results of ALG; and ALG, to output.
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A.3 RECTANGLE Fj,, FREQUENCY FOR p > 2

We now move to learning-augmented rectangle F), frequency algorithms for p > 2. We combine the
algorithm statements for deterministic and stochastic oracles as follows.

Theorem 5. There exists a sliding-window streaming algorithm that, given a stream of elements from
[A)? in a sliding window, a fixed parameter p > 2, and a stochastic suffix-compatible heavy-hitter
oracle O with success probability 1 — § (as prescribed by |[Definition 2)), with probability at least
99/100 outputs a (1 + €)-approximation of the F, frequency in space

+ O (ST poly (2, d log A)) bits if 6 = 01/ ).

Ad1/2=1/p)

* O(%—2— -p" - poly(2,d,log A) bits if § = O(1//n).

Furthermore, assuming the deterministic oracle, the sliding-window algorithm uses at most
a(1/2-1/p) . .
O(AsTPP -p? - poly(Z,d,log A)) time to process each item.

Proof. The theorem statement before the “furthermore” part follows directly from [Theorem 2] In
particular, note that the rectangle F}, frequency problem could be framed as F}, frequency with

n < A?, and plugging in the number would immediately lead to the desired space bounds.

For the process time, Jiang et al.[(2020) has a (1 + €)-approximate algorithm for the rectangle F),
o) - imiciy poly(2,d,log A)) time (without the p? /P

e4
terms) and success probability 99/100. We could use the median trick to boost the success probability
to 1 — § with O(log(1/d)) space overhead and no time complexity overhead (we could process
copies of algorithms in parallel). Therefore, applying with the same smoothness

guarantees as in (rectangle F), is a sub-family of £, frequencies) leads to the desired

O(% -p? - poly(Z,d,log A) processing time in the sliding-window model. O

norm with per-update processing time

A.4 (k,p)-CASCADED NORMS

We now move the results for the learning-augmented sliding-window (k, p)-cascaded norm algorithm.
The guarantees of the algorithm are as follows.

Theorem 6. There exists a sliding-window streaming algorithm that, given a n X d matrix X repre-
sented as a stream of insertions and deletions of the coordinates X; ;, fixed parameters k > p > 2,
and a (deterministic) suffix-compatible heavy-hitter oracle O, with probability at least 99/100 outputs

a (1 + €)-approximation of the F), frequency in space O(nl_%_% d2 7 poly(e%k, k*P logn)).

For any constant choices of p, k, and &, our bound asymptotically matches the optimal memory bound
for the learning-augmented streaming algorithm. Our algorithm takes advantage of the framework
of Jayram & Woodruff] (2009) and Jiang et al.| (2020) with the smooth histogram framework as
in and 2| The algorithm for streaming learning-augmented cascaded norm is quite
involved. As such, we provided a sketch in[Algorithm 3| and refer keen readers toJayram & Woodruff
(2009) and Jiang et al.|(2020) for more details. In what follows, we use F},(X) to denote the vector
F, norm of the elements in X.

Algorithm 3. Learning-augmented streaming (%, p)-cascaded norm.
Input: a n x d matrix X as the input; parameters k£ and p
Input: a heavy hitter oracle predicting whether [X; ;|” > [|X||} /(d"/? - n'~?/2F)
* Parameters:
o Q=0n""* sothat T = (nd-Q)Y? = d'/? . n'~»/?F,
o Levels £ € [O(logn)]; layers ¢t € [O(logn/¢)]; Te = T/2°.
o Parameters ¢, 7, 0, B for layering and sampling (as per Jayram & Woodruff] (2009)).

 Apply count-sketch type of algorithms (e.g., the algorithm of during the
stream to maintain elements that are sampled by the level-wise pre-processing step.
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* Level-wise processing for level ¢ € [O(logn)]:

(1) Sample each row with probability 1/2%; let X(©) be the resulting matrix.

(2) Divide the entries in X(¥) among layers: each layer contains the elements with
magnitude in [(n'~1, (n'].

(3) Alayer t is contributing if | S (X D) |({n*)? > F,(X®))/(B6), where S; (X)) are
entries in layer ¢.

(4) Further divide the elements in contributing layers into heavy hitters and non-heavy
hitters. This results in contributing layers with entirely heavy hitters vs. non-heavy
hitters.

(5) For each contributing layer ¢:

(a) If it is formed with non-heavy hitters (light elements) and entries /V; is more
than 3; = 0Q|S:(X)|(¢n')P /F,(X®)), down sample with rate Q/T}.

(b) Let j be the parameter such that |S;(X(9)[/27 < By < |S¢(X)|/21.

(c) Sample each entry of the layer with rate 1/27 to obtain Y as the resulting matrix.

(6) Aggregate all Y, elements (using the count-sketch algorithm) as the pre-processed
vector Y (©),

* Adding up all Y to get Y and perform “{,-sampling” process on Y in the same manner
of Jayram & Woodruff (2009)) to obtain Y.

» Compute Fj(F,(Y)) as the estimation.

Jiang et al.| (2020) provided the guarantees for [Algorithm 3| with the heavy-hitter oracle for vanilla
streaming algorithms.

Lemma A.1 (Jiang et al.| (2020)). Lete > 0 and k > p > 2 be given parameters. Furthermore, let
X be ann x d matrix given as a stream of insertions and deletions of the coordinates X; ;. Then,

Algorithm 3|outputs a (1 %+ €)-approximation of the (k, p)-cascaded norm with probability at least
99/100 using O(n'=% 3% . a7 v - poly(L,logn)) space.

Next, we need to bound the smoothness of the (k, p)-cascaded norm. In what follows, we write
the (k, p)-cascaded norm as a function for “norm of norms”, i.e., in the form of Fj(F,(X)) :=

e\ 1/k
(Z?’_l ((ijl |va|p)1/p> ) for k > p > 2. Our technical lemma for the smoothness of such
functions is as follows.

Lemma A.2. Suppose F), is (3, a)-smooth and Fy is (v, B)-smooth, then Fy,(F,(X)) is (v, ®)-
smooth.

Proof. Let X4 be a matrix obtained by a suffix of updates of XZ. Furthermore, let X be a common

suffix of X and X”Z. We also partition the updates in C = C; U Cy, and C; and C; could be

empty sets. We further let X, . (resp. X*}:, Xfi, and Xf:) be the updates of the vector in the i-th

(2

row of X. For each i € [n], let F), (Xf}:) and F,(X[.) be a-close. We lower bound the value of
F(F,(XAYC1)) as follows.

. LIV
F(Fy(XA20) = |57 (F (X))
Zzl LIV
> Z(l —B)- (F,,(Xfiucl)) (by the (3, «)-smoothness of F},)
- N 1/k
=(1-5)- Z (Fp(Xfucl)>
i=1
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Therefore, for any (possibly empty) X, if F,(X{!) and F,(XP) are a-close, we have that
F.(F,(XAYC1)) and Fy (F,(XAYC1)) are B-close. As such, since F, is (7, 3)-smooth, we have that

Fu(Fp(XAY) 2 (1= 7) - Fr(F,(XPY9)),

which is as the desired property for (v, «)-smoothness. O

Finalizing the proof of [Theorem 6] We again apply[Proposition 2|(with[Cemma 3.1)) to the algorithm
of [Lemma A.1} By|Lemma 3.3[and|[Lemma A.2| since F}, is (¢, P /p?)-smooth and F}, is (g, * /k")-

X 13
smooth, the (k, p)-cascaded norm is (¢, %)-smooth.

With the same median trick as we used in the proof of [Theorem 1} we could show that we only
need O(log(1/d)) multiplicative space overhead on the space to ensure|Algorithm 3|succeeds with

probability at least 1 — §. Therefore, let 5 = %), we could obtain

1

g(e, 8y =0 <n1k21;v -d

N|=

- poly(é, logn) - 10g(”/5)>

P 1_1 1
<0 (nli% ~d?7p ~poly(,logn,kp)> )
€
Therefore, the space we need is
1 1
0 <g(5,5’)) : C’;”) ~0 (nl—i—z”k . d¥% - poly (Ekp,logn,kkp>) .

In the above calculation, we used p < k to bound pP < k*P. This gives the bound as desired by the
theorem statement. O

B  MISSING DETAILS IN[SECTION 4

We give the missing details of [Section 4]in this section, including the proof of and the
results. We start with the re-statement of [Theorem 3| The algorithm for the framework is shown as in

Algorithm I}
g

Algorithm 1 Framework for time decay G-moment estimation.

Input: Sketch matrix A € R**™ for G-moment estimation with post-processing function f(-),
accuracy parameter ¢ € (0,1)
1: Let v,n, m,, m, be defined as above
2: Maintain a linear sketch with A for each block B; of size m,,
3: for each time ¢t € [m] do

4 u < 0F

5 for each block B; do

6: Let Av; be the linear sketch for block B;
7: Let t; be the largest timestep in block B;
8: ift—t;+1>n, then

9: Delete block B;
10: else if all weights in blocks B; and B; are within /1 4 ) then
11: Merge blocks B; and B;

12: else
13: wge\/ll_Tn~w(mfti+1)
14: u+u+tw - Av;

15: return f(u)

Theorem 3. Given a streaming algorithm that provides a (1 + €)-approximation to G-moment
estimation using a linear sketch with k rows, functions G and w that satisfy the (¢, v, n)-smoothness

condition (Definition 5), there exists an algorithm for general time-decay that provides a (1 + ¢)-

, . . . k 1 .
approximation to G-moment estimation that uses at most O (5 log n log ;) bits of space.
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Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle O is
suffix-compatible.

Proof. Consider a fixed @ € [n] and all times ¢,,, ..., %, < ¢ with updates to a. Then the weight of
aattimetis) epr] w(t —tq; +1). Let w’ be the weight assigned to time ¢ by the linear sketch. We

claim that
1

\/1—1—77.

Consider a fixed block B;. Firstly, note that by definition of n,, and by construction, the weights
of all indices in each block are within a multiplicative factor of \/1 + 7. All elements in block B;
1

are assigned weight w;, to be it times the weight of the most recent item in B;. Thus, we have

VI+n wt -t +1) <wj <w(t—t,, + 1) for any update t,; to a within block B;. Finally, for
any update ¢, in a block that does not have a sketch must satisfy ¢ — ¢,, + 1 > n,. By definition,
the weights of all such updates is at most v. Hence, we have

1
SN Wty 4 1) v < S Wt + 1) <Y Wt~ t, + 1),

1
+ JElr] Jjelr] Jj€lr]

St —te, +1) v < S Wt —ta, +1) < Y wlt —ta, +1).

JElr] Jelr] Jj€lr]

3

as desired.
—_—

Let G(z;) be the weight of coordinate ¢ € [n] implicitly assigned through this process. By definition
of n and v, it then follows that (1 — £) - G(z;) < G(;) < G(x;). Summing across all i € [n], we

have
3 (1 - 2) 3 Gla) < Gla) < Y Gla).
i€[n] i€[n]

i€[n]

Thus, it suffices to obtain a (1 =+ %)—approximation to the G-moment of the frequency vector weighted
by w’. Since A is a linear sketch and w} - v; is precisely the frequency vector of block B; weighted
by w’, then this is exactly what the post-processing function f achieves. Therefore, correctness of the
algorithm holds.

It remains to analyze the space complexity. Each linear sketch A - v; uses O (k - log n) bits of space
assuming all weights and frequencies can be represented using O (log n) bits of space. Naively, the
number of such linear sketches is at most Z—: This can be optimized for specific functions w(-) and

G(+), which we shall do for specific applications. However, it is clear that the space usage is at most

0] (Z—: - klog n) bits of space.

In fact, observe that we maintain at most three blocks containing weights within a multiplicative factor
of (1 + 7). The smallest weight of an index in a block is at least % > &, while we have w(1) = 1

by assumption. Therefore, the number of blocks is at most 3log; % since w is non-increasing.

. k 1 .
Hence, the algorithm uses at most O (5 log nlog ;) bits of space.

Finally, the “furthermore” part of the statement regarding the suffix-compatible oracles follows from

the same argument as we made in|Lemma 3. O

We now present the results for the time-decay models in order. We first consider the polynomial
decay model, where we have w(t) = ti for some fixed parameter s > 0. For F,, moment estimation,
rectangular moment estimation, and cascaded norms, we have that the G-moment is still preserved
within a factor of (1 + €) even when the coordinates are distorted up to a factor of (1 + O (¢)).

Observe that in this setting, it suffices to set 1 to be O (¢) and v to be O (3)

m

Recall that in the standard streaming model, I}, moment estimation can be achieved using the
following guarantees:

Proposition 3. [Alon et al.|(1999); Indyk & Woodruff| (2005); |Andoni et al.| (2011)] There exists
a randomized algorithm such that given x € R™ as a stream of updates, computes a (1 + ¢)-

approximation of ||x||§ with probability at least 99/100 using a space O(% -log? n) space.
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By applying|[Theorem 3|to [Proposition 3| we have the following algorithm for F,, moment estimation
in the polynomial-decay model.

Theorem 7. Given a constant p > 2 and an accuracy parameter € € (0, 1), there exists a one-pass

algorithm that outputs a (1 + ¢)-approximation to the F,, moment in the polynomial-decay model
1-2/p

that uses O (22;74/17) bits of space.

By comparison, using the approach of Jiang et al.|(2020), we have the following guarantees:

Theorem 8. Given a constant p > 2, an accuracy parameter € € (0, 1), and a heavy-hitter oracle O

for the data stream, there exists a one-pass algorithm that outputs a (1 + €)-approximation to the F,,

. . ~ [ p1/2-1/ .
moment in the polynomial-decay model that uses O (”ETMPP) bits of space.

Similarly, we can use the following linear sketch for rectangular F}, moment estimation:

Proposition 4. [Tirthapura & Woodruff (2012) Given a constant p > 2 and an accuracy parameter

e € (0,1), there exists a one-pass algorithm that uses a linear sketch and outputs a (1 + ¢€)-

Lo . . ~ [ Ad=2/p) .
approximation to the rectangular F,, moment in the streaming model that uses O (Aeﬂiupp) bits of

space.

By applying [Theorem 3| to [Proposition 4] our framework achieves the following guarantees for
rectangular F, moment estimation in the polynomial-decay model.

Theorem 9. Given a constant p > 2 and an accuracy parameter € € (0, 1), there exists a one-pass

algorithm that outputs a (1+¢)-approximation to the rectangular F,, moment in the polynomial-decay

=~ (Ad-2/p) ..
model that uses O (%74/:) bits of space.

By comparison, using the approach of |Jiang et al.| (2020), we have the following guarantees (restated

from [Section 4)):

Theorem 4. Given a constant p > 2, an accuracy parameter € € (0, 1), and a heavy-hitter oracle O

for the data stream, there exists a one-pass algorithm that outputs a (1 + €)-approximation to the

. . ~ [ Ad/2-1/p)\ .
rectangular F,, moment in the polynomial-decay model that uses O (%) bits of space.

Similarly, consider the exponential decay model, where we have w(t) = s for some fixed parameter
s € (0, 1]. For F,, moment estimation, rectangular moment estimation, and cascaded norms, we have
that the G-moment is still preserved within a factor of (1 4 ) even when the coordinates are distorted
up to a factor of (1 + O (¢)). Again, it suffices in this model to set 7 to be O () and v to be O ().
Therefore, by applying Tﬁeorem 3[to the relevant statements, we obtain the following results for F),
moment estimation in the exponential-decay model.

Theorem 10. Given a constant p > 2 and an accuracy parameter € € (0, 1), there exists a one-pass

algorithm that outputs a (1 + €)-approximation to the F,, moment in the exponential-decay model
1-2/p

that uses O (%) bits of space.

Theorem 11. Given a constant p > 2, an accuracy parameter € € (0, 1), and a heavy-hitter oracle

O for the data stream, there exists a one-pass algorithm that outputs a (1 + €)-approximation to the

. . ~ [ a1/2-1/ .
F,, moment in the exponential-decay model that uses O (HETM;) bits of space.

Similarly, we obtain the following results for rectangular F}, moment estimation in the exponential-
decay model.

Theorem 12. Given a constant p > 2 and an accuracy parameter ¢ € (0, 1), there exists a one-pass

algorithm that outputs a (1+¢)-approximation to the rectangular F,, moment in the exponential-decay

= ([ Ad(=2/D) .
model that uses O (Aaﬂiypp) bits of space.

Theorem 13. Given a constant p > 2, an accuracy parameter € € (0, 1), and a heavy-hitter oracle

O for the data stream, there exists a one-pass algorithm that outputs a (1 + £)-approximation to the

. . ~ ([ Ad/2-1/p) .
rectangular F, moment in the exponential-decay model that uses O (%) bits of space.
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C ADDITIONAL DETAILS FOR THE EXPERIMENTS

When implementing our experiments, we experimentally chose multiple parameters for our augmented
and non-augmented algorithms. This section provides details and justifications for these parameters
and presents additional experiments.

C.1 PARAMETERS
C.1.1 ORACLES & TRAINING

To demonstrate that a heavy-hitter oracle is feasible, we used several oracles in our experiments. All
three oracles were used for experiments on the CAIDA dataset, while only the Count-Sketch oracle
was used for the other datasets. Each oracle was trained on a data stream prefix and was asked to
identify items that would be heavy hitters in the stream suffix.

Count-Sketch Oracle. For our first oracle, we implemented |Charikar et al.|(2004)’s Count-Sketch
algorithm. The prefix sketching results became our heavy hitters for the suffix. For the synthetic and
CAIDA datasets, we used a 100K length prefix, repeated the algorithm 5 times, used 300 hashing
buckets, and set € = 0.1. We changed the prefix to 10K for the AOL dataset but maintained the other
parameters.

LLM Oracle. For our Large Language Model (LLM) oracle, we provided the same 100K CAIDA
prefix to ChatGPT and Google Gemini and used the following prompt:

Given this stream subset, predict 26 ip addresses that will occur most frequently in
the future data stream

ChatGPT and Google Gemini predicted identical heavy hitters, so we combined their results into
a single LLM oracle. Since Count-Sketch identified 26 heavy hitters, we specifically asked for 26
ip addresses to ensure a reasonable comparison between the oracles. The LLM and Count-Sketch
algorithms agreed on the identities of 10/26 heavy-hitters.

LSTM Oracle. For our LSTM oracle, we trained a heavy-hitter predictor on the same 100K CAIDA
prefix. The LSTM consisted of an embedding layer that embedded the universe to 32 dimensions, a
single LSTM layer with embedding dimension 32 and hidden dimension 64, and a fully connected
output layer. The predictor was trained for 50 epochs with Binary Cross-Entropy (BCE) Loss using
Adam Optimizer with learning rate 0.001. The batch size was set to 64.

C.1.2 AMS AND LEARNING-AUGMENTED AMS

We implemented |Alon et al.| (1999)’s algorithm, which we call AMS, as a baseline for /5 norm
approximation on the CAIDA dataset. We augmented the baseline algorithm with heavy-hitters
from the oracles to compare the algorithms’ performance. To convert the streaming algorithms into
sliding window ones, we tracked multiple instances of each algorithm. Each instance started at a
different timestep to account for a different sliding window of the data stream. Relying on|Braverman
& Ostrovsky| (2007), when two instances’ ¢o norm approximation was within a factor of two, we
discarded one instance and used the other to approximate the discarded instance’s sliding window. We
allowed a maximum of 20 algorithm instances. Each instance of the algorithm contained 11 estimates
(obtained with different seeds), so we estimated the /> norm as the median of these estimates.

C.1.3 SS AND LEARNING-AUGMENTED SS

For higher order norm estimation, we implemented Indyk et al.| (2022)’s Selective Sub-sampling
(SS) algorithm. Like before, we created an augmented version of the algorithm and compared its
performance to the baseline on the CAIDA, AOL, and synthetic datasets. We used the same histogram
mechanism to create a sliding window version of both algorithms. We repeated both algorithms 15
times: each timestep instance of the algorithm held 3 sets of 5 estimates (obtained with different
seeds) for the same window. We obtained our /3 norm estimate by first taking the mean of each of
the 5 estimates, then taking the mean of the remaining 3 values. Again, we allowed a maximum of 20
algorithm instances.
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C.2 EXPERIMENTS ON ADDITIONAL DATASETS

C.2.1 SYNTHETIC DATASET
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Fig. 3: Experiments for {3 estimation on synthetic data

[3a] compares the results from the estimation algorithms, SSA and SS, to the actual ¢3 norm over
multiple window sizes for our synthetically generated dataset described in[section 5} Additionally, we
include “SSA Scaled” and “SS Scaled”, which are obtained by scaling the estimates for W = m (the
largest window size) by % to estimate smaller window sizes. These methods aim to create natural
heuristics to transform vanilla streaming algorithms into sliding-window ones. Intuitively, simply
rescaling to estimate a smaller window should work well if the distribution remains unchanged over
the stream. However, our synthetic data deliberately includes a distribution shift to analyze if our
augmented algorithm, SSA, provides benefits when distribution changes occurs. As seen in[3a] the
non-augmented algorithms, SS and SS-Scaled, are significantly further from the ground truth than
the augmented-algorithms, SSA and SSA-Scaled. This is supported by the error curves in[3b} which
show that the gap between the augmented and non-augmented algorithms increases as the window
size shrinks, highlighting that an adversarial distribution shift causes the algorithms to lose accuracy.
Between SSA and SSA-scaled, SSA provides an estimate much closer to the ground truth across
window-sizes.

C.2.2 AOL DATASET

SSA/SS Estimation on AOL (n=2.0e+06) SSA/SS Estimation on AOL (n=2.0e+05, W=1.0e+05)
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Fig. 4: Experiments for {3 estimation on AOL

provides the estimation results from SSA and SS to the actual 3 norm over various window sizes
for the AOL dataset, a second real-world dataset. The x-axis is converted from timesteps to window
sizes and log-scaled for better interpretability; the y-axis is also log scaled. Combined with [Ab] we
see that SSA is more accurate than SS for W > 125, 000. However, given its flat error curve and
close estimates, SS seems to be a more reliable estimate for the AOL dataset compared to the CAIDA
dataset. We suspect that SSA is not as advantageous over SS because the AOL dataset is more uniform
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than the CAIDA dataset and our synthetic dataset, which has a distribution shift. Nevertheless, SSA
remains more accurate compared to SS in this setting. compares the estimation results from
SSA and SS to the actual /3 norm over various sample selection probabilities. As seen in the figure,
SSA provides more accurate estimates of the £5 norm than SS for especially small sample selection
probabilities. As the probabilities increase, SS benefits from increased sample sizes, ultimately
providing better estimates of the /3 norm. Cumulatively, SSA provides more accurate estimates over
most of the sample selection probabilities, but especially for lower probabilities, indicating that it is
more beneficial in low space settings.

D THE HEAVY-HITTER ORACLE AND LEARNING THEORY

In this section, we discuss the theoretical aspect of the implementation of the heavy-hitter oracle using
the Probably Approximately Correct (PAC) learning framework. The framework helps to demonstrate
that a predictor of high quality can be learned efficiently, given that the input instances are from
a fixed probability distribution. The discussion of implementing oracles for learning-augmented
algorithms enjoys a long history, see, e.g.,[Izzo et al.|(2021); [Ergun et al.| (2022); |Grigorescu et al.
(2022); Braverman et al.| (2025)), and we adapt this framework for the purpose of our heavy-hitter
oracles.

Initially, we assume an underlying distribution, denoted as D, from which the input data (frequency
vectors of x) is sampled. This setup is standard for solving the frequency estimation problem with or
without the learning-augmented oracles. The machine learning model for the oracle would perform
well as long as no generalization failure or distribution shift occurs.

Our objective is then to efficiently derive a predictor function f from a given family of possible
functions F. The input for any predictor f consists of a frequency vector of x, and the output of the
predictor is a vector {0, 1}" indicating whether each x; is a heavy hitter. We then introduce a loss
function L : f x G — R, which quantifies the accuracy of a predictor f when applied to a specific
input instance x. One could think of L as the function that accounts for the incorrect predictions
when compared to the actual heavy-hitter information.

Our goal is to learn the function f € F that minimizes the following objective expression:

min E [L(f(x))]. (H

fEF x~D

Let f* represent an optimal function within the family J, such that f* = argmin ED [L(f(x))]isa

function that minimizes the aforementioned objective. Assuming that for every frequency vector x
and every function f € F, we can compute both f(x) and L(f(x)) in time T'(n), we can state the
following results using the standard empirical risk minimization method.

1

Theorem 14. An algorithm exists that utilizes poly (T (n), g) samples and outputs a function fsuch

that with probability at least 99/100, we have

E, L] <min B IL(76))] <.

In essence, [Theorem 14]is a PAC-style result that provides a bound on the number of samples required
to achieve a high probability of learning an approximately optimal function.

In what follows, we discuss the proof of in more detail. We first define the pseudo-
dimension for a class of functions, which extends the concept of VC dimension to functions with
real-valued outputs.

Definition 6 (Pseudo-dimension, e.g., Definition 9 in |Lucic et al.|(2018))). Let &’ be a ground set,
and let F be a set of functions that map elements from X to the interval [0, 1]. Consider a fixed set
S ={x1,...,z,} C X, asetof real numbers R = {ry,rg,--- ,7,}, where each r; € [0, 1]. Fix
any function f € F, the subset Sy = {x; € S| f(x;) > r;} is known as the induced subset of S
(determined by the function f and the real values R). We say that the set S along with its associated
values R is shattered by F if the count of distinct induced subsets is [{S; | f € F}| = 2". Then, the
pseudo-dimension of F is defined as the cardinality of the largest subset of X" that can be shattered
by F (or it is infinite if such a maximum does not exist).
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By employing the concept of pseudo-dimension, we can now establish a trade-off between accuracy
and sample complexity for empirical risk minimization. Let H be the class of functions formed by
composing functions in F with L; thatis, H := {Lo f : f € F}. Furthermore, through normalization,
we can assume that the range of L is in the range of [0, 1]. A well-known generalization bound is
given as follows.

Proposition 5 (Anthony & Bartlett|(2002)). Let D be a distribution over problem instances in X, and
let H be a class of functions h : X — |0, 1] with a pseudo-dimension dy;. Consider t independent
and identically distributed (i.i.d.) samples X1, -+ ,x; drawn from D. Then, there exists a universal
constant cq such that for any € > 0, if t > cq - ‘i—?}, then for all h € H, we have that with probability
at least 99/100:

t

2> hx) — B[]

‘ x~D
1=1

<L e

The following corollary is an immediate consequence derived by applying the triangle inequality on
Corollary 15. Let x1,--- , Xy be a set of independent samples (frequency vectors) drawn from D,
and let h € H be a function that minimizes % . Zle h(x;). If the number of samples t is selected as
specified in ie,t>co- %, then with a probability of at least 99/100, we have

] < g w2

Finally, we could relate the pseudo-dimension with VC dimension using standard results.

Lemma D.1 (Pseudo-dimension and VC dimension, Lemma 10 in |[Lucic et al.| (2018)). For any
h € H, let By, be the indicator function of the threshold function, i.e., By (z,y) = sgn(h(z) — y).
Then the pseudo-dimension of H equals the VC-dimension of the sub-class By, = {Bp | h € H}.

Lemma D.2 (Theorem 8.14 in /Anthony & Bartlett (2002)). Let 7 : R® x R® — {0, 1}, defining the
class
T={zx—7(0,2):0 € R*}.

Assume that any function T can be computed by an algorithm that takes as input the pair (0, x) €
R® x R® and produces the value 7(0, ) after performing no more than t of the following operations:

* arithmetic operations +, —, X, / on real numbers,
* comparisons involving >, >, <, <, =, and outputting the result of such comparisons,
* outputting 0 or 1.

Then, the VC dimension of T is bounded by O(a*t? + t?alog a).

By|Lemma D.I|and [Lemma D.2] we could straightforwardly bound the VC dimension of the concept
class F, which, in turn, bounds the pseudo-dimension of the concept class F. This completes the last

peice we need to prove

Proof of Theorem From Lemma[D.T]and we obtain that the pseudo-dimension of F
is bounded by O(n? - T?(n)) by using a = n and t = T'(n). This bound could in turn be bounded
as poly(T'(n)). As such, by we only need poly(7'(n))/e? samples. We assumed f(x)
and L(f(x)) can be computed in time 7'(n), and applying any poly-time EMR algorithm gives us
the total running time of poly(7'(n), 1/¢), as desired. O

It is important to note that[Theorem 14]is a generic framework for learning-augmented oracles. If
every function within the family of oracles under consideration can be computed efficiently, then
[Theorem 14]ensures that a polynomial number of samples will be adequate to learn an oracle that is
nearly optimal.
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