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ABSTRACT

Motivated by the prevalence and success of machine learning, a line of recent work
has studied learning-augmented algorithms in the streaming model. These results
have shown that for natural and practical oracles implemented with machine learn-
ing models, we can obtain streaming algorithms with improved space efficiency
that are otherwise provably impossible. On the other hand, our understanding
is much more limited when items are weighted unequally, for example, in the
sliding-window model, where older data must be expunged from the dataset, e.g.,
by privacy regulation laws. In this paper, we utilize an oracle for the heavy-hitters
of datasets to give learning-augmented algorithms for a number of fundamental
problems, such as norm/moment estimation, frequency estimation, cascaded norms,
and rectangular moment estimation, in the time-decay setting. We complement
our theoretical results with a number of empirical evaluations that demonstrate the
practical efficiency of our algorithms on real and synthetic datasets.

1 INTRODUCTION

The streaming model of computation is one of the most fundamental models in online learning and
large-scale learning algorithms. In this model, we consider an underlying frequency vector x ∈ Rn,
which is initialized to the zero vector 0n. The data arrives sequentially as a stream of m updates,
where each update at time t ∈ [m] is denoted by (t, σt). Each σt modifies a coordinate xi of the
frequency vector for some i ∈ [n] by either increasing or decreasing its value. The goal is usually to
compute a function f(x) of this underlying frequency vector using memory substantially smaller
than the input dataset size. The data stream model has widespread applications in traffic monitoring
(Chen et al., 2021), sensor networks (Gama & Gaber, 2007), data mining (Gaber et al., 2005; Alothali
et al., 2019), and video analysis (Xu et al., 2012), to name a few. The research on data streams enjoys
a rich history starting with the seminal work of Alon et al. (1999). Some of the most well-studied
problems in the data stream model are often related to frequency (moment) estimation, i.e., given
the frequency vector x, compute the Fp frequency ∥x∥pp =

∑n
i=1 |xi|p. A long line of work has

thoroughly explored streaming algorithms related to frequency estimation and their limitations (see,
e.g., Alon et al. (1999); Chakrabarti et al. (2003); Bar-Yossef et al. (2004); Charikar et al. (2004);
Woodruff (2004); Cormode & Muthukrishnan (2005); Indyk & Woodruff (2005); Li (2008); Andoni
et al. (2011); Kane et al. (2011); Braverman & Ostrovsky (2013); Braverman et al. (2014; 2018);
Woodruff & Zhou (2021a;b); Indyk et al. (2022); Braverman et al. (2024a) and references therein).

For p ⩾ 2, the celebrated count-sketch framework (Charikar et al., 2004; Indyk & Woodruff, 2005)
can be used to achieve streaming algorithms that compute a (1±ε)-approximation of the Fp frequency
moment in Õ(n1−2/pp2/ poly(ε))1 space (Charikar et al., 2004; Indyk & Woodruff, 2005; Andoni
et al., 2011). The bound has since been proved tight up to polylogarithmic factors (Chakrabarti
et al., 2003; Bar-Yossef et al., 2004; Woodruff, 2004; Woodruff & Zhou, 2021b; Braverman et al.,
2024a). As such, for very large p, any streaming algorithm would essentially need Ω̃(n) space. The
conceptual message is quite pessimistic, and we would naturally wonder whether some beyond-worst-
case analysis could be considered to overcome the space lower bound.

Learning-augmented algorithms. Learning-augmented algorithms have become a popular frame-
work to circumvent worst-case algorithmic hardness barriers. These algorithms leverage the predictive

1Throughout, we use Õ(·) and Ω̃(·) to hide polylogarithmic terms unless specified otherwise.
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power of modern machine learning models to obtain some additional “hints”. Learning-augmented
algorithms have been applied to problems such as frequency estimation (Hsu et al., 2019; Jiang et al.,
2020; Chen et al., 2022; Aamand et al., 2025), metric clustering (Ergun et al., 2022; Huang et al.,
2025), graph algorithms (Braverman et al., 2024b; Cohen-Addad et al., 2024; Dong et al., 2025;
Braverman et al., 2025), and data structure problems (Lin et al., 2022; Fu et al., 2025). Notably, Jiang
et al. (2020) showed that for the Fp frequency moment problem with p ⩾ 2, with the presence of
a natural and practical heavy-hitter oracle, we can obtain (1 ± ε)-approximation algorithms with
Õ(n1/2−1/p/poly(ε)) space – a space bound impossible without the learning-augmented oracle.
Jiang et al. (2020) also obtained improved space bounds for related problems such as the rectangle
Fp frequency moments and cascaded norms, highlighting the effectiveness of learning-augmented
oracles.

Time-decay streams. The results in Jiang et al. (2020) and related work (Hsu et al., 2019; Chen et al.,
2022; Aamand et al., 2025) gave very promising messages for using learning-augmented oracles
in streaming frequency estimation. On the other hand, almost all of these results only focus on
estimating the frequencies of the entire stream. As such, they do not account for the recency effect
of data streams. In practice, recent updates of the data stream are usually more relevant, and older
updates might be considered less important and even invalid. For instance, due to popularity trends,
recent songs and movies usually carry more weight on entertainment platforms. Another example of
the recency effect is privacy concerns. To protect user privacy, the General Data Protection Regulation
(GDPR) of the European Union mandates user data to be deleted after the “necessary” duration
(GDPR16). Furthermore, some internet companies, like Apple Inc. (2021), Facebook (2021), Google
LLC (2025), and OpenAI (2024) have their own policies on how long user data can be retained.

The time-decay frameworkin the stream model is a great candidate that captures the recency effect.
In this model, apart from the data stream, we are additionally given a function w supported on [0, 1]
that maps the importance of the stream updates in the past. In particular, at each time step t, we will
apply w on a previous time step t′ < t to potentially discount the contribution of the previous update,
i.e., w(τ) ⩽ w(1) for τ ⩾ 1 2. Our goal is to compute a function (e.g., Fp) of the frequencies with
the weighted stream after the update at the t-th time for t ∈ [m]. In general, algorithms for standard
data streams do not directly imply algorithms in the time-decay model. Therefore, it is an interesting
direction to ask whether the learning-augmented heavy-hitter oracle could be similarly helpful for
frequency estimation in time-decay models.

Typical time-decay models include the polynomial decay model (Kopelowitz & Porat, 2005; Cormode
et al., 2007; 2009; Braverman et al., 2019), where the importance of the updates decays at a rate of
1/τs for some fixed constant s, and the exponential decay model (Cohen & Strauss, 2003; Cormode
et al., 2008; 2009; Braverman et al., 2019), where the decay is much faster as a function of 1/sτ for
some fixed constant s. The study of frequency estimation often appears in conjunction with the time
decay model. In addition to the space bound studied by, e.g., Kopelowitz & Porat (2005); Braverman
et al. (2019), several papers have approached the problem from the practical perspective (Xiao
et al., 2022; Pulimeno et al., 2021). However, to the best of our knowledge, the general time-decay
streaming model has not been well studied in the learning-augmented setting.

A notable special case for the time-decay framework is the sliding-window stream model. Here, we
are given a window size W , and the time-decay function becomes binary: w(t′) = 1 if t′ is within
a size-W window (i.e., t′ ⩾ t −W + 1), and w(t′) = 0 otherwise. For this special application,
Shahout et al. (2024) studied the learning-augmented Window Compact Space Saving algorithm in
sliding-window streams. Although a pioneering work with competitive empirical performances, the
algorithm in Shahout et al. (2024) suffers from two issues: i). it does not give any formal guarantees
on the space complexity; and ii). for technical reasons, the paper deviates from the heavy-hitter
oracle as in Jiang et al. (2020), and instead used a “next occurrence” oracle that is less natural and
arguably harder to implement. Specifically, the hard instances in existing lower bounds for streaming
algorithms involve identifying Lp heavy-hitters and approximating their contributions to the Fp

moment (Woodruff & Zhou, 2021b). Since the “next occurrence” oracle of Shahout et al. (2024) does
not perform this task, it is unclear how their approach could be used to improve standard streaming
and sketching techniques. Furthermore, it is unclear how their algorithm could be extended to the
general time-decay models as we study in the paper. As such, getting results for general time-decay

2Here, step t′ uses w(t− t′ + 1) as the input. In this way, w could be defined as a non-increasing function,
i.e., w(t− t+ 1) = w(1).
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algorithms would imply improved results for the sliding-window model, which renders the open
problem more appealing.

Our results. In this paper, we answer the open question in the affirmative by devising near-optimal
algorithms in the time-decay model (resp. the sliding-window model) for the Fp frequency estimation
problem and related problems. Our main results can be summarized as follows (all of the bounds
apply to polynomital decay, exponential decay, and the sliding-window settings).

• Fp frequency: We give a learning-augmented algorithm that given the heavy-hitter oracle and
the frequency vector x in the stream, computes a (1± ε)-approximation of the Fp frequency
∥x∥pp =

∑n
i=1 |xi|p in Õ(n

1/2−1/p

ε4+p · p1+p) space.

• Rectangle Fp frequency: When the universe is [∆]n and stream elements update all coordinates
in hyperrectangles, the Fp frequency moment problem for the stream is called rectangle Fp

frequency. We give a learning-augmented algorithm that computes a (1± ε)-approximation of
the rectangle Fp frequency in Õ(∆

d(1/2−1/p)

ε4+p · poly(p
p

ε , d)) space with heavy-hitter oracles.
• (k, p)-cascaded norm: As a generalization of the Fp frequency moment problem, when the

data is given as an n × d matrix X and the stream updates each coordinate Xi,j , we define
f(X) = (

∑n
i=1(

∑d
j=1 ∥Xi,j∥p)k/p)1/k as the (k, p)-cascaded norm (k-norm of the p-norms

of the rows). We give a learning-augmented algorithm that computes a (1± ε)-approximation of
the (k, p)-cascaded norm in space Õk,p(n

1− 1
k− p

2k · d
1
2−

1
p ). We use Õk,p(·) to hide polynomial

terms of (kp)kp, ε, and log n. 3

By a lower bound in Jiang et al. (2020), any learning-augmented streaming algorithm that obtains
a (1 ± ε)-approximation for the Fp moment would require Ω(n1/2−1/p/ε2/p) space. Since the
streaming setting can be viewed as a special case for the time-decay model, our algorithm for Fp

frequency is optimal with respect to the exponent n.

Task Space Bound Model Remark

Fp Frequency

(p ⩾ 2)

Õ(n1/2−1/p/ε4) Streaming Jiang et al. (2020)

Ω(n1/2−1/p/ε2/p) Any Lower bound, Jiang
et al. (2020)

not specified Sliding Window Shahout et al. (2024)

Õ(n1/2−1/p · p1+p/ε4+p) General Time-decay
(e.g., Sliding Window)

This work,
Theorem 1

Rectangle Fp

Frequency

Õ(∆d(1/2−1/p) · poly(dε , d)) Streaming Jiang et al. (2020)

Õ(∆d(1/2−1/p) ·poly(p
p

εp , d)) General Time-decay
(e.g., Sliding Window)

This work,
Theorem 5

(k, p)-Cascaded

Norm

Õ(n1− 1
k− p

2k · d
1
2−

1
p ) Streaming Jiang et al. (2020)

Õk,p(n
1− 1

k− p
2k · d

1
2−

1
p ) General Time-decay

(e.g., Sliding Window)
This work,
Theorem 6

Table 1: Summary of the results and their comparisons with existing work. The Theorem pointers are
directed to the sliding-window algorithms as an illustration.

Our techniques. Our approach is fundamentally different from previous work in learning-augmented
sliding-window algorithms, e.g., Shahout et al. (2024). In particular, we considered an approach
that directly transforms streaming algorithms into time-decay algorithms. Crucially, we observe
that many approaches in the time-decay streaming literature are based on smoothness of functions
(e.g., Braverman & Ostrovsky (2007); Braverman et al. (2019)). Roughly speaking, these approaches

3For the polynomial and exponential-decay models, the computation of the (k, p)-cascaded norm requires
row arrival. For the sliding-window streams, the updates can be on the points.
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follow a framework to maintain multiple copies of the streaming algorithm on different suffixes, and
delete the copies that are considered “outdated”. The correctness of time-decay streams could follow
if the function satisfies some “smoothness” properties. We derived several white-box adaptations
of the algorithms under this framework. We show that as long as the learning-augmented oracle is
suffix-compatible, i.e., it is able to predict the heavy hitters of suffix streams [t : m] as well, the
framework would work in the learning-augmented setting in the same way as the setting without the
oracle. As such, we could apply the streaming learning-augmented algorithm in Jiang et al. (2020) to
obtain the desired time-decay algorithms.

We remark that another valid option would be to generalize the difference estimator framework of
Woodruff & Zhou (2021a) to incorporate advice. Although this approach gives better dependencies
in ε, the overall algorithm is quite involved and not as easily amenable to implementation, which in
some sense is the entire reason to incorporate machine learning advice in the first place. We thus
focus on practical implementations with provable theoretical guarantees.

Experiments. For the special case of sliding-window streams, we conduct experiments for learning-
augmented Fp frequency estimation. We implement multiple suffix-compatible heavy-hitter oracles,
such as the count-sketch algorithm (Charikar et al., 2004): this allows us to compute heavy hitters for
different suffixes of streams with minimal space overhead. We tested the Fp frequency algorithms
based on Algorithm 2 and the implementations in Alon et al. (1999) (AMS algorithm) and Indyk
& Woodruff (2005) with and without the learning-augmented oracles. The datasets we tested on
include a synthetic dataset sampling from binomial distributions and the real-world internet datasets
of CAIDA and AOL. Our experiments show that the learning-augmented approach can significantly
boost the performance of the frequency estimation algorithms, and, at times, produce results extremely
close to the ground-truth. Furthermore, our approach is fairly robust against distribution shifts over
updates, while other heuristic approaches like scaling would induce performance degradation when
the distribution changes. 4

2 PRELIMINARIES

The time-decay and sliding-window models. We specify the time-decay model and related notation.
We assume the underlying data x ∈ Zn to be a frequency vector, where each coordinate xi stands
for the frequency of the corresponding item. The frequency vector is initialized as 0n, and at each
time, the vector is updated as (i,∆) such that xi ← xi + ∆, for some ∆ ⩾ 0, so that all updates
can only increase the coordinates of the frequency vector. We assume in this paper without loss of
generality that ∆ = 1. Let m be the total number of updates in the stream, which we assume to be
upper bounded by at most some polynomial in the universe size n. In the time-decay model, we are
additionally given a weight function w : R→ R⩾0, and an update at time t ∈ [m] contributes weight
w(m−t+1) to the weight of coordinate it ∈ [n]. Here, w is a non-increasing function with w(1) = 1,
and s > 0 is some parameter that is fixed before the data stream begins. We have w(τ) = 1/τs

for polynomial decay and w(τ) = sτ for exponential decay, respectively. The underlying weighted
frequency vector of the t-th time for all i ∈ [n] is defined as xt

i =
∑

t′∈[t]:it′=i w(t− t′ + 1).

In the special case of the sliding-window model, we are additionally given a window size W . At
each step t ∈ (W − 1,m], we define xW,t as the frequency vector over the last W update steps. Let
f : Rn → R be a given function, and our goal is to output f(xW,t) for all t ∈ (W − 1,m].

Apart from the subvectors xW,t which we aim to compute, we also define xt1:t2 as the vector obtained
by accounting for all the updates from step t1 to t2. In particular, x1:t1 and xt1:m represent the
frequency vectors with the updates from the start of the stream to t1 and from t1 till the end of the
stream, respectively.

The functions to compute. We aim to compute the following objective functions (defined as
mappings Rn → R) in the sliding-window streaming model.

• The Fp frequency function: f(x) = ∥x∥pp =
∑

i |xi|p.
• The rectangle Fp frequency function: this is a special case for the Fp frequency problem,

where we assume x ∈ [∆]n for some integer ∆.

4The codes for the experiments are available on https://anonymous.4open.science/r/
Learning-Augmented-Sliding-Window-992B/
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Furthermore, we also study the cascaded norm function for high-dimensional frequencies, i.e.,
the input “frequency” is a n × d matrix X, where each row corresponds to a generalized no-
tion of frequency. The (k, p)-cascaded norm function f : Rn×d → R is defined as f(X) =(∑n

i=1

(∑d
j=1 |Xi,j |p

)k/p
)1/k

. In the streaming model, at each time t, an update on a coordinate

Xi,j is given in the stream. We can define the corresponding inputs for time-decay and sliding-window
models analogously.

The learning-augmented framework. We work with learning-augmented streaming algorithms,
where we assume an oracle that could predict whether xi is a heavy hitter. Depending on the function
f , we have multiple ways of defining heavy hitters as follows.

Definition 1 (Heavy-hitter oracles). We say an element xi is a heavy hitter with the following rules.

(a). If f is Fp frequency, we say that xi is a heavy hitter if |xi|p ⩾ 1√
n
· ∥x∥pp.

(b). If f is rectangle Fp frequency in [∆]d, we say that xi is a heavy hitter if |xi|p ⩾ ∥x∥pp /∆d/2.
(c). If f is (k, p)-cascaded norm, we say that Xi,j is a heavy hitter if |Xi,j |p ⩾ ∥X∥pp /(d1/2 ·

n1−p/2k), where ∥X∥pp is the vector norm of the vector from the elements in X.

A heavy hitter oracle O is a learning-augmented oracle that, upon querying xi, answers whether xi

satisfies the heavy hitter definition. We say that O is a deterministic oracle if it always correctly
predicts whether xi is a heavy hitter. In contrast, we say that O is a stochastic oracle with success
probability 1−δ if for each coordinate xi, the oracle returns whether xi is a heavy hitter independently
with probability at least 1− δ.

For the purpose of time-decay algorithms, we also need the oracle to be suffix compatible, i.e., able to
return whether xi is a heavy hitter for all suffix streams [t : m], t ∈ (0,m− 1]. We formally define
such oracles as follows.

Definition 2 (Suffix-compatible heavy-hitter oracles). We say a heavy hitter oracle O is a determin-
istic (resp. randomized) suffix-compatible learning-augmented oracle if for each suffix of stream
[t : m] for t ∈ (0,m− 1] and each frequency vector x(t : m), O is able to answer whether x(t : m)i
is a heavy hitter (resp. with probability at least 1− δ).

Additional discussions about suffix-compatible heavy-hitter oracles. Learning-augmented algo-
rithms with heavy-hitter oracles were explored by Jiang et al. (2020). Our setting is consistent with
theirs, and similar to Jiang et al. (2020), such oracles are easy to implement for practical purposes. In
Appendix D, we provided a general framework for the learning of such oracles.

We note that Shahout et al. (2024) discussed certain difficulties for using bloom filters to obtain
predictions for every window. We emphasize that the suffix-compatibility property does not require
the prediction for every window, but rather only the suffixes of the streams (only n−W + 1 such
windows). This is a much more relaxed setting than the issues discussed in Shahout et al. (2024).
Furthermore, our experiments in Section 5 show that the suffix-compatible oracles can be easily
learned via a small part of the streaming updates.

3 ALGORITHM AND ANALYSIS FOR THE SLIDING-WINDOW MODEL

We first discuss the special case of sliding-window algorithms since the algorithm and analysis are
clean and easy to present. For this setting, we take advantage of the smooth histogram framework
introduced by Braverman & Ostrovsky (2007). At a high level, a function f is said to be smooth if
the following condition holds. Let xA and xB be two frequency vectors for elements in data streams
A and B, where B is a suffix of A. If f(xA) and f(xB) are already sufficiently close, then they
remain close under any common suffix of updates, i.e., by appending C to both A ∪ C and B ∪ C
and getting new frequency vectors xA∪C and xB∪C , the difference between f(xA∪C) and f(xB∪C)
remains small. Braverman & Ostrovsky (2007) already established the smoothness of Fp frequencies,
and we further prove the smoothness properties for rectangle Fp frequencies and cascaded norms.

We now discuss the framework in more detail, starting with the introduction of the notion of common
suffix-augmented frequency vectors.

5
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Definition 3 (Common suffix-augmented frequency vectors). Let xA and xB be frequency vectors
obtained from a stream A with suffix B. Furthermore, let xC be the frequency vector of a common
suffix C of A and B. We say that xA∪C and xB∪C are pair of common suffix-augmented frequency
vectors if xA∪C = xA + xC and xB∪C = xB + xC .

In other words, let A,B,C be the streaming elements of xA, xB , and xC , respectively. In Definition 3,
we have A ⊆ B, and the streaming elements of xA∪C and xB∪C are A ∪ C and B ∪ C. We are now
ready to formally define (α, β)-smooth functions as follows.

Definition 4 ((α, β)-smooth functions, Definition 1 of Braverman & Ostrovsky (2007)). A function
f : Rn → R for frequency vectors is (α, β)-smooth if the following properties hold.

• f(x) ⩾ 0 for any frequency vector x.
• f(x) ⩽ poly(n) for some fixed polynomial.
• Let xA be a frequency vector obtained from a suffix of xB , we have

(1) f(xB) ⩾ f(xA).
(2) For any ε ∈ (0, 1), there exits α = α(f, ε) and β = β(f, ε) such that

◦ 0 ⩽ β ⩽ α < 1.
◦ If f(xA) ⩾ (1− β)f(xB), then for any common suffix-augmented frequency vectors
xA∪C and xB∪C as prescribed in Definition 3, there is f(xA∪C) ⩾ (1−α)f(xB∪C).

Using the definition of (α, β)-smooth functions, we are able to derive the following framework that
transform streaming algorithms to sliding-window algorithms in the learning-augmented regime.

Lemma 3.1. Let f be an (α, β)-smooth function, and let ALG be any learning-augmented streaming
algorithm that queries the heavy-hitter oracle O with the following properties:

• ALG outputs f ′(x) such that (1 − ε) · f(x) ⩽ f ′(x) ⩽ (1 + ε) · f(x) by the end of the
stream with probability at least 1− δ;

• O satisfies the suffix-compatible property as prescribed by Definition 2; and

• ALG uses g(ε, δ) space and performs h(ε, δ) operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG′ that computes a (1 ± (α + ε))-
approximation of the sliding-windows with probability at least 1 − δ using O( (g(ε,δ

′)+logn)·logn
β )

space and O(h(ε,δ
′) logn
β ) operations per stream update, where δ′ = δβ

logn .

We defer the discussion and the proof for Lemma 3.1 to Appendix A. Next, we show how to use the
framework in Lemma 3.1 to obtain learning-augmented sliding-window algorithms. We remark that
the bound provided by the framework is independent of the window size W . As such, our bounds
in this section do not include the W parameter. Limited by space, we only present our results for
Fp frequency moment estimation in this section, and defer the results for rectangle Fp frequency
moment estimation and cascaded norms to Appendix A.

Our learning-augmented sliding-window algorithm for Fp estimation for p > 2 has the following
guarantees with both perfect and erroneous oracles.

Theorem 1 (Learning-augmented Fp frequency moment algorithm). There exists a sliding-window
streaming algorithm that, given a stream of elements in a sliding window, a fixed parameter
p ⩾ 2, and a deterministic suffix-compatible heavy-hitter oracle O (as prescribed by Defini-
tion 2), with probability at least 99/100 outputs a (1 + ε)-approximation of the Fp frequency

in O
(

n1/2−1/p

ε4+p · p1+p · log4 n · log(pε )
)

space.

Theorem 2 (Learning-augmented Fp frequency algorithm with stochastic oracles). There exists a
sliding-window streaming algorithm that, given a stream of elements in a sliding window, a fixed
parameter p ⩾ 2, and a stochastic suffix-compatible heavy-hitter oracle O with success probability
1−δ (as prescribed by Definition 2), with probability at least 99/100 outputs a (1+ε)-approximation
of the Fp frequency moment in space

• O
(

(nδ)1−1/p

ε4+p · p1+p · log4 n · log(pε )
)

bits if δ = Ω(1/
√
n).

6
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• O
(

n1/2−1/p

ε4+p · p1+p · log4 n · log(pε )
)

bits if δ = O(1/
√
n).

For any constant p and ε, the space bound for the sliding-window Fp frequency moment estimation
problem becomes Õ(n1/2−1/p) for any learning-augmented oracle with a sufficiently high success
probability. This bound is optimal even in the streaming setting by Jiang et al. (2020); as such, we
obtain a near-optimal algorithm for the learning-augmented Fp frequency estimation problem.

At a high level, the algorithm is an application of the learning-augmented Fp frequency streaming
algorithm in Jiang et al. (2020) to the framework we discussed in Lemma 3.1. The guarantees of the
algorithm in Jiang et al. (2020) can be described as follows.

Lemma 3.2 (Jiang et al. (2020)). For any given stream, a fixed parameter p ⩾ 2, and a stochastic
heavy-hitter oracle O with success probability 1− δ, with probability at least 99/100, Algorithm 2
computes a (1 + ε)-approximation of the Fp frequency using space

• O
(

(nδ)1−1/p

ε4 · log2 n
)

bits if δ = Ω(1/
√
n).

• O
(

n1/2−1/p

ε4 · log2 n
)

bits if δ = O(1/
√
n).

To apply the reductions of Proposition 2, we need to understand the smoothness of the Fp frequency
function, which is a standard fact established by previous results.

Lemma 3.3 (Braverman & Ostrovsky (2007)). The Fp frequency function is (ε, εp/pp)-smooth.

Finalizing the proof of Theorems 1 and 2. We apply Lemma 3.1 to the algorithm of Lemma 3.2
with the smoothness guarantees as in Lemma 3.3. For the success probability, we argue that the
algorithm in Lemma 3.2 could be made to succeed with probability at least 1− δ with O(log(1/δ))
multiplicative space overhead. This can be accomplished by the classical median trick: we run
O(log(1/δ)) copies of the streaming algorithm, and take the median of the frequency output. By a
Chernoff bound argument, the failure probability is at most δ.

Let β = εp/pp; for the deterministic oracle case, we could use g = n1/2−1/p

ε4 · log2 n and failure
probability δ′ = O(β/ log n) to obtain that the space needed for the streaming algorithm is at most

g(ε, δ′) = O

(
n1/2−1/p

ε4
· log2 n · log(n/β)

)
⩽ O

(
n1/2−1/p

ε4
· p · log3 n · log(p/ε)

)
.

Therefore, the space we need is O
(
g(ε, δ′) · logn

β

)
= O

(
n1/2−1/p

ε4+p · p1+p · log4 n · log(pε )
)

, as
desired. Finally, for the case with the randomized learning-augmented oracle, we simply replace the
n1/2−1/p term in the bound with (nδ)1−1/p, which would give us the desired statement.

4 THE ALGORITHMS AND ANALYSIS FOR GENERAL TIME DECAY MODELS

In this section, we describe our algorithms for the general time-decay setting, where an update at
time t′ ∈ [m] contributes weight w(t − t′ + 1) to the weight of coordinate it ∈ [n] at time t. The
underlying weighted frequency vector xt at step t is defined as

xt
i =

∑
t′∈[t]:it=i

w(t− t′ + 1).

The formal definition of the time-decay model and functions could be found in Section 2. Given
a non-decreasing function G : R → R⩾0 with G(0) = 0, we define G-moment estimation as the
problem of estimating

G(x) =
∑
i∈[n]

G(xi).

When the context is clear, we also use the lower-case x as the input to the function G.

We introduce a general framework that transforms a linear sketch streaming algorithm for the problem
of G-moment estimation into a time decay algorithm for G-moment estimation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Definition 5 (Smoothness in time-decay models). Given ε > 0, the weight function w and the
G-moment function G are said to be (ε, ν, η)-smooth if:

(1) G((1 + η)x)−G(x) ⩽ ε
4 ·G(x) for all x ⩾ 1.

(2) There exists an integer mν ⩾ 0 such that
∑

i∈[mν ,m] w(i) ⩽ ν and G(x + ν) − G(x) ⩽
ε
4 ·G(1) for all x ⩾ 1. In other words, all updates in a stream of length m that arrived more
than mν previous timesteps can be ignored.

The next theorem provides a framework for polynomial-decay and exponential-decay models.
Theorem 3. Given a streaming algorithm that provides a (1 + ε)-approximation to G-moment
estimation using a linear sketch with k rows, functions G and w that satisfy the (ε, ν, η)-smoothness
condition (Definition 5), there exists an algorithm for general time-decay that provides a (1 + ε)-

approximation to G-moment estimation that uses at most O
(

k
η log n log 1

ν

)
bits of space.

Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle O is
suffix-compatible.

We can apply Theorem 3 on the Fp moment estimation for the polynomial-decay model. We have
described in Section 3 the algorithm for Fp estimation (Proposition 3), and we could apply Theorem 3
to Proposition 3 to obtain the following result.
Theorem 4. Given a constant p > 2, an accuracy parameter ε ∈ (0, 1), and a heavy-hitter oracle O
for the data stream, there exists a one-pass algorithm that outputs a (1 + ε)-approximation to the

rectangular Fp moment in the polynomial-decay model that uses Õ
(

∆d(1/2−1/p)

ε2+4/p

)
bits of space.

We defer the proof of Theorem 3 and the rest of the results to Appendix B.

5 EMPIRICAL EVALUATIONS

Experimental setup. To demonstrate the practicality of our theoretical results, we compared non-
augmented sliding window algorithms with their augmented counterparts. We implemented Alon
et al. (1999)’s algorithm for ℓ2 norm estimation, which we refer to as AMS, and Indyk & Woodruff
(2005)’s subsampling (SS) algorithm for ℓ3 norm estimation. We utilized three different oracles for
our augmented algorithms: Charikar et al. (2004)’s CountSketch (CS) algorithm, a ChatGPT/Google
Gemini Large Language Model (LLM), and an LSTM trained for heavy hitter prediction. We refer to
the augmented algorithms as AMSA and SSA, respectively.

Datasets. We tested our implementations on three datasets:

(1) A synthetic, skewed random-integer distribution generated by sampling a binomial distribu-
tion with p = 2 · q/

√
n, where q is the desired number of heavy hitters and n is the number

of distinct integer values, i.e. the universe size.
(2) CAIDA dataset5, which contains 12 minutes of IP traffic; each minute contains about 30M

IP addresses. We used subsets of the first minute to test our implementations. Each IP
address was converted to its integer value using Python’s ipaddress library.

(3) AOL dataset 6, which contains 20M user queries collected from 650k users. Each query
was associated with an anonymous user id; we used a subset of these ids to test our
implementations.

Limited by space, we only show the results for the CAIDA dataset, and defer the results for the other
datasets to Appendix C.2. We also provide additional experiments details in Appendix C.

Computing devices. We implemented our experiments in Python 3.10.18. The experiments were
performed on an Apple MacBook Air M2 with 16GB of RAM. Experiments on CAIDA that varied
window sizes took 1100 - 1400 minutes. Experiments that varied sample selection probabilities took
400 - 600 minutes.

5Available on https://www.caida.org/catalog/datasets/passive_dataset
6https://www.kaggle.com/datasets/dineshydv/aol-user-session-collection-500k
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5.1 AMS AND LEARNING-AUGMENTED AMS ALGORITHMS

(a) (b)

Fig. 1: Experiments for ℓ2 norm estimation on CAIDA. Note on the notation: the variable n in figures
refers to stream length (which is m at other places of the paper) .

Figure 1a compares the estimation results from our two algorithms to the actual ℓ2 norm over various
timesteps. Note that n refers to stream length (not universe size) in Figures 1a, 6a, and 4a. The
“timesteps” on the x axis correspond to window sizes: estimates starting at timestep 0 consider all 1M
stream items, i.e. W = m, while subsequent estimates use the most recent 1M − timestep values.
In other words, W = m− ti, where ti is a timestep and m is stream length. As seen in Figure 1a,
AMSA estimates are much closer to the ground truth than AMS estimates over all selected window
sizes, indicating that the augmented algorithm consistently produces a more accurate estimate. This
is further validated by Figure 1b, which plots the ratio of estimates to the ground truth over various
window sizes. As shown, AMSA estimates are within a factor of 1.2 over all window sizes, while
AMS estimates vary between factors of about 1.25 and 2.3. Additionally, AMSA estimates deviate
from the ground truth by a somewhat consistent margin, while AMS estimations seem to get closer
to the ground truth as the window size decreases, indicating that the augmented algorithm is more
precise over a variety of window sizes. AMSA’s precision is confirmed by the flatness of its error
curve in Figure 1b over all window sizes, especially when compared to the AMS error line.

5.2 SS AND LEARNING-AUGMENTED SS ALGORITHMS

(a) (b) (c)

Fig. 2: Experiments for ℓ3 estimation on CAIDA using multiple oracles

Figure 2a compares the estimation results from SSA and SS to the actual ℓ3 norm over various
window sizes. All three oracles provide useful augmentation, allowing SSA to estimate norms much
closer to the ground truth than the baseline SS algorithm over all window sizes. Like for AMSA, the
SSA error curve is closer to 1 and flatter than the SS error curve, indicating that SSA is more accurate
and precise than its non-augmented counterpart.

Figure 2c compares the estimation results from SSA and SS to the actual ℓ3 norm over various sample
selection probabilities. Again, all three oracles help augment the baseline algorithm, providing an
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estimation closer to the ground truth across all selection probabilities. Using a higher selection
probability roughly corresponds to higher memory usage since more elements must be stored in the
estimate sample. The SSA estimation performs particularly well for very low memory usage and
largely outperforms SS for higher memory usage, meaning that augmentation is beneficial even when
the baseline algorithm has larger estimate sample sizes.
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A MISSING DETAILS OF SECTION 3

A.1 THE SLIDING-WINDOW FRAMEWORK AND THE PROOF OF LEMMA 3.1

Braverman & Ostrovsky (2007) gave a reduction from sliding-window streaming algorithms to the
vanilla streaming (approximate) algorithms for (α, β)-smooth functions. The statement for such
reductions is as follows.

Proposition 1 (Exact algorithms, Theorem 1 of Braverman & Ostrovsky (2007)). Let f be an
(α, β)-smooth function, and let ALG be a streaming algorithm that outputs f(x) by the end of the
stream, where x is the frequency vector of the stream. Suppose ALG uses g space and performs h
operations per streaming update.

Then, there exists a sliding-window streaming algorithm ALG′ that computes a (1±α)-approximation
of the sliding-windows using O( (g+logn)·logn

β ) space and O(h logn
β ) operations per streaming update.

Proposition 1 takes exact and derterministic streaming algorithms. It turns out that the framework
is much more versatile, and we could obtain similar results using approximate and randomized
streaming algorithms. The new statement is as follows.

Proposition 2 (Approximate algorithms, Theorem 2 & 3 of Braverman & Ostrovsky (2007)). Let
f be an (α, β)-smooth function, and let ALG be a streaming algorithm that outputs f ′(x) such that
(1 − ε) · f(x) ⩽ f ′(x) ⩽ (1 + ε) · f(x) by the end of the stream with probability at least 1 − δ,
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where x is the frequency vector of the stream. Suppose ALG uses g(ε, δ) space and performs h(ε, δ)
operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG′ that computes a (1 ± (α + ε))-

approximation of the sliding-windows with probability at least 1− δ using O
(

(g(ε,δ′)+logn)·logn
β

)
space and O

(
h(ε,δ′) logn

β

)
operations per stream update, where δ′ = δβ

logn .

Stream
Active elements in sliding window

ALG(t1)
ALG(t2)
ALG(t3)
ALG(t4)

Fig. 3: Example of smooth histogram framework. Here ALG(t2) and ALG(t3) sandwich the active
elements and are thus good approximations of the sliding window.

At a high level, the algorithm of Braverman & Ostrovsky (2007) uses the idea of smooth histograms.
The algorithm to construct smooth histograms is by running the streaming algorithms with different
starting times and discarding the redundant copies. An overview of the algorithm is given in
Algorithm 1 and an illustration is given in Figure 3.

Algorithm 1. The algorithm for the framework prescribed in Propositions 1 and 2.
Input: a stream of elements with m updates; window size W .
Input: a streaming algorithm ALG with g(ε, δ) space and h(ε, δ) update time
Maintain a set A of surviving copies of ALG

• For each update t ∈ [m]:
(1) Initiate a new copy of ALG (call it ALG(t)) starting with the t-th update.
(2) Update all ALG ∈ A with (t, σt).
(3) Pruning:

(a) Starting from the algorithm ALG(ℓ) ∈ A with the smallest index ℓ.
(b) While ℓ < t− 1:

i. Find the largest index k such that ALG(k) ⩾ (1− β) · ALG(ℓ).
ii. Prune all algorithms in A with indices (ℓ, k − 1].

iii. Let ℓ← k and continue the loop.
iv. Break the loop if there is no surviving copy between ℓ and t.

• Output ALG(tj), for the largest remaining index tj with tj ⩽ m−W + 1

Lemma 3.1. Let f be an (α, β)-smooth function, and let ALG be any learning-augmented streaming
algorithm that queries the heavy-hitter oracle O with the following properties:

• ALG outputs f ′(x) such that (1 − ε) · f(x) ⩽ f ′(x) ⩽ (1 + ε) · f(x) by the end of the
stream with probability at least 1− δ;

• O satisfies the suffix-compatible property as prescribed by Definition 2; and

• ALG uses g(ε, δ) space and performs h(ε, δ) operations per stream update.

Then, there exists a sliding-window streaming algorithm ALG′ that computes a (1 ± (α + ε))-
approximation of the sliding-windows with probability at least 1 − δ using O( (g(ε,δ

′)+logn)·logn
β )

space and O(h(ε,δ
′) logn
β ) operations per stream update, where δ′ = δβ

logn .

Proof. The correctness of the reductions in Proposition 1 and Proposition 2 relies on the smooth
histogram properly approximating the function on the sliding window.
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Let W be the window size and t∗ = m−W +1 be the starting index of the active window. The goal
is to estimate f on the stream suffix starting at t∗. The algorithm maintains a set of active instances
A = {ALG(t1),ALG(t2), . . . ,ALG(tk)} with start times t1 < t2 < . . . < tk.

Because the algorithm only deletes instances that are redundant via pruning, there exist two adjacent
instances in A, denoted ALG(tj) and ALG(tj+1), that “sandwich” the true window start time, i.e.,
tj ⩽ t∗ < tj+1.

Let S(t) denote the suffix of the stream starting at time t. Observe that S(tj) ⊇ S(t∗) ⊇ S(tj+1). By
the hypothesis of suffix-compatibility, the oracle O provides valid advice to both ALG(tj) and
ALG(tj+1). Consequently, these instances correctly output values vj ≈ f(S(tj)) and vj+1 ≈
f(S(tj+1)).

The pruning condition in Algorithm 1 ensures that if both instances remain in A, then vj+1 ⩾
(1− β) · vj . Since f is (α, β)-smooth and monotonic, the condition f(S(tj+1)) ⩾ (1− β)f(S(tj))

combined with the sandwiching property S(tj) ⊇ S(t∗) ⊇ S(tj+1) implies that the value vj is a
(1± α)-approximation of the true window value f(S(t∗)).

Therefore, the suffix-compatibility ensures the individual instances are correct, and the smooth
histogram ensures the output instance ALG(tj) is an accurate approximation.

Finally, for the space complexity and the number of operations, we argue that we only keep O( logn
β )

copies of ALG. Note that we delete the copies such that ALG(k) ⩾ (1 − β) · ALG(ℓ), and the total
number of updates can only be m = poly(n). Therefore, the total number of maintained copies can
be at most O(log 1

1−β
(m)) = O( logn

β ). We scale δ′ = δβ
logn to ensure the success probability, and we

use O(log n) space overhead for each copy of the algorithm to maintain the time stamps. Combining
the above bounds gives us the desired space and operation complexity.

A.2 MISSING DETAILS OF THE SLIDING-WINDOW Fp ALGORITHM

We provide a brief description of the algorithm as in Algorithm 2, which, in turn, uses the following
result as a black-box.

Proposition 3. [Alon et al. (1999); Indyk & Woodruff (2005); Andoni et al. (2011)] There exists
a randomized algorithm such that given x ∈ Rn as a stream of updates, computes a (1 ± ε)-
approximation of ∥x∥pp with probability at least 99/100 using a space O(n

1−2/p

ε2+4/p · log2 n) space.

Algorithm 2. The algorithm for learning-augmented streaming Fp moment.
Input: x given a stream of updates
Input: independent copies ALG1 and ALG2 for the algorithm in Proposition 3.

• For each element update on xi:
(1) Query whether xi is a heavy hitter, i.e., |xi|p ⩾ 1√

n
· ∥x∥pp.

(2) If Yes, use ALG1 for items with predictions |xi|p ⩾ 1√
n
· ∥x∥pp.

(3) Otherwise, compute the Fp frequency of the non-heavy hitters as follows.
(a) Sample xi with probability ρ = 1/

√
n.

(b) Let x̃ be the frequency vector obtained from the sampled non-heavy hitter
elements.

(c) Compute the Fp frequency of x̃ using ALG2 and re-weight with ρ.
• Summing up the results of ALG1 and ALG2 to output.

A.3 RECTANGLE Fp FREQUENCY FOR p ⩾ 2

We now move to learning-augmented rectangle Fp frequency algorithms for p ⩾ 2. We combine the
algorithm statements for deterministic and stochastic oracles as follows.
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Theorem 5. There exists a sliding-window streaming algorithm that, given a stream of elements from
[∆]d in a sliding window, a fixed parameter p ⩾ 2, and a stochastic suffix-compatible heavy-hitter
oracle O with success probability 1 − δ (as prescribed by Definition 2), with probability at least
99/100 outputs a (1 + ε)-approximation of the Fp frequency in space

• O
(

∆d(1−1/p)·pp·δ1−1/p

ε4+p · poly(pε , d, log∆)
)

bits if δ = Ω(1/
√
n).

• O(∆
d(1/2−1/p)

ε4+p · pp · poly(pε , d, log∆) bits if δ = O(1/
√
n).

Furthermore, assuming the deterministic oracle, the sliding-window algorithm uses at most
O(∆

d(1/2−1/p)

ε4+p · pp · poly(pε , d, log∆)) time to process each item.

Proof. The theorem statement before the “furthermore” part follows directly from Theorem 2. In
particular, note that the rectangle Fp frequency problem could be framed as Fp frequency with
n ⩽ ∆d, and plugging in the number would immediately lead to the desired space bounds.

For the process time, Jiang et al. (2020) has a (1± ε)-approximate algorithm for the rectangle Fp

norm with per-update processing time O
(

∆d(1/2−1/p)

ε4 · poly(pε , d, log∆)
)

time (without the pp/εp

terms) and success probability 99/100. We could use the median trick to boost the success probability
to 1 − δ with O(log(1/δ)) space overhead and no time complexity overhead (we could process
copies of algorithms in parallel). Therefore, applying Proposition 2 with the same smoothness
guarantees as in Lemma 3.3 (rectangle Fp is a sub-family of ℓp frequencies) leads to the desired
O(∆

d(1/2−1/p)

ε4+p · pp · poly(pε , d, log∆) processing time in the sliding-window model.

A.4 (k, p)-CASCADED NORMS

We now move the results for the learning-augmented sliding-window (k, p)-cascaded norm algorithm.
The guarantees of the algorithm are as follows.
Theorem 6. There exists a sliding-window streaming algorithm that, given a n× d matrix X repre-
sented as a stream of insertions and deletions of the coordinates Xi,j , fixed parameters k ⩾ p ⩾ 2,
and a (deterministic) suffix-compatible heavy-hitter oracleO, with probability at least 99/100 outputs
a (1 + ε)-approximation of the Fp frequency in space O(n1− 1

k− p
2k · d

1
2−

1
p · poly( 1

εpk
, kkp, log n)).

For any constant choices of p, k, and ε, our bound asymptotically matches the optimal memory bound
for the learning-augmented streaming algorithm. Our algorithm takes advantage of the framework
of Jayram & Woodruff (2009) and Jiang et al. (2020) with the smooth histogram framework as
in Propositions 1 and 2. The algorithm for streaming learning-augmented cascaded norm is quite
involved. As such, we provided a sketch in Algorithm 3, and refer keen readers to Jayram & Woodruff
(2009) and Jiang et al. (2020) for more details. In what follows, we use Fp(X) to denote the vector
Fp norm of the elements in X.

Algorithm 3. Learning-augmented streaming (k, p)-cascaded norm.
Input: a n× d matrix X as the input; parameters k and p
Input: a heavy hitter oracle predicting whether |Xi,j |p ⩾ ∥X∥pp /(d1/2 · n1−p/2k)

• Parameters:
◦ Q = O(n1−1/k) so that T = (nd ·Q)1/2 = d1/2 · n1−p/2k;
◦ Levels ℓ ∈ [O(log n)]; layers t ∈ [O(log n/ζ)]; Tℓ = T/2ℓ.
◦ Parameters ζ, η, θ, B for layering and sampling (as per Jayram & Woodruff (2009)).

• Apply count-sketch type of algorithms (e.g., the algorithm of Proposition 3) during the
stream to maintain elements that are sampled by the level-wise pre-processing step.

• Level-wise processing for level ℓ ∈ [O(log n)]:
(1) Sample each row with probability 1/2ℓ; let X(ℓ) be the resulting matrix.
(2) Divide the entries in X(ℓ) among layers: each layer contains the elements with

magnitude in [ζηt−1, ζηt].
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(3) A layer t is contributing if |St(X
(ℓ))|(ζηt)p ⩾ Fp(X

(ℓ))/(Bθ), where St(X
(ℓ)) are

entries in layer t.
(4) Further divide the elements in contributing layers into heavy hitters and non-heavy

hitters. This results in contributing layers with entirely heavy hitters vs. non-heavy
hitters.

(5) For each contributing layer t:
(a) If it is formed with non-heavy hitters (light elements) and entries Nt is more

than βt = θQ|St(X
(ℓ))|(ζηt)p/Fp(X

(ℓ)), down sample with rate θQ/Tℓ.
(b) Let j be the parameter such that |St(X

(ℓ))|/2j ⩽ βt < |St(X
(ℓ))|/2j−1.

(c) Sample each entry of the layer with rate 1/2j to obtain Yt as the resulting matrix.
(6) Aggregate all Yt elements (using the count-sketch algorithm) as the pre-processed

vector Y(ℓ).
• Adding up all Y(ℓ) to get Y and perform “ℓp-sampling” process on Y in the same manner

of Jayram & Woodruff (2009) to obtain Ỹ.
• Compute Fk(Fp(Ỹ)) as the estimation.

Jiang et al. (2020) provided the guarantees for Algorithm 3 with the heavy-hitter oracle for vanilla
streaming algorithms.

Lemma A.1 (Jiang et al. (2020)). Let ε > 0 and k ⩾ p ⩾ 2 be given parameters. Furthermore, let
X be an n× d matrix given as a stream of insertions and deletions of the coordinates Xi,j . Then,
Algorithm 3 outputs a (1± ε)-approximation of the (k, p)-cascaded norm with probability at least
99/100 using O(n1− 1

k− p
2k · d

1
2−

1
p · poly( 1ε , log n)) space.

Next, we need to bound the smoothness of the (k, p)-cascaded norm. In what follows, we write
the (k, p)-cascaded norm as a function for “norm of norms”, i.e., in the form of Fk(Fp(X)) :=(∑n

i=1

(
(
∑

j=1 |Xi,j |p)1/p
)k

)1/k

for k ⩾ p ⩾ 2. Our technical lemma for the smoothness of such

functions is as follows.

Lemma A.2. Suppose Fp is (β, α)-smooth and Fq is (γ, β)-smooth, then Fk(Fp(X)) is (γ, α)-
smooth.

Proof. Let XA be a matrix obtained by a suffix of updates of XB . Furthermore, let XC be a common
suffix of XA and XB . We also partition the updates in C = C1 ∪ C2, and C1 and C2 could be
empty sets. We further let Xi,: (resp. XA

i,:, X
B
i,:, and XC

i,:) be the updates of the vector in the i-th
row of X. For each i ∈ [n], let Fp(X

A
i,:) and Fp(X

B
i,:) be α-close. We lower bound the value of

Fk(Fp(X
A∪C1)) as follows.

Fk(Fp(X
A∪C1)) =

∣∣∣∣∣
n∑

i=1

(
Fp(X

A∪C1
i,: )

)k
∣∣∣∣∣
1/k

⩾

∣∣∣∣∣
n∑

i=1

(1− β) ·
(
Fp(X

B∪C1
i,: )

)k
∣∣∣∣∣
1/k

(by the (β, α)-smoothness of Fp)

= (1− β) ·

∣∣∣∣∣
n∑

i=1

(
Fp(X

B∪C1
i,: )

)k
∣∣∣∣∣
1/k

.

Therefore, for any (possibly empty) XC1 , if Fp(X
A
i,:) and Fp(X

B
i,:) are α-close, we have that

Fk(Fp(X
A∪C1)) and Fk(Fp(X

A∪C1)) are β-close. As such, since Fq is (γ, β)-smooth, we have that

Fk(Fp(X
A∪C)) ⩾ (1− γ) · Fk(Fp(X

B∪C)),

which is as the desired property for (γ, α)-smoothness.
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Finalizing the proof of Theorem 6. We again apply Proposition 2 (with Lemma 3.1) to the algorithm
of Lemma A.1. By Lemma 3.3 and Lemma A.2, since Fp is (ε, εp/pp)-smooth and Fk is (ε, εk/kk)-
smooth, the (k, p)-cascaded norm is (ε, εkp

kkppp )-smooth.

With the same median trick as we used in the proof of Theorem 1, we could show that we only
need O(log(1/δ)) multiplicative space overhead on the space to ensure Algorithm 3 succeeds with
probability at least 1− δ. Therefore, let β = εkp

kkppp ), we could obtain

g(ε, δ′) = O

(
n1− 1

k− p
2k · d

1
2−

1
p · poly(1

ε
, log n) · log(n/β)

)
⩽ O

(
n1− 1

k− p
2k · d

1
2−

1
p · poly(1

ε
, log n, kp)

)
.

Therefore, the space we need is

O

(
g(ε, δ′)) · log n

β

)
= O

(
n1− 1

k− p
2k · d

1
2−

1
p · poly

(
1

εkp
, log n, kkp

))
.

In the above calculation, we used p ⩽ k to bound pp ⩽ kkp. This gives the bound as desired by the
theorem statement.

B MISSING DETAILS IN SECTION 4

We give the missing details of Section 4 in this section, including the proof of Theorem 3 and the
results. We start with the re-statement of Theorem 3. The algorithm for the framework is shown as in
Algorithm 1.

Algorithm 1 Framework for time decay G-moment estimation.

Input: Sketch matrix A ∈ Rk×n for G-moment estimation with post-processing function f(·),
accuracy parameter ε ∈ (0, 1)

1: Let ν, η,mν be defined as in Definition 5
2: Maintain a linear sketch with A for each block Bi of size 1
3: for each time t ∈ [m] do
4: u← 0k

5: for each block Bi do
6: Let Avi be the linear sketch for block Bi

7: Let ti be the largest timestep in block Bi

8: if t− ti + 1 ⩾ nν then
9: Delete block Bi

10: else if all weights in blocks Bi and Bj are within
√
1 + η then

11: Merge blocks Bi and Bj

12: else
13: w′

i ← 1√
1+η
· w(m− ti + 1)

14: u← u+ w′
i ·Avi

15: return f(u)

Theorem 3. Given a streaming algorithm that provides a (1 + ε)-approximation to G-moment
estimation using a linear sketch with k rows, functions G and w that satisfy the (ε, ν, η)-smoothness
condition (Definition 5), there exists an algorithm for general time-decay that provides a (1 + ε)-

approximation to G-moment estimation that uses at most O
(

k
η log n log 1

ν

)
bits of space.

Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle O is
suffix-compatible.

Proof. Consider a fixed a ∈ [n] and all times ta1
, . . . , tar

⩽ t with updates to a. Then the weight of
a at time t is

∑
j∈[r] w(t− taj + 1). Let w′ be the weight assigned to time t by the linear sketch. We
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claim that
1√
1 + η

·
∑
j∈[r]

w′(t− taj
+ 1)− ν ⩽

∑
j∈[r]

w′(t− taj
+ 1) ⩽

∑
j∈[r]

w(t− taj
+ 1).

Consider a fixed block Bi. Firstly, note that by definition of nη and by construction, the weights
of all indices in each block are within a multiplicative factor of

√
1 + η. All elements in block Bi

are assigned weight w′
i to be 1√

1+η
times the weight of the most recent item in Bi. Thus, we have

√
1 + η ·w(t− taj

+1) ⩽ w′
i ⩽ w(t− taj

+1) for any update taj
to a within block Bi. Finally, for

any update taj
in a block that does not have a sketch must satisfy t− taj

+ 1 ⩾ nν . By definition,
the weights of all such updates is at most ν. Hence, we have

1√
1 + η

·
∑
j∈[r]

w′(t− taj + 1)− ν ⩽
∑
j∈[r]

w′(t− taj + 1) ⩽
∑
j∈[r]

w(t− taj + 1),

as desired.

Let Ĝ(xi) be the weight of coordinate i ∈ [n] implicitly assigned through this process. By definition
of η and ν, it then follows that

(
1− ε

4

)
·G(xi) ⩽ Ĝ(xi) ⩽ G(xi). Summing across all i ∈ [n], we

have ∑
i∈[n]

(
1− ε

4

)
·
∑
i∈[n]

G(xi) ⩽ Ĝ(xi) ⩽
∑
i∈[n]

G(xi).

Thus, it suffices to obtain a
(
1 + ε

4

)
-approximation to the G-moment of the frequency vector weighted

by w′. Since A is a linear sketch and w′
i · vi is precisely the frequency vector of block Bi weighted

by w′, then this is exactly what the post-processing function f achieves. Therefore, correctness of the
algorithm holds.

It remains to analyze the space complexity. Each linear sketch A · vi uses O (k · log n) bits of space
assuming all weights and frequencies can be represented using O (log n) bits of space. This can be
optimized for specific functions w(·) and G(·), which we shall do for specific applications. In general,
observe that we maintain at most three blocks containing weights within a multiplicative factor of
(1 + η). The smallest weight of an index in a block is at least ν

1+η ⩾ ν
2 , while we have w(1) = 1

by assumption. Therefore, the number of blocks is at most 3 log(1+η)
2
ν since w is non-increasing.

Hence, the algorithm uses at most O
(

k
η log n log 1

ν

)
bits of space.

Finally, the “furthermore” part of the statement regarding the suffix-compatible oracles follows from
the same argument as we made in Lemma 3.1.

We now present the results for the time-decay models in order. We first consider the polynomial
decay model, where we have w(t) = 1

ts for some fixed parameter s > 0. For Fp moment estimation,
rectangular moment estimation, and cascaded norms, we have that the G-moment is still preserved
within a factor of (1 + ε) even when the coordinates are distorted up to a factor of (1 +O (ε)).

Lemma B.1. For the polynomial decay model w(t) = 1
ts , it suffices to set η = O (ε) and ν = O

(
ε
m

)
.

Proof. We provide the proof for the G-moment function for the Fp problem, G(x) = |x|p. The
statements for cascaded norm and rectangular moment estimation follow analogously.

First, note that for η = ε
100p2 = O (ε), we have (1 + η)p − 1 ⩽ ε

4 . Thus, it follows that for
G(x) = |x|p and for all x ⩾ 1, we have

G((1 + η)x)−G(x) ⩽
ε

4
G(x).

for η = ε
100p2 = O (ε), as desired.

Second, note that G(1) = 1 and since p ⩾ 2, the expression (x+ ν)p − xp is maximized at x = m.
On the other hand, we have for ν = ε

100pm , (m+ ν)p −mp ⩽ ε
4 , and thus

G(x+ ν)−G(x) ⩽
ε

4
G(1),
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for all x ∈ [1,m], as desired. In this case, we can set mν = ν−2/s, which may or may not be larger
than m, but the latter case does not matter, since there will be no blocks that have been stored for
m+ 1 steps.

Recall that in the standard streaming model, Fp moment estimation can be achieved using the
following guarantees:
Proposition 3. [Alon et al. (1999); Indyk & Woodruff (2005); Andoni et al. (2011)] There exists
a randomized algorithm such that given x ∈ Rn as a stream of updates, computes a (1 ± ε)-
approximation of ∥x∥pp with probability at least 99/100 using a space O(n

1−2/p

ε2+4/p · log2 n) space.

By applying Theorem 3 to Proposition 3, we have the following algorithm for Fp moment estimation
in the polynomial-decay model.
Theorem 7. Given a constant p > 2 and an accuracy parameter ε ∈ (0, 1), there exists a one-pass
algorithm that outputs a (1 + ε)-approximation to the Fp moment in the polynomial-decay model

that uses Õ
(

n1−2/p

ε2+4/p

)
bits of space.

By comparison, using the approach of Jiang et al. (2020), we have the following guarantees:
Theorem 8. Given a constant p > 2, an accuracy parameter ε ∈ (0, 1), and a heavy-hitter oracle O
for the data stream, there exists a one-pass algorithm that outputs a (1 + ε)-approximation to the Fp

moment in the polynomial-decay model that uses Õ
(

n1/2−1/p

ε2+4/p

)
bits of space.

Similarly, we can use the following linear sketch for rectangular Fp moment estimation:
Proposition 4. Tirthapura & Woodruff (2012) Given a constant p > 2 and an accuracy parameter
ε ∈ (0, 1), there exists a one-pass algorithm that uses a linear sketch and outputs a (1 + ε)-

approximation to the rectangular Fp moment in the streaming model that uses Õ
(

∆d(1−2/p)

ε2+4/p

)
bits of

space.

By applying Theorem 3 to Proposition 4, our framework achieves the following guarantees for
rectangular Fp moment estimation in the polynomial-decay model.
Theorem 9. Given a constant p > 2 and an accuracy parameter ε ∈ (0, 1), there exists a one-pass
algorithm that outputs a (1+ε)-approximation to the rectangular Fp moment in the polynomial-decay

model that uses Õ
(

∆d(1−2/p)

ε2+4/p

)
bits of space.

By comparison, using the approach of Jiang et al. (2020), we have the following guarantees (restated
from Section 4):
Theorem 4. Given a constant p > 2, an accuracy parameter ε ∈ (0, 1), and a heavy-hitter oracle O
for the data stream, there exists a one-pass algorithm that outputs a (1 + ε)-approximation to the

rectangular Fp moment in the polynomial-decay model that uses Õ
(

∆d(1/2−1/p)

ε2+4/p

)
bits of space.

Similarly, consider the exponential decay model, where we have w(t) = st for some fixed parameter
s ∈ (0, 1]. For Fp moment estimation, rectangular moment estimation, and cascaded norms, we have
that the G-moment is still preserved within a factor of (1+ ε) even when the coordinates are distorted
up to a factor of (1 +O (ε)).

Lemma B.2. For the exponential decay model w(t) = st, it suffices to set η = O (ε) and ν = O
(

ε
m

)
.

Proof. We again consider the G-moment function for the Fp problem, G(x) = |x|p as the the proofs
for cascaded norm and rectangular moments are similar. First, for η = ε

100p2 = O (ε), we have
(1 + η)p − 1 ⩽ ε

4 . Therefore, for G(x) = |x|p and all x ⩾ 1, G((1 + η)x) − G(x) ⩽ ε
4G(x), as

required.

Second, recall that G(1) = 1. Since p ⩾ 2, the quantity (x + ν)p − xp achieves its maximum
over [1,m] at x = m. For ν = ε

100pm , we have (m + ν)p −mp ⩽ ε
4 . Thus, for every x ∈ [1,m],

G(x+ ν)−G(x) ⩽ ε
4G(1). Importantly, this value of ν means we can set mµ = O (log n).
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Therefore, by applying Theorem 3 to the relevant statements, we obtain the following results for Fp

moment estimation in the exponential-decay model.
Theorem 10. Given a constant p > 2 and an accuracy parameter ε ∈ (0, 1), there exists a one-pass
algorithm that outputs a (1 + ε)-approximation to the Fp moment in the exponential-decay model

that uses Õ
(

n1−2/p

ε2+4/p

)
bits of space.

Theorem 11. Given a constant p > 2, an accuracy parameter ε ∈ (0, 1), and a heavy-hitter oracle
O for the data stream, there exists a one-pass algorithm that outputs a (1 + ε)-approximation to the

Fp moment in the exponential-decay model that uses Õ
(

n1/2−1/p

ε2+4/p

)
bits of space.

Similarly, we obtain the following results for rectangular Fp moment estimation in the exponential-
decay model.
Theorem 12. Given a constant p > 2 and an accuracy parameter ε ∈ (0, 1), there exists a one-pass
algorithm that outputs a (1+ε)-approximation to the rectangular Fp moment in the exponential-decay

model that uses Õ
(

∆d(1−2/p)

ε2+4/p

)
bits of space.

Theorem 13. Given a constant p > 2, an accuracy parameter ε ∈ (0, 1), and a heavy-hitter oracle
O for the data stream, there exists a one-pass algorithm that outputs a (1 + ε)-approximation to the

rectangular Fp moment in the exponential-decay model that uses Õ
(

∆d(1/2−1/p)

ε2+4/p

)
bits of space.

We remark on the main difference between behaviors of our framework in the polynomial-decay
model and in the exponential-decay model. Intuitively, the framework will create a logarithmic
number of large blocks in the polynomial-decay model, because as the stream progresses, it takes a
significantly larger number of updates for the weight to decrease by a factor of (1 + η). In contrast,
the framework will create a logarithmic number of small blocks in the exponential-decay model, but
then the blocks will be truncated after O (log n) updates.

C ADDITIONAL DETAILS FOR THE EXPERIMENTS

When implementing our experiments, we experimentally chose multiple parameters for our augmented
and non-augmented algorithms. This section provides details and justifications for these parameters
and presents additional experiments.

C.1 PARAMETERS

C.1.1 ORACLES & TRAINING

To demonstrate that a heavy-hitter oracle is feasible, we used several oracles in our experiments. All
three oracles were used for experiments on the CAIDA dataset, while only the Count-Sketch oracle
was used for the other datasets. Each oracle was trained on a data stream prefix and was asked to
identify items that would be heavy hitters in the stream suffix.

Count-Sketch oracle. For our first oracle, we implemented the well-known Count-Sketch algo-
rithm Charikar et al. (2004) for finding heavy-hitters on a data stream. The prefix sketching results
became our heavy hitters for the suffix. For the synthetic and CAIDA datasets, we used a 100K length
prefix, repeated the algorithm 5 times, used 300 hashing buckets, and set ε = 0.1. We changed the
prefix to 10K for the AOL dataset but maintained the other parameters.

LLM oracle. For our Large Language Model (LLM) oracle, we provided the same 100K CAIDA
prefix to ChatGPT and Google Gemini and used the following prompt:

Given this stream subset, predict 26 ip addresses that will occur most frequently in
the future data stream

ChatGPT and Google Gemini predicted identical heavy hitters, so we combined their results into
a single LLM oracle. Since Count-Sketch identified 26 heavy hitters, we specifically asked for 26
ip addresses to ensure a reasonable comparison between the oracles. The LLM and Count-Sketch
algorithms agreed on the identities of 10/26 heavy-hitters.
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LSTM oracle. For our LSTM oracle, we trained a heavy-hitter predictor on the same 100K CAIDA
prefix. The LSTM consisted of an embedding layer that embedded the universe to 32 dimensions, a
single LSTM layer with embedding dimension 32 and hidden dimension 64, and a fully connected
output layer. The predictor was trained for 50 epochs with Binary Cross-Entropy (BCE) Loss using
Adam Optimizer with learning rate 0.001. The batch size was set to 64.

C.1.2 AMS AND LEARNING-AUGMENTED AMS

We implemented Alon et al. (1999)’s algorithm, which we call AMS, as a baseline for ℓ2 norm
approximation on the CAIDA dataset. We augmented the baseline algorithm with heavy-hitters
from the oracles to compare the algorithms’ performance. To convert the streaming algorithms
into sliding window ones, we tracked multiple instances of each algorithm. Each instance started
at a different timestep to account for a different sliding window of the data stream. Relying on
Braverman & Ostrovsky (2007), when two instances’ ℓ2 norm approximation was within a factor of
two, we discarded one instance and used the other to approximate the discarded instance’s sliding
window. We allowed a maximum of 20 algorithm instances. Each instance of the algorithm contained
11 estimates (obtained with different seeds), so we estimated the ℓ2 norm as the median of these
estimates. For our hash function, we implement a seeded hashing mechanism in which the hash
output is determined by evaluating a low-degree polynomial over the input domain with coefficients
derived from a pseudo-random generator. Specifically, we initialize NumPy’s default random number
generator with a seed value then sample four integer coefficients over the range [0, p), where p is a
large prime (default 231 − 1). Note that the seed is set to the repetition number. Our input stream
item value is coerced to an integer and substituted into a polynomial of degree three, with each term
computed modulo p to avoid overflow and maintain arithmetic within a finite field. The polynomial
is evaluated incrementally, applying modular reduction at each step, and the final result is mapped
into an output space of size 2 via an additional modulo operation. We map the final value to {−1, 1}
by multiplying this output by two and subtracting one.

C.1.3 SS AND LEARNING-AUGMENTED SS

For higher order norm estimation, we implemented Indyk & Woodruff (2005)’s subsampling (SS)
algorithm. Like before, we created an augmented version of the algorithm and compared its perfor-
mance to the baseline on the CAIDA, AOL, and synthetic datasets. We used the same histogram
mechanism to create a sliding window version of both algorithms. We repeated both algorithms 15
times: each timestep instance of the algorithm held 3 sets of 5 estimates (obtained with different
seeds) for the same window. We obtained our ℓ3 norm estimate by first taking the mean of each of
the 5 estimates, then taking the mean of the remaining 3 values. Again, we allowed a maximum of
20 algorithm instances. For our hash function, we take as input a seed and the stream item value,
concatenate them into a canonical string representation, and compute a SHA-256 cryptographic hash
over this composite input. Note that the seed is obtained by taking the sum of the stream item value
and the repetition number. The resulting 256-bit digest is interpreted as a large integer and used to
initialize a local instance of Python’s pseudorandom number generator. A single uniform variate in
the interval [0, 1) is then produced. If the hash value is below our sample selection probability, which
we set to qssa = 1

100 and qss =
1
10 , we sample the stream item, which effectively defines our bucket

count.

C.2 EXPERIMENTS ON ADDITIONAL DATASETS

C.2.1 SYNTHETIC DATASET

Figure 4a compares the results from the estimation algorithms, SSA and SS, to the actual ℓ3 norm over
multiple window sizes for our synthetically generated dataset described in Section 5. Additionally, we
include “SSA Scaled” and “SS Scaled”, which are obtained by scaling the estimates for W = m (the
largest window size) by W

m to estimate smaller window sizes. These methods aim to create natural
heuristics to transform vanilla streaming algorithms into sliding-window ones. Intuitively, simply
rescaling to estimate a smaller window should work well if the distribution remains unchanged over
the stream. However, our synthetic data deliberately includes a distribution shift to analyze if our
augmented algorithm, SSA, provides benefits when distribution changes occurs. As seen in Figure 4a,
the non-augmented algorithms, SS and SS-Scaled, are significantly further from the ground truth than
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(a) (b)

Fig. 4: Experiments for ℓ3 estimation on synthetic data

the augmented-algorithms, SSA and SSA-Scaled. This is supported by the error curves in Figure 4b,
which show that the gap between the augmented and non-augmented algorithms increases as the
window size shrinks, highlighting that an adversarial distribution shift causes the algorithms to lose
accuracy. Between SSA and SSA-scaled, SSA provides an estimate much closer to the ground truth
across window-sizes.

(a) (b)

(c) (d)

Fig. 5: Experiments for (k, p)-cascaded norm estimation on synthetic data

Figure 5 compares the results from the estimation algorithms, SSA and SS, to the actual (k, p)-
cascaded norm over multiple window sizes for our synthetically generated dataset. Across all window
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sizes shown in Figure 5a and Figure 5c, SSA, the augmented algorithm, provides a much higher
quality estimate than SS. As shown in Figure 5b and Figure 5d, the ratio between the SSA estimate
and ground truth value remains nearly constant across all window sizes. Conversely, the SS estimate
seems to degrade exponentially with increased window size. Moreover, compared to its estimate
for (k = 3, p = 3), SS provides an estimate that is twice as bad for (k = 5, p = 5)-cascaded
norms, while SSA remains about equal. This highlights that SSA is relatively stable for higher order
norms, while SS degrades more noticeably. Together, the plots suggest that augmenting the baseline
algorithm with heavy hitters provides useful information for obtaining higher quality estimates of the
(k, p)-cascaded norm over various window sizes. In addition to estimation quality, we also monitored
the memory usage and running time of the two algorithms. For (k = 5, p = 5)-cascaded norm
estimation, SSA consumed 68.86 MB of RAM while SS consumed 74.63 MB of RAM, which aligns
well with our expectation that the augmented algorithm will consume less memory. The trend is
similar for (k = 3, p = 3)-cascaded norm estimates as SSA consumed 112.32 MB of RAM, while
SS consumed 117.27 MB of RAM. Additionally, for (k = 5, p = 5) SSA ran for 40.3s while SS
ran for 63.5s, and for (k = 3, p = 3) SSA ran for 40.1s while SS ran for 61.8s. For both settings,
the CountSketch oracle itself used 65.96 MB of RAM. Put together, these results show that SSA
can provide higher quality estimates of the (k, p)-cascaded norm using less memory than SS while
running slightly faster than SS.

C.2.2 AOL DATASET

(a) (b) (c)

Fig. 6: Experiments for ℓ3 estimation on AOL

Figure 6a provides the estimation results from SSA and SS to the actual ℓ3 norm over various window
sizes for the AOL dataset, a second real-world dataset. The x-axis is converted from timesteps to
window sizes and log-scaled for better interpretability; the y-axis is also log scaled. Combined
with Figure 6b, we see that SSA is more accurate than SS for W > 125, 000. However, given its
flat error curve and close estimates, SS seems to be a more reliable estimate for the AOL dataset
compared to the CAIDA dataset. We suspect that SSA is not as advantageous over SS because
the AOL dataset is more uniform than the CAIDA dataset and our synthetic dataset, which has a
distribution shift. Nevertheless, SSA remains more accurate compared to SS in this setting. Figure 6c
compares the estimation results from SSA and SS to the actual ℓ3 norm over various sample selection
probabilities. As seen in the figure, SSA provides more accurate estimates of the ℓ3 norm than SS
for especially small sample selection probabilities. As the probabilities increase, SS benefits from
increased sample sizes, ultimately providing better estimates of the ℓ3 norm. Cumulatively, SSA
provides more accurate estimates over most of the sample selection probabilities, but especially for
lower probabilities, indicating that it is more beneficial in low space settings.

D THE HEAVY-HITTER ORACLE AND LEARNING THEORY

In this section, we discuss the theoretical aspect of the implementation of the heavy-hitter oracle using
the Probably Approximately Correct (PAC) learning framework. The framework helps to demonstrate
that a predictor of high quality can be learned efficiently, given that the input instances are from
a fixed probability distribution. The discussion of implementing oracles for learning-augmented
algorithms enjoys a long history, see, e.g., Izzo et al. (2021); Ergun et al. (2022); Grigorescu et al.
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(2022); Braverman et al. (2025), and we adapt this framework for the purpose of our heavy-hitter
oracles.

Initially, we assume an underlying distribution, denoted as D, from which the input data (frequency
vectors of x) is sampled. This setup is standard for solving the frequency estimation problem with or
without the learning-augmented oracles. The machine learning model for the oracle would perform
well as long as no generalization failure or distribution shift occurs.

Our objective is then to efficiently derive a predictor function f from a given family of possible
functions F . The input for any predictor f consists of a frequency vector of x, and the output of the
predictor is a vector {0, 1}n indicating whether each xi is a heavy hitter. We then introduce a loss
function L : f ×G→ R, which quantifies the accuracy of a predictor f when applied to a specific
input instance x. One could think of L as the function that accounts for the incorrect predictions
when compared to the actual heavy-hitter information.

Our goal is to learn the function f ∈ F that minimizes the following objective expression:

min
f∈F

E
x∼D

[L(f(x))] . (1)

Let f∗ represent an optimal function within the family F , such that f∗ = argmin E
x∼D

[L(f(x))] is a

function that minimizes the aforementioned objective. Assuming that for every frequency vector x
and every function f ∈ F , we can compute both f(x) and L(f(x)) in time T (n), we can state the
following results using the standard empirical risk minimization method.

Theorem 14. An algorithm exists that utilizes poly
(
T (n), 1

ε

)
samples and outputs a function f̂ such

that with probability at least 99/100, we have

E
x∼D

[
L(f̂(x))

]
⩽ min

f
E

x∼D
[L(f(x))] + ε.

In essence, Theorem 14 is a PAC-style result that provides a bound on the number of samples required
to achieve a high probability of learning an approximately optimal function.

In what follows, we discuss the proof of Theorem 14 in more detail. We first define the pseudo-
dimension for a class of functions, which extends the concept of VC dimension to functions with
real-valued outputs.
Definition 6 (Pseudo-dimension, e.g., Definition 9 in Lucic et al. (2018)). Let X be a ground set,
and let F be a set of functions that map elements from X to the interval [0, 1]. Consider a fixed set
S = {x1, . . . , xn} ⊂ X , a set of real numbers R = {r1, r2, · · · , rn}, where each ri ∈ [0, 1]. Fix
any function f ∈ F , the subset Sf = {xi ∈ S | f(xi) ⩾ ri} is known as the induced subset of S
(determined by the function f and the real values R). We say that the set S along with its associated
values R is shattered by F if the count of distinct induced subsets is |{Sf | f ∈ F}| = 2n. Then, the
pseudo-dimension of F is defined as the cardinality of the largest subset of X that can be shattered
by F (or it is infinite if such a maximum does not exist).

By employing the concept of pseudo-dimension, we can now establish a trade-off between accuracy
and sample complexity for empirical risk minimization. LetH be the class of functions formed by
composing functions inF with L; that is,H := {L◦f : f ∈ F}. Furthermore, through normalization,
we can assume that the range of L is in the range of [0, 1]. A well-known generalization bound is
given as follows.
Proposition 5 (Anthony & Bartlett (2002)). LetD be a distribution over problem instances in X , and
let H be a class of functions h : X → [0, 1] with a pseudo-dimension dH. Consider t independent
and identically distributed (i.i.d.) samples x1, · · · ,xt drawn from D. Then, there exists a universal
constant c0 such that for any ε > 0, if t ⩾ c0 · dH

ε2 , then for all h ∈ H, we have that with probability
at least 99/100: ∣∣∣∣∣1t ·

t∑
i=1

h(xi)− E
x∼D

[h(x)]

∣∣∣∣∣ ⩽ ε.

The following corollary is an immediate consequence derived by applying the triangle inequality on
Proposition 5.
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Corollary 15. Let x1, · · · ,xt be a set of independent samples (frequency vectors) drawn from D,
and let ĥ ∈ H be a function that minimizes 1

t ·
∑t

i=1 h(xi). If the number of samples t is selected as
specified in Proposition 5, i.e., t ⩾ c0 · dH

ε2 , then with a probability of at least 99/100, we have

E
x∼D

[
ĥ(x)

]
⩽ E

x∼D
[h∗(x)] + 2ε.

Finally, we could relate the pseudo-dimension with VC dimension using standard results.
Lemma D.1 (Pseudo-dimension and VC dimension, Lemma 10 in Lucic et al. (2018)). For any
h ∈ H, let Bh be the indicator function of the threshold function, i.e., Bh(x, y) = sgn(h(x) − y).
Then the pseudo-dimension ofH equals the VC-dimension of the sub-class BH = {Bh | h ∈ H}.
Lemma D.2 (Theorem 8.14 in Anthony & Bartlett (2002)). Let τ : Ra × Rb → {0, 1}, defining the
class

T = {x 7→ τ(θ, x) : θ ∈ Ra}.
Assume that any function τ can be computed by an algorithm that takes as input the pair (θ, x) ∈
Ra ×Rb and produces the value τ(θ, x) after performing no more than t of the following operations:

• arithmetic operations +,−,×, / on real numbers,

• comparisons involving >,⩾, <,⩽,=, and outputting the result of such comparisons,

• outputting 0 or 1.

Then, the VC dimension of T is bounded by O(a2t2 + t2a log a).

By Lemma D.1 and Lemma D.2, we could straightforwardly bound the VC dimension of the concept
class F , which, in turn, bounds the pseudo-dimension of the concept class F . This completes the last
peice we need to prove Theorem 14.

Proof of Theorem 14. From Lemma D.1 and Lemma D.2, we obtain that the pseudo-dimension of F
is bounded by O(n2 · T 2(n)) by using a = n and t = T (n). This bound could in turn be bounded
as poly(T (n)). As such, by Corollary 15, we only need poly(T (n))/ε2 samples. We assumed f(x)
and L(f(x)) can be computed in time T (n), and applying any poly-time EMR algorithm gives us
the total running time of poly(T (n), 1/ε), as desired.

It is important to note that Theorem 14 is a generic framework for learning-augmented oracles. If
every function within the family of oracles under consideration can be computed efficiently, then
Theorem 14 ensures that a polynomial number of samples will be adequate to learn an oracle that is
nearly optimal.
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