

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING-AUGMENTED MOMENT ESTIMATION ON TIME-DECAY MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Motivated by the prevalence and success of machine learning, a line of recent work has studied learning-augmented algorithms in the streaming model. These results have shown that for natural and practical oracles implemented with machine learning models, we can obtain streaming algorithms with improved space efficiency that are otherwise provably impossible. On the other hand, our understanding is much more limited when items are weighted unequally, for example, in the sliding-window model, where older data must be expunged from the dataset, e.g., by privacy regulation laws. In this paper, we utilize an oracle for the heavy-hitters of datasets to give learning-augmented algorithms for a number of fundamental problems, such as norm/moment estimation, frequency estimation, cascaded norms, and rectangular moment estimation, in the time-decay setting. We complement our theoretical results with a number of empirical evaluations that demonstrate the practical efficiency of our algorithms on real and synthetic datasets.

1 INTRODUCTION

The streaming model of computation is one of the most fundamental models in online learning and large-scale learning algorithms. In this model, we consider an underlying frequency vector $\mathbf{x} \in \mathbb{R}^n$, which is initialized to the zero vector 0^n . The data arrives sequentially as a stream of m updates, where each update at time $t \in [m]$ is denoted by (t, σ_t) . Each σ_t modifies a coordinate \mathbf{x}_i of the frequency vector for some $i \in [n]$ by either increasing or decreasing its value. The goal is usually to compute a function $f(\mathbf{x})$ of this underlying frequency vector using memory substantially smaller than the input dataset size. The data stream model has widespread applications in traffic monitoring (Chen et al., 2021), sensor networks (Gama & Gaber, 2007), data mining (Gaber et al., 2005; Alothali et al., 2019), and video analysis (Xu et al., 2012), to name a few. The research on data streams enjoys a rich history starting with the seminal work of Alon et al. (1999). Some of the most well-studied problems in the data stream model are often related to *frequency (moment) estimation*, i.e., given the frequency vector \mathbf{x} , compute the F_p frequency $\|\mathbf{x}\|_p^p = \sum_{i=1}^n |\mathbf{x}_i|^p$. A long line of work has thoroughly explored streaming algorithms related to frequency estimation and their limitations (see, e.g., Alon et al. (1999); Chakrabarti et al. (2003); Bar-Yossef et al. (2004); Charikar et al. (2004); Woodruff (2004); Cormode & Muthukrishnan (2005); Indyk & Woodruff (2005); Li (2008); Andoni et al. (2011); Kane et al. (2011); Braverman & Ostrovsky (2013); Braverman et al. (2014; 2018); Woodruff & Zhou (2021a;b); Indyk et al. (2022); Braverman et al. (2024a) and references therein).

For $p \geq 2$, the celebrated count-sketch framework (Charikar et al., 2004; Indyk & Woodruff, 2005) can be used to achieve streaming algorithms that compute a $(1 \pm \varepsilon)$ -approximation of the F_p frequency moment in $\tilde{O}(n^{1-2/p} p^2 / \text{poly}(\varepsilon))$ ¹ space (Charikar et al., 2004; Indyk & Woodruff, 2005; Andoni et al., 2011). The bound has since been proved tight up to polylogarithmic factors (Chakrabarti et al., 2003; Bar-Yossef et al., 2004; Woodruff, 2004; Woodruff & Zhou, 2021b; Braverman et al., 2024a). As such, for very large p , any streaming algorithm would essentially need $\tilde{\Omega}(n)$ space. The conceptual message is quite pessimistic, and we would naturally wonder whether some beyond-worst-case analysis could be considered to overcome the space lower bound.

Learning-augmented algorithms. Learning-augmented algorithms have become a popular framework to circumvent worst-case algorithmic hardness barriers. These algorithms leverage the predictive

¹Throughout, we use $\tilde{O}(\cdot)$ and $\tilde{\Omega}(\cdot)$ to hide polylogarithmic terms unless specified otherwise.

054 power of modern machine learning models to obtain some additional “hints”. Learning-augmented
 055 algorithms have been applied to problems such as frequency estimation (Hsu et al., 2019; Jiang et al.,
 056 2020; Chen et al., 2022; Aamand et al., 2025), metric clustering (Ergun et al., 2022; Huang et al.,
 057 2025), graph algorithms (Braverman et al., 2024b; Cohen-Addad et al., 2024; Dong et al., 2025;
 058 Braverman et al., 2025), and data structure problems (Lin et al., 2022; Fu et al., 2025). Notably, Jiang
 059 et al. (2020) showed that for the F_p frequency moment problem with $p \geq 2$, with the presence of
 060 a natural and practical heavy-hitter oracle, we can obtain $(1 \pm \varepsilon)$ -approximation algorithms with
 061 $\tilde{O}(n^{1/2-1/p} / \text{poly}(\varepsilon))$ space – a space bound impossible without the learning-augmented oracle.
 062 Jiang et al. (2020) also obtained improved space bounds for related problems such as the rectangle
 063 F_p frequency moments and cascaded norms, highlighting the effectiveness of learning-augmented
 064 oracles.

065 **Time-decay streams.** The results in Jiang et al. (2020) and related work (Hsu et al., 2019; Chen et al.,
 066 2022; Aamand et al., 2025) gave very promising messages for using learning-augmented oracles
 067 in streaming frequency estimation. On the other hand, almost all of these results only focus on
 068 estimating the frequencies of the *entire* stream. As such, they do *not* account for the *recency effect*
 069 of data streams. In practice, recent updates of the data stream are usually more relevant, and older
 070 updates might be considered less important and even invalid. For instance, due to popularity trends,
 071 recent songs and movies usually carry more weight on entertainment platforms. Another example of
 072 the recency effect is privacy concerns. To protect user privacy, the General Data Protection Regulation
 073 (GDPR) of the European Union mandates user data to be deleted after the “necessary” duration
 074 (GDPR16). Furthermore, some internet companies, like Apple Inc. (2021), Facebook (2021), Google
 075 LLC (2025), and OpenAI (2024) have their own policies on how long user data can be retained.
 076

077 The time-decay framework in the stream model is a great candidate that captures the recency effect.
 078 In this model, apart from the data stream, we are additionally given a function w supported on $[0, 1]$
 079 that maps the importance of the stream updates in the past. In particular, at each time step t , we will
 080 apply w on a previous time step $t' < t$ to *potentially discount* the contribution of the previous update,
 081 i.e., $w(\tau) \leq w(1)$ for $\tau \geq 1$ ². Our goal is to compute a function (e.g., F_p) of the frequencies with
 082 the weighted stream after the update at the t -th time for $t \in [m]$. In general, algorithms for standard
 083 data streams do *not* directly imply algorithms in the time-decay model. Therefore, it is an interesting
 084 direction to ask *whether the learning-augmented heavy-hitter oracle could be similarly helpful for*
 085 *frequency estimation in time-decay models.*

086 Typical time-decay models include the *polynomial decay* model (Kopelowitz & Porat, 2005; Cormode
 087 et al., 2007; 2009; Braverman et al., 2019), where the importance of the updates decays at a rate of
 088 $1/\tau^s$ for some fixed constant s , and the *exponential decay* model (Cohen & Strauss, 2003; Cormode
 089 et al., 2008; 2009; Braverman et al., 2019), where the decay is much faster as a function of $1/s^\tau$ for
 090 some fixed constant s . The study of *frequency estimation* often appears in conjunction with the time
 091 decay model. In addition to the space bound studied by, e.g., Kopelowitz & Porat (2005); Braverman
 092 et al. (2019), several papers have approached the problem from the practical perspective (Xiao
 093 et al., 2022; Pulimeno et al., 2021). However, to the best of our knowledge, the general time-decay
 094 streaming model has not been well studied in the *learning-augmented* setting.

095 A notable special case for the time-decay framework is the *sliding-window stream model*. Here, we
 096 are given a window size W , and the time-decay function becomes binary: $w(t') = 1$ if t' is within
 097 a size- W window (i.e., $t' \geq t - W + 1$), and $w(t') = 0$ otherwise. For this special application,
 098 Shahout et al. (2024) studied the learning-augmented Window Compact Space Saving algorithm in
 099 sliding-window streams. Although a pioneering work with competitive empirical performances, the
 100 algorithm in Shahout et al. (2024) suffers from two issues: *i*). it does *not* give any formal guarantees
 101 on the space complexity; and *ii*). for technical reasons, the paper deviates from the heavy-hitter
 102 oracle as in Jiang et al. (2020), and instead used a “next occurrence” oracle that is less natural and
 103 arguably harder to implement. Specifically, the hard instances in existing lower bounds for streaming
 104 algorithms involve identifying L_p heavy-hitters and approximating their contributions to the F_p
 105 moment (Woodruff & Zhou, 2021b). Since the “next occurrence” oracle of Shahout et al. (2024) does
 106 not perform this task, it is unclear how their approach could be used to improve standard streaming
 107 and sketching techniques. Furthermore, it is unclear how their algorithm could be extended to the
 108 general time-decay models as we study in the paper. As such, getting results for general time-decay

109 ²Here, step t' uses $w(t - t' + 1)$ as the input. In this way, w could be defined as a non-increasing function,
 110 i.e., $w(t - t + 1) = w(1)$.

108 algorithms would imply improved results for the sliding-window model, which renders the open
 109 problem more appealing.
 110

111 **Our results.** In this paper, we answer the open question in the affirmative by devising near-optimal
 112 algorithms in the time-decay model (resp. the sliding-window model) for the F_p frequency estimation
 113 problem and related problems. Our main results can be summarized as follows (all of the bounds
 114 apply to polynomital decay, exponential decay, and the sliding-window settings).

- 115 • F_p frequency: We give a learning-augmented algorithm that given the heavy-hitter oracle and
 116 the frequency vector \mathbf{x} in the stream, computes a $(1 \pm \varepsilon)$ -approximation of the F_p frequency
 117 $\|\mathbf{x}\|_p^p = \sum_{i=1}^n |\mathbf{x}_i|^p$ in $\tilde{O}(\frac{n^{1/2-1/p}}{\varepsilon^{4+p}} \cdot p^{1+p})$ space.
- 118 • Rectangle F_p frequency: When the universe is $[\Delta]^n$ and stream elements update all coordinates
 119 in hyperrectangles, the F_p frequency moment problem for the stream is called *rectangle* F_p
 120 frequency. We give a learning-augmented algorithm that computes a $(1 \pm \varepsilon)$ -approximation of
 121 the rectangle F_p frequency in $\tilde{O}(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{4+p}} \cdot \text{poly}(\frac{p^p}{\varepsilon}, d))$ space with heavy-hitter oracles.
- 122 • (k, p) -cascaded norm: As a generalization of the F_p frequency moment problem, when the
 123 data is given as an $n \times d$ matrix \mathbf{X} and the stream updates each coordinate $\mathbf{X}_{i,j}$, we define
 124 $f(\mathbf{X}) = (\sum_{i=1}^n (\sum_{j=1}^d \|\mathbf{X}_{i,j}\|^p)^{k/p})^{1/k}$ as the (k, p) -cascaded norm (k -norm of the p -norms
 125 of the rows). We give a learning-augmented algorithm that computes a $(1 \pm \varepsilon)$ -approximation of
 126 the (k, p) -cascaded norm in space $\tilde{O}_{k,p}(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}})$. We use $\tilde{O}_{k,p}(\cdot)$ to hide polynomial
 127 terms of $(kp)^{kp}$, ε , and $\log n$.³
- 128

130 By a lower bound in Jiang et al. (2020), any learning-augmented streaming algorithm that obtains
 131 a $(1 \pm \varepsilon)$ -approximation for the F_p moment would require $\Omega(n^{1/2-1/p}/\varepsilon^{2/p})$ space. Since the
 132 streaming setting can be viewed as a special case for the time-decay model, our algorithm for F_p
 133 frequency is optimal with respect to the exponent n .

Task	Space Bound	Model	Remark
F_p Frequency $(p \geq 2)$	$\tilde{O}(n^{1/2-1/p}/\varepsilon^4)$	Streaming	Jiang et al. (2020)
	$\Omega(n^{1/2-1/p}/\varepsilon^{2/p})$	Any	Lower bound, Jiang et al. (2020)
	not specified	Sliding Window	Shahout et al. (2024)
	$\tilde{O}(n^{1/2-1/p} \cdot p^{1+p}/\varepsilon^{4+p})$	General Time-decay (e.g., Sliding Window)	This work, Theorem 1
Rectangle F_p Frequency	$\tilde{O}(\Delta^{d(1/2-1/p)} \cdot \text{poly}(\frac{d}{\varepsilon}, d))$	Streaming	Jiang et al. (2020)
	$\tilde{O}(\Delta^{d(1/2-1/p)} \cdot \text{poly}(\frac{p^p}{\varepsilon^p}, d))$	General Time-decay (e.g., Sliding Window)	This work, Theorem 5
(k, p) -Cascaded Norm	$\tilde{O}(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}})$	Streaming	Jiang et al. (2020)
	$\tilde{O}_{k,p}(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}})$	General Time-decay (e.g., Sliding Window)	This work, Theorem 6

152
 153 Table 1: Summary of the results and their comparisons with existing work. The Theorem pointers are
 154 directed to the *sliding-window* algorithms as an illustration.

155 **Our techniques.** Our approach is fundamentally different from previous work in learning-augmented
 156 sliding-window algorithms, e.g., Shahout et al. (2024). In particular, we considered an approach
 157 that directly transforms streaming algorithms into time-decay algorithms. Crucially, we observe
 158 that many approaches in the time-decay streaming literature are based on *smoothness* of functions
 159 (e.g., Braverman & Ostrovsky (2007); Braverman et al. (2019)). Roughly speaking, these approaches
 160

161 ³For the polynomial and exponential-decay models, the computation of the (k, p) -cascaded norm requires
 162 row arrival. For the sliding-window streams, the updates can be on the points.

162 follow a framework to maintain *multiple copies* of the streaming algorithm on different *suffixes*, and
 163 delete the copies that are considered “outdated”. The correctness of time-decay streams could follow
 164 if the function satisfies some “smoothness” properties. We derived several *white-box* adaptations
 165 of the algorithms under this framework. We show that as long as the learning-augmented oracle is
 166 suffix-compatible, i.e., it is able to predict the heavy hitters of suffix streams $[t : m]$ as well, the
 167 framework would work in the learning-augmented setting in the same way as the setting without the
 168 oracle. As such, we could apply the streaming learning-augmented algorithm in Jiang et al. (2020) to
 169 obtain the desired time-decay algorithms.

170 We remark that another valid option would be to generalize the difference estimator framework of
 171 Woodruff & Zhou (2021a) to incorporate advice. Although this approach gives better dependencies
 172 in ϵ , the overall algorithm is quite involved and not as easily amenable to implementation, which in
 173 some sense is the entire reason to incorporate machine learning advice in the first place. We thus
 174 focus on practical implementations with provable theoretical guarantees.

175 **Experiments.** For the special case of sliding-window streams, we conduct experiments for learning-
 176 augmented F_p frequency estimation. We implement multiple suffix-compatible heavy-hitter oracles,
 177 such as the count-sketch algorithm (Charikar et al., 2004): this allows us to compute heavy hitters for
 178 different suffixes of streams with minimal space overhead. We tested the F_p frequency algorithms
 179 based on Algorithm 2 and the implementations in Alon et al. (1999) (AMS algorithm) and Indyk
 180 & Woodruff (2005) with and without the learning-augmented oracles. The datasets we tested on
 181 include a synthetic dataset sampling from binomial distributions and the real-world internet datasets
 182 of CAIDA and AOL. Our experiments show that the learning-augmented approach can significantly
 183 boost the performance of the frequency estimation algorithms, and, at times, produce results extremely
 184 close to the ground-truth. Furthermore, our approach is fairly robust against distribution shifts over
 185 updates, while other heuristic approaches like scaling would induce performance degradation when
 186 the distribution changes.⁴

2 PRELIMINARIES

190 **The time-decay and sliding-window models.** We specify the time-decay model and related notation.
 191 We assume the underlying data $\mathbf{x} \in \mathbb{Z}^n$ to be a *frequency vector*, where each coordinate \mathbf{x}_i stands
 192 for the frequency of the corresponding item. The frequency vector is initialized as 0^n , and at each
 193 time, the vector is updated as (i, Δ) such that $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta$, for some $\Delta \geq 0$, so that all updates
 194 can only increase the coordinates of the frequency vector. We assume in this paper without loss of
 195 generality that $\Delta = 1$. Let m be the total number of updates in the stream, which we assume to be
 196 upper bounded by at most some polynomial in the universe size n . In the time-decay model, we are
 197 additionally given a weight function $w : \mathbb{R} \rightarrow \mathbb{R}^{\geq 0}$, and an update at time $t \in [m]$ contributes weight
 198 $w(m-t+1)$ to the weight of coordinate $i_t \in [n]$. Here, w is a non-increasing function with $w(1) = 1$,
 199 and $s > 0$ is some parameter that is fixed before the data stream begins. We have $w(\tau) = 1/\tau^s$
 200 for polynomial decay and $w(\tau) = s^\tau$ for exponential decay, respectively. The underlying weighted
 frequency vector of the t -th time for all $i \in [n]$ is defined as $\mathbf{x}_i^t = \sum_{t' \in [t]: i_{t'} = i} w(t - t' + 1)$.

201 In the special case of the sliding-window model, we are additionally given a window size W . At
 202 each step $t \in (W-1, m]$, we define $\mathbf{x}^{W,t}$ as the frequency vector over the *last W update steps*. Let
 203 $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a given function, and our goal is to output $f(\mathbf{x}^{W,t})$ for all $t \in (W-1, m]$.

204 Apart from the subvectors $\mathbf{x}^{W,t}$ which we aim to compute, we also define $\mathbf{x}^{t_1:t_2}$ as the vector obtained
 205 by accounting for all the updates from step t_1 to t_2 . In particular, $\mathbf{x}^{1:t_1}$ and $\mathbf{x}^{t_1:m}$ represent the
 206 frequency vectors with the updates from the start of the stream to t_1 and from t_1 till the end of the
 207 stream, respectively.

208 **The functions to compute.** We aim to compute the following objective functions (defined as
 209 mappings $\mathbb{R}^n \rightarrow \mathbb{R}$) in the sliding-window streaming model.

- 210 • The F_p frequency function: $f(\mathbf{x}) = \|\mathbf{x}\|_p^p = \sum_i |\mathbf{x}_i|^p$.
- 211 • The rectangle F_p frequency function: this is a special case for the F_p frequency problem,
 212 where we assume $\mathbf{x} \in [\Delta]^n$ for some integer Δ .

213
 214
 215 ⁴The codes for the experiments are available on <https://anonymous.4open.science/r/Learning-Augmented-Sliding-Window-992B/>

Furthermore, we also study the *cascaded norm* function for *high-dimensional frequencies*, i.e., the input “frequency” is a $n \times d$ matrix \mathbf{X} , where each row corresponds to a generalized notion of frequency. The (k, p) -*cascaded norm* function $f : \mathbb{R}^{n \times d} \rightarrow \mathbb{R}$ is defined as $f(\mathbf{X}) = \left(\sum_{i=1}^n \left(\sum_{j=1}^d |\mathbf{X}_{i,j}|^p \right)^{k/p} \right)^{1/k}$. In the streaming model, at each time t , an update on a coordinate $\mathbf{X}_{i,j}$ is given in the stream. We can define the corresponding inputs for time-decay and sliding-window models analogously.

The learning-augmented framework. We work with learning-augmented streaming algorithms, where we assume an oracle that could predict whether \mathbf{x}_i is a *heavy hitter*. Depending on the function f , we have multiple ways of defining heavy hitters as follows.

Definition 1 (Heavy-hitter oracles). We say an element \mathbf{x}_i is a heavy hitter with the following rules.

- (a). If f is F_p frequency, we say that \mathbf{x}_i is a heavy hitter if $|\mathbf{x}_i|^p \geq \frac{1}{\sqrt{n}} \cdot \|\mathbf{x}\|_p^p$.
- (b). If f is rectangle F_p frequency in $[\Delta]^d$, we say that \mathbf{x}_i is a heavy hitter if $|\mathbf{x}_i|^p \geq \|\mathbf{x}\|_p^p / \Delta^{d/2}$.
- (c). If f is (k, p) -*cascaded norm*, we say that $\mathbf{X}_{i,j}$ is a heavy hitter if $|\mathbf{X}_{i,j}|^p \geq \|\mathbf{X}\|_p^p / (d^{1/2} \cdot n^{1-p/2k})$, where $\|\mathbf{X}\|_p^p$ is the vector norm of the vector from the elements in \mathbf{X} .

A heavy hitter oracle \mathcal{O} is a learning-augmented oracle that, upon querying \mathbf{x}_i , answers whether \mathbf{x}_i satisfies the heavy hitter definition. We say that \mathcal{O} is a *deterministic* oracle if it always correctly predicts whether \mathbf{x}_i is a heavy hitter. In contrast, we say that \mathcal{O} is a *stochastic* oracle with success probability $1 - \delta$ if for each coordinate \mathbf{x}_i , the oracle returns whether \mathbf{x}_i is a heavy hitter independently with probability at least $1 - \delta$.

For the purpose of time-decay algorithms, we also need the oracle to be *suffix compatible*, i.e., able to return whether \mathbf{x}_i is a heavy hitter for all suffix streams $[t : m]$, $t \in (0, m - 1]$. We formally define such oracles as follows.

Definition 2 (Suffix-compatible heavy-hitter oracles). We say a heavy hitter oracle \mathcal{O} is a deterministic (resp. randomized) suffix-compatible learning-augmented oracle if for each suffix of stream $[t : m]$ for $t \in (0, m - 1]$ and each frequency vector $\mathbf{x}(t : m)$, \mathcal{O} is able to answer whether $\mathbf{x}(t : m)$ is a heavy hitter (resp. with probability at least $1 - \delta$).

Additional discussions about suffix-compatible heavy-hitter oracles. Learning-augmented algorithms with heavy-hitter oracles were explored by Jiang et al. (2020). Our setting is consistent with theirs, and similar to Jiang et al. (2020), such oracles are easy to implement for practical purposes. In Appendix D, we provided a general framework for the learning of such oracles.

We note that Shahout et al. (2024) discussed certain difficulties for using bloom filters to obtain predictions for *every window*. We emphasize that the suffix-compatibility property does *not* require the prediction for every window, but rather only the suffixes of the streams (only $n - W + 1$ such windows). This is a much more relaxed setting than the issues discussed in Shahout et al. (2024). Furthermore, our experiments in Section 5 show that the suffix-compatible oracles can be easily learned via a small part of the streaming updates.

3 ALGORITHM AND ANALYSIS FOR THE SLIDING-WINDOW MODEL

We first discuss the special case of *sliding-window* algorithms since the algorithm and analysis are clean and easy to present. For this setting, we take advantage of the *smooth histogram* framework introduced by Braverman & Ostrovsky (2007). At a high level, a function f is said to be smooth if the following condition holds. Let \mathbf{x}_A and \mathbf{x}_B be two frequency vectors for elements in *data streams* A and B , where B is a suffix of A . If $f(\mathbf{x}_A)$ and $f(\mathbf{x}_B)$ are already sufficiently close, then they remain close under any common suffix of updates, i.e., by appending C to both $A \cup C$ and $B \cup C$ and getting new frequency vectors $\mathbf{x}_{A \cup C}$ and $\mathbf{x}_{B \cup C}$, the difference between $f(\mathbf{x}_{A \cup C})$ and $f(\mathbf{x}_{B \cup C})$ remains small. Braverman & Ostrovsky (2007) already established the smoothness of F_p frequencies, and we further prove the smoothness properties for rectangle F_p frequencies and cascaded norms.

We now discuss the framework in more detail, starting with the introduction of the notion of *common suffix-augmented frequency vectors*.

270 **Definition 3** (Common suffix-augmented frequency vectors). Let \mathbf{x}_A and \mathbf{x}_B be frequency vectors
 271 obtained from a stream A with suffix B . Furthermore, let \mathbf{x}_C be the frequency vector of a common
 272 suffix C of A and B . We say that $\mathbf{x}_{A \cup C}$ and $\mathbf{x}_{B \cup C}$ are pair of common suffix-augmented frequency
 273 vectors if $\mathbf{x}_{A \cup C} = \mathbf{x}_A + \mathbf{x}_C$ and $\mathbf{x}_{B \cup C} = \mathbf{x}_B + \mathbf{x}_C$.

274 In other words, let A, B, C be the streaming elements of $\mathbf{x}_A, \mathbf{x}_B$, and \mathbf{x}_C , respectively. In Definition 3,
 275 we have $A \subseteq B$, and the streaming elements of $\mathbf{x}_{A \cup C}$ and $\mathbf{x}_{B \cup C}$ are $A \cup C$ and $B \cup C$. We are now
 276 ready to formally define (α, β) -smooth functions as follows.

277 **Definition 4** $((\alpha, \beta)$ -smooth functions, Definition 1 of Braverman & Ostrovsky (2007)). A function
 278 $f : \mathbb{R}^n \rightarrow \mathbb{R}$ for frequency vectors is (α, β) -smooth if the following properties hold.

- 280 • $f(\mathbf{x}) \geq 0$ for any frequency vector \mathbf{x} .
- 281 • $f(\mathbf{x}) \leq \text{poly}(n)$ for some fixed polynomial.
- 282 • Let \mathbf{x}_A be a frequency vector obtained from a suffix of \mathbf{x}_B , we have
 - 283 (1) $f(\mathbf{x}_B) \geq f(\mathbf{x}_A)$.
 - 284 (2) For any $\varepsilon \in (0, 1)$, there exists $\alpha = \alpha(f, \varepsilon)$ and $\beta = \beta(f, \varepsilon)$ such that
 - 285 ○ $0 \leq \beta \leq \alpha < 1$.
 - 286 ○ If $f(\mathbf{x}_A) \geq (1 - \beta)f(\mathbf{x}_B)$, then for any common suffix-augmented frequency vectors
 287 $\mathbf{x}_{A \cup C}$ and $\mathbf{x}_{B \cup C}$ as prescribed in Definition 3, there is $f(\mathbf{x}_{A \cup C}) \geq (1 - \alpha)f(\mathbf{x}_{B \cup C})$.

289 Using the definition of (α, β) -smooth functions, we are able to derive the following framework that
 290 transform streaming algorithms to sliding-window algorithms in the learning-augmented regime.

291 **Lemma 3.1.** Let f be an (α, β) -smooth function, and let ALG be any learning-augmented streaming
 292 algorithm that queries the heavy-hitter oracle \mathcal{O} with the following properties:

- 294 • ALG outputs $f'(\mathbf{x})$ such that $(1 - \varepsilon) \cdot f(\mathbf{x}) \leq f'(\mathbf{x}) \leq (1 + \varepsilon) \cdot f(\mathbf{x})$ by the end of the
 295 stream with probability at least $1 - \delta$;
- 296 • \mathcal{O} satisfies the suffix-compatible property as prescribed by Definition 2; and
- 297 • ALG uses $g(\varepsilon, \delta)$ space and performs $h(\varepsilon, \delta)$ operations per stream update.

300 Then, there exists a sliding-window streaming algorithm ALG' that computes a $(1 \pm (\alpha + \varepsilon))$ -
 301 approximation of the sliding-windows with probability at least $1 - \delta$ using $O(\frac{(g(\varepsilon, \delta') + \log n) \cdot \log n}{\beta})$
 302 space and $O(\frac{h(\varepsilon, \delta') \log n}{\beta})$ operations per stream update, where $\delta' = \frac{\delta \beta}{\log n}$.

304 We defer the discussion and the proof for Lemma 3.1 to Appendix A. Next, we show how to use the
 305 framework in Lemma 3.1 to obtain learning-augmented sliding-window algorithms. We remark that
 306 the bound provided by the framework is *independent of* the window size W . As such, our bounds
 307 in this section do *not* include the W parameter. Limited by space, we only present our results for
 308 F_p frequency moment estimation in this section, and defer the results for rectangle F_p frequency
 309 moment estimation and cascaded norms to Appendix A.

310 Our learning-augmented sliding-window algorithm for F_p estimation for $p > 2$ has the following
 311 guarantees with both *perfect* and *erroneous* oracles.

312 **Theorem 1** (Learning-augmented F_p frequency moment algorithm). There exists a sliding-window
 313 streaming algorithm that, given a stream of elements in a sliding window, a fixed parameter
 314 $p \geq 2$, and a deterministic suffix-compatible heavy-hitter oracle \mathcal{O} (as prescribed by Definition 2),
 315 with probability at least 99/100 outputs a $(1 + \varepsilon)$ -approximation of the F_p frequency
 316 in $O\left(\frac{n^{1/2-1/p}}{\varepsilon^{4+p}} \cdot p^{1+p} \cdot \log^4 n \cdot \log(\frac{p}{\varepsilon})\right)$ space.

318 **Theorem 2** (Learning-augmented F_p frequency algorithm with stochastic oracles). There exists a
 319 sliding-window streaming algorithm that, given a stream of elements in a sliding window, a fixed
 320 parameter $p \geq 2$, and a stochastic suffix-compatible heavy-hitter oracle \mathcal{O} with success probability
 321 $1 - \delta$ (as prescribed by Definition 2), with probability at least 99/100 outputs a $(1 + \varepsilon)$ -approximation
 322 of the F_p frequency moment in space

- 323 • $O\left(\frac{(n\delta)^{1-1/p}}{\varepsilon^{4+p}} \cdot p^{1+p} \cdot \log^4 n \cdot \log(\frac{p}{\varepsilon})\right)$ bits if $\delta = \Omega(1/\sqrt{n})$.

324 • $O\left(\frac{n^{1/2-1/p}}{\varepsilon^{4+p}} \cdot p^{1+p} \cdot \log^4 n \cdot \log(\frac{p}{\varepsilon})\right)$ bits if $\delta = O(1/\sqrt{n})$.

325

326 For any constant p and ε , the space bound for the sliding-window F_p frequency moment estimation
 327 problem becomes $\tilde{O}(n^{1/2-1/p})$ for any learning-augmented oracle with a sufficiently high success
 328 probability. This bound is optimal even in the streaming setting by Jiang et al. (2020); as such, we
 329 obtain a near-optimal algorithm for the learning-augmented F_p frequency estimation problem.

330 At a high level, the algorithm is an application of the learning-augmented F_p frequency streaming
 331 algorithm in Jiang et al. (2020) to the framework we discussed in Lemma 3.1. The guarantees of the
 332 algorithm in Jiang et al. (2020) can be described as follows.

333 **Lemma 3.2** (Jiang et al. (2020)). *For any given stream, a fixed parameter $p \geq 2$, and a stochastic
 334 heavy-hitter oracle \mathcal{O} with success probability $1 - \delta$, with probability at least 99/100, Algorithm 2
 335 computes a $(1 + \varepsilon)$ -approximation of the F_p frequency using space*

336 • $O\left(\frac{(n\delta)^{1-1/p}}{\varepsilon^4} \cdot \log^2 n\right)$ bits if $\delta = \Omega(1/\sqrt{n})$.

337 • $O\left(\frac{n^{1/2-1/p}}{\varepsilon^4} \cdot \log^2 n\right)$ bits if $\delta = O(1/\sqrt{n})$.

338

341 To apply the reductions of Proposition 2, we need to understand the smoothness of the F_p frequency
 342 function, which is a standard fact established by previous results.

343 **Lemma 3.3** (Braverman & Ostrovsky (2007)). *The F_p frequency function is $(\varepsilon, \varepsilon^p/p^p)$ -smooth.*

344

345 **Finalizing the proof of Theorems 1 and 2.** We apply Lemma 3.1 to the algorithm of Lemma 3.2
 346 with the smoothness guarantees as in Lemma 3.3. For the success probability, we argue that the
 347 algorithm in Lemma 3.2 could be made to succeed with probability at least $1 - \delta$ with $O(\log(1/\delta))$
 348 multiplicative space overhead. This can be accomplished by the classical median trick: we run
 349 $O(\log(1/\delta))$ copies of the streaming algorithm, and take the median of the frequency output. By a
 350 Chernoff bound argument, the failure probability is at most δ .

351 Let $\beta = \varepsilon^p/p^p$; for the deterministic oracle case, we could use $g = \frac{n^{1/2-1/p}}{\varepsilon^4} \cdot \log^2 n$ and failure
 352 probability $\delta' = O(\beta/\log n)$ to obtain that the space needed for the streaming algorithm is at most

353
$$g(\varepsilon, \delta') = O\left(\frac{n^{1/2-1/p}}{\varepsilon^4} \cdot \log^2 n \cdot \log(n/\beta)\right) \leq O\left(\frac{n^{1/2-1/p}}{\varepsilon^4} \cdot p \cdot \log^3 n \cdot \log(p/\varepsilon)\right).$$

354

355 Therefore, the space we need is $O\left(g(\varepsilon, \delta') \cdot \frac{\log n}{\beta}\right) = O\left(\frac{n^{1/2-1/p}}{\varepsilon^{4+p}} \cdot p^{1+p} \cdot \log^4 n \cdot \log(\frac{p}{\varepsilon})\right)$, as
 356 desired. Finally, for the case with the randomized learning-augmented oracle, we simply replace the
 357 $n^{1/2-1/p}$ term in the bound with $(n\delta)^{1-1/p}$, which would give us the desired statement. \square

358

4 THE ALGORITHMS AND ANALYSIS FOR GENERAL TIME DECAY MODELS

361 In this section, we describe our algorithms for the general time-decay setting, where an update at
 362 time $t' \in [m]$ contributes weight $w(t - t' + 1)$ to the weight of coordinate $i_t \in [n]$ at time t . The
 363 underlying weighted frequency vector \mathbf{x}^t at step t is defined as

364
$$\mathbf{x}_i^t = \sum_{t' \in [t]: i_t = i} w(t - t' + 1).$$

365

366 The formal definition of the time-decay model and functions could be found in Section 2. Given
 367 a non-decreasing function $G : \mathbb{R} \rightarrow \mathbb{R}^{\geq 0}$ with $G(0) = 0$, we define G -moment estimation as the
 368 problem of estimating

369
$$G(\mathbf{x}) = \sum_{i \in [n]} G(\mathbf{x}_i).$$

370

371 When the context is clear, we also use the lower-case x as the input to the function G .

372

373 We introduce a general framework that transforms a linear sketch streaming algorithm for the problem
 374 of G -moment estimation into a time decay algorithm for G -moment estimation.

378 **Definition 5** (Smoothness in time-decay models). Given $\varepsilon > 0$, the weight function w and the
 379 G -moment function G are said to be (ε, ν, η) -smooth if:

380

381 (1) $G((1 + \eta)x) - G(x) \leq \frac{\varepsilon}{4} \cdot G(x)$ for all $x \geq 1$.

382 (2) There exists an integer $m_\nu \geq 0$ such that $\sum_{i \in [m_\nu, m]} w(i) \leq \nu$ and $G(x + \nu) - G(x) \leq$
 383 $\frac{\varepsilon}{4} \cdot G(1)$ for all $x \geq 1$. In other words, all updates in a stream of length m that arrived more
 384 than m_ν previous timesteps can be ignored.

385

386 The next theorem provides a framework for polynomial-decay and exponential-decay models.

387 **Theorem 3.** *Given a streaming algorithm that provides a $(1 + \varepsilon)$ -approximation to G -moment
 388 estimation using a linear sketch with k rows, functions G and w that satisfy the (ε, ν, η) -smoothness
 389 condition (Definition 5), there exists an algorithm for general time-decay that provides a $(1 + \varepsilon)$ -
 390 approximation to G -moment estimation that uses at most $O\left(\frac{k}{\eta} \log n \log \frac{1}{\nu}\right)$ bits of space.*

391

392 Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle \mathcal{O} is
 393 suffix-compatible.

394 We can apply Theorem 3 on the F_p moment estimation for the polynomial-decay model. We have
 395 described in Section 3 the algorithm for F_p estimation (Proposition 3), and we could apply Theorem 3
 396 to Proposition 3 to obtain the following result.

397 **Theorem 4.** *Given a constant $p > 2$, an accuracy parameter $\varepsilon \in (0, 1)$, and a heavy-hitter oracle \mathcal{O}
 398 for the data stream, there exists a one-pass algorithm that outputs a $(1 + \varepsilon)$ -approximation to the
 399 rectangular F_p moment in the polynomial-decay model that uses $\tilde{O}\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{2+4/p}}\right)$ bits of space.*

400

401 We defer the proof of Theorem 3 and the rest of the results to Appendix B.

404 5 EMPIRICAL EVALUATIONS

405 **Experimental setup.** To demonstrate the practicality of our theoretical results, we compared non-
 406 augmented sliding window algorithms with their augmented counterparts. We implemented Alon
 407 et al. (1999)'s algorithm for ℓ_2 norm estimation, which we refer to as AMS, and Indyk & Woodruff
 408 (2005)'s subsampling (SS) algorithm for ℓ_3 norm estimation. We utilized three different oracles for
 409 our augmented algorithms: Charikar et al. (2004)'s CountSketch (CS) algorithm, a ChatGPT/Google
 410 Gemini Large Language Model (LLM), and an LSTM trained for heavy hitter prediction. We refer to
 411 the augmented algorithms as AMSA and SSA, respectively.

412 **Datasets.** We tested our implementations on three datasets:

413

414 (1) A synthetic, skewed random-integer distribution generated by sampling a binomial distribution
 415 with $p = 2 \cdot q/\sqrt{n}$, where q is the desired number of heavy hitters and n is the number
 416 of distinct integer values, i.e. the universe size.

417 (2) CAIDA dataset⁵, which contains 12 minutes of IP traffic; each minute contains about 30M
 418 IP addresses. We used subsets of the first minute to test our implementations. Each IP
 419 address was converted to its integer value using Python's ipaddress library.

420 (3) AOL dataset⁶, which contains 20M user queries collected from 650k users. Each query
 421 was associated with an anonymous user id; we used a subset of these ids to test our
 422 implementations.

423

424 Limited by space, we only show the results for the CAIDA dataset, and defer the results for the other
 425 datasets to Appendix C.2. We also provide additional experiments details in Appendix C.

426 **Computing devices.** We implemented our experiments in Python 3.10.18. The experiments were
 427 performed on an Apple MacBook Air M2 with 16GB of RAM. Experiments on CAIDA that varied
 428 window sizes took 1100 - 1400 minutes. Experiments that varied sample selection probabilities took
 429 400 - 600 minutes.

430 ⁵Available on https://www.caida.org/catalog/datasets/passive_dataset

⁶<https://www.kaggle.com/dineshydv/aol-user-session-collection-500k>

432 5.1 AMS AND LEARNING-AUGMENTED AMS ALGORITHMS
433

(a) (b)

448 Fig. 1: Experiments for ℓ_2 norm estimation on CAIDA. *Note on the notation:* the variable n in figures
449 refers to stream length (which is m at other places of the paper).
450

451 Figure 1a compares the estimation results from our two algorithms to the actual ℓ_2 norm over various
452 timesteps. Note that n refers to stream length (not universe size) in Figures 1a, 6a, and 4a. The
453 ‘timesteps’ on the x axis correspond to window sizes: estimates starting at timestep 0 consider all 1M
454 stream items, i.e. $W = m$, while subsequent estimates use the most recent 1M – timestep values.
455 In other words, $W = m - t_i$, where t_i is a timestep and m is stream length. As seen in Figure 1a,
456 AMSA estimates are much closer to the ground truth than AMS estimates over all selected window
457 sizes, indicating that the augmented algorithm consistently produces a more accurate estimate. This
458 is further validated by Figure 1b, which plots the ratio of estimates to the ground truth over various
459 window sizes. As shown, AMSA estimates are within a factor of 1.2 over all window sizes, while
460 AMS estimates vary between factors of about 1.25 and 2.3. Additionally, AMSA estimates deviate
461 from the ground truth by a somewhat consistent margin, while AMS estimates seem to get closer
462 to the ground truth as the window size decreases, indicating that the augmented algorithm is more
463 precise over a variety of window sizes. AMSA’s precision is confirmed by the flatness of its error
464 curve in Figure 1b over all window sizes, especially when compared to the AMS error line.
465

466 5.2 SS AND LEARNING-AUGMENTED SS ALGORITHMS
467

(a) (b) (c)

478 Fig. 2: Experiments for ℓ_3 estimation on CAIDA using multiple oracles
479

480 Figure 2a compares the estimation results from SSA and SS to the actual ℓ_3 norm over various
481 window sizes. All three oracles provide useful augmentation, allowing SSA to estimate norms much
482 closer to the ground truth than the baseline SS algorithm over all window sizes. Like for AMSA,
483 the SSA error curve is closer to 1 and flatter than the SS error curve, indicating that SSA is more
484 accurate and precise than its non-augmented counterpart.
485

Figure 2c compares the estimation results from SSA and SS to the actual ℓ_3 norm over various sample
selection probabilities. Again, all three oracles help augment the baseline algorithm, providing an

486 estimation closer to the ground truth across all selection probabilities. Using a higher selection
 487 probability roughly corresponds to higher memory usage since more elements must be stored in the
 488 estimate sample. The SSA estimation performs particularly well for very low memory usage and
 489 largely outperforms SS for higher memory usage, meaning that augmentation is beneficial even when
 490 the baseline algorithm has larger estimate sample sizes.

491

492 REFERENCES

493

494 Anders Aamand, Justin Y. Chen, Siddharth Gollapudi, Sandeep Silwal, and Hao Wu. Learning-
 495 augmented frequent directions. In *The Thirteenth International Conference on Learning Rep-
 496 resentations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=WcZLG8XxhD>.

497

498 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
 499 moments. *J. Comput. Syst. Sci.*, 58(1):137–147, 1999. doi: 10.1006/JCSS.1997.1545. URL
 500 <https://doi.org/10.1006/jcss.1997.1545>.

501

502 Eiman Alothali, Hany Alashwal, and Saad Harous. Data stream mining techniques: a review.
 503 *TELKOMNIKA (Telecommunication Computing Electronics and Control)*, 17(2):728–737, 2019.

504

505 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
 506 sampling. In Rafail Ostrovsky (ed.), *IEEE 52nd Annual Symposium on Foundations of Computer
 507 Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011*, pp. 363–372. IEEE Computer
 508 Society, 2011. doi: 10.1109/FOCS.2011.82. URL [https://doi.org/10.1109/FOCS.
 509 2011.82](https://doi.org/10.1109/FOCS.2011.82).

510 Martin Anthony and Peter L. Bartlett. *Neural Network Learning - Theoretical Foundations*. Cam-
 511 bridge University Press, 2002. ISBN 978-0-521-57353-5. URL http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB.

512

513 Apple Inc. Differential privacy overview. Apple, 2021. URL https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf.

514

515 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics
 516 approach to data stream and communication complexity. *Journal of Computer and System Sciences*,
 517 68(4):702–732, 2004.

518

519 Mark Braverman, Sumegha Garg, Qian Li, Shuo Wang, David P. Woodruff, and Jiapeng Zhang. A
 520 new information complexity measure for multi-pass streaming with applications. In *Proceedings
 521 of the 56th Annual ACM Symposium on Theory of Computing, STOC*, pp. 1781–1792, 2024a.

522

523 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In *48th
 524 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
 525 2007, Providence, RI, USA, Proceedings*, pp. 283–293. IEEE Computer Society, 2007. doi:
 526 10.1109/FOCS.2007.55. URL <https://doi.org/10.1109/FOCS.2007.55>.

527

528 Vladimir Braverman and Rafail Ostrovsky. Approximating large frequency moments with pick-
 529 and-drop sampling. In *International Workshop on Approximation Algorithms for Combinatorial
 530 Optimization*, pp. 42–57. Springer, 2013.

531

532 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An optimal
 533 algorithm for large frequency moments using $O(n^{(1-2/k)})$ bits. In *Approximation, Randomization,
 534 and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)*, pp.
 535 531–544. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2014.

536

537 Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. Revisiting frequency
 538 moment estimation in random order streams. In Ioannis Chatzigiannakis, Christos Kaklamanis,
 539 Dániel Marx, and Donald Sannella (eds.), *45th International Colloquium on Automata, Languages,
 540 and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic*, volume 107 of *LIPICS*,
 541 pp. 25:1–25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPICS.
 542 ICALP.2018.25. URL <https://doi.org/10.4230/LIPICS.ICALP.2018.25>.

540 Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou. Improved algorithms for
 541 time decay streams. In Dimitris Achlioptas and László A. Végh (eds.), *Approximation, Ran-*
 542 *domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM*
 543 *2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA*, vol-
 544 *ume 145 of LIPIcs*, pp. 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
 545 doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.27. URL <https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27>.

546

547 Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-augmented
 548 maximum independent set. In Amit Kumar and Noga Ron-Zewi (eds.), *Approximation, Ran-*
 549 *domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM*
 550 *2024, August 28-30, 2024, London School of Economics, London, UK*, volume 317 of *LIPIcs*, pp.
 551 24:1–24:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024b. doi: 10.4230/LIPIcs.
 552 APPROX/RANDOM.2024.24. URL <https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2024.24>.

553

554 Vladimir Braverman, Jon C. Ergun, Chen Wang, and Samson Zhou. Learning-augmented hierarchical
 555 clustering. In *Forty-Second International Conference on Machine Learning (ICML)*, 2025, 2025.

556

557 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-party
 558 communication complexity of set disjointness. In *18th Annual IEEE Conference on Computational*
 559 *Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark*, pp. 107–117. IEEE Computer
 560 Society, 2003. doi: 10.1109/CCC.2003.1214414. URL <https://doi.org/10.1109/CCC.2003.1214414>.

561

562 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
 563 *Theor. Comput. Sci.*, 312(1):3–15, 2004. doi: 10.1016/S0304-3975(03)00400-6. URL [https://doi.org/10.1016/S0304-3975\(03\)00400-6](https://doi.org/10.1016/S0304-3975(03)00400-6).

564

565 Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld, Sandeep
 566 Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle count-
 567 ing with predictions in graph streams. In *The Tenth International Conference on Learning*
 568 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL
 569 https://openreview.net/forum?id=8in_5gN9I0.

570

571 Xu Chen, Junshan Wang, and Kunqing Xie. Trafficstream: A streaming traffic flow forecasting
 572 framework based on graph neural networks and continual learning. In Zhi-Hua Zhou (ed.),
 573 *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,*
 574 *Virtual Event / Montreal, Canada, 19-27 August 2021*, pp. 3620–3626. ijcai.org, 2021. doi:
 575 10.24963/IJCAI.2021/498. URL <https://doi.org/10.24963/ijcai.2021/498>.

576

577 Edith Cohen and Martin Strauss. Maintaining time-decaying stream aggregates. In Frank Neven,
 578 Catriel Beeri, and Tova Milo (eds.), *Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-*
 579 *SIGART Symposium on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA*, pp.
 580 223–233. ACM, 2003. doi: 10.1145/773153.773175. URL <https://doi.org/10.1145/773153.773175>.

581

582 Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, and Debmalya Panigrahi.
 583 Learning-augmented approximation algorithms for maximum cut and related problems. In Amir
 584 Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
 585 Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference*
 586 *on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-*
 587 *ber 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/2db08b94565c0d582cc53de6cee5fd47-Abstract-Conference.html.

588

589 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
 590 and its applications. *J. Algorithms*, 55(1):58–75, 2005. doi: 10.1016/J.JALGOR.2003.12.001.
 591 URL <https://doi.org/10.1016/j.jalgor.2003.12.001>.

592

593 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-decaying sketches for sensor data
 594 aggregation. In Indranil Gupta and Roger Wattenhofer (eds.), *Proceedings of the Twenty-Sixth*
 595 *Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland, Oregon,*

594 USA, August 12-15, 2007, pp. 215–224. ACM, 2007. doi: 10.1145/1281100.1281132. URL
 595 <https://doi.org/10.1145/1281100.1281132>.
 596

597 Graham Cormode, Flip Korn, and Srikanta Tirthapura. Exponentially decayed aggregates on data
 598 streams. In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (eds.), *Proceedings of*
 599 *the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún,*
 600 *Mexico*, pp. 1379–1381. IEEE Computer Society, 2008. doi: 10.1109/ICDE.2008.4497562. URL
 601 <https://doi.org/10.1109/ICDE.2008.4497562>.

602 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-decayed correlated aggregates over
 603 data streams. *Stat. Anal. Data Min.*, 2(5-6):294–310, 2009. doi: 10.1002/SAM.10053. URL
 604 <https://doi.org/10.1002/sam.10053>.
 605

606 Yinhao Dong, Pan Peng, and Ali Vakilian. Learning-augmented streaming algorithms for approx-
 607 imating MAX-CUT. In Raghu Meka (ed.), *16th Innovations in Theoretical Computer Science*
 608 *Conference, ITCS 2025, January 7-10, 2025, Columbia University, New York, NY, USA*, volume 325
 609 of *LIPICS*, pp. 44:1–44:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025. doi: 10.4230/
 610 LIPICS.ITCS.2025.44. URL <https://doi.org/10.4230/LIPICS.ITCS.2025.44>.

611 Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-augmented
 612 $\$k\$$ -means clustering. In *The Tenth International Conference on Learning Representations, ICLR*
 613 *2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=X8cLTHexYyY>.
 614

615 Facebook. <https://www.facebook.com/policy.php>, 2021.
 616

617 Chunkai Fu, Brandon G. Nguyen, Jung Hoon Seo, Ryan S. Zesch, and Samson Zhou. Learning-
 618 augmented search data structures. In *The Thirteenth International Conference on Learning*
 619 *Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=N4rYbQowE3>.
 620

621 Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data streams: a
 622 review. *ACM Sigmod Record*, 34(2):18–26, 2005.

623

624 Joao Gama and Mohamed Medhat Gaber. *Learning from data streams: processing techniques in*
 625 *sensor networks*. Springer Science & Business Media, 2007.

626

627 GDPR16. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016
 628 on the protection of natural persons with regard to the processing of personal data and on the free
 629 movement of such data, and repealing directive 95/46/ec (general data protection regulation), 2016.
 630 URL <https://eur-lex.europa.eu/eli/reg/2016/679/oj>.
 631

632 Google LLC. How google retains data we collect. Google, 2025. URL <https://policies.google.com/technologies/retention?hl=en-US>. Accessed January 29, 2025.
 633

634 Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, and Samson Zhou. Learning-
 635 augmented algorithms for online linear and semidefinite programming. In Sanmi Koyejo,
 636 S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-*
 637 *ral Information Processing Systems 35: Annual Conference on Neural Information Pro-*
 638 *cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*
 639 *9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/fc5a1845bee1f5405ef99ba25c2d44e1-Abstract-Conference.html.
 640

641 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
 642 algorithms. In *7th International Conference on Learning Representations, ICLR 2019, New*
 643 *Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=r11ohoCqY7>.
 644

645 Junyu Huang, Qilong Feng, Ziyun Huang, Zhen Zhang, Jinhui Xu, and Jianxin Wang. New algorithms
 646 for the learning-augmented k-means problem. In *The Thirteenth International Conference on*
 647 *Learning Representations (ICLR 2025)*, 2025.

648 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of data streams.
 649 In Harold N. Gabow and Ronald Fagin (eds.), *Proceedings of the 37th Annual ACM Symposium*
 650 *on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005*, pp. 202–208. ACM, 2005. doi:
 651 10.1145/1060590.1060621. URL <https://doi.org/10.1145/1060590.1060621>.
 652

653 Piotr Indyk, Shyam Narayanan, and David P. Woodruff. Frequency estimation with one-sided
 654 error. In Joseph (Seffi) Naor and Niv Buchbinder (eds.), *Proceedings of the 2022 ACM-SIAM*
 655 *Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,*
 656 *January 9 - 12, 2022*, pp. 695–707. SIAM, 2022. doi: 10.1137/1.9781611977073.31. URL
 657 <https://doi.org/10.1137/1.9781611977073.31>.
 658

658 Zachary Izzo, Sandeep Silwal, and Samson Zhou. Dimensionality reduction for wasserstein barycenter.
 659 In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
 660 man Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference*
 661 *on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
 662 15582–15594, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/8346db44a721fa863ca38180638bad3d-Abstract.html>.
 663

664 T. S. Jayram and David P. Woodruff. The data stream space complexity of cascaded norms. In *50th*
 665 *Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,*
 666 *Atlanta, Georgia, USA*, pp. 765–774. IEEE Computer Society, 2009. doi: 10.1109/FOCS.2009.82.
 667 URL <https://doi.org/10.1109/FOCS.2009.82>.
 668

669 Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented data
 670 stream algorithms. In *8th International Conference on Learning Representations, ICLR 2020, Addis*
 671 *Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=HyxJ1xBYDH>.
 672

673 Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in data
 674 streams in optimal space. In Lance Fortnow and Salil P. Vadhan (eds.), *Proceedings of the 43rd*
 675 *ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011*, pp.
 676 745–754. ACM, 2011. doi: 10.1145/1993636.1993735. URL <https://doi.org/10.1145/1993636.1993735>.
 677

678 Tsvi Kopelowitz and Ely Porat. Improved algorithms for polynomial-time decay and time-decay with
 679 additive error. In Mario Coppo, Elena Lodi, and G. Michele Pinna (eds.), *Theoretical Computer*
 680 *Science, 9th Italian Conference, ICTCS 2005, Siena, Italy, October 12-14, 2005, Proceedings*,
 681 *volume 3701 of Lecture Notes in Computer Science*, pp. 309–322. Springer, 2005. doi: 10.1007/11560586_25. URL https://doi.org/10.1007/11560586_25.
 682

683 Ping Li. Estimators and tail bounds for dimension reduction in l_α ($0 < \alpha \leq 2$) using stable
 684 random projections. In Shang-Hua Teng (ed.), *Proceedings of the Nineteenth Annual ACM-*
 685 *SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January*
 686 *20-22, 2008*, pp. 10–19. SIAM, 2008. URL <http://dl.acm.org/citation.cfm?id=1347082.1347084>.
 687

688 Honghao Lin, Tian Luo, and David P. Woodruff. Learning augmented binary search trees. In
 689 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
 690 (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,*
 691 *Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 13431–13440.
 692 PMLR, 2022. URL <https://proceedings.mlr.press/v162/lin22f.html>.
 693

694 Marco Pulimeno, Italo Epicoco, and Massimo Cafaro. Distributed mining of time-faded heavy hitters.
 695 *Inf. Sci.*, 545:633–662, 2021. doi: 10.1016/J.INS.2020.09.048. URL <https://doi.org/10.1016/j.ins.2020.09.048>.
 696

697 OpenAI. <https://openai.com/enterprise-privacy/>, 2024.
 698

699

702 Rana Shahout, Ibrahim Sabek, and Michael Mitzenmacher. Learning-augmented frequency estimation
 703 in sliding windows. In *32nd IEEE International Conference on Network Protocols, ICNP 2024,
 704 Charleroi, Belgium, October 28-31, 2024*, pp. 1–6. IEEE, 2024. doi: 10.1109/ICNP61940.2024.
 705 10858536. URL <https://doi.org/10.1109/ICNP61940.2024.10858536>.

706 Srikanta Tirthapura and David P. Woodruff. Rectangle-efficient aggregation in spatial data streams.
 707 In *Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
 708 Systems, PODS*, pp. 283–294, 2012.

710 David P. Woodruff. Optimal space lower bounds for all frequency moments. In J. Ian Munro
 711 (ed.), *Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
 712 2004, New Orleans, Louisiana, USA, January 11-14, 2004*, pp. 167–175. SIAM, 2004. URL
 713 <http://dl.acm.org/citation.cfm?id=982792.982817>.

715 David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
 716 windows via difference estimators. In *62nd IEEE Annual Symposium on Foundations of Computer
 717 Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022*, pp. 1183–1196. IEEE, 2021a.
 718 doi: 10.1109/FOCS52979.2021.00116. URL [https://doi.org/10.1109/FOCS52979.
 2021.00116](https://doi.org/10.1109/FOCS52979.2021.00116).

720 David P. Woodruff and Samson Zhou. Separations for estimating large frequency moments on
 721 data streams. In Nikhil Bansal, Emanuela Merelli, and James Worrell (eds.), *48th International
 722 Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow,
 723 Scotland (Virtual Conference)*, volume 198 of *LIPICS*, pp. 112:1–112:21. Schloss Dagstuhl -
 724 Leibniz-Zentrum für Informatik, 2021b. doi: 10.4230/LIPICS.ICALP.2021.112. URL <https://doi.org/10.4230/LIPICS.ICALP.2021.112>.

726 Qingjun Xiao, Haotian Wang, and Guannan Pan. Accurately identify time-decaying heavy hitters
 727 by decay-aware cuckoo filter along kicking path. In *30th IEEE/ACM International Symposium
 728 on Quality of Service, IWQoS 2022, Oslo, Norway, June 10-12, 2022*, pp. 1–10. IEEE, 2022. doi:
 729 10.1109/IWQoS54832.2022.9812870. URL [https://doi.org/10.1109/IWQoS54832.
 2022.9812870](https://doi.org/10.1109/IWQoS54832.2022.9812870).

732 Chenliang Xu, Caiming Xiong, and Jason J Corso. Streaming hierarchical video segmentation. In
 733 *Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy,
 734 October 7-13, 2012, Proceedings, Part VI 12*, pp. 626–639. Springer, 2012.

736 A MISSING DETAILS OF SECTION 3

739 A.1 THE SLIDING-WINDOW FRAMEWORK AND THE PROOF OF LEMMA 3.1

740 Braverman & Ostrovsky (2007) gave a reduction from sliding-window streaming algorithms to the
 741 vanilla streaming (approximate) algorithms for (α, β) -smooth functions. The statement for such
 742 reductions is as follows.

743 **Proposition 1** (Exact algorithms, Theorem 1 of Braverman & Ostrovsky (2007)). *Let f be an
 744 (α, β) -smooth function, and let ALG be a streaming algorithm that outputs $f(\mathbf{x})$ by the end of the
 745 stream, where \mathbf{x} is the frequency vector of the stream. Suppose ALG uses g space and performs h
 746 operations per streaming update.*

747 *Then, there exists a sliding-window streaming algorithm ALG' that computes a $(1 \pm \alpha)$ -approximation
 748 of the sliding-windows using $O\left(\frac{(g + \log n) \cdot \log n}{\beta}\right)$ space and $O\left(\frac{h \log n}{\beta}\right)$ operations per streaming update.*

751 Proposition 1 takes *exact and deterministic* streaming algorithms. It turns out that the framework
 752 is much more versatile, and we could obtain similar results using *approximate and randomized*
 753 streaming algorithms. The new statement is as follows.

754 **Proposition 2** (Approximate algorithms, Theorem 2 & 3 of Braverman & Ostrovsky (2007)). *Let
 755 f be an (α, β) -smooth function, and let ALG be a streaming algorithm that outputs $f'(\mathbf{x})$ such that
 $(1 - \varepsilon) \cdot f(\mathbf{x}) \leq f'(\mathbf{x}) \leq (1 + \varepsilon) \cdot f(\mathbf{x})$ by the end of the stream with probability at least $1 - \delta$,*

756 where \mathbf{x} is the frequency vector of the stream. Suppose ALG uses $g(\varepsilon, \delta)$ space and performs $h(\varepsilon, \delta)$ 757 operations per stream update.

759 Then, there exists a sliding-window streaming algorithm ALG' that computes a $(1 \pm (\alpha + \varepsilon))$ - 760 approximation of the sliding-windows with probability at least $1 - \delta$ using $O\left(\frac{(g(\varepsilon, \delta') + \log n) \cdot \log n}{\beta}\right)$ 761 space and $O\left(\frac{h(\varepsilon, \delta') \log n}{\beta}\right)$ operations per stream update, where $\delta' = \frac{\delta\beta}{\log n}$.

764
765
766
767
768
769
770
771 Fig. 3: Example of smooth histogram framework. Here $\text{ALG}^{(t_2)}$ and $\text{ALG}^{(t_3)}$ sandwich the active
772 elements and are thus good approximations of the sliding window.

773 At a high level, the algorithm of Braverman & Ostrovsky (2007) uses the idea of *smooth histograms*.
774 The algorithm to construct smooth histograms is by running the streaming algorithms with different
775 *starting times* and discarding the redundant copies. An overview of the algorithm is given in
776 Algorithm 1 and an illustration is given in Figure 3.

777
778 **Algorithm 1. The algorithm for the framework prescribed in Propositions 1 and 2.**

779 **Input:** a stream of elements with m updates; window size W .

780 **Input:** a streaming algorithm ALG with $g(\varepsilon, \delta)$ space and $h(\varepsilon, \delta)$ update time

781 **Maintain a set \mathcal{A} of surviving copies of ALG**

- 782 • For each update $t \in [m]$:
 - 783 (1) Initiate a new copy of ALG (call it $\text{ALG}^{(t)}$) starting with the t -th update.
 - 784 (2) Update all $\text{ALG} \in \mathcal{A}$ with (t, σ_t) .
 - 785 (3) **Pruning:**
 - 786 (a) Starting from the algorithm $\text{ALG}^{(\ell)} \in \mathcal{A}$ with the smallest index ℓ .
 - 787 (b) **While** $\ell < t - 1$:
 - 788 i. Find the largest index k such that $\text{ALG}^{(k)} \geq (1 - \beta) \cdot \text{ALG}^{(\ell)}$.
 - 789 ii. Prune all algorithms in \mathcal{A} with indices $(\ell, k - 1]$.
 - 790 iii. Let $\ell \leftarrow k$ and continue the loop.
 - 791 iv. Break the loop if there is no surviving copy between ℓ and t .
- 792 • **Output** $\text{ALG}^{(t_j)}$, for the largest remaining index t_j with $t_j \leq m - W + 1$

793
794
795 **Lemma 3.1.** Let f be an (α, β) -smooth function, and let ALG be any learning-augmented streaming
796 algorithm that queries the heavy-hitter oracle \mathcal{O} with the following properties:

- 797 • ALG outputs $f'(\mathbf{x})$ such that $(1 - \varepsilon) \cdot f(\mathbf{x}) \leq f'(\mathbf{x}) \leq (1 + \varepsilon) \cdot f(\mathbf{x})$ by the end of the
798 stream with probability at least $1 - \delta$;
- 799 • \mathcal{O} satisfies the suffix-compatible property as prescribed by Definition 2; and
- 800 • ALG uses $g(\varepsilon, \delta)$ space and performs $h(\varepsilon, \delta)$ operations per stream update.

801 Then, there exists a sliding-window streaming algorithm ALG' that computes a $(1 \pm (\alpha + \varepsilon))$ -
802 approximation of the sliding-windows with probability at least $1 - \delta$ using $O\left(\frac{(g(\varepsilon, \delta') + \log n) \cdot \log n}{\beta}\right)$ 803 space and $O\left(\frac{h(\varepsilon, \delta') \log n}{\beta}\right)$ operations per stream update, where $\delta' = \frac{\delta\beta}{\log n}$.

804
805 *Proof.* The correctness of the reductions in Proposition 1 and Proposition 2 relies on the smooth
806 histogram properly approximating the function on the sliding window.

810 Let W be the window size and $t^* = m - W + 1$ be the starting index of the active window. The goal
 811 is to estimate f on the stream suffix starting at t^* . The algorithm maintains a set of active instances
 812 $\mathcal{A} = \{\text{ALG}^{(t_1)}, \text{ALG}^{(t_2)}, \dots, \text{ALG}^{(t_k)}\}$ with start times $t_1 < t_2 < \dots < t_k$.
 813

814 Because the algorithm only deletes instances that are redundant via pruning, there exist two adjacent
 815 instances in \mathcal{A} , denoted $\text{ALG}^{(t_j)}$ and $\text{ALG}^{(t_{j+1})}$, that “sandwich” the true window start time, i.e.,
 816 $t_j \leq t^* < t_{j+1}$.

817 Let $S^{(t)}$ denote the suffix of the stream starting at time t . Observe that $S^{(t_j)} \supseteq S^{(t^*)} \supseteq S^{(t_{j+1})}$. By
 818 the hypothesis of suffix-compatibility, the oracle \mathcal{O} provides valid advice to both $\text{ALG}^{(t_j)}$ and
 819 $\text{ALG}^{(t_{j+1})}$. Consequently, these instances correctly output values $v_j \approx f(S^{(t_j)})$ and $v_{j+1} \approx
 820 f(S^{(t_{j+1})})$.
 821

822 The pruning condition in Algorithm 1 ensures that if both instances remain in \mathcal{A} , then $v_{j+1} \geq
 823 (1 - \beta) \cdot v_j$. Since f is (α, β) -smooth and monotonic, the condition $f(S^{(t_{j+1})}) \geq (1 - \beta) f(S^{(t_j)})$
 824 combined with the sandwiching property $S^{(t_j)} \supseteq S^{(t^*)} \supseteq S^{(t_{j+1})}$ implies that the value v_j is a
 825 $(1 \pm \alpha)$ -approximation of the true window value $f(S^{(t^*)})$.
 826

827 Therefore, the suffix-compatibility ensures the individual instances are correct, and the smooth
 828 histogram ensures the output instance $\text{ALG}^{(t_j)}$ is an accurate approximation.
 829

830 Finally, for the space complexity and the number of operations, we argue that we only keep $O(\frac{\log n}{\beta})$
 831 copies of ALG . Note that we delete the copies such that $\text{ALG}^{(k)} \geq (1 - \beta) \cdot \text{ALG}^{(\ell)}$, and the total
 832 number of updates can only be $m = \text{poly}(n)$. Therefore, the total number of maintained copies can
 833 be at most $O(\log_{\frac{1}{1-\beta}}(m)) = O(\frac{\log n}{\beta})$. We scale $\delta' = \frac{\delta\beta}{\log n}$ to ensure the success probability, and we
 834 use $O(\log n)$ space overhead for each copy of the algorithm to maintain the time stamps. Combining
 835 the above bounds gives us the desired space and operation complexity. \square
 836

837 A.2 MISSING DETAILS OF THE SLIDING-WINDOW F_p ALGORITHM

838 We provide a brief description of the algorithm as in Algorithm 2, which, in turn, uses the following
 839 result as a black-box.
 840

841 **Proposition 3.** [Alon et al. (1999); Indyk & Woodruff (2005); Andoni et al. (2011)] *There exists
 842 a randomized algorithm such that given $\mathbf{x} \in \mathbb{R}^n$ as a stream of updates, computes a $(1 \pm \varepsilon)$ -
 843 approximation of $\|\mathbf{x}\|_p^p$ with probability at least 99/100 using a space $O(\frac{n^{1-2/p}}{\varepsilon^{2+4/p}} \cdot \log^2 n)$ space.*
 844

846 Algorithm 2. The algorithm for learning-augmented streaming F_p moment.

847 **Input:** \mathbf{x} given a stream of updates

848 **Input:** independent copies ALG_1 and ALG_2 for the algorithm in Proposition 3.

- 849 • For each element update on \mathbf{x}_i :
 - 850 (1) Query whether \mathbf{x}_i is a heavy hitter, i.e., $|\mathbf{x}_i|^p \geq \frac{1}{\sqrt{n}} \cdot \|\mathbf{x}\|_p^p$.
 - 851 (2) If Yes, use ALG_1 for items with predictions $|\mathbf{x}_i|^p \geq \frac{1}{\sqrt{n}} \cdot \|\mathbf{x}\|_p^p$.
 - 852 (3) Otherwise, compute the F_p frequency of the non-heavy hitters as follows.
 - 853 (a) Sample \mathbf{x}_i with probability $\rho = 1/\sqrt{n}$.
 - 854 (b) Let $\tilde{\mathbf{x}}$ be the frequency vector obtained from the sampled non-heavy hitter
 855 elements.
 - 856 (c) Compute the F_p frequency of $\tilde{\mathbf{x}}$ using ALG_2 and re-weight with ρ .
 - 857 • Summing up the results of ALG_1 and ALG_2 to output.

861 A.3 RECTANGLE F_p FREQUENCY FOR $p \geq 2$

862 We now move to learning-augmented rectangle F_p frequency algorithms for $p \geq 2$. We combine the
 863 algorithm statements for deterministic and stochastic oracles as follows.

Theorem 5. *There exists a sliding-window streaming algorithm that, given a stream of elements from $[\Delta]^d$ in a sliding window, a fixed parameter $p \geq 2$, and a stochastic suffix-compatible heavy-hitter oracle \mathcal{O} with success probability $1 - \delta$ (as prescribed by Definition 2), with probability at least 99/100 outputs a $(1 + \varepsilon)$ -approximation of the F_p frequency in space*

- $O\left(\frac{\Delta^{d(1-1/p)} \cdot p^p \cdot \delta^{1-1/p}}{\varepsilon^{4+p}} \cdot \text{poly}(\frac{p}{\varepsilon}, d, \log \Delta)\right)$ bits if $\delta = \Omega(1/\sqrt{n})$.
- $O\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{4+p}} \cdot p^p \cdot \text{poly}(\frac{p}{\varepsilon}, d, \log \Delta)\right)$ bits if $\delta = O(1/\sqrt{n})$.

Furthermore, assuming the deterministic oracle, the sliding-window algorithm uses at most $O\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{4+p}} \cdot p^p \cdot \text{poly}(\frac{p}{\varepsilon}, d, \log \Delta)\right)$ time to process each item.

Proof. The theorem statement before the ‘‘furthermore’’ part follows directly from Theorem 2. In particular, note that the rectangle F_p frequency problem could be framed as F_p frequency with $n \leq \Delta^d$, and plugging in the number would immediately lead to the desired space bounds.

For the process time, Jiang et al. (2020) has a $(1 \pm \varepsilon)$ -approximate algorithm for the rectangle F_p norm with per-update processing time $O\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^4} \cdot \text{poly}(\frac{p}{\varepsilon}, d, \log \Delta)\right)$ time (without the p^p/ε^p terms) and success probability 99/100. We could use the median trick to boost the success probability to $1 - \delta$ with $O(\log(1/\delta))$ space overhead and no time complexity overhead (we could process copies of algorithms in parallel). Therefore, applying Proposition 2 with the same smoothness guarantees as in Lemma 3.3 (rectangle F_p is a sub-family of ℓ_p frequencies) leads to the desired $O\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{4+p}} \cdot p^p \cdot \text{poly}(\frac{p}{\varepsilon}, d, \log \Delta)\right)$ processing time in the sliding-window model. \square

A.4 (k, p) -CASCADED NORMS

We now move the results for the learning-augmented sliding-window (k, p) -cascaded norm algorithm. The guarantees of the algorithm are as follows.

Theorem 6. *There exists a sliding-window streaming algorithm that, given a $n \times d$ matrix \mathbf{X} represented as a stream of insertions and deletions of the coordinates $\mathbf{X}_{i,j}$, fixed parameters $k \geq p \geq 2$, and a (deterministic) suffix-compatible heavy-hitter oracle \mathcal{O} , with probability at least 99/100 outputs a $(1 + \varepsilon)$ -approximation of the F_p frequency in space $O(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}} \cdot \text{poly}(\frac{1}{\varepsilon^{pk}}, k^{kp}, \log n))$.*

For any constant choices of p, k , and ε , our bound asymptotically matches the optimal memory bound for the learning-augmented streaming algorithm. Our algorithm takes advantage of the framework of Jayram & Woodruff (2009) and Jiang et al. (2020) with the smooth histogram framework as in Propositions 1 and 2. The algorithm for streaming learning-augmented cascaded norm is quite involved. As such, we provided a sketch in Algorithm 3, and refer keen readers to Jayram & Woodruff (2009) and Jiang et al. (2020) for more details. In what follows, we use $F_p(\mathbf{X})$ to denote the vector F_p norm of the elements in \mathbf{X} .

Algorithm 3. Learning-augmented streaming (k, p) -cascaded norm.

Input: a $n \times d$ matrix \mathbf{X} as the input; parameters k and p

Input: a heavy hitter oracle predicting whether $|\mathbf{X}_{i,j}|^p \geq \|\mathbf{X}\|_p^p / (d^{1/2} \cdot n^{1-p/2k})$

- Parameters:
 - $Q = O(n^{1-1/k})$ so that $T = (nd \cdot Q)^{1/2} = d^{1/2} \cdot n^{1-p/2k}$;
 - Levels $\ell \in [O(\log n)]$; layers $t \in [O(\log n/\zeta)]$; $T_\ell = T/2^\ell$.
 - Parameters ζ, η, θ, B for layering and sampling (as per Jayram & Woodruff (2009)).
- Apply count-sketch type of algorithms (e.g., the algorithm of Proposition 3) during the stream to maintain elements that are sampled by the **level-wise pre-processing** step.
- **Level-wise processing** for level $\ell \in [O(\log n)]$:
 - (1) Sample each row with probability $1/2^\ell$; let $\mathbf{X}^{(\ell)}$ be the resulting matrix.
 - (2) Divide the entries in $\mathbf{X}^{(\ell)}$ among *layers*: each layer contains the elements with magnitude in $[\zeta\eta^{t-1}, \zeta\eta^t]$.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

(3) A layer t is *contributing* if $|S_t(\mathbf{X}^{(\ell)})|(\zeta\eta^t)^p \geq F_p(\mathbf{X}^{(\ell)})/(B\theta)$, where $S_t(\mathbf{X}^{(\ell)})$ are entries in layer t .
(4) Further divide the elements in contributing layers into heavy hitters and non-heavy hitters. This results in contributing layers with entirely heavy hitters vs. non-heavy hitters.
(5) For each contributing layer t :
(a) If it is formed with non-heavy hitters (light elements) and entries N_t is more than $\beta_t = \theta Q |S_t(\mathbf{X}^{(\ell)})|(\zeta\eta^t)^p / F_p(\mathbf{X}^{(\ell)})$, down sample with rate $\theta Q / T_\ell$.
(b) Let j be the parameter such that $|S_t(\mathbf{X}^{(\ell)})|/2^j \leq \beta_t < |S_t(\mathbf{X}^{(\ell)})|/2^{j-1}$.
(c) Sample each entry of the layer with rate $1/2^j$ to obtain \mathbf{Y}_t as the resulting matrix.
(6) Aggregate all \mathbf{Y}_t elements (using the count-sketch algorithm) as the pre-processed vector $\mathbf{Y}^{(\ell)}$.
• Adding up all $\mathbf{Y}^{(\ell)}$ to get \mathbf{Y} and perform “ ℓ_p -sampling” process on \mathbf{Y} in the same manner of Jayram & Woodruff (2009) to obtain $\tilde{\mathbf{Y}}$.
• Compute $F_k(F_p(\tilde{\mathbf{Y}}))$ as the estimation.

936 Jiang et al. (2020) provided the guarantees for Algorithm 3 with the heavy-hitter oracle for vanilla
937 streaming algorithms.
938

939 **Lemma A.1** (Jiang et al. (2020)). *Let $\varepsilon > 0$ and $k \geq p \geq 2$ be given parameters. Furthermore, let
940 \mathbf{X} be an $n \times d$ matrix given as a stream of insertions and deletions of the coordinates $\mathbf{X}_{i,j}$. Then,
941 Algorithm 3 outputs a $(1 \pm \varepsilon)$ -approximation of the (k, p) -cascaded norm with probability at least
942 $99/100$ using $O(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}} \cdot \text{poly}(\frac{1}{\varepsilon}, \log n))$ space.*

943 Next, we need to bound the smoothness of the (k, p) -cascaded norm. In what follows, we write
944 the (k, p) -cascaded norm as a function for “norm of norms”, i.e., in the form of $F_k(F_p(\mathbf{X})) :=$
945 $\left(\sum_{i=1}^n \left((\sum_{j=1}^d |\mathbf{X}_{i,j}|^p)^{1/p} \right)^k \right)^{1/k}$ for $k \geq p \geq 2$. Our technical lemma for the smoothness of such
946 functions is as follows.
947

948 **Lemma A.2.** *Suppose F_p is (β, α) -smooth and F_q is (γ, β) -smooth, then $F_k(F_p(\mathbf{X}))$ is (γ, α) -smooth.*

949 *Proof.* Let \mathbf{X}^A be a matrix obtained by a suffix of updates of \mathbf{X}^B . Furthermore, let \mathbf{X}^C be a common
950 suffix of \mathbf{X}^A and \mathbf{X}^B . We also partition the updates in $C = C_1 \cup C_2$, and C_1 and C_2 could be
951 empty sets. We further let $\mathbf{X}_{i,:}$ (resp. $\mathbf{X}_{i,:}^A$, $\mathbf{X}_{i,:}^B$, and $\mathbf{X}_{i,:}^C$) be the updates of the vector in the i -th
952 row of \mathbf{X} . For each $i \in [n]$, let $F_p(\mathbf{X}_{i,:}^A)$ and $F_p(\mathbf{X}_{i,:}^B)$ be α -close. We lower bound the value of
953 $F_k(F_p(\mathbf{X}^{A \cup C_1}))$ as follows.
954

$$\begin{aligned}
F_k(F_p(\mathbf{X}^{A \cup C_1})) &= \left| \sum_{i=1}^n \left(F_p(\mathbf{X}_{i,:}^{A \cup C_1}) \right)^k \right|^{1/k} \\
&\geq \left| \sum_{i=1}^n (1 - \beta) \cdot \left(F_p(\mathbf{X}_{i,:}^{B \cup C_1}) \right)^k \right|^{1/k} \quad (\text{by the } (\beta, \alpha)\text{-smoothness of } F_p) \\
&= (1 - \beta) \cdot \left| \sum_{i=1}^n \left(F_p(\mathbf{X}_{i,:}^{B \cup C_1}) \right)^k \right|^{1/k}.
\end{aligned}$$

955 Therefore, for any (possibly empty) \mathbf{X}^{C_1} , if $F_p(\mathbf{X}_{i,:}^A)$ and $F_p(\mathbf{X}_{i,:}^B)$ are α -close, we have that
956 $F_k(F_p(\mathbf{X}^{A \cup C_1}))$ and $F_k(F_p(\mathbf{X}^{A \cup C_1}))$ are β -close. As such, since F_q is (γ, β) -smooth, we have that
957

$$F_k(F_p(\mathbf{X}^{A \cup C})) \geq (1 - \gamma) \cdot F_k(F_p(\mathbf{X}^{B \cup C})),$$

958 which is as the desired property for (γ, α) -smoothness. \square
959

972 **Finalizing the proof of Theorem 6.** We again apply Proposition 2 (with Lemma 3.1) to the algorithm
 973 of Lemma A.1. By Lemma 3.3 and Lemma A.2, since F_p is $(\varepsilon, \varepsilon^p/p^p)$ -smooth and F_k is $(\varepsilon, \varepsilon^k/k^k)$ -
 974 smooth, the (k, p) -cascaded norm is $(\varepsilon, \frac{\varepsilon^{kp}}{k^{kp}p^p})$ -smooth.
 975

976 With the same median trick as we used in the proof of Theorem 1, we could show that we only
 977 need $O(\log(1/\delta))$ multiplicative space overhead on the space to ensure Algorithm 3 succeeds with
 978 probability at least $1 - \delta$. Therefore, let $\beta = \frac{\varepsilon^{kp}}{k^{kp}p^p}$, we could obtain
 979

$$\begin{aligned} 980 \quad g(\varepsilon, \delta') &= O\left(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}} \cdot \text{poly}\left(\frac{1}{\varepsilon}, \log n\right) \cdot \log(n/\beta)\right) \\ 981 \\ 982 \quad &\leq O\left(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}} \cdot \text{poly}\left(\frac{1}{\varepsilon}, \log n, kp\right)\right). \\ 983 \\ 984 \end{aligned}$$

985 Therefore, the space we need is

$$986 \quad O\left(g(\varepsilon, \delta') \cdot \frac{\log n}{\beta}\right) = O\left(n^{1-\frac{1}{k}-\frac{p}{2k}} \cdot d^{\frac{1}{2}-\frac{1}{p}} \cdot \text{poly}\left(\frac{1}{\varepsilon^{kp}}, \log n, kp\right)\right). \\ 987 \\ 988$$

989 In the above calculation, we used $p \leq k$ to bound $p^p \leq k^{kp}$. This gives the bound as desired by the
 990 theorem statement. \square
 991

992 B MISSING DETAILS IN SECTION 4

993 We give the missing details of Section 4 in this section, including the proof of Theorem 3 and the
 994 results. We start with the re-statement of Theorem 3. The algorithm for the framework is shown as in
 995 Algorithm 1.
 996

997 Algorithm 1 Framework for time decay G -moment estimation.

1000 **Input:** Sketch matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$ for G -moment estimation with post-processing function $f(\cdot)$,
 1001 accuracy parameter $\varepsilon \in (0, 1)$
 1002 1: **Let** ν, η, m_ν **be defined as in Definition 5**
 1003 2: Maintain a linear sketch with \mathbf{A} for each block B_i of size 1
 1004 3: **for** each time $t \in [m]$ **do**
 1005 4: $\mathbf{u} \leftarrow \mathbf{0}^k$
 1006 5: **for** each block B_i **do**
 1007 6: Let \mathbf{Av}_i be the linear sketch for block B_i
 1008 7: Let t_i be the largest timestep in block B_i
 1009 8: **if** $t - t_i + 1 \geq n_\nu$ **then**
 1010 9: Delete block B_i
 1011 10: **else if** all weights in blocks B_i and B_j are within $\sqrt{1 + \eta}$ **then**
 1012 11: Merge blocks B_i and B_j
 1013 12: **else**
 1014 13: $w'_i \leftarrow \frac{1}{\sqrt{1+\eta}} \cdot w(m - t_i + 1)$
 1015 14: $\mathbf{u} \leftarrow \mathbf{u} + w'_i \cdot \mathbf{Av}_i$
 1016 15: **return** $f(\mathbf{u})$

1017 **Theorem 3.** *Given a streaming algorithm that provides a $(1 + \varepsilon)$ -approximation to G -moment
 1018 estimation using a linear sketch with k rows, functions G and w that satisfy the (ε, ν, η) -smoothness
 1019 condition (Definition 5), there exists an algorithm for general time-decay that provides a $(1 + \varepsilon)$ -
 1020 approximation to G -moment estimation that uses at most $O\left(\frac{k}{\eta} \log n \log \frac{1}{\nu}\right)$ bits of space.*
 1021

1022 Furthermore, the statement holds true for learning-augmented algorithms as long as the oracle \mathcal{O} is
 1023 suffix-compatible.

1024 **Proof.** Consider a fixed $a \in [n]$ and all times $t_{a_1}, \dots, t_{a_r} \leq t$ with updates to a . Then the weight of
 1025 a at time t is $\sum_{j \in [r]} w(t - t_{a_j} + 1)$. Let w' be the weight assigned to time t by the linear sketch. We

1026 claim that

$$1028 \frac{1}{\sqrt{1+\eta}} \cdot \sum_{j \in [r]} w'(t - t_{a_j} + 1) - \nu \leq \sum_{j \in [r]} w'(t - t_{a_j} + 1) \leq \sum_{j \in [r]} w(t - t_{a_j} + 1).$$

1029 Consider a fixed block B_i . Firstly, note that by definition of n_η and by construction, the weights
1030 of all indices in each block are within a multiplicative factor of $\sqrt{1+\eta}$. All elements in block B_i
1031 are assigned weight w'_i to be $\frac{1}{\sqrt{1+\eta}}$ times the weight of the most recent item in B_i . Thus, we have
1032 $\sqrt{1+\eta} \cdot w(t - t_{a_j} + 1) \leq w'_i \leq w(t - t_{a_j} + 1)$ for any update t_{a_j} to a within block B_i . Finally, for
1033 any update t_{a_j} in a block that does not have a sketch must satisfy $t - t_{a_j} + 1 \geq n_\nu$. By definition,
1034 the weights of all such updates is at most ν . Hence, we have
1035

$$1037 \frac{1}{\sqrt{1+\eta}} \cdot \sum_{j \in [r]} w'(t - t_{a_j} + 1) - \nu \leq \sum_{j \in [r]} w'(t - t_{a_j} + 1) \leq \sum_{j \in [r]} w(t - t_{a_j} + 1),$$

1039 as desired.

1040 Let $\widehat{G(x_i)}$ be the weight of coordinate $i \in [n]$ implicitly assigned through this process. By definition
1041 of η and ν , it then follows that $(1 - \frac{\varepsilon}{4}) \cdot G(x_i) \leq \widehat{G(x_i)} \leq G(x_i)$. Summing across all $i \in [n]$, we
1042 have

$$1044 \sum_{i \in [n]} \left(1 - \frac{\varepsilon}{4}\right) \cdot \sum_{i \in [n]} G(x_i) \leq \widehat{G(x_i)} \leq \sum_{i \in [n]} G(x_i).$$

1045 Thus, it suffices to obtain a $(1 + \frac{\varepsilon}{4})$ -approximation to the G -moment of the frequency vector weighted
1046 by w' . Since \mathbf{A} is a linear sketch and $w'_i \cdot \mathbf{v}_i$ is precisely the frequency vector of block B_i weighted
1047 by w' , then this is exactly what the post-processing function f achieves. Therefore, correctness of the
1048 algorithm holds.

1049 It remains to analyze the space complexity. Each linear sketch $\mathbf{A} \cdot \mathbf{v}_i$ uses $O(k \cdot \log n)$ bits of space
1050 assuming all weights and frequencies can be represented using $O(\log n)$ bits of space. This can be
1051 optimized for specific functions $w(\cdot)$ and $G(\cdot)$, which we shall do for specific applications. In general,
1052 observe that we maintain at most three blocks containing weights within a multiplicative factor of
1053 $(1 + \eta)$. The smallest weight of an index in a block is at least $\frac{\nu}{1+\eta} \geq \frac{\nu}{2}$, while we have $w(1) = 1$
1054 by assumption. Therefore, the number of blocks is at most $3 \log_{(1+\eta)} \frac{2}{\nu}$ since w is non-increasing.
1055 Hence, the algorithm uses at most $O\left(\frac{k}{\eta} \log n \log \frac{1}{\nu}\right)$ bits of space.

1056 Finally, the ‘‘furthermore’’ part of the statement regarding the suffix-compatible oracles follows from
1057 the same argument as we made in Lemma 3.1. \square

1058 We now present the results for the time-decay models in order. We first consider the polynomial
1059 decay model, where we have $w(t) = \frac{1}{t^s}$ for some fixed parameter $s > 0$. For F_p moment estimation,
1060 rectangular moment estimation, and cascaded norms, we have that the G -moment is still preserved
1061 within a factor of $(1 + \varepsilon)$ even when the coordinates are distorted up to a factor of $(1 + O(\varepsilon))$.

1062 **Lemma B.1.** *For the polynomial decay model $w(t) = \frac{1}{t^s}$, it suffices to set $\eta = O(\varepsilon)$ and $\nu = O(\frac{\varepsilon}{m})$.*

1063 *Proof.* We provide the proof for the G -moment function for the F_p problem, $G(x) = |x|^p$. The
1064 statements for cascaded norm and rectangular moment estimation follow analogously.

1065 First, note that for $\eta = \frac{\varepsilon}{100p^2} = O(\varepsilon)$, we have $(1 + \eta)^p - 1 \leq \frac{\varepsilon}{4}$. Thus, it follows that for
1066 $G(x) = |x|^p$ and for all $x \geq 1$, we have

$$1073 G((1 + \eta)x) - G(x) \leq \frac{\varepsilon}{4} G(x).$$

1074 for $\eta = \frac{\varepsilon}{100p^2} = O(\varepsilon)$, as desired.

1075 Second, note that $G(1) = 1$ and since $p \geq 2$, the expression $(x + \nu)^p - x^p$ is maximized at $x = m$.
1076 On the other hand, we have for $\nu = \frac{\varepsilon}{100pm}$, $(m + \nu)^p - m^p \leq \frac{\varepsilon}{4}$, and thus

$$1077 G(x + \nu) - G(x) \leq \frac{\varepsilon}{4} G(1),$$

1080 for all $x \in [1, m]$, as desired. In this case, we can set $m_\nu = \nu^{-2/s}$, which may or may not be larger
 1081 than m , but the latter case does not matter, since there will be no blocks that have been stored for
 1082 $m + 1$ steps. \square
 1083

1084 Recall that in the standard streaming model, F_p moment estimation can be achieved using the
 1085 following guarantees:
 1086

Proposition 3. [Alon et al. (1999); Indyk & Woodruff (2005); Andoni et al. (2011)] *There exists
 1087 a randomized algorithm such that given $\mathbf{x} \in \mathbb{R}^n$ as a stream of updates, computes a $(1 \pm \varepsilon)$ -
 1088 approximation of $\|\mathbf{x}\|_p^p$ with probability at least 99/100 using a space $O(\frac{n^{1-2/p}}{\varepsilon^{2+4/p}} \cdot \log^2 n)$ space.*
 1089

1090 By applying Theorem 3 to Proposition 3, we have the following algorithm for F_p moment estimation
 1091 in the polynomial-decay model.
 1092

Theorem 7. *Given a constant $p > 2$ and an accuracy parameter $\varepsilon \in (0, 1)$, there exists a one-pass
 1093 algorithm that outputs a $(1 + \varepsilon)$ -approximation to the F_p moment in the polynomial-decay model
 1094 that uses $\tilde{O}\left(\frac{n^{1-2/p}}{\varepsilon^{2+4/p}}\right)$ bits of space.*
 1095

1096 By comparison, using the approach of Jiang et al. (2020), we have the following guarantees:
 1097

Theorem 8. *Given a constant $p > 2$, an accuracy parameter $\varepsilon \in (0, 1)$, and a heavy-hitter oracle \mathcal{O}
 1098 for the data stream, there exists a one-pass algorithm that outputs a $(1 + \varepsilon)$ -approximation to the F_p
 1099 moment in the polynomial-decay model that uses $\tilde{O}\left(\frac{n^{1/2-1/p}}{\varepsilon^{2+4/p}}\right)$ bits of space.*
 1100

1102 Similarly, we can use the following linear sketch for rectangular F_p moment estimation:
 1103

Proposition 4. *Tirthapura & Woodruff (2012) Given a constant $p > 2$ and an accuracy parameter
 1104 $\varepsilon \in (0, 1)$, there exists a one-pass algorithm that uses a linear sketch and outputs a $(1 + \varepsilon)$ -
 1105 approximation to the rectangular F_p moment in the streaming model that uses $\tilde{O}\left(\frac{\Delta^{d(1-2/p)}}{\varepsilon^{2+4/p}}\right)$ bits of
 1106 space.*
 1107

1108 By applying Theorem 3 to Proposition 4, our framework achieves the following guarantees for
 1109 rectangular F_p moment estimation in the polynomial-decay model.
 1110

Theorem 9. *Given a constant $p > 2$ and an accuracy parameter $\varepsilon \in (0, 1)$, there exists a one-pass
 1111 algorithm that outputs a $(1 + \varepsilon)$ -approximation to the rectangular F_p moment in the polynomial-decay
 1112 model that uses $\tilde{O}\left(\frac{\Delta^{d(1-2/p)}}{\varepsilon^{2+4/p}}\right)$ bits of space.*
 1113

1114 By comparison, using the approach of Jiang et al. (2020), we have the following guarantees (restated
 1115 from Section 4):
 1116

Theorem 4. *Given a constant $p > 2$, an accuracy parameter $\varepsilon \in (0, 1)$, and a heavy-hitter oracle \mathcal{O}
 1117 for the data stream, there exists a one-pass algorithm that outputs a $(1 + \varepsilon)$ -approximation to the
 1118 rectangular F_p moment in the polynomial-decay model that uses $\tilde{O}\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{2+4/p}}\right)$ bits of space.*
 1119

1121 Similarly, consider the exponential decay model, where we have $w(t) = s^t$ for some fixed parameter
 1122 $s \in (0, 1]$. For F_p moment estimation, rectangular moment estimation, and cascaded norms, we have
 1123 that the G -moment is still preserved within a factor of $(1 + \varepsilon)$ even when the coordinates are distorted
 1124 up to a factor of $(1 + O(\varepsilon))$.
 1125

Lemma B.2. *For the exponential decay model $w(t) = s^t$, it suffices to set $\eta = O(\varepsilon)$ and $\nu = O(\frac{\varepsilon}{m})$.*
 1126

1127 *Proof.* We again consider the G -moment function for the F_p problem, $G(x) = |x|^p$ as the the proofs
 1128 for cascaded norm and rectangular moments are similar. First, for $\eta = \frac{\varepsilon}{100p^2} = O(\varepsilon)$, we have
 1129 $(1 + \eta)^p - 1 \leq \frac{\varepsilon}{4}$. Therefore, for $G(x) = |x|^p$ and all $x \geq 1$, $G((1 + \eta)x) - G(x) \leq \frac{\varepsilon}{4}G(x)$, as
 1130 required.
 1131

1132 Second, recall that $G(1) = 1$. Since $p \geq 2$, the quantity $(x + \nu)^p - x^p$ achieves its maximum
 1133 over $[1, m]$ at $x = m$. For $\nu = \frac{\varepsilon}{100pm}$, we have $(m + \nu)^p - m^p \leq \frac{\varepsilon}{4}$. Thus, for every $x \in [1, m]$,
 1134 $G(x + \nu) - G(x) \leq \frac{\varepsilon}{4}G(1)$. Importantly, this value of ν means we can set $m_\nu = O(\log n)$. \square

1134 Therefore, by applying Theorem 3 to the relevant statements, we obtain the following results for F_p
 1135 moment estimation in the exponential-decay model.

1136 **Theorem 10.** *Given a constant $p > 2$ and an accuracy parameter $\varepsilon \in (0, 1)$, there exists a one-pass
 1137 algorithm that outputs a $(1 + \varepsilon)$ -approximation to the F_p moment in the exponential-decay model
 1138 that uses $\tilde{O}\left(\frac{n^{1-2/p}}{\varepsilon^{2+4/p}}\right)$ bits of space.*

1140 **Theorem 11.** *Given a constant $p > 2$, an accuracy parameter $\varepsilon \in (0, 1)$, and a heavy-hitter oracle
 1141 \mathcal{O} for the data stream, there exists a one-pass algorithm that outputs a $(1 + \varepsilon)$ -approximation to the
 1142 F_p moment in the exponential-decay model that uses $\tilde{O}\left(\frac{n^{1/2-1/p}}{\varepsilon^{2+4/p}}\right)$ bits of space.*

1144 Similarly, we obtain the following results for rectangular F_p moment estimation in the exponential-
 1145 decay model.

1146 **Theorem 12.** *Given a constant $p > 2$ and an accuracy parameter $\varepsilon \in (0, 1)$, there exists a one-pass
 1147 algorithm that outputs a $(1 + \varepsilon)$ -approximation to the rectangular F_p moment in the exponential-decay
 1148 model that uses $\tilde{O}\left(\frac{\Delta^{d(1-2/p)}}{\varepsilon^{2+4/p}}\right)$ bits of space.*

1150 **Theorem 13.** *Given a constant $p > 2$, an accuracy parameter $\varepsilon \in (0, 1)$, and a heavy-hitter oracle
 1151 \mathcal{O} for the data stream, there exists a one-pass algorithm that outputs a $(1 + \varepsilon)$ -approximation to the
 1152 rectangular F_p moment in the exponential-decay model that uses $\tilde{O}\left(\frac{\Delta^{d(1/2-1/p)}}{\varepsilon^{2+4/p}}\right)$ bits of space.*

1154 We remark on the main difference between behaviors of our framework in the polynomial-decay
 1155 model and in the exponential-decay model. Intuitively, the framework will create a logarithmic
 1156 number of large blocks in the polynomial-decay model, because as the stream progresses, it takes a
 1157 significantly larger number of updates for the weight to decrease by a factor of $(1 + \eta)$. In contrast,
 1158 the framework will create a logarithmic number of small blocks in the exponential-decay model, but
 1159 then the blocks will be truncated after $O(\log n)$ updates.

1161 C ADDITIONAL DETAILS FOR THE EXPERIMENTS

1163 When implementing our experiments, we experimentally chose multiple parameters for our augmented
 1164 and non-augmented algorithms. This section provides details and justifications for these parameters
 1165 and presents additional experiments.

1167 C.1 PARAMETERS

1169 C.1.1 ORACLES & TRAINING

1170 To demonstrate that a heavy-hitter oracle is feasible, we used several oracles in our experiments. All
 1171 three oracles were used for experiments on the CAIDA dataset, while only the Count-Sketch oracle
 1172 was used for the other datasets. Each oracle was trained on a data stream prefix and was asked to
 1173 identify items that would be heavy hitters in the stream suffix.

1174 **Count-Sketch oracle.** For our first oracle, we implemented the well-known Count-Sketch algo-
 1175 rithm Charikar et al. (2004) for finding heavy-hitters on a data stream. The prefix sketching results
 1176 became our heavy hitters for the suffix. For the synthetic and CAIDA datasets, we used a 100K length
 1177 prefix, repeated the algorithm 5 times, used 300 hashing buckets, and set $\varepsilon = 0.1$. We changed the
 1178 prefix to 10K for the AOL dataset but maintained the other parameters.

1180 **LLM oracle.** For our Large Language Model (LLM) oracle, we provided the same 100K CAIDA
 1181 prefix to ChatGPT and Google Gemini and used the following prompt:

1182 Given this stream subset, predict 26 ip addresses that will occur most frequently in
 1183 the future data stream

1185 ChatGPT and Google Gemini predicted identical heavy hitters, so we combined their results into
 1186 a single LLM oracle. Since Count-Sketch identified 26 heavy hitters, we specifically asked for 26
 1187 ip addresses to ensure a reasonable comparison between the oracles. The LLM and Count-Sketch
 1188 algorithms agreed on the identities of 10/26 heavy-hitters.

1188 **LSTM oracle.** For our LSTM oracle, we trained a heavy-hitter predictor on the same 100K CAIDA
 1189 prefix. The LSTM consisted of an embedding layer that embedded the universe to 32 dimensions, a
 1190 single LSTM layer with embedding dimension 32 and hidden dimension 64, and a fully connected
 1191 output layer. The predictor was trained for 50 epochs with Binary Cross-Entropy (BCE) Loss using
 1192 Adam Optimizer with learning rate 0.001. The batch size was set to 64.
 1193

1194 C.1.2 AMS AND LEARNING-AUGMENTED AMS

1195 We implemented Alon et al. (1999)’s algorithm, which we call AMS, as a baseline for ℓ_2 norm
 1196 approximation on the CAIDA dataset. We augmented the baseline algorithm with heavy-hitters
 1197 from the oracles to compare the algorithms’ performance. To convert the streaming algorithms
 1198 into sliding window ones, we tracked multiple instances of each algorithm. Each instance started
 1199 at a different timestep to account for a different sliding window of the data stream. Relying on
 1200 Braverman & Ostrovsky (2007), when two instances’ ℓ_2 norm approximation was within a factor of
 1201 two, we discarded one instance and used the other to approximate the discarded instance’s sliding
 1202 window. We allowed a maximum of 20 algorithm instances. Each instance of the algorithm contained
 1203 11 estimates (obtained with different seeds), so we estimated the ℓ_2 norm as the median of these
 1204 estimates. **For our hash function, we implement a seeded hashing mechanism in which the hash**
 1205 **output is determined by evaluating a low-degree polynomial over the input domain with coefficients**
 1206 **derived from a pseudo-random generator.** Specifically, we initialize NumPy’s default random number
 1207 generator with a seed value then sample four integer coefficients over the range $[0, p]$, where p is a
 1208 large prime (default $2^{31} - 1$). Note that the seed is set to the repetition number. Our input stream
 1209 item value is coerced to an integer and substituted into a polynomial of degree three, with each term
 1210 computed modulo p to avoid overflow and maintain arithmetic within a finite field. The polynomial
 1211 is evaluated incrementally, applying modular reduction at each step, and the final result is mapped
 1212 into an output space of size 2 via an additional modulo operation. We map the final value to $\{-1, 1\}$
 1213 by multiplying this output by two and subtracting one.
 1214

1214 C.1.3 SS AND LEARNING-AUGMENTED SS

1215 For higher order norm estimation, we implemented Indyk & Woodruff (2005)’s subsampling (SS)
 1216 algorithm. Like before, we created an augmented version of the algorithm and compared its performance
 1217 to the baseline on the CAIDA, AOL, and synthetic datasets. We used the same histogram
 1218 mechanism to create a sliding window version of both algorithms. We repeated both algorithms 15
 1219 times: each timestep instance of the algorithm held 3 sets of 5 estimates (obtained with different
 1220 seeds) for the same window. We obtained our ℓ_3 norm estimate by first taking the mean of each of
 1221 the 5 estimates, then taking the mean of the remaining 3 values. Again, we allowed a maximum of
 1222 20 algorithm instances. **For our hash function, we take as input a seed and the stream item value,**
 1223 **concatenate them into a canonical string representation, and compute a SHA-256 cryptographic hash**
 1224 **over this composite input.** Note that the seed is obtained by taking the sum of the stream item value
 1225 and the repetition number. The resulting 256-bit digest is interpreted as a large integer and used to
 1226 initialize a local instance of Python’s pseudorandom number generator. A single uniform variate in
 1227 the interval $[0, 1]$ is then produced. If the hash value is below our sample selection probability, which
 1228 we set to $q_{ssa} = \frac{1}{100}$ and $q_{ss} = \frac{1}{10}$, we sample the stream item, which effectively defines our bucket
 1229 count.
 1230

1231 C.2 EXPERIMENTS ON ADDITIONAL DATASETS

1232 C.2.1 SYNTHETIC DATASET

1233 Figure 4a compares the results from the estimation algorithms, SSA and SS, to the actual ℓ_3 norm over
 1234 multiple window sizes for our synthetically generated dataset described in Section 5. Additionally, we
 1235 include “SSA Scaled” and “SS Scaled”, which are obtained by scaling the estimates for $W = m$ (the
 1236 largest window size) by $\frac{W}{m}$ to estimate smaller window sizes. These methods aim to create natural
 1237 heuristics to transform vanilla streaming algorithms into sliding-window ones. Intuitively, simply
 1238 rescaling to estimate a smaller window should work well if the distribution remains unchanged over
 1239 the stream. However, our synthetic data deliberately includes a distribution shift to analyze if our
 1240 augmented algorithm, SSA, provides benefits when distribution changes occurs. As seen in Figure 4a,
 1241 the non-augmented algorithms, SS and SS-Scaled, are significantly further from the ground truth than

Fig. 4: Experiments for ℓ_3 estimation on synthetic data

the augmented-algorithms, SSA and SSA-Scaled. This is supported by the error curves in Figure 4b, which show that the gap between the augmented and non-augmented algorithms increases as the window size shrinks, highlighting that an adversarial distribution shift causes the algorithms to lose accuracy. Between SSA and SSA-scaled, SSA provides an estimate much closer to the ground truth across window-sizes.

Fig. 5: Experiments for (k, p) -cascaded norm estimation on synthetic data

Figure 5 compares the results from the estimation algorithms, SSA and SS, to the actual (k, p) -cascaded norm over multiple window sizes for our synthetically generated dataset. Across all window

sizes shown in Figure 5a and Figure 5c, SSA, the augmented algorithm, provides a much higher quality estimate than SS. As shown in Figure 5b and Figure 5d, the ratio between the SSA estimate and ground truth value remains nearly constant across all window sizes. Conversely, the SS estimate seems to degrade exponentially with increased window size. Moreover, compared to its estimate for $(k = 3, p = 3)$, SS provides an estimate that is twice as bad for $(k = 5, p = 5)$ -cascaded norms, while SSA remains about equal. This highlights that SSA is relatively stable for higher order norms, while SS degrades more noticeably. Together, the plots suggest that augmenting the baseline algorithm with heavy hitters provides useful information for obtaining higher quality estimates of the (k, p) -cascaded norm over various window sizes. In addition to estimation quality, we also monitored the memory usage and running time of the two algorithms. For $(k = 5, p = 5)$ -cascaded norm estimation, SSA consumed 68.86 MB of RAM while SS consumed 74.63 MB of RAM, which aligns well with our expectation that the augmented algorithm will consume less memory. The trend is similar for $(k = 3, p = 3)$ -cascaded norm estimates as SSA consumed 112.32 MB of RAM, while SS consumed 117.27 MB of RAM. Additionally, for $(k = 5, p = 5)$ SSA ran for 40.3s while SS ran for 63.5s, and for $(k = 3, p = 3)$ SSA ran for 40.1s while SS ran for 61.8s. For both settings, the CountSketch oracle itself used 65.96 MB of RAM. Put together, these results show that SSA can provide higher quality estimates of the (k, p) -cascaded norm using less memory than SS while running slightly faster than SS.

C.2.2 AOL DATASET

Fig. 6: Experiments for ℓ_3 estimation on AOL

Figure 6a provides the estimation results from SSA and SS to the actual ℓ_3 norm over various window sizes for the AOL dataset, a second real-world dataset. The x-axis is converted from timesteps to window sizes and log-scaled for better interpretability; the y-axis is also log scaled. Combined with Figure 6b, we see that SSA is more accurate than SS for $W > 125,000$. However, given its flat error curve and close estimates, SS seems to be a more reliable estimate for the AOL dataset compared to the CAIDA dataset. We suspect that SSA is not as advantageous over SS because the AOL dataset is more uniform than the CAIDA dataset and our synthetic dataset, which has a distribution shift. Nevertheless, SSA remains more accurate compared to SS in this setting. Figure 6c compares the estimation results from SSA and SS to the actual ℓ_3 norm over various sample selection probabilities. As seen in the figure, SSA provides more accurate estimates of the ℓ_3 norm than SS for especially small sample selection probabilities. As the probabilities increase, SS benefits from increased sample sizes, ultimately providing better estimates of the ℓ_3 norm. Cumulatively, SSA provides more accurate estimates over most of the sample selection probabilities, but especially for lower probabilities, indicating that it is more beneficial in low space settings.

D THE HEAVY-HITTER ORACLE AND LEARNING THEORY

In this section, we discuss the theoretical aspect of the implementation of the heavy-hitter oracle using the Probably Approximately Correct (PAC) learning framework. The framework helps to demonstrate that a predictor of high quality can be learned efficiently, given that the input instances are from a fixed probability distribution. The discussion of implementing oracles for learning-augmented algorithms enjoys a long history, see, e.g., Izzo et al. (2021); Ergun et al. (2022); Grigorescu et al.

(2022); Braverman et al. (2025), and we adapt this framework for the purpose of our heavy-hitter oracles.

Initially, we assume an underlying distribution, denoted as \mathcal{D} , from which the input data (frequency vectors of \mathbf{x}) is sampled. This setup is standard for solving the frequency estimation problem with or without the learning-augmented oracles. The machine learning model for the oracle would perform well as long as no generalization failure or distribution shift occurs.

Our objective is then to efficiently derive a predictor function f from a given family of possible functions \mathcal{F} . The input for any predictor f consists of a frequency vector of \mathbf{x} , and the output of the predictor is a vector $\{0, 1\}^n$ indicating whether each \mathbf{x}_i is a heavy hitter. We then introduce a loss function $L : f \times G \rightarrow R$, which quantifies the accuracy of a predictor f when applied to a specific input instance \mathbf{x} . One could think of L as the function that accounts for the incorrect predictions when compared to the actual heavy-hitter information.

Our goal is to learn the function $f \in \mathcal{F}$ that minimizes the following objective expression:

$$\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [L(f(\mathbf{x}))]. \quad (1)$$

Let f^* represent an optimal function within the family \mathcal{F} , such that $f^* = \operatorname{argmin}_{\mathbf{x} \sim \mathcal{D}} [L(f(\mathbf{x}))]$ is a function that minimizes the aforementioned objective. Assuming that for every frequency vector \mathbf{x} and every function $f \in \mathcal{F}$, we can compute both $f(\mathbf{x})$ and $L(f(\mathbf{x}))$ in time $T(n)$, we can state the following results using the standard empirical risk minimization method.

Theorem 14. *An algorithm exists that utilizes $\operatorname{poly}(T(n), \frac{1}{\varepsilon})$ samples and outputs a function \hat{f} such that with probability at least 99/100, we have*

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [L(\hat{f}(\mathbf{x}))] \leq \min_f \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [L(f(\mathbf{x}))] + \varepsilon.$$

In essence, Theorem 14 is a PAC-style result that provides a bound on the number of samples required to achieve a high probability of learning an approximately optimal function.

In what follows, we discuss the proof of Theorem 14 in more detail. We first define the pseudo-dimension for a class of functions, which extends the concept of VC dimension to functions with real-valued outputs.

Definition 6 (Pseudo-dimension, e.g., Definition 9 in Lucic et al. (2018)). Let \mathcal{X} be a ground set, and let \mathcal{F} be a set of functions that map elements from \mathcal{X} to the interval $[0, 1]$. Consider a fixed set $S = \{x_1, \dots, x_n\} \subset \mathcal{X}$, a set of real numbers $R = \{r_1, r_2, \dots, r_n\}$, where each $r_i \in [0, 1]$. Fix any function $f \in \mathcal{F}$, the subset $S_f = \{x_i \in S \mid f(x_i) \geq r_i\}$ is known as the induced subset of S (determined by the function f and the real values R). We say that the set S along with its associated values R is shattered by \mathcal{F} if the count of distinct induced subsets is $|\{S_f \mid f \in \mathcal{F}\}| = 2^n$. Then, the *pseudo-dimension* of \mathcal{F} is defined as the cardinality of the largest subset of \mathcal{X} that can be shattered by \mathcal{F} (or it is infinite if such a maximum does not exist).

By employing the concept of pseudo-dimension, we can now establish a trade-off between accuracy and sample complexity for empirical risk minimization. Let \mathcal{H} be the class of functions formed by composing functions in \mathcal{F} with L ; that is, $\mathcal{H} := \{L \circ f : f \in \mathcal{F}\}$. Furthermore, through normalization, we can assume that the range of L is in the range of $[0, 1]$. A well-known generalization bound is given as follows.

Proposition 5 (Anthony & Bartlett (2002)). *Let \mathcal{D} be a distribution over problem instances in \mathcal{X} , and let \mathcal{H} be a class of functions $h : \mathcal{X} \rightarrow [0, 1]$ with a pseudo-dimension $d_{\mathcal{H}}$. Consider t independent and identically distributed (i.i.d.) samples $\mathbf{x}_1, \dots, \mathbf{x}_t$ drawn from \mathcal{D} . Then, there exists a universal constant c_0 such that for any $\varepsilon > 0$, if $t \geq c_0 \cdot \frac{d_{\mathcal{H}}}{\varepsilon^2}$, then for all $h \in \mathcal{H}$, we have that with probability at least 99/100:*

$$\left| \frac{1}{t} \cdot \sum_{i=1}^t h(\mathbf{x}_i) - \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [h(\mathbf{x})] \right| \leq \varepsilon.$$

The following corollary is an immediate consequence derived by applying the triangle inequality on Proposition 5.

1404
 1405 **Corollary 15.** *Let $\mathbf{x}_1, \dots, \mathbf{x}_t$ be a set of independent samples (frequency vectors) drawn from \mathcal{D} ,
 1406 and let $\hat{h} \in \mathcal{H}$ be a function that minimizes $\frac{1}{t} \cdot \sum_{i=1}^t h(\mathbf{x}_i)$. If the number of samples t is selected as
 1407 specified in Proposition 5, i.e., $t \geq c_0 \cdot \frac{d_{\mathcal{H}}}{\varepsilon^2}$, then with a probability of at least 99/100, we have*

$$1408 \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\hat{h}(\mathbf{x})] \leq \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [h^*(\mathbf{x})] + 2\varepsilon. \\ 1409$$

1410 Finally, we could relate the pseudo-dimension with VC dimension using standard results.

1411 **Lemma D.1** (Pseudo-dimension and VC dimension, Lemma 10 in Lucic et al. (2018)). *For any
 1412 $h \in \mathcal{H}$, let B_h be the indicator function of the threshold function, i.e., $B_h(x, y) = \text{sgn}(h(x) - y)$.
 1413 Then the pseudo-dimension of \mathcal{H} equals the VC-dimension of the sub-class $B_{\mathcal{H}} = \{B_h \mid h \in \mathcal{H}\}$.*

1414 **Lemma D.2** (Theorem 8.14 in Anthony & Bartlett (2002)). *Let $\tau : \mathbb{R}^a \times \mathbb{R}^b \rightarrow \{0, 1\}$, defining the
 1415 class*

$$1416 \mathcal{T} = \{x \mapsto \tau(\theta, x) : \theta \in \mathbb{R}^a\}.$$

1417 Assume that any function τ can be computed by an algorithm that takes as input the pair $(\theta, x) \in$
 1418 $\mathbb{R}^a \times \mathbb{R}^b$ and produces the value $\tau(\theta, x)$ after performing no more than t of the following operations:

- 1421 • arithmetic operations $+, -, \times, /$ on real numbers,
- 1422 • comparisons involving $>, \geq, <, \leq, =$, and outputting the result of such comparisons,
- 1423 • outputting 0 or 1.

1424 Then, the VC dimension of \mathcal{T} is bounded by $O(a^2 t^2 + t^2 a \log a)$.

1425 By Lemma D.1 and Lemma D.2, we could straightforwardly bound the VC dimension of the concept
 1426 class \mathcal{F} , which, in turn, bounds the pseudo-dimension of the concept class \mathcal{F} . This completes the last
 1427 piece we need to prove Theorem 14.

1428 *Proof of Theorem 14.* From Lemma D.1 and Lemma D.2, we obtain that the pseudo-dimension of \mathcal{F}
 1429 is bounded by $O(n^2 \cdot T^2(n))$ by using $a = n$ and $t = T(n)$. This bound could in turn be bounded
 1430 as $\text{poly}(T(n))$. As such, by Corollary 15, we only need $\text{poly}(T(n))/\varepsilon^2$ samples. We assumed $f(\mathbf{x})$
 1431 and $L(f(\mathbf{x}))$ can be computed in time $T(n)$, and applying any poly-time EMR algorithm gives us
 1432 the total running time of $\text{poly}(T(n), 1/\varepsilon)$, as desired. \square

1433 It is important to note that Theorem 14 is a generic framework for learning-augmented oracles. If
 1434 every function within the family of oracles under consideration can be computed efficiently, then
 1435 Theorem 14 ensures that a polynomial number of samples will be adequate to learn an oracle that is
 1436 nearly optimal.

1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457