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Abstract

Model-based reinforcement learning (MBRL)
holds the promise of sample-efficient learning by
utilizing a world model, which models how the
environment works and typically encompasses
components for two tasks: observation model-
ing and reward modeling. In this paper, through
a dedicated empirical investigation, we gain a
deeper understanding of the role each task plays
in world models and uncover the overlooked po-
tential of sample-efficient MBRL by mitigating
the domination of either observation or reward
modeling. Our key insight is that while preva-
lent approaches of explicit MBRL attempt to re-
store abundant details of the environment via ob-
servation models, it is difficult due to the envi-
ronment’s complexity and limited model capac-
ity. On the other hand, reward models, while
dominating implicit MBRL and adept at learn-
ing compact task-centric dynamics, are inade-
quate for sample-efficient learning without richer
learning signals. Motivated by these insights and
discoveries, we propose a simple yet effective
approach, HarmonyDream, which automatically
adjusts loss coefficients to maintain task harmo-
nization, i.e. a dynamic equilibrium between the
two tasks in world model learning. Our experi-
ments show that the base MBRL method equipped
with HarmonyDream gains 10%−69% absolute
performance boosts on visual robotic tasks and
sets a new state-of-the-art result on the Atari
100K benchmark. Code is available at https:
//github.com/thuml/HarmonyDream.
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1. Introduction
Learning efficiently to operate in environments with com-
plex observations requires generalizing from past experi-
ences. Model-based reinforcement learning (MBRL, Sutton
(1990)) utilizing world models (Ha & Schmidhuber, 2018;
LeCun, 2022) offers a promising approach. In MBRL, the
agent learns behaviors by simulating trajectories based on
world model predictions. These imaginary rollouts can
reduce the need for real-environment interactions, thus im-
proving the sample efficiency of model-based agents.

Concretely, world models are designed to learn and pre-
dict two key components of dynamics (formally defined
in Sec. 2.1): how the environment transits and is observed
(i.e. the observation modeling task) and how the task has
been progressed (i.e. the reward modeling task) (Kaiser
et al., 2020; Hafner et al., 2020; 2021). While observation
transitions and rewards in low-dimensional spaces can be
classically learned by separate models, for environments
with high-dimensional and partial observations, it is favor-
able for world models to learn both tasks from a shared
representation, a form of multi-task learning1 (Caruana,
1997), aiming to improve learning efficiency and generaliza-
tion performance (Jaderberg et al., 2017; Laskin et al., 2020;
Yarats et al., 2021). However, to best exploit the benefits
of multi-task learning, it demands careful designs to weigh
the contribution of each task without allowing either one to
dominate (Misra et al., 2016; Kendall et al., 2018), which
naturally leads to the following question:

How do MBRL methods properly exploit the intrinsic
multi-task benefits within world model learning?

In this work, we take a unified multi-task view to revisit
world model learning in MBRL literature (Moerland et al.,
2023): Prevalent explicit MBRL approaches (Kaiser et al.,
2020; Hafner et al., 2021; Seo et al., 2022b), which is also
our primary focus, aim to learn an exact duplicate of the
environment by predicting each element (e.g., observations,
rewards, and terminal signals), which gives the agent access
to accurately learned transitions. However, learning to pre-
dict future observations can be difficult and inefficient since

1Here we refer to intrinsic multi-task learning inside world
models rather than multi-task policy learning for different rewards.
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Figure 1. A multi-task view of world models. (Left) World models typically consist of components for two tasks: observation modeling
and reward modeling. (Right) A spectrum of world model learning in MBRL. Explicit MBRL learns models dominated by observation
modeling, while implicit MBRL relies solely on reward modeling. In the spirit of implicit MBRL, our proposed HarmonyDream enables
explicit MBRL to maintain a dynamic equilibrium between them to unleash the multi-task benefits of world model learning, thus boosting
the sample efficiency of MBRL.

it encourages the world model to capture everything in the
environment, including task-irrelevant nuances (Okada &
Taniguchi, 2021; Deng et al., 2022). Consequently, world
model learning in explicit MBRL is typically dominated by
observation modeling to capture complex observations and
their associated dynamics but still suffers from model inac-
curacies and compounding errors. This can be overcome
by the spirit of implicit MBRL, which learns task-centric
world models solely from reward modeling (Oh et al., 2017;
Schrittwieser et al., 2020; Hansen et al., 2022) to realize
the value equivalence principle, i.e., the predicted rewards
along a trajectory of the world model matches that of the
real environment (Grimm et al., 2020). This approach builds
world models directly useful for MBRL to identify the op-
timal policy or value, and tends to perform better in tasks
where the complete dynamics related to observations are too
complicated to be perfectly modeled. Nevertheless, as the
reward signals in RL are known to be sparser than signals in
self-supervised learning, potentially leading to representa-
tion learning challenges, it is more practical to incorporate
auxiliary tasks that provide richer learning signals beyond
rewards (Jaderberg et al., 2017; Anand et al., 2022).

To support the above insights, we conduct a dedicated em-
pirical investigation and reveal surprising deficiencies in
sample efficiency within the default practice of a state-of-
the-art model-based method (Dreamer, Hafner et al. (2020;
2021; 2023)). Notably, increasing the coefficient of reward
loss in world model learning leads to dramatically boosted
sample efficiency (see Sec. 2.3). Our analysis identifies the
root cause as the domination of observation models in ex-
plicit world model learning: due to an overload of redundant
observation signals, the model may establish spurious cor-
relations in observations without realizing incorrect reward
predictions, which ultimately hinders the learning process
of the agent. On the other hand, a pure implicit version
of Dreamer, which learns world models solely exploiting
reward modeling, is also proven to be inefficient. In sum-
mary, domination of either task cannot properly exploit the
multi-task benefits within world model learning.

As shown in Fig. 1, we propose to address the problem
with HarmonyDream, a simple approach for explicit world
model learning that exploits the advantages of both sides. By
automatically adjusting loss coefficients through lightweight
harmonizers, HarmonyDream seeks task harmonization in-
side world models, i.e., it maintains a dynamic equilibrium
between reward and observation modeling during world
model learning. We evaluate our approach on various chal-
lenging visual control domains, including Meta-world (Yu
et al., 2020b), RLBench (James et al., 2020), distracted
DMC variants (Grigsby & Qi, 2020; Zhang et al., 2018), the
Atari 100K benchmark (Kaiser et al., 2020), and a challeng-
ing task from Minecraft (Fan et al., 2022), demonstrating
consistent improvements in sample efficiency and generality
to different base MBRL approaches (Deng et al., 2022).

The main contributions of this work are three-fold:

• To the best of our knowledge, our work, for the first
time, systematically identifies the multi-task essence
of world models and analyzes the deficiencies caused
by the domination of a particular task, which is unex-
pectedly overlooked by most previous works.

• We propose HarmonyDream, a simple yet effective
world model learning approach to mitigate the domina-
tion of either observation or reward modeling, without
the need for exhaustive hyperparameter tuning.

• Our experiments show that HarmonyDream improves
Dreamer with 10%−69% higher success rates or
episode returns (up to 90% more success on Meta-
world Assembly) in visual robotic tasks. Moreover, our
method reaches a new state of the art, 136.5% mean
human performance, on the Atari 100K benchmark.

2. A Multi-task Analysis in World Models
In this paper, we focus on vision-based RL tasks, for-
mulated as partially observable Markov decision pro-
cesses (POMDP). A POMDP is defined as a tuple
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Figure 2. Analysis experiments revealing the (b) imbalanced nature of world model learning and potential multi-task benefits yet to be
properly exploited. Simply adjusting the coefficient of reward loss leads to (a) dramatically boosted sample efficiency of DreamerV2
agents and (c) better representations with lower environment state regression errors.

(O,A, p, r, γ), where actions at ∼ π(at | o≤t, a<t) gen-
erated by the agent receive high-dimensional observations
ot ∼ p (ot | o<t, a<t) and scalar rewards rt = r(o≤t, a<t)
generated by the unknown transition dynamics p and re-
ward function r. The goal of MBRL is to learn an
agent that maximizes the γ-discounted cumulative rewards
Ep,π

[∑T
t=1 γ

t−1rt

]
, leveraging a learned world model

which approximates the underlying environment (p, r).

2.1. Two tasks in World Models

Two key tasks can be formally identified in world models,
namely observation modeling and reward modeling.

Definition 2.1. The observation modeling task in
world models is to predict consequent observations
p(ot+1:T | o1:t, a1:T ) of a trajectory, given future actions.
Similarly, the reward modeling task in world models is to
predict future rewards p(rt+1:T | o1:t, a1:T ).
As mentioned before, these two tasks provide a unified
view of MBRL: while explicit MBRL learns world models
for both observations and rewards to mirror the complete
dynamics of the environment, implicit MBRL only learns
from reward modeling to capture task-centric dynamics.

2.2. Overview of World Model Learning

We conduct detailed analysis and build our method primarily
upon DreamerV22 (Hafner et al., 2021), but we also demon-
strate the generality of our method to various base MBRL
algorithms, including DreamerV3 (Hafner et al., 2023) and
DreamerPro (Deng et al., 2022) (see Sec. 4.4).

The world model in Dreamer (left in Fig. 1) consists of the
following four components:

Representation model: zt ∼ qθ(zt | zt−1, at−1, ot)

Observation model: ôt ∼ pθ(ôt | zt)
2When we started this work, DreamerV3 had not been released.

A detailed discussion with DreamerV3 is included in later sections.

Transition model: ẑt ∼ pθ(ẑt | zt−1, at−1)

Reward model: r̂t ∼ pθ (r̂t | zt) .
(1)

The latent representation zt is generated by the representa-
tion model using the previous latent state zt−1, the current
action at−1, and the current visual observation ot. The la-
tent prediction ẑt, meanwhile, is generated by the transition
model using only the previous state and current action. All
model parameters θ are trained to learn the observations,
rewards, and transitions of the environment by jointly mini-
mizing the following objectives:

Observation loss: Lo(θ) = − log pθ(ot | zt)
Reward loss: Lr(θ) = − log pθ(rt | zt) (2)
Dynamics loss: Ld(θ) = KL[qθ(zt | zt−1, at−1, ot)

∥ pθ(ẑt | zt−1, at−1)],

where the dynamics loss simultaneously trains the latent
predictions toward the representations, and regularizes the
representations to be predictable. In practice, the observa-
tion model and reward model typically leverage Gaussian
distributions, and both losses take the form of a simple L2

loss between prediction ôt, r̂t and ground truth ot, rt respec-
tively, excluding irrelevant constants.

Taking our multi-task view, the observation model and re-
ward model with their associated losses account for the
aforementioned two tasks in the world model of Dreamer.
However, they do not operate in isolation and instead inter-
act with and regularize each other upon the shared represen-
tation and transition model, in pursuit of either complete or
task-centric latent dynamics, respectively.

The overall objective can be formulated as follows:

L(θ) = woLo(θ) + wrLr(θ) + wdLd(θ). (3)

By default, wo, wr, and wd are typically set to approxi-
mately equal weights (namely, wo = wr = wd = 1.0)
(Hafner et al., 2020; 2021; Seo et al., 2022b; Wu et al.,
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Figure 3. Analysis of world models learned with different reward loss coefficients. Rewards are labeled at the bottom right corner, with
predictions marked as correct or incorrect. Dominating observation modeling in world models incurs spurious correlations between
actions, observations, and rewards, which can be dissolved by properly emphasizing reward modeling.

2022), overlooking the potential domination of a particular
task. In contrast, we conduct a careful empirical investiga-
tion to understand the role each task plays in world models
and reveal the deficiency of the default weighting strategy.

2.3. Dive into World Model Learning

We consider the tasks of pulling a lever up, pulling a han-
dle up sideways, and hammering a screw on the wall, from
the Meta-world domain (Yu et al., 2020b), as our testbed
to investigate world model learning. The prominent im-
provements of the derived approach in our benchmark ex-
periments (see Sec. 4) prove that our discoveries can be
generalized to various domains and tasks.

First of all, we experiment with simply adjusting the coeffi-
cient of the reward loss in Eq. (3). Results in Fig. 2a reveal a
surprising fact that by simply tuning the reward loss weights
(wr ∈ {1, 10, 100}), the agent can achieve considerable
improvements in terms of sample efficiency.

Finding 1. Leveraging the reward loss by adjusting its
coefficient in world model learning has a great impact
on the sample efficiency of model-based agents.

One obvious reason for this is that the reward loss only
accounts for a tiny proportion of the learning signals, ac-
tually a single scalar rt. As shown in Fig. 2b, the scale
of Lr is two orders of magnitude smaller than that of
Lo, which usually aggregates H × W × C dimensions:
log pθ (ot | zt) =

∑
h,w,c log pθ(o

(h,w,c)
t | zt). As discussed

before, reward modeling is crucial for extracting task-
relevant representations and driving behavior learning of
the agents. Dominated by observation modeling, the world
model fails to learn a task-centric latent space and predict
accurate rewards, which hinders the agent learning process.

We then explore further to demonstrate how the observation
modeling task dominating world models can specifically
hurt behavior learning. To isolate distracting factors, we

consider an offline setting (Levine et al., 2020). Concretely,
we use a fixed replay buffer on the task of Lever Pull and
offline train DreamerV2 agents with different reward loss
coefficients on it (see details in Appendix C.4). In Fig. 3,
we showcase a trajectory where the default Dreamer agent
(wr = 1) fails to lift the lever. It is evident that it learns
a spurious correlation (Geirhos et al., 2020) between the
actions of the robot and that of the lever and predicts inac-
curate transitions and rewards, which misleads the agents
to unfavorable behaviors. Properly balancing the reward
loss (wr = 100) can emphasize task-relevant information,
such as whether the lever is actually lifted, to correct hallu-
cinations by world models. Quantitative analysis in Fig. 2c
measuring the ability of world models’ representations to
predict the ground truth states also suggests emphasizing
reward modeling learns better task-centric representations.

Finding 2. Observation modeling as a dominating task
can result in world models establishing spurious corre-
lations without realizing incorrect reward predictions.

Although we have shown above that exploiting reward mod-
eling can bring benefits to world models and MBRL, learn-
ing world models depending solely on scarce reward signals,
as implicit MBRL, has limited capability to learn mean-
ingful representations, and thus can encounter optimization
challenges and hinder sample-efficient learning (Yarats et al.,
2021). Our experiment results in Fig. 2a show that a pure
implicit version of DreamerV2 without the observation loss
(wo = 0) produces inferior results with a high variance.

Finding 3. Learning signal of world models from re-
wards alone without observations is inadequate for
sample-efficient model-based learning.

Discussion. We are not the first to adjust loss coefficients
in world model learning, but we dedicatedly investigate this.
Here we discuss the differences between our findings and
previous literature. Our Finding 1 coincides with high re-
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Figure 4. Overview of HarmonyDream. (Left) Built upon Dreamer, we introduce lightweight harmonizers to maintain a dynamic
equilibrium between tasks. (Right) Comparison between the original harmonious loss (Eq. (4)) and the rectified one (Eq. (5)). The latter
prevents an extremely large loss weight.

ward loss weights manually tuned (typically 100 or 1000) in
decoder-free model-based RL (Nguyen et al., 2021; Deng
et al., 2022). Our analysis differs from theirs in two signif-
icant ways: 1) We focus on a decoder-based world model,
where the observations are learned from explicit reconstruc-
tions. 2) We discovered that emphasizing reward modeling
is also beneficial for visually simple tasks (e.g. Meta-world
tasks), in addition to visually demanding tasks with noisy
backgrounds. Our Finding 3 is similar to the reward-only
ablation in Dreamer (Hafner et al., 2020), but we prove that
even if given higher loss weights, learning a world model
purely from rewards is less sample-efficient than properly
exploiting both observation and reward modeling.

3. HarmonyDream
In light of the discoveries and insights, we propose a sim-
ple yet effective method, HarmonyDream, as the first step
towards exploiting the multi-task essence of explicit world
model learning. Instead of task domination, we aim to dy-
namically maintain a harmonious interaction between the
two tasks in world models: while observation modeling
facilitates representation learning and prevents information
loss, reward modeling enhances task-centric representations
to inform behavior learning of the agents.

HarmonyDream mitigates the potential domination of a
particular task in world models by introducing lightweight
harmonizers, as shown in Fig. 4. Specifically, to maintain
a dynamic equilibrium and avoid task domination, losses
associated with different tasks are scaled to the same con-
stant. A straightforward but suboptimal way is to set each
loss weight to the reciprocal of the corresponding loss, i.e.,
wi = sg( 1

Li ), i ∈ {o, r, d}, where sg is a stop gradient
function. Technically, as the loss is only calculated from a
mini-batch of data and fluctuates throughout training, these
weights are sensitive to outlier values and thus may further
aggravate training instability. Instead, we adopt a varia-
tional method to learn the weights of different losses by the
following harmonious loss for world model learning:

L(θ, σo, σr, σd) =
∑

i∈{o,r,d}

H(Li(θ), σi)

=
∑

i∈{o,r,d}

1

σi
Li(θ) + log σi.

(4)

The variational formulation H(Li(θ), σi) = σ−1
i Li(θ) +

log σi serves as harmonizers to dynamically but smoothly
rescale different losses, where the weight σ−1

i with a learn-
able parameter σi > 0 approximates a “global” reciprocal
of the loss scale, as stated in the following proposition:

Proposition 3.1. The optimal solution σ∗ that minimizes the
expected loss E[H(L, σ)], or equivalently ∇σE[H(L, σ)] =
0, is σ∗ = E[L]. In other words, the harmonized loss scale
is E[L/σ∗] = 1.

In practice, σi is parameterized as σi = exp(si) > 0, in
order to optimize parameters si free of sign constraint. More
essentially, we propose a rectification on Eq. (4), since a
loss L with small values, such as the reward loss, can lead
to extremely large coefficient 1/σ ≈ L−1 ≫ 1, which
potentially hurt training stability. Specifically, we simply
add a constant in regularization terms:

L(θ, σo, σr, σd) =
∑

i∈{o,r,d}

Ĥ(Li(θ), σi)

=
∑

i∈{o,r,d}

1

σi
Li(θ) + log (1 + σi).

(5)

The harmonized loss scale by the rectified harmonious loss
is equal to 2

1+
√

1+4/E[L]
< 1 (derived in Appendix B).

We illustrate the corresponding loss weights learned with
different loss scales in the right of Fig. 4, showing that the
rectified loss effectively mitigates extremely large weights.

Discussion. Our harmonious loss is related in spirit to
uncertainty weighting (Kendall et al., 2018) but has several
key differences. Uncertainty weighting is derived from max-
imum likelihood estimation, which parameterizes noises
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(a) Meta-world (b) RLBench (c) Distracted DMC variants (d) Atari (e) Minecraft

Figure 5. Visual control domains for evaluation, including robotic manipulation (a-b), distracted locomotion (c), and video games (d-e).

of Gaussian-distributed outputs of each task, known as ho-
moscedastic uncertainty. In contrast, our motivation is to
balance loss scales among tasks. More specifically, measur-
ing the uncertainty of observations and rewards results in
putting each observation pixel on equal footing as the scalar
reward, still overlooking the large disparity in dimension
sizes. However, we take high-dimensional observations as a
whole and directly balance the two losses. Furthermore, we
do not make assumptions on the distributions behind losses,
which makes it possible for us to balance the KL loss, while
uncertainty weighting has no theoretical basis for doing so.

4. Experiments
We evaluate the ability of HarmonyDream to boost sample
efficiency of base MBRL methods on diverse and challeng-
ing visual control domains as shown in Figure 5, including
robotic manipulation and locomotion, and video game tasks.
We conduct most experiments for HarmonyDream based on
DreamerV2 but also demonstrate its generality to other base
MBRL methods, including DreamerV3 (Hafner et al., 2023)
and DreamerPro (Deng et al., 2022). Experimental details
and additional results can be found in Appendix C and E.

4.1. Meta-world Experiments

Environment details. Meta-world is a benchmark of 50
robotic manipulation tasks with fine-grained observation
details, such as small target objects. Due to our limited
computational resources, we choose a set of representative
tasks according to the categories of task difficulty by Seo
et al. (2022a): two from the easy category (Lever Pull and
Handle Pull Side), two from the medium category (Hammer
and Sweep Into), and two from the hard category (Push and
Assembly). These tasks are run over different numbers of
environment steps: easy tasks and Hammer over 250K steps,
Sweep Into over 500K steps, the else over 1M steps.

Results. In Fig. 6a, we report the performance of Har-
monyDream on six Meta-world tasks, in comparison with
our base MBRL method DreamerV2. By simply adding
harmonizers to the original DreamerV2 method, our Har-
monyDream demonstrates superior performance in terms of
both sample efficiency and final success rate. In particular,
HarmonyDream achieves over 75% and 90% success rates
on the challenging Push and Assembly tasks, respectively,
while DreamerV2 fails to learn a meaningful policy.

4.2. RLBench Experiments

Environment details. To assess our method on more com-
plex visual robotic manipulation tasks, we perform evalu-
ations on the RLBench (James et al., 2020) domain. Most
tasks in RLBench have high intrinsic difficulty and only
offer sparse rewards. Learning these tasks requires expert
demonstrations, dedicated network structure, and additional
inputs (James & Davison, 2022; James et al., 2022), which
is out of our scope. Therefore, following Seo et al. (2022a),
we conduct experiments on two relatively easy tasks (Push
Button and Reach Target) with dense rewards.

Results. In Fig. 6b, we show the superiority of our ap-
proach on the RLBench domain. HarmonyDream offers
28% of absolute final performance gain on the Push Button
task and 50% on the more difficult Reach Target tasks. The
results presented above prove the ability of HarmonyDream
to promote sample efficiency of model-based RL on robotic
manipulation domains for both easy and difficult tasks.

4.3. DMC Remastered Experiments

Environment details. DMC Remastered (Grigsby & Qi,
2020) is a challenging extension of the widely used robotic
locomotion benchmark, DeepMind Control Suite (Tassa
et al., 2018) with randomly generated graphics emphasizing
visual diversity. We train and evaluate our agents on three
tasks: Cheetah Run, Walker Run, and Cartpole Balance.

Results. Fig. 7a demonstrates the effectiveness of Har-
monyDream on three DMCR tasks. Our method greatly
enhances the base DreamerV2 method to unleash its poten-
tial. Fig. 7b shows different learning curves of the dynamics
loss between HarmonyDream and DreamerV2. It is worth
noting that DMCR tasks contain distracting visual factors,
such as background and robot body color, which may hinder
the learning process of observation modeling. DreamerV2
diverges in learning loss on this task, but by leveraging the
importance of reward modeling, HarmonyDream bypasses
distractors in observations and can learn task-centric transi-
tions more easily, indicated by converged dynamics loss.

4.4. Generality to Model-based RL Methods

DreamerV3. DreamerV3 (Hafner et al., 2023) improves
DreamerV2 to master diverse domains. Notably, our method
is orthogonal to the various modifications in DreamerV3.
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Figure 6. Learning curves on visual manipulation tasks from (a) Meta-World and (b) RLBench benchmarks, measured on the success rate.
We report the mean and 95% confidence interval across five runs.
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Figure 7. Learning curves (a) on three DMC Remastered visual locomotion tasks and (b) one dynamics loss curve shown on Cheetah Run.
We report the mean and 95% confidence interval across five runs.

DreamerV3 introduces a static symlog transformation to mit-
igate the problem of different per-dimension scales across
environment domains, while HarmonyDream dynamically
balances the overall loss scales across tasks in world model
learning, considering together per-dimension scales, dimen-
sions, and training dynamics. We refer to a detailed dis-
cussion in Appendix D.1. Experiments on Meta-world and
RLBench, as shown in Fig. 8, illustrate that our method can
combine with DreamerV3 to further improve performance.
To further illustrate the applicability of our method, we also
evaluate our Harmony DreamerV3 on two video game do-
mains: Minecraft and Atari. For the Minecraft domain, we
choose a challenging task of learning a basic skill, Hunt
Cow, from the MineDojo benchmark (Fan et al., 2022). As
shown in Fig. 9, Harmony DreamerV3 exhibits great im-
provement in the Minecraft domain. For the Atari 100K
benchmark (Kaiser et al., 2020), we improve DreamerV3 to
achieve 136.5% of mean human performance, setting a new
state of the art among methods without lookahead search.

DreamerPro. DreamerPro (Deng et al., 2022) is a model-
based RL method that “reconstructs” the cluster assignment
of the observation. We conduct DreamerPro experiments on
the DMCR domain. By default, DreamerPro uses a manu-
ally tuned reward loss weight wr = 1000. We demonstrate
in Fig. 8 that our method can still achieve higher sample
efficiency and, on average, outperform manually tuned loss
weights that are computationally costly.

4.5. Analysis

Comparison to implicit MBRL. As shown in Sec. 2.3,
learning from reward modeling alone lacks sample effi-
ciency. However, one may argue that purposefully designed
implicit MBRL methods can be more effective. In Fig. 10a,
we show comparisons with an implicit MBRL method, TD-
MPC (Hansen et al., 2022) on three tasks of Meta-world. We
observe that TD-MPC has difficulty in efficient learning as it
lacks observation modeling to guide representation learning.
In contrast, our method achieves superior performance. We
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also compare with another implicit MBRL method, RePo
(Zhu et al., 2023), as shown in the following paragraph.

Comparison to Dreamer-based task-centric methods.
Denoised MDP (Wang et al., 2022) and RePo (Zhu et al.,
2023) represent modifications to the Dreamer architecture
that share a similar point with our approach in enhancing
task-centric representations. We compare our method to
these two methods on Meta-world, DMC Remastered, and
additionally, natural background DMC (Zhang et al., 2018),
which is also a distracted DMC variant used originally in
the RePo paper. Fig. 11 shows that our HarmonyDream has
a higher sample efficiency than Denoised MDP and RePo.
Detailed discussion and comparison to these methods can
be found in Appendix E.9 and E.10, respectively.

Comparison to multi-task learning methods. While our
focus is not on developing a new multi-task learning method,
we compare HarmonyDream with advanced methods in
this area, including Uncertainty Weighting (UW, Kendall
et al. (2018)), Dynamics Weight Average (DWA, Liu et al.
(2019)), and NashMTL (Navon et al., 2022). Fig. 10b illus-
trates that our straightforward method is the most effective
one among these methods, which also has the advantage of
extreme simplicity. In-depth discussions on the differences
between methods and why these methods can hardly make
more improvements are included in Appendix D.2.

Ablation on rectified loss. We illustrate, through Fig. 17
in Appendix, the effectiveness of our rectified loss (Eq. (5))
in enhancing training stability and final performance.

5. Related Work
World models for visual RL. There exist several ap-
proaches to learning world models that explicitly model
observations, transitions, and rewards. They can be widely
utilized to boost sample efficiency in visual RL. In world
models, visual representation can be learned via image re-
construction (Ha & Schmidhuber, 2018; Kaiser et al., 2020;
Hafner et al., 2019; Seo et al., 2022a;b), or reconstruction-
free contrastive learning (Okada & Taniguchi, 2021; Deng
et al., 2022). Dreamer (Hafner et al., 2020; 2021; 2023) rep-
resents a series of methods that learn latent dynamics models
from observations and learn behaviors by latent imagination.
These methods have proven their effectiveness in tasks like
video games (Hafner et al., 2021) and real robot control (Wu
et al., 2022). Regardless, the problem of task domination
is general for world models, and our findings and approach
are not limited to our focused Dreamer architecture.

Implicit model-based RL. Implicit MBRL (Moerland
et al., 2023) is a more abstract approach and aims to learn
value equivalence models (Grimm et al., 2020) that focus
on task-centric characteristics of the environment. This ap-
proach mitigates the objective mismatch (Lambert et al.,
2020) between maximum likelihood estimation for world
models and maximizing returns for policies. A typical suc-
cess is MuZero (Schrittwieser et al., 2020; Ye et al., 2021),
which learns a world model by predicting task-specific re-
wards, values, and policies, without observation reconstruc-
tion. Similarly, TD-MPC (Hansen et al., 2022) learns im-
plicit world models for continuous control. While focusing
on Dreamer, our analysis is consistent with those of MuZero
showing that the potential efficiency of task-centric mod-
els can be better released when properly leveraging richer
information from observation models (Anand et al., 2022).

Multi-task learning. Multi-task learning (Caruana, 1997;
Ruder, 2017) aims to improve different tasks by jointly learn-
ing from a shared representation. A common approach is to
aggregate task losses, where the loss or gradient of each task
is manipulated by criteria like uncertainty (Kendall et al.,
2018), performance metric (Guo et al., 2018), gradient norm
(Chen et al., 2018) or gradient direction (Yu et al., 2020a;
Wang et al., 2021; Navon et al., 2022), to avoid negative
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Figure 10. Comparison of HarmonyDream to implicit MBRL methods and multi-task learning methods.
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Figure 11. Comparison of HarmonyDream with Dreamer-based task-centric methods, Denoised MDP (left) and RePo (right).

transfer (Jiang et al., 2023). Previous works on multi-task
learning in RL typically considered different policy learning
tasks defined by different reward functions or environment
dynamics (Rusu et al., 2016; Teh et al., 2017; Yu et al.,
2020a). In contrast, we innovatively depict world model
learning as multi-task learning, composed of reward and ob-
servation modeling, and HarmonyDream learns to maintain
a delicate equilibrium between them to mitigate domination.

6. Discussion
We identify two tasks inside world models—observation
and reward modeling—and interpret different MBRL meth-
ods as different task weighting. Our empirical study reveals
that domination of a particular task can dramatically dete-
riorate the sample efficiency of MBRL. We thus introduce
HarmonyDream, a simple world model learning approach
that dynamically balances these tasks, thereby substantially
improving sample efficiency.

HarmonyDream is particularly effective for scenarios where
observation models are necessary for better representation
learning, but the default weighting strategy of explicit world
model learning causes negative effects due to observation
modeling domination. These scenarios are mainly vision-
based RL tasks, typically with complicated observations,
including but not limited to:

• Fine-grained task-relevant observations: Robotics
manipulation tasks (e.g., Meta-world and RLBench)
and video games (e.g., Atari games, particularly Break-
out, Qbert, and Gopher) require accurately modeling

interactions with small objects.

• Highly varied task-irrelevant observations: Redun-
dant visual components such as backgrounds (e.g., nat-
ural background DMC) and body color (e.g., DMCR)
can easily distract visual agents if task-relevant infor-
mation is not emphasized correctly.

• Hybrid of both: More difficult open-world tasks (e.g.
Minecraft) can encounter both, including small target
entities and abundant visual details.

These environment features are ubiquitous in realistic appli-
cations, and simply emphasizing reward modeling through
HarmonyDream without any architecture modifications or
hyperparameter tuning can make remarkable improvements.

Benchmark environments featuring clean observations with
prominent target objects, such as standard DMC and Crafter
(Hafner, 2022), do not encounter significant domination of
observation modeling and are expected to gain marginal im-
provements with HarmonyDream, as shown in Fig. 16 (for
DMC) and Fig. 22 (for Crafter) in Appendix. Nevertheless,
we do not observe any negative performance change with
HarmonyDream on these clean benchmarks.

The development of our method is primarily based on em-
pirical and intuitive observations. A future direction is to
explain our method theoretically, or to better measure and
balance the contributions of world model tasks empirically,
beyond simply considering loss scales. We hope our work
can offer valuable insights and help pave the way for ex-
ploiting the multi-task nature of world models.
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A. Behavior Learning
HarmonyDream does not change the behavior learning procedure of its base MBRL methods (Hafner et al., 2021; 2023;
Deng et al., 2022), and we briefly describe the actor-critic learning scheme shared with these base methods.

Specifically, we leverage a stochastic actor and a deterministic critic parameterized by ψ and ξ, respectively, as shown
below:

Actor: ât ∼ πψ (ât | ẑt) Critic: vξ (ẑt) ≈ Epθ,πψ

[∑
τ≥t

γτ−tr̂τ

]
, (6)

where pθ is the world model. The actor and critic are jointly trained on the same imagined trajectories {ẑτ , âτ , r̂τ} with
horizon H , generated by the transition model and reward model in Eq. (1) and the actor in Eq. (6). The critic is trained to
regress the λ-target:

Lcritic(ξ)
.
= Epθ,πψ

[
t+H∑
τ=t

1

2

(
vξ(ẑτ )− sg(V λτ )

)2]
, (7)

V λτ
.
= r̂τ + γ

{
(1− λ)vξ(ẑτ+1) + λV λτ+1 if τ < t+H

vξ(ẑτ+1) if τ = t+H.
(8)

The actor, meanwhile, is trained to output actions that maximize the critic output by backpropagating value gradients through
the learned world model. The actor loss is defined as follows:

Lactor(ψ)
.
= Epθ,πψ

[
t+H∑
τ=t

(
−V λτ − ηH [πψ(âτ |ẑτ )]

)]
, (9)

where H [πψ(âτ |ẑτ )] is an entropy regularization which encourages exploration, and η is the hyperparameter that adjusts the
regularization strength. For more details, we refer to Hafner et al. (2020).

B. Derivations
Proof of Proposition 3.1. To minimize E[H(L, σ)], we force the the partial derivative w.r.t. σ to 0:

∇σE[H(L, σ)] = ∇σE
[
1

σ
L+ log σ

]
= E

[
∇σ

(
1

σ
L+ log σ

)]
(10)

= E
[
− 1

σ2
L+

1

σ

]
=

1

σ
− 1

σ2
E[L] = 0. (11)

This results in the solution σ∗ = E[L], and equivalently, the harmonized loss scale is E[L/σ∗] = 1.

Analytic solution of rectified loss. Similarly, minimizing E
[
Ĥ(L, σ)

]
yields

∇σE
[
Ĥ(L, σ)

]
= ∇σ

(
1

σ
E[L] + log (1 + σ)

)
= − 1

σ2
E[L] + 1

1 + σ
= 0

σ =
E[L] +

√
E[L]2 + 4E[L]
2

.

(12)

Therefore the learnable loss weight, in our rectified harmonious loss, approximates the analytic loss weight:

1

σ
=

2

E[L] +
√

E[L]2 + 4E[L]
, (13)

corresponding to a loss scale E[L], which is less than the unrectified 1/E[L]. Adding a constant in the regularization term

log(1 + σ) results in the 4E[L] in the
√
E[L]2 + 4E[L] term, which prevents the loss weight from getting extremely large

when faced with a small E[L].
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C. Experimental Details
C.1. Benchmark Environments

Meta-world. Meta-world (Yu et al., 2020b) is a benchmark of 50 distinct robotic manipulation tasks. We choose six tasks
in all according to the difficulty criterion (easy, medium, hard, and very hard) proposed by Seo et al. (2022a). Specifically,
we choose Handle Pull Side and Lever Pull from the easy category, Hammer and Sweep Into from the medium category, and
Push and Assembly from the hard category. We observe that although the Hammer task belongs to the medium category, it
is relatively easy for the DreamerV2 agent to learn, and our HarmonyDream can already achieve high success with 250K
environment steps. Therefore, we train our agents over 250K environment steps on Hammer, along with the two easy tasks.
For the remaining tasks, we train our agents over 500K environment steps for Sweep Into, and 1M environment steps for
Push and Assembly, according to their various difficulties. In all tasks, the episode length is 500 environment steps with no
action repeat.

Figure 12. Example observations of Meta-world tasks: Lever Pull, Handle Pull Side, Hammer, Sweep Into, Push, and Assembly (left to
right).

Figure 13. Example observations of RLBench
tasks: Push Button and Reach Target.

RLBench. RLBench (James et al., 2020) is a challenging benchmark for
robot learning. Most tasks in RLBench are overchallenging for Dream-
erV2, even equipped with HarmonyDream. Therefore, following Seo et al.
(2022a), we choose two relatively easy tasks (i.e. Push Button, Reach
Target) and use an action mode that specifies the delta of joint positions.
Because the original RLBench benchmark does not provide dense rewards
for the Push Button task, we assign a dense reward following Seo et al.
(2022a), which is defined as the sum of the L2 distance of the gripper to
the button and the magnitude of the button being pushed. In our experi-
ments, we found that the original convolutional encoder and decoder of
DreamerV2 can be insufficient for learning the RLBench task. Therefore, in this domain, we adopt the ResNet-style encoder
and decoder from Wu et al. (2023) for both DreamerV2 and our HarmonyDream. Note here that changes in the encoder and
decoder architecture are completely orthogonal to our method and contributions. For tasks in the RLBench domain, the
maximum episode length is set to 400 environment steps with an action repeat of 2.

Figure 14. Example observations of DMC Remas-
tered tasks: Cheetah Run, Walker Run, and Cart-
pole Balance.

DMC Remastered. The DMC Remastered (DMCR) (Grigsby & Qi,
2020) benchmark is a challenging extension of the widely used robotic
locomotion benchmark, DeepMind Control Suite (Tassa et al., 2018), by
expanding a complicated graphical variety. On initialization of each episode
for both training and evaluation, the DMCR environment randomly resets
7 factors affecting visual conditions, including floor texture, background,
robot body color, target color, reflectance, camera position, and lighting.
Our agents are trained and evaluated on three tasks: Cheetah Run, Walker
Run, and Cartpole Balance. We use all variation factors in all of our
experiments and train our agents over 1M environment steps. Following
the common setup of DeepMind Control Suite (Hafner et al., 2020; Yarats
et al., 2022), we set the episode length to 1000 environment steps with an
action repeat of 2.

Atari 100K Benchmark. The Atari 100K benchmark contains 26 video
games with up to 18 discrete actions. On this benchmark, the agent is
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allowed to interact with each game environment for 100K steps, equivalent to 400K frames due to a frameskip of 4.
This number of interaction steps, roughly two hours of real-time gameplay, has become a widely adopted standard in
the realm of sample-efficient reinforcement learning. Human players are evaluated after two hours to get familiar with
the game. Following the established protocol, we report the raw performance for each game, and the mean and median
of human normalized scores: (scoreagent − scorerandom) / (scorehuman − scorerandom). For this benchmark, we keep all
implementation details the same as DreamerV3.

Natural Background DMC. Natural background DMC (Zhang et al., 2018) modifies the DeepMind Control Suite by
substituting its static background with natural videos. In our paper, this environment is implemented using the RePo (Zhu
et al., 2023) codebase3. Following RePo, we train and evaluate our agent on three tasks: Cheetah Run, Walker Run and
Cartpole Swingup. We adopt the standard configuration of DMC for natural background DMC, with a maximum episode
length of 1000 environment steps and an action repeat of 2.

Minecraft. Minecraft is a popular open-world game where a player explores a procedurally generated 3D world with
diverse types of terrains to roam, materials to mine, tools to craft, structures to build, and wonders to discover. We leverage
MineDojo (Fan et al., 2022), an massive simulation suite developed on Minecraft, encompassing over 3000 distinct tasks.
Our focus was to master a fundamental skill, Hunt Cow, utilizing the manual dense reward provided by MineDojo. We prune
the action space of MineDojo to Table 1, following the practice of STG-Transformer (Zhou et al., 2023). For this benchmark,
we employ the Large model size variant of DreamerV3, comprising approximately 77M parameters. To ensure the terrain
diversity of the environment, we hard reset the environment to generate a new world every 5 episodes. Observations for
our agents consist solely of RGB frames, with a resolution of 128× 128× 3 pixels. The maximum episode length is 500
environment steps, with no action repeat.

Table 1. Pruned Action Space of the MineDojo Environment

Index Descriptions Num of Actions

0 Forward and backward 3
1 Move left and right 3
2 Jump, sneak, and sprint 4
3 Camera delta pitch/yaw (±15◦ for each action) 5
4 Use and Attack 3

C.2. Base MBRL Methods

DreamerV2. Unless otherwise specified, HarmonyDream (Ours) in the experiment section refers to the HarmonyDream
method based on DreamerV2 (Hafner et al., 2021). Details about DreamerV2 have been elaborated on in the main text, and
we refer readers to Sec. 2.2 and Hafner et al. (2020; 2021).

DreamerV3. DreamerV3 (Hafner et al., 2023) is a general and scalable algorithm that builds upon DreamerV2. In order
to master a wide range of domains with fixed hyperparameters, DreamerV3 made many changes to DreamerV2, including
using symlog predictions, utilizing world model regularization by combining KL balancing and free bits, modifying the
network architecture, and so forth. A main modification relevant to our method is that DreamerV3 explicitly partitions the
dynamics loss in Eq. (2) into a dynamics loss and a representation loss as follows:

Dynamics loss: Ldyn(θ) = max(1,KL [sg(qθ(zt | zt−1, at−1, ot)) ∥ pθ(ẑt | zt−1, at−1)]),

Representation loss: Lrep(θ) = max(1,KL [qθ(zt | zt−1, at−1, ot) ∥ sg(pθ(ẑt | zt−1, at−1))]).
(14)

Since Ldyn(θ) and Lrep(θ) yield the same loss value, leading to identical learned coefficients, we implement Harmony
DreamerV3 by recombining the two losses into Ld(θ) as follows:

Ld(θ)
.
= αLdyn(θ) + (1− α)Lrep(θ). (15)

Here α is the KL balancing coefficient predefined by DreamerV3. In this way, we can use the same learning objective as
Eq. (5) for Harmony DreamerV3.

3https://github.com/zchuning/repo
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DreamerPro. DreamerPro (Deng et al., 2022) is a reconstruction-free model-based RL method that incorporates proto-
typical representations in the world model learning process. The overall learning objective of the DreamerPro method is
defined as follows:

LDreamerPro(θ) = LSwAV(θ) + LTemp(θ) + LR(θ) + LKL(θ). (16)

The LSwAV term stands for prototypical representation loss used in SwAV (Caron et al., 2021), which improves prediction
from an augmented view and induces useful features for static images. LTemp stands for temporal loss that considers temporal
structure and reconstructs the cluster assignment of the observation instead of the visual observation itself. As LSwAV+LTemp
replaces Lo in Eq. (2), we build our Harmony DreamerPro by substituting the overall learning objective into the following:

LHarmony DreamerPro(θ) =
∑

i∈{SwAV,Temp,R,KL}

1

σi
Li(θ) + log (1 + σi). (17)

C.3. Hyperparameters

Our proposed HarmonyDream only involves adding lightweight harmonizers, each corresponding to a single learnable
parameter, and thus does not introduce any additional hyperparameters. For Harmony DreamerV3 and Harmony
DreamerPro, we use the default hyperparameters of DreamerV3 and DreamerPro, respectively. For our HarmonyDream based
on DreamerV2, we use the same set of hyperparameters as DreamerV2 (Hafner et al., 2021). Important hyperparameters for
HarmonyDream are listed in Table 2.

Table 2. Hyperparameters in our HarmonyDream based on DreamerV2. We use the same hyperparameters as DreamerV2.

Hyperparameter Value

Observation size 64× 64× 3
Observation preprocess Linearly rescale from [0, 255] to [−0.5, 0.5]

Action Repeat 1 for Meta-world
2 for RLBench, DMCR and Natural Background DMC

Max episode length 500 for Meta-world, DMCR and Natural Background DMC
200 for RLBench

Early episode termination True for RLBench, False otherwise
Trajectory segment length T 50

Random exploration 5000 environment steps for Meta-world and RLBench
1000 environment steps for DMCR and Natural Background DMC

Replay buffer capacity 106

Training frequency Every 5 environment steps
Imagination horizon H 15

Discount γ 0.99
λ-target discount 0.95

Entropy regularization η 1× 10−4

Batch size 50 for Meta-world and RLBench
16 for DMCR and Natural Background DMC

RSSM hidden size 1024
World model optimizer Adam

World model learning rate 3× 10−4

Actor optimizer Adam
Actor learning rate 8× 10−5

Critic optimizer Adam
Critic learning rate 8× 10−5

Evaluation episodes 10

C.4. Analysis Experiment Details (Fig. 2c and 3)

For the analysis in Sec. 2.3, namely Fig. 2c and 3, we conduct our experiments on a fixed training buffer to better ablate
distracting factors. We first train a separate DreamerV2 agent and use training trajectories collected during its whole
training process as our fixed buffer. The fixed buffer comprises 250K environment steps and covers data from low-return
to high-return trajectories (Levine et al., 2020). We then offline train our DreamerV2 agents with different reward loss
coefficients on this buffer. All other hyperparameters, such as training frequency, training steps, and evaluation episodes, are
the same as in Table 2.
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Details for Fig. 2c We denote the agent trained using wr = 1 as original weight and trained using wr = 100 for Lever
Pull, wr = 10 for Handle Pull Side and Hammer as balanced weight. To build the state regression dataset, first, we gather
10,000 segments of trajectories, each with a length of 50, from the evaluation episodes of both the agent trained using
original weight and the agent trained using balanced weight. These segments are then combined into a dataset comprising
20,000 segments. This dataset is subsequently divided into a training set and a validation set at a ratio of 90% to 10%. Each
data point in the dataset consists of a ground truth state and a predicted state representation, where the ground truth state is
made up of the actual positions of task-relevant objects. We use a 4-layer MLP with a hidden size of 400 and an MSE loss to
regress the representation to the ground-truth state. We report regression loss results on the validation set.

Details for Fig. 3 In the Lever Pull task, the robot needs to reach the end of a lever (marked in blue in the observation) and
pull it to the designated position (marked in red in the observation). We utilize a trajectory where the default DreamerV2 with
wr = 1 fails to lift the lever to analyze the reason behind its poor performance. Both agents use 15 frames for observation
and reconstruction and predict 35 frames open-loop. We plot each image with an interval of 5 frames in Fig. 3.

C.5. Computational Resources

We implement our HarmonyDream based on DreamerV2 using PyTorch (Paszke et al., 2019). Training is conducted with
automatic mixed precision (Micikevicius et al., 2018) on Meta-world and RLBench and full precision on DMCR. In terms
of training time, it takes ∼24 hours for each run of Meta-world experiments over 250K environment steps, ∼24 hours for
RLBench over 500K environment steps, and ∼23 hours for DMCR over 1M environment steps, respectively. The lightweight
harmonizers introduced by HarmonyDream do not affect the training time. In terms of memory usage, Meta-world and
RLBench experiments require ∼10GB GPU memory, and DMCR requires ∼5GB GPU memory, thus, the experiments can
be done using typical 12GB GPUs.

D. Extended Discussions
D.1. Differences with DreamerV3

When we started this work, DreamerV3 had not been released. Thus, we primarily conduct experiments based on DreamerV2,
as mentioned in the main paper. We state here that the modifications introduced by DreamerV3 do not fully address the
problem of task domination inside world models, which is the problem HarmonyDream intends to solve. As shown in
Appendix E.1 and E.6, HarmonyDream applied to DreamerV3 can further unleash the potentials of this base method.

There are mainly two changes of DreamerV3 relevant to improving world model learning: KL balancing and symlog
predictions. We have already shown in Appendix C.2 that KL balancing is orthogonal to our method and that we can easily
incorporate this modification into our approach. On the other hand, symlog predictions also do not solve our problem
of seeking a balance between reward modeling and observation modeling. First of all, the symlog transformation only
shrinks extremely large values but is unable to rescale various values into exactly the same magnitude, while our harmonious
loss properly addresses this by dynamically approximating the scales of the values. More importantly, the primary reason
why Lr has a significantly smaller loss scale is the difference in dimension: as we have stated in Sec 2.3, the observation
loss Lo usually aggregates H ×W × C dimensions, while the reward loss Lr is derived from only a scalar. In summary,
using symlog predictions as DreamerV3 only mitigates the problem of differing per-dimension scales (typically across
environment domains) by a static transformation, while our method aims to dynamically balance the overall loss scales
across tasks in world model learning, considering together per-dimension scales, dimensions, and training dynamics.

In practice, DreamerV3 uses twohot symlog predictions for the reward predictor to replace the MSE loss in DreamerV2.
This approach increases the scale of the reward loss, but is insufficient to mitigate the domination of the image loss. We
observe that the reward loss in DreamerV3 is still significantly smaller than the observation loss, especially for visually
demanding domains such as RLBench, where the reward loss is still two orders of magnitude smaller.

D.2. Comparisons with Multi-task Learning Methods

In this paper, we understand world model learning from a multi-task or multi-objective view. Methods in the field of
multi-task learning or multi-objective learning can be roughly categorized into loss-based and gradient-based. Since
gradient-based methods mainly address the problem of gradient conflicts (Yu et al., 2020a; Liu et al., 2021), which is not the
main case in world model learning, we focus our discussion on loss-based methods, which assigns different weights to task
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losses by various criteria. We choose the following methods as our baselines to discuss differences and conduct comparison
experiments. The experiment results can be found in Fig. 10b of the main paper.

Uncertainty Weighting (UW, Kendall et al. (2018)) balances tasks with different scales of targets, which is measured as
uncertainty of outputs. As pointed out in Section 2.2, in world model learning, observation loss Lo(θ) = − log pθ (ot | zt) =
−
∑
h,w,c log pθ(o

(h,w,c)
t | zt) and reward loss Lr(θ) = − log pθ (rt | zt) differs not only in scales but also in dimensions.

To implement UW, we opt for depicting the uncertainty of each pixel. By assuming all pixel values share a common
standard deviation σo for Gaussian distributions, the uncertainty-weighted image loss takes the following form: L(θ, σo) =∑
h,w,c(ô

(h,w,c)
t −o(h,w,c)t )2/2σo+log σo = σo

−1Lo(θ)+HWC log σo. A detailed explanation of the differences between
our harmonious loss and UW is provided in the discussion section in Section 3.

Dynamics Weight Average (DWA, Liu et al. (2019)) balances tasks according to their learning progress, illustrating the
various task difficulties. However, in world model learning, since the data in the replay buffer is growing and non-stationary,
the relative descending rate of losses may not accurately measure task difficulties and learning progress.

NashMTL (Navon et al., 2022) is the most similar to our method, whose optimization direction has balanced projections
of individual gradient directions. However, its implementation is far more complex than our method, as it introduces an
optimization procedure to determine loss weights on each iteration. In our experiments, we also find this optimization is
prone to deteriorate to produce near-zero weights without careful tuning of optimization parameters.

In Fig 10b, we compare against the multi-task methods we mentioned above. Experiments are conducted on Lever Pull
from Meta-world, Push Button from RLBench, and Cheetah Run from DMCR, respectively. Our method is the most
effective among multi-task methods and has the advantage of simplicity. Although NashMTL produces similar results on
the Lever Pull task, it outputs extreme loss weights on the other two tasks, which accounts for its low performance. Our
HarmonyDream, on the other hand, uses a rectified loss that effectively mitigates extremely large loss weights.
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E. Extended Experiment Results
E.1. Atari 100K Experiments

We based our implementation of HarmonyDream applied to DreamerV3 (denoted as Harmony DreamerV3) on the official
DreamerV3 codebase4. To ensure the fairness and quality of our results, we also reproduced DreamerV3 results using
the official code and configurations. Fig 15 shows Atari learning curves of the reproduced DreamerV3 and our Harmony
DreamerV3 on all 26 environments. Note here that our learning curves are plotted using evaluation scores, rather than
averaged training scores as in DreamerV3, which may account for part of the differences between our curves and that
reported by Hafner et al. (2023). Both DreamerV3 and our Harmony DreamerV3 are evaluated for 100 episodes every 20K
environment steps. In each curve, the solid line represents the average evaluation score across 5 seeds, while the shaded
region indicates the standard deviation. This is consistent with the figure representation in DreamerV3.

Table 3 shows the mean score and aggregated human normalized scores of our Harmony DreamerV3 on Atari tasks,
compared to other methods. The scores in the SimPLe, TWM, IRIS, and DreamerV3 (Original) columns correspond to the
scores reported in their papers, respectively. The DreamerV3 (Reproduced) column contains scores reproduced using the
official codebase. The reproduced results exhibit performance comparable to the reported results. The slight discrepancy in
the human-normalized score is primarily attributed to the subpar performance in the Crazy Climber game. Our Harmony
DreamerV3 significantly improves upon the base method’s performance. It either matches or surpasses DreamerV3 in 23
of the 26 tested environments, thereby setting a new state-of-the-art benchmark with a human mean score of 136.5%. It’s
noteworthy that this enhancement is achieved without the addition of any hyperparameters or alterations to any network
structures. By harmonizing tasks in world model learning, we fully exploit the inherent potential of our base model, further
highlighting the value of our work.
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Figure 15. Atari learning curves of DreamerV3 (reproduced) and Harmony DreamerV3 with a budget of 400K frames, amounting to 100K
policy steps.

4We use this version of the DreamerV3 codebase: https://github.com/danijar/dreamerv3/tree/8fa35f. We notice
that several changes have made to this codebase subsequent to our paper’s initial release in February 2024.
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Table 3. Mean scores on the Atari 100K benchmark per game as well as the aggregated human normalized mean and median. Bold
numbers indicate scores within 5% of the best.

Game Random Human SimPLe
(2020)

TWM
(2023)

IRIS
(2023)

DreamerV3
(Original)

DreamerV3
(Reproduced)

Harmony
DreamerV3

Alien 228 7128 617 675 420 959 786 890
Amidar 6 1720 74 122 143 139 175 141
Assault 222 742 527 683 1524 706 680 1003
Asterix 210 8503 1128 1117 854 932 974 1140
Bank Heist 14 753 34 467 53 649 894 1069
Battle Zone 2360 37188 4031 5068 13074 12250 11314 16456
Boxing 0 12 8 78 70 78 78 80
Breakout 2 30 16 20 84 31 24 53
Chopper Com. 811 7388 979 1697 1565 420 1390 1510
Crazy Climber 10780 35829 62584 71820 59234 97190 78969 82739
Demon Attack 152 1971 208 350 2034 303 241 203
Freeway 0 30 17 24 31 0 0 0
Frostbite 65 4335 237 1476 259 909 939 679
Gopher 258 2412 597 1675 2236 3730 4936 13043
Hero 1027 30826 2657 7254 7037 11161 12160 13378
James Bond 29 303 101 362 463 445 318 317
Kangaroo 52 3035 51 1240 838 4098 2773 5118
Krull 1598 2666 2205 6349 6616 7782 7764 7754
Kung Fu Master 258 22736 14862 24555 21760 21420 23753 22274
Ms Pacman 307 6952 1480 1588 999 1327 1696 1681
Pong -21 15 13 19 15 18 18 19
Private Eye 25 69571 35 87 100 882 1036 2932
Qbert 164 13455 1289 3331 746 3405 2872 3933
Road Runner 12 7845 5641 9109 9615 15565 14248 14646
Seaquest 68 42055 683 774 661 618 544 665
Up N Down 533 11693 3350 15982 3546 7667 5636 10874

Human Mean 0% 100% 33% 96% 105% 112% 108% 136.5%
Human Median 0% 100% 13% 51% 29% 49% 42% 67.1%

E.2. DeepMind Control Suite Experiments

The DeepMind Control Suite (DMC, Tassa et al. (2018)) is a widely used benchmark for visual locomotion. We have
conducted additional experiments on four tasks: Cheetah Run, Quadruped Run, Walker Run, and Finger Turn Hard. In
Fig. 16, we present comparisons between our HarmonyDream and the base DreamerV2. We note that the performance of
relatively easy DMC tasks has been almost saturated by recent literature (Yarats et al., 2021; Hafner et al., 2021), and we
suppose that in this domain, current limitations of model-based methods are not rooted in the world model, but rather in
behavior learning (Hafner et al., 2023), which falls outside the scope of our method and contributions. Nevertheless, our
HarmonyDream is still able to obtain a noticeable gain in performance in the more difficult Quadruped Run task.
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Figure 16. Learning curves of HarmonyDream and DreamerV2 on the DMC domain.
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E.3. Ablation Study on Rectified Harmonious Loss

In Sec. 3, we have already presented a detailed explanation on the necessity of our rectified harmonious loss, changing the
regularization term from log σi in Eq. (4) to log(1 + σi) in Eq. (5). Here, we present experimental results to support our
claim. We use Unrectified to note our method trained using the objective in Eq. (4), and Rectified (Ours) to note our method
trained using Eq. (5). As shown in Fig. 17 and Fig. 18, the excessively large reward coefficient (Fig. 17c) for Unrectified can
lead to a divergence in the dynamics loss (Fig. 17b), which in turn negatively impacts performance (Fig. 17a and Fig. 18).
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(b) Dynamics loss.
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Figure 17. Training curves for Unrectified HarmonyDream (denoted as Unrectified) using Eq. (4) on the DMC Quadruped Run task, in
comparison with our HarmonyDream (denoted as Rectified).
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Figure 18. Learning curves for Unrectified HarmonyDream (denoted as Unrectified) using Eq. (4) on the DMCR domain, in comparison
with our HarmonyDream (denoted as Rectified).

E.4. Ablation Study on Adjusting Dynamics Loss Weight wd

Manually tuning the dynamics loss coefficient wd (e.g. wd = 0.1) is common in MBRL methods (Hafner et al., 2021; 2023;
Seo et al., 2022a;b). We note that our HarmonyDream differs from these previous approaches as we treat the different losses
in a multi-task view and balance loss scales between them, while previous approaches see wd simply as a hyperparameter.
Fig. 19 shows a comparison between fixing wd to 1 in HarmonyDream (denoted as HarmonyDream wd = 1) and using
σd to balance wd (denoted as HarmonyDream (Ours)), where our proposed HarmonyDream performs slightly better than
the one fixing wd, and both methods outperform DreamerV2 by a clear margin. This result highlights the importance of
harmonizing two different modeling tasks in world models, instead of only tuning on the shared dynamics part of them.
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Figure 19. Ablation on adjusting wd in HarmonyDream.
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E.5. Comparison to Tuned Weights

We present a direct comparison between our HarmonyDream and manually tuned weights for DreamerV2. For the Meta-
world domain, we plot the tuned better results from wr ∈ {10, 100}, wo = 1. For the DMCR domain, we plot tuned results
using wr = 100, wo = 1. Results in Fig. 20 show that our HarmonyDream outperforms manually tuned weights in most
tasks, which adds to the value of our method.
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Figure 20. Learning curves of HarmonyDream compared to tuned weights on Meta-world and DMCR.

E.6. Extended Results of Harmony DreamerV3 on Meta-world

In Fig. 8 of the main paper, we have presented the aggregated results of our HarmonyDream generalized to DreamerV3
(referred to as Harmony DreamerV3), on three Meta-world tasks: Lever Pull, Handle Pull Side, and Hammer. Here in
Fig. 21, we provide individual results of these three tasks, along with the results of an additional task, Sweep Into. Our
approach consistently improves the sample efficiency of our base method, proving excellent generality.
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Figure 21. Detailed results of Harmony DreamerV3 on Meta-world.
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E.7. Additional Results of Harmony DreamerV3 on Crafter

Crafter (Hafner, 2022) is a 2D open-world survival game benchmark where the agent needs to learn multiple skills within a
single environment. High rewards in this benchmark demand robust generalization and representation capabilities from the
agent. However, our method is not typically effective in the Crafter domain, which is characterized by clear observations
and distinct target objects. As a result, Harmony DreamerV3 marginally outperforms DreamerV3, as shown in Fig. 22.
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Figure 22. Results of Harmony DreamerV3 on Crafter.

E.8. Extended Results of Implicit MBRL Methods

We observe that the performance of TD-MPC (Hansen et al., 2022) is fairly low compared to our HarmonyDream. Due to
our limited computational resources, we only conduct experiments on the Meta-world and DMCR domain. The Meta-world
result in Fig. 10a aggregates over three tasks: Lever Pull, Handle Pull Side, and Hammer, which are the same three tasks as
in Fig. 8. Full TD-MPC results in Fig. 23 show that TD-MPC is unable to learn a meaningful policy in some tasks.
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Figure 23. Learning curves of TD-MPC.

E.9. Comparison with Denoised MDP

HarmonyDream shares a similar point with Denoised MDP (Wang et al., 2022) in enhancing task-centric representations.
However, the two approaches are orthogonal. In Fig. 24, we show a comparison of our method to Denoised MDP. Denoised
MDP performs information decomposition by changing the MDP transition structure and utilizing the reward as a guide to
separate task-relevant information. However, since Denoised MDP does not modify the weight for the reward modeling
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task, the observation modeling task can still dominate the learning process. Consequently, the training signals from the
reward modeling task may be inadequate to guide decomposition. It’s also worth noting that Denoised MDP only added
noise distractors to task-irrelevant factors in their DMC experiments. On the other hand, the benchmark adopted in our
experiments, DMCR, adds visual distractors to both task-irrelevant and task-relevant factors, such as the color of the body
and floor, which adds complexity to both factors and results in more challenging tasks. These two reasons above can account
for the low performance of Denoised MDP in our benchmarks.

0 10 20
Environment Steps (× )

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Meta-world Lever Pull

0 10 20
Environment Steps (× )

0

20

40

60

80

100
Meta-world Hammer

DreamerV2
HarmonyDream
Denoised MDP

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (× )

0

100

200

300

E
pi

so
de

 R
et

ur
n

DMCR Cheetah Run

Figure 24. Comparison of HarmonyDream with Denoised MDP.

E.10. Comparison with RePo

RePo (Zhu et al., 2023) is a modification on DreamerV2 that removes the observation reconstruction loss while introducing
a dynamically adjusted coefficient of dynamics loss. As shown in Fig. 25, our HarmonyDream shows a higher sample
efficiency compared to RePo on both natural background DMC and DMCR. It is notable that RePo takes a similar form as
HarmonyDream without observation loss (i.e. fixing wo = 0). While the adjusted coefficient of RePo does not guarantee
uniform loss scales, we observe in our experiments that it, in effect, makes dynamics loss and reward loss have more similar
scales. We demonstrate on the DMCR domain that the two share similar learning curves, which to some extent enhances our
Finding 3, that learning signals from rewards alone is inadequate for sample-efficient learning due to limited representation
learning capability. We also note that RePo still needs to carefully tune a crucial hyperparameter, the information bottleneck
ϵ, while HarmonyDream does not introduce any hyperparameters.
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Figure 25. Comparison of HarmonyDream with RePo.
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E.11. Learned Coefficients

Fig. 27 illustrates the learned harmony loss coefficients for two Meta-world tasks: Lever Pull and Handle Pull Side. The
harmonized reward loss coefficient for Lever Pull is observed to be higher than that for Handle Pull Side. This observation
aligns with the fact that the coefficient pair (wr, wo) = (100, 1) yields superior performance on Lever Pull, while the pair
(wr, wo) = (10, 1) facilitates better learning on Handle Pull Side, as depicted in Fig. 2a.

Additionally, we present the impact of varying loss coefficients for DreamerV2 on the Meta-world Hammer task in Fig. 26,
supplementing the information in Fig. 2a.
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Figure 26. Effects of different loss coef-
ficients on an additional task.
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Figure 27. Learned harmony loss coefficients on Meta-world tasks.

E.12. Quantitative Evaluation of the Beneficial Impact of Observation Modeling on Reward Modeling

To explore the possible beneficial impact of observation modeling on reward modeling, we utilize the offline experimental
setup in Fig 2c and 3, whose details are described in Appendix C.4. We offline train two DreamerV2 agents using task
weights (wr = 100, wo = 1) and (wr = 100, wo = 0) and evaluate the ability to accurately predict rewards on a validation
set with the same distribution as the offline training set. For this task, we gathered 20,000 segments of trajectories, each of
length 50. We utilized 35 frames for observation and predicted the reward for the remaining 15 frames. Results are reported
in the form of average MSE loss. We observe that the world model with observation modeling predicts the reward better
than the world model that only models the reward. The prediction loss of (wr = 100, wo = 1) is 0.379, while the loss of
(wr = 100, wo = 0) is 0.416. This result indicates that observation modeling has a positive effect on reward modeling.
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