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Abstract

Understanding the internal mechanisms of001
large language models (LLMs) is integral to002
enhancing their reliability, interpretability, and003
inference processes. We present Constituent-004
Aware Pooling (CAP), a methodology designed005
to analyse how LLMs process compositional006
linguistic structures. Grounded in principles007
of compositionality, mechanistic interpretabil-008
ity, and information theory, CAP systemati-009
cally intervenes in model activations through010
constituent-based pooling at various model lev-011
els. Our experiments on inverse definition mod-012
elling, hypernym and synonym prediction re-013
veal critical insights into transformers’ limita-014
tions in handling compositional abstractions.015
No specific layer integrates tokens into uni-016
fied semantic representations based on their017
constituent parts. We observe fragmented in-018
formation processing, which intensifies with019
model size, suggesting that larger models strug-020
gle more with these interventions and exhibit021
greater information dispersion. This fragmen-022
tation likely stems from transformers’ training023
objectives and architectural design, prevent-024
ing systematic and cohesive representations.025
Our findings highlight fundamental limitations026
in current transformer architectures regarding027
compositional semantics processing and model028
interpretability, underscoring the critical need029
for novel approaches in LLM design to address030
these challenges.031

1 Introduction032

Large language models (LLMs) based on Trans-033

former architectures have rapidly expanded in034

scope and capability, demonstrating strong perfor-035

mance across a wide range of NLP tasks. However,036

critical limitations remain, including hallucinations,037

poor interpretability, and limited semantic trans-038

parency. One open challenge concerns linguistic039

compositionality: how models combine smaller040

units of text (e.g., morphemes, words, phrases) into041

coherent meaning structures, and how this process 042

is reflected in internal representations. 043

Understanding how and where compositional 044

structure is encoded in LLMs is essential for bridg- 045

ing the gap between user intent and model be- 046

haviour. Prior work has explored this by align- 047

ing model inputs and outputs (Yin et al., 2024), 048

embedding spaces (Haslett, 2024), or layer-wise 049

activations (Yu and Ettinger, 2020; Modarressi 050

et al., 2023) with expected semantic representa- 051

tions. These approaches are grounded in two intu- 052

itive assumptions: (1) that LLMs internally repre- 053

sent compositional structure at the token or word 054

level, and (2) that this information should be at 055

least partially localisable at specific layers during 056

inference. 057

Several studies have revealed that LLMs are of- 058

ten brittle under perturbation (Wang et al., 2023; 059

Fodor et al., 2024; Hu et al., 2024), and that phrase- 060

level representations may fail to align with ex- 061

pected semantics (Carvalho et al., 2025). Despite 062

this, the mechanisms behind such fragility, partic- 063

ularly at the level of internal activations, remain 064

poorly understood. 065

To investigate this, we propose Constituent- 066

Aware Pooling (CAP), a structured perturbation 067

method that groups token-level activations into 068

larger constituent units (e.g., words or phrases) at 069

arbitrary layers. CAP enables systematic probing 070

of whether, and where, semantic meaning is ro- 071

bustly composed within the model. By applying 072

CAP at varying depths, we assess the fragility of 073

internal representations to compositional pertur- 074

bations and examine whether, and how, semantic 075

abstraction is distributed across layers. 076

Our empirical findings challenge common as- 077

sumptions of hierarchical semantic buildup. Rather 078

than gradually constructing compositional mean- 079

ing across layers, LLMs often retain token-level 080

focus well into the middle layers. Applying CAP, 081

even at semantically coherent groupings, results 082
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αmax: Select the maximum from each segment → {1.2,3.7,0.9}
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Figure 1: Illustration of the CAP process. Constituent segmentation identifies linguistic units (e.g., words or
phrases), and CAP pools their activations at layer m using aggregation (e.g., max, mean, sum). This operation
reduces sequence length, and the modified activations are propagated to layer m+1. The results graph shows task
accuracy under CAP at different depths.

in substantial accuracy degradation, especially in083

earlier layers. Surprisingly, larger models are more084

sensitive to such perturbations than smaller ones,085

suggesting increased representational fragility with086

scale.087

We contextualise these results using an088

information-theoretic lens, proposing that Trans-089

former models delay aggregation to maximise090

token-level information throughput. This leads091

to distributed, rather than localised, composition092

across layers, resulting in longer dependency paths093

and reduced mutual redundancy at each layer.094

In summary, our contributions are:095

• A systematic analysis of how current LLMs096

handle constituent-level composition, evalu-097

ated via CAP across layers, models, and tasks.098

• A theoretical explanation grounded in infor-099

mation theory, suggesting that LLMs optimise100

for prediction by postponing semantic integra-101

tion, thus fragmenting compositional meaning102

across depth.103

We conclude that compositional semantics are104

not reliably localisable within any fixed layer of105

standard Transformer models. This holds across106

model scales, supervision types, and inference107

tasks, and instead appears tied to architectural108

depth. Our results suggest that recovering explicit 109

compositional structure may require specialised 110

training objectives or architectural constraints. Sup- 111

porting code and datasets are available at a public 112

repository1. 113

2 Tokenisation and compositionality in 114

LLMs 115

Intuitively, aggregating the representations of to- 116

kens that compose a single meaning unit (e.g., av- 117

eraging the embeddings of ‘m’, ‘amm’ and ‘al’ to 118

form a single token embedding) and then to larger 119

phrasal units (e.g. adjectival and noun composi- 120

tions), would have a relatively small impact on 121

model inference, since they have a strong depen- 122

dence on each other in a given context and thus 123

share significant information. However, it has been 124

shown that LLMs are highly sensitive to token 125

placement (Yin et al., 2024; Hu et al., 2024) and 126

that their internal representations have no signifi- 127

cant correlation with phrasal composition seman- 128

tics (Yu and Ettinger, 2020; Carvalho et al., 2025). 129

The observed disconnection between LLM in- 130

ternal representations and linguistic knowledge re- 131

garding compositionality raises practical and the- 132

oretical questions towards the robustness of such 133

models to perturbations strictly tied to composi- 134

1< anonymised url>
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tional semantics (Appendix A). Such questions are135

especially relevant in solving semantic gaps be-136

tween input prompts and expected responses, as137

well as localising linguistic knowledge and improv-138

ing interpretability. One way in which they can be139

addressed is by systematically assessing the impact140

of said perturbations on model inference perfor-141

mance, at each model layer. We elaborate on the142

methodology to achieve this goal in the following143

section.144

3 Assessing compositional aggregation145

robustness146

To accurately assess the effects of compositional147

grouping at different layers of abstraction within148

transformer models, the inference objective should149

be a task that is both: 1) strictly dependent on the150

input tokens and their composition, with few pos-151

sible input variations; 2) contains as few tokens as152

possible in the output. For this reason, the follow-153

ing tasks were selected (Figure 1):154

1. Inverse definition modelling (IDM): predicting a155

term given its definition.156

2. Synonym prediction (SP): producing a synonym157

for a given word.158

3. Hypernym prediction (HP): generating a more159

general term for a given word.160

Formal task definitions and input formats are de-161

tailed in Appendix B.1.162

Constituent-Aware Pooling (CAP). To introduce163

compositional perturbations, we propose CAP, a164

method for pooling (i.e., grouping) LLM activa-165

tions corresponding to individual tokens into cohe-166

sive linguistic units. CAP operates at two levels:167

(i) word-level: grouping tokens that form a sin-168

gle word, and (ii) phrase-level: grouping tokens169

that form a single phrase. At the word-level, CAP170

reverse-maps each model’s tokeniser to reconstruct171

complete words and identify their activation ranges.172

At the phrase-level, CAP uses a syntactic parser,173

such as Benepar (Kitaev et al., 2019; Kitaev and174

Klein, 2018), to align tokens with their correspond-175

ing phrasal constituents and define their activation176

ranges. Further details on the parser evaluation177

methodology are provided in Appendix D.178

CAP Pooling Protocols. CAP is applied progres-179

sively across layers using three protocols α: Max:180

selects the maximum activation within a segment,181

identifying dominant features and their propaga-182

tion through layers; Mean: computes the average183

activation, providing a balanced representation of184

all token contributions and their collective impact 185

on model decisions; and Sum: sums the activations, 186

capturing cumulative information flow and aggre- 187

gates effects of token interactions. These protocols 188

offer complementary insights into how models pro- 189

cess and integrate information: Max reveals feature 190

prominence patterns, Mean shows distributed rep- 191

resentation effects, and Sum reflects accumulated 192

semantic content across segments. 193

Transformer conceptualisation and the for- 194

malisation of CAP. This work builds on the math- 195

ematical framework of transformers introduced by 196

(Elhage et al., 2021), where computation is for- 197

malised into sequential residual blocks. Each layer 198

reads inputs from the residual stream, processes 199

them through its components (attention heads and 200

feed-forward neural networks (FF)), and writes the 201

outputs back into the residual stream. Attention 202

heads are responsible for transferring information 203

between tokens through the self-attention mecha- 204

nism, allowing each token to attend to others in 205

the sequence. FF apply non-linear transforma- 206

tions independently to each token representation, 207

enhancing the model’s expressive capacity. The 208

residual stream stores and propagates information 209

across layers, enabling the integration of new out- 210

puts with existing representations while preserving 211

original input information through residual connec- 212

tions. Let the transformer model have L layers, 213

input sequence of length K, batch size B, and in- 214

ner activations X , with with tensor shapes varying 215

by model component as follows: 216

• Attention layers output: X ∈ RB×K×Hm , 217

where Hm is the hidden dimension after pro- 218

jection. 219

• FF: X ∈ RB×K×Hf , where Hf is the feed- 220

forward dimension. 221

• Residual stream: X ∈ RB×K×Hh , where Hh 222

is the hidden dimension. 223

Let S = {(s1, e1), . . . (sn, en)} be the set of syn- 224

tactic unit ranges (e.g., tokens, words or phrases), 225

where si and ei denote the start and end indices of 226

the i-th range. CAP pools/groups activations within 227

these ranges, reducing the sequence dimension K 228

to a grouped dimension G, where 229

G = K − Σn
i=1(ei − si) (1) 230

For each syntactic unit, CAP applies the grouping 231

function α over the range [si, ei] in one of three 232
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ways, formalised as follows:233

Sum: α([si, ei]) =

ei∑
t=si

X[t] (2)234

235

Mean: α([si, ei]) =
1

ei − si + 1

ei∑
t=si

X[t] (3)236

237
Max: α([si, ei]) = max

t∈[si,ei]
X[t] (4)238

The grouped activations transform as follows:239

• For attention layers output, X ∈ RB×K×Hm240

becomes X ∈ RB×G×Hm .241

• For FF, X ∈ RB×K×Hf becomes X ∈242

RB×G×Hf .243

• For residual stream:, X ∈ RB×K×Hh be-244

comes X ∈ RB×G×Hh .245

This process consolidates activations for each syn-246

tactic unit, enabling systematic evaluation of com-247

positional robustness across layers. For simplicity,248

we demonstrate the operation over these compo-249

nents, but this approach can be extended to any250

transformer’s components, provided that the di-251

mensional requirements for information flow, as252

described in (Elhage et al., 2021), are respected.253

For example, consider attention layer internal acti-254

vations of shape X ∈ RB×Ha×K×K , where Ha is255

the number of attention heads, and K represents the256

query and key token dimensions. Applying CAP257

with the Sum protocol involves aggregating activa-258

tions over the query range [si, ei] and the key range259

[sj , ej ]. The grouped activations are computed as:260

α([si, ei], [sj , ej ]) =
∑ei

t=si

∑ej
t′=sj

X[b, h, t, t′].261

After applying CAP, the grouped activations have262

the shape X ∈ RB×Ha×G×G, where G is the num-263

ber of grouped syntactic units. This ensures that264

query-key interactions are consolidated into co-265

hesive syntactic units, aligning activations with266

higher-level linguistic structures. We examine267

CAP’s reduction ratio (K → G) at the word-level268

and its effects across models, with detailed anal-269

ysis in Appendix C. We refer the reader to Ap-270

pendix B.4 for further details on how CAP affects271

sequence length and interacts with positional en-272

codings.273

The CAP effect on models is evaluated by mea-274

suring their accuracy post-CAP on a baseline test275

consisting of examples correctly predicted by the276

original models. This ensures that the evaluation277

focuses on instances where CAP directly tests com- 278

positional robustness. Specifically, we report three 279

key metrics: the original accuracy (Ao), which rep- 280

resents the model’s accuracy on the baseline test 281

before applying CAP and establishes a reference 282

for evaluating the grouping effect; the grouped ac- 283

curacy (Ac), which measures the model’s accuracy 284

post-CAP, averaged across all CAP protocols (sum, 285

mean, max) and reflects how well the model retains 286

its predictions after compositional grouping; and 287

the accuracy drop (∆A), defined as ∆A = Ao−Ac, 288

which quantifies the performance loss due to CAP, 289

where lower ∆A values indicate more robust com- 290

positional behaviour and better preservation of se- 291

mantic information across layers. These metrics 292

offer a framework for comparing tasks and models, 293

allowing a granular assessment of compositional 294

representations. 295

4 Empirical analysis 296

4.1 Experimental setup & datasets 297

Datasets and metrics. The CAP effect 298

is evaluated using three WordNet-derived 299

datasets—definitions, hypernyms, and syn- 300

onyms—corresponding to the IDM, HP, and SP 301

tasks (Fellbaum, 1998). Test examples correctly 302

predicted by the original models (Ao) form the 303

baseline for subsequent CAP evaluation. Grouped 304

accuracy (Ac) is calculated post-CAP for this 305

subset, ensuring that CAP’s effect is isolated to 306

examples where the original models performed 307

correctly. The drop in accuracy (∆A) is reported 308

per protocol (sum, mean, max) to assess the 309

impact of different aggregation methods on model 310

performance. See Appendix B.2 for dataset details 311

and Appendix E.3 for comprehensive results. 312

LLMs and evaluated dimensions. The method- 313

ology was tested across various decoder-only trans- 314

former models (Vaswani, 2017). Our main focus 315

was on GPT-2 (small: 124M, medium: 355M, large: 316

774M parameters) (Radford et al., 2019), Gemma1 317

(2B parameters) (Team et al., 2024), Llama (3B, 318

and 8B parameters) (Dubey et al., 2024), and 319

Qwen (0.5B, 1.5B, and 3B parameters) (Yang et al., 320

2024). These models use different tokenisation 321

approaches: byte-level BPE (GPT-2, Qwen), ex- 322

panded BPE with 128K vocabulary (Llama3), and 323

SentencePiece (Gemma). Models were tested be- 324

fore and after task-specific fine-tuning (3 epochs, 325

learning rate 5e-5). This selection spans diverse 326

architectures, sizes, and tokenisation strategies (see 327
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Model Layer
Position

Original Fine-tuned
Max Mean Sum Max Mean Sum

GPT2-large

1% 8.06% 9.15% 6.70% 10.61% 10.01% 7.83%
25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%

100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%

Gemma-2B

1% 97.91% 23.51% 23.75% 57.58% 22.70% 21.99%
25% 86.32% 16.20% 19.27% 50.45% 14.08% 15.57%
75% 52.38% 31.03% 24.74% 21.77% 14.99% 12.80%

100% 6.87% 10.61% 10.61% 2.21% 2.05% 2.05%

Qwen-3B

1% 12.63% 12.27% 11.44% 7.85% 6.71% 6.48%
25% 18.61% 8.59% 9.11% 10.66% 4.75% 5.82%
75% 7.23% 4.00% 3.79% 3.65% 2.83% 1.85%

100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

Llama3-8B

1% 25.49% 24.99% 24.94% 24.44% 23.42% 23.48%
25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%

100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%

Table 1: IDM accuracy drop ∆ in the word-level CAP, highlighting best and worst values in both original and
fine-tuned models. The layer numbers were normalised to layer positions as percentages of the total layers, which
allows comparing equivalent relative depths across models, such as 25% or 75% of the total layers, rather than using
absolute layer numbers. This method ensures fair comparisons between models, even with different architectures.

Appendix B.3 for further details on the models and328

fine-tuning parameters).329

Experimental setup. All experiments were con-330

ducted using 2x NVIDIA RTX A6000 and 2x331

NVIDIA RTX A100 GPUs, with the experimen-332

tal framework being developed in Python 3.11.5.333

We used the Transformers (v4.44.2) and PyTorch334

(v2.4.1) libraries, along with Transformer-lens335

(v2.6.0), to train and evaluate models and for prob-336

ing. Benepar (v0.2.0) was used for sentence pars-337

ing, and statistical analysis was supported by Scikit-338

learn (v1.5.2).339

4.2 Results and discussion340

Compositional inference in LLMs is not a purely341

incremental process. Contrary to expectations342

of a smooth and steady layer-wise performance343

improvement, we observe significant fluctuations344

when CAP is applied across layers. Performance345

drops notably in early and middle layers, followed346

by sharp improvements (Figure 2 (a)-(c), (e), and347

(f)), suggesting these layers struggle to process348

CAPed activations, particularly the pooled linguis-349

tic features captured in earlier layers. Rather than350

progressively building semantic information from351

individual tokens to complex phrases, the models352

appear to focus heavily on isolated token features.353

An important distinction arises between TW-354

CAP, which groups tokens according to model-355

specific tokenisation, and TP-CAP, which applies356

externally parsed syntactic structures. While TP-357

CAP introduces richer constituent information, it358

may not align with the model’s internal segmen- 359

tation or syntactic reasoning. This misalignment 360

is not a flaw in CAP, but rather a diagnostic sig- 361

nal: if LLMs encoded human-like syntax, TP-based 362

grouping should be minimally disruptive. The ob- 363

served drop in performance under TP-CAP sug- 364

gests that LLMs do not consistently internalise hi- 365

erarchical syntactic structures. This finding under- 366

scores the model’s emphasis on local token-level 367

information and supports the conclusions drawn in 368

our information-theoretic analysis. 369

The results indicate that attention is distributed 370

over input tokens and model layers in a non- 371

systematic and decentralised manner that is highly 372

context-dependent, showing minimal reliance on 373

sequential or positional relationships of con- 374

stituents. This phenomenon is particularly evident 375

in the sharp decline in SP and HP tasks, where con- 376

textual information is limited during phrase-level 377

CAP application. We argue that this behaviour 378

stems from the model’s training objective, which 379

maximises information gain in each layer towards 380

predicted tokens at the cost of reducing mutual in- 381

formation between tokens in a single layer. This 382

behaviour means that aggregation, including syn- 383

tactic, is performed across multiple layers and thus 384

is not localisable from any single given layer. An 385

information theoretical analysis elaborates this rea- 386

soning in Section 5. Our findings highlight how 387

compositional structures are highly sensitive to to- 388

ken representation dynamics across layers, suggest- 389

ing that performance fluctuations can be attributed 390
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to information loss incurred as a function of token391

mutual information across layers.392

Larger models are more fragile to composi-393

tional perturbations. The IDM task highlights394

this fragility in larger models, as larger models395

rely on finer feature extraction. Within families,396

distinct patterns emerge: original Qwen’s smaller397

variants show better IDM robustness (e.g., at posi-398

tion 25% there was a 7.69% drop on Qwen-1.5B399

vs 12.11% on Qwen-3B), while Llama3 exhibits400

capacity-dependent behaviour with the 3B variant401

being more vulnerable than 8B. Despite having402

similar reduction ratios to Llama models (see Ap-403

pendix C), Gemma-2B shows greater sensitivity to404

perturbations (e.g., at position 1% Max: Gemma-405

2B drops 97.91% vs. Llama3-8B’s 25.49%), likely406

due to its larger vocabulary enabling finer-grained407

tokenisation. While fine-grained token knowledge408

benefits standard tasks, it appears to increase sus-409

ceptibility to compositional perturbations. The410

superior performance of Llama3-8B over its 3B411

variant can be attributed to its enhanced capacity412

for maintaining feature relationships across layers413

while preserving key compositional information.414

While larger models excel in standard tasks (see415

Appendix E.1), they exhibit a greater reliance on416

the identification of intrinsic features in the early417

layers. We find that phrasal-level CAP substantially418

impacts Gemma-2B and Llama models, suggesting419

a heavy dependence on layer-wise information gain,420

where they separate features in an uncorrelated and421

highly distinct manner. While this aids in identify-422

ing complex feature patterns, it also makes them423

more vulnerable to contextual noise—a weakness424

that threatens their robustness and integrity. No-425

tably, Qwen models outperform Llama and Gemma426

despite similar parameter counts, likely due to byte-427

level BPE tokenisation and multilingual training,428

which enhance compositional stability, whereas429

Llama’s expanded BPE and Gemma’s Sentence-430

Piece prioritise efficiency over phrase retention,431

increasing vulnerability to CAP interventions.432

Activation abstraction vs the information loss.433

Table 1 reveals significant variations in aggrega-434

tion function performance across sample models435

for the IDM task (see Appendix E.3 for the rest436

of the models and tasks results). The Max aggre-437

gation shows the most dramatic impact. This find-438

ing supports our argument that these models tend439

to distribute information in a fragmented manner,440

lacking the integration of compositional (lexical441

and semantic) information across tokens and con-442

tiguous layers. The Mean aggregation provides 443

more balanced results, though performance drops 444

still indicate absence of consistent compositional 445

mechanisms. This issue becomes more pronounced 446

in token-phrases experiments (Figure 2). The Sum 447

aggregation consistently outperformed other meth- 448

ods, with Mean aggregation following closely be- 449

hind, particularly in original models. The Sum 450

aggregation reflects the cumulative effect of aggre- 451

gating tokens into larger segments, reinforcing our 452

earlier conclusion. Instead of progressively build- 453

ing semantic information across layers, the models 454

exhibit cumulative information loss, particularly 455

when interventions occur in early layers. 456

Fine-tuning enhances recovery capabilities 457

across models. Figure 2 (d-f) demonstrates im- 458

proved performance maintenance post-fine-tuning 459

across all model families, with strongest gains in 460

75%-100% layer positions. SP tasks showed maxi- 461

mum benefit, attributed to high task specificity and 462

minimal activation reduction under CAP. Max ag- 463

gregation displayed the greatest improvement post- 464

fine-tuning, likely due to enhanced retention of 465

key information. For instance, Gemma-2B’s accu- 466

racy drop decreased from 97.91% to 57.65% in the 467

1% layer, while Qwen-3B improved from 7.23% 468

to 3.65% in the 75% layer. Mean aggregation 469

benefits were also substantial in smaller models, 470

with Gemma-2B’s 75% layer drop reducing from 471

31.03% to 15.00%. The Qwen family showed con- 472

sistent improvements across all aggregation types, 473

though smaller models like GPT2-large demon- 474

strated minimal gains, suggesting potential over- 475

fitting. Notably, larger models like Llama3-8B 476

showed minimal gains from fine-tuning in IDM 477

tasks, indicating that standard fine-tuning objec- 478

tives may not directly enhance compositional ro- 479

bustness. Although fine-tuning strengthens models’ 480

resilience under CAP, it does not fully resolve the 481

challenge of forming stable compositional seman- 482

tic representations, highlighting an architectural 483

limitation in current transformer models. 484

5 Information Gain & Token Mutual 485

Information 486

The empirical findings can be explained by look- 487

ing at the autoregressive next-token objective of 488

a transformer model from an information theo- 489

retical standpoint: examining the relationship be- 490

tween each generated token Y to the input token 491

representations Rl(X) of each layer l, in terms 492
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Figure 2: Average grouped accuracy of CAP across different aggregation functions for normalised layer positions
(0%-100%) is shown for word-level CAP (TW) and phrasal-level CAP (TP). Sub-figures (a)-(c) illustrate the
CAP effect on the original (Org) models, while sub-figures (d)-(f) show its impact on the fine-tuned (FT) models.
Fine-tuning consistently improves performance, particularly in the middle to late layers (25%-100%), while early
layers (0%-25%) show more variability and lower accuracy across models.

of Information Gain IGY,Rl(X), and the aggre-493

gation of a pair of input token representations494

Rl(Xi), Rl(Xj) in terms of their Mutual Informa-495

tion I(Rl(Xi), Rl(Xj)).496

IGY,Rl(X) quantifies the amount of information497

gained about the predicted token Y from the ob-498

servation of the Rl(X), for which the expectation499

is the mutual information I(Y,Rl(X)) of Y and500

Rl(X), which is equivalent to the reduction in en-501

tropy of Y achieved by learning the state of Rl(X):502

IGY,Rl(X)(Y, r) = H(Y )−H(Y |r).503

During training, Rl(X) will be adjusted in a way504

that reduces the uncertainty about Y , meaning it505

will promote the maximisation of IGY,Rl(X) for506

any given layer l, which can be expressed as:507

IGY,X = max(
∑
l

IGY,Rl(X)) (5)508

where IGY,X represents the information gain of Y509

w.r.t. input token X .510

When looking at two input tokens Xi, Xj , the511

higher the mutual information I(Rl(Xi), Rl(Xj))512

is, the lower the impact that aggregating Rl(Xi)513

and Rl(Xj) would have over IGY,X , as those vari-514

ables share more of the same information. In-515

tuitively, that would apply to linguistic composi-516

tion, e.g., tokens that form a word and thus have a517

stronger dependence when observed together.518

However, as the model’s ability to predict Y 519

is contingent on the accumulated information of 520

all layers, and Equation 5 is independent of layer 521

order, there is an intrinsic incentive to delay the 522

aggregation of information (to later layers), as 523

IGRlp (X),Rlq (X) < IGRlp (X),Rlr (X), ∀p < q < r,
(6) 524

where p, q and r are layer indices, i.e., subse- 525

quent layers have more information about the in- 526

puts than previous ones. This can be explained 527

in that optimising Equation 5 can be achieved by 528

retaining at each Rlp(X) only the necessary infor- 529

mation to maximise
∑

i,j IGRlq (Xi),MHA(Rlp (Xj)), 530

where MHA(Rlp(Xj)) is the multi-head atten- 531

tion weighted representation. Such an objec- 532

tive implies minimising the mutual information 533

I(Rlp(Xi), Rlp(Xj)), i.e., reducing redundancy 534

across tokens from the same layer. Therefore, token 535

dependencies will tend to be modelled by aggre- 536

gation paths spanning multiple layers, with more 537

layers allowing for more complex and longer paths. 538

This is in line with the findings of Mechanistic In- 539

terpretability studies (Elhage et al., 2021; Conmy 540

et al., 2023). Equation 6 also implies that the ear- 541

lier an aggregation is done, the larger the impact 542

it will have on IGY,X , which explains the empir- 543

ical results. The effects of I(Rl(Xi), Rl(Xj)) on 544

LLMs are further compounded by the tokenisation 545

7



objective (e.g., BPE, WordPiece), which minimises546

I(Xi, Xj), i.e., token redundancy, as a means of547

reducing the vocabulary size, leading to longer ag-548

gregation paths.549

6 Related work550

Compositionality, the principle that the meaning551

of complex expressions is derived from their parts552

and structure, is foundational in linguistics, cogni-553

tive science, and AI (Fodor, 1975; Montague and554

Thomason, 1975; Tull et al., 2024). In neural mod-555

els, compositionality enables generalisation and in-556

terpretability, yet remains difficult to diagnose and557

enforce (Donatelli and Koller, 2023). Several stud-558

ies investigate how and where compositional repre-559

sentations emerge in transformer models. Carvalho560

et al. (2025) observed similar effects in adjective-561

noun phrase probing, while Haslett (2024) found562

that models struggle to segment or represent mor-563

phemes, especially in non-Latin scripts, suggesting564

breakdowns in both form and meaning composi-565

tion. The logit lens (Nostalgebraist, 2020) demon-566

strated that transformers build predictions progres-567

sively where early layers make initial guesses and568

deeper layers refine guesses with broader context.569

(Dai et al., 2022) show feed-forward layers act as570

key-value memories, combining information for571

complex predictions. MEMIT (Meng et al., 2023)572

and PMET (Li et al., 2025) show how controlled573

inferences can be built by manipulating models’574

components. Some nuance emerges in later-layer575

behaviours. DecompX (Modarressi et al., 2023)576

traced token representations layer-by-layer and ob-577

served partial shifts toward integration. Yu and Et-578

tinger (2020) tested model encoding and found that579

transformers mainly encode individual word con-580

tent rather than true phrase-level meaning. While581

some models appear more compositional under cer-582

tain conditions, general trends remain unclear. For583

example, Dankers et al. (2022) demonstrate that584

models can show unexpectedly high or low compo-585

sitionality depending on the data and task, suggest-586

ing exposure and framing affect outcomes as much587

as architecture. Petty et al. (2024) show that deeper588

Transformers tend to generalise more composition-589

ally than shallower ones, though the benefits di-590

minish beyond a certain depth. This highlights591

that architectural depth, not just scale, may shape592

compositional ability, though with diminishing re-593

turns. In multi-step reasoning tasks, models often594

fall back on shallow pattern matching rather than595

true decomposition (Dziri et al., 2023). 596

Prior work has primarily relied on synthetic tasks 597

to assess compositional generalisation, focusing on 598

properties such as systematicity, productivity, and 599

substitutivity (Hupkes et al., 2020; Lake and Ba- 600

roni, 2018), these setups often abstract away from 601

the complexities of natural language. More recent 602

studies using natural data are often limited to small 603

domains such as semantic parsing or machine trans- 604

lation (Lake and Baroni, 2018; Kim and Linzen, 605

2020), and typically lack insight into internal rep- 606

resentations. 607

In contrast to prior works focused on final out- 608

puts or synthetic tasks, CAP is a method for prob- 609

ing compositional structure within LLMs using real 610

inputs. It intervenes directly on hidden activations, 611

merging token-level representations into word- or 612

phrase-level constituents at various depths. This 613

allows us to evaluate where semantic composition 614

occurs and how robust LLMs to structured pertur- 615

bations. Unlike surface-level probes, CAP provides 616

a targeted, activation-level lens on how meaning 617

is constructed and distributed across model layers 618

and linguistic units. 619

7 Conclusion 620

This work systematically analyses the robustness of 621

transformer-based LLMs to compositional pertur- 622

bations. Motivated by studies highlighting an unex- 623

pected gap between linguistic compositionality and 624

LLM representations, we characterised the impact 625

of compositional aggregation at each inference step 626

and provided an information-theoretical explana- 627

tion. Our findings indicate a pattern where token 628

dependencies are modelled by aggregation paths 629

spanning multiple layers, and complex token struc- 630

ture learning comes at the cost of higher sensitivity 631

to perturbations at inputs and earlier layers. Based 632

on the relation between information gain from input 633

to predicted token and mutual information between 634

token representations, we postulate that composi- 635

tional semantic representations cannot be isolated 636

to any particular (intermediate) stage of a standard 637

transformer model. These insights suggest that fu- 638

ture compositional-aware models should explore 639

specialised architectures or training objectives. Nat- 640

ural extensions include analysing encoder-based 641

and encoder-decoder transformers and investigat- 642

ing final token representations to further understand 643

internal compositional mechanisms. 644

8



Limitations645

Several limitations are acknowledged in our paper.646

First, the WordNet dataset may not fully represent647

language diversity across all domains. Second, the648

employed transformer models are decoder-based649

only and could be subject to biases from their train-650

ing data. Third, our findings depend on the Benepar651

parsing model, which may introduce inaccuracies652

in linguistic analysis. Additionally, while our tasks653

provide an indirect signal of meaning preservation,654

incorporating explicit reconstruction tasks in future655

work could offer complementary insight into how656

CAP affects the retention of input-level informa-657

tion. Finally, the applicability of our results to other658

languages has not been tested. Expanding CAP to659

multilingual settings and testing with alternative660

parsers or models trained with different positional661

encodings would further validate the generality of662

our findings.663

Ethical Statement664

The proposed framework aims to have a positive665

impact on improving the critical understanding of666

the mechanisms involved in language interpretation667

in transformers. A more complete understanding of668

these mechanisms requires coordination with other669

interpretability methods.670
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A Compositionality and Localisation856

The concept of linguistic compositionality has857

evolved from its origins in Frege’s work (Frege,858

1892), which started conceptualising the notion that859

the meaning of a complex expression is determined860

by its constituent parts and their syntactic arrange-861

ment. This principle was formalised by Montague862

(Montague, 1970b,a), who applied mathematical863

rigour to natural language semantics, thereby rein-864

forcing the compositional approach within formal865

semantics. Linguistic phenomena such as idioms,866

context-dependence, and metaphor, which seemed867

to violate compositionality, prompted debates on868

its universality (Katz and Postal, 1963; Jackendoff,869

1997), with theoretical accounts evolving to inte-870

grate these phenomena, leading to a more nuanced871

understanding that balances strict compositional872

rules with allowances for non-compositional ele-873

ments (Partee, 1984).874

While the syntactic-logical connection entailed875

by formal models is not assumed to be induced876

by neural language models, there is a common877

assumption that those models should entail a syn-878

tactic compositionality function, which allows for879

a systematic model for meaning composition, i.e.,880

that the syntactic structure of a complex expression881

s is significantly determined by the syntactic prop-882

erties of its constituent parts and the rules used to883

combine them. Formally, for any sentence s, its884

syntactic properties can be defined as a function885

f of the syntactic properties of its immediate con-886

stituents s1, s2, . . . , sn and the syntactic operations887

applied:888

Syntax(s) = f (Syntax(s1),Syntax(s2), . . . ,

Syntax(sn),Rules)
(7)

889

Within the context of distributed representations,890

a meaning representation can be factored into its891

syntactic and content (term embedding) compo-892

nents. A compositional distributional semantic893

model merges syntactic compositionality with dis-894

tributional semantics by representing token mean-895

ings as vectors (token embeddings) in a continuous896

semantic space and combining them according to897

syntactic structure. Formally, each token t is as-898

sociated with a vector vt ∈ Rn that captures its899

semantic content based on distributional informa-900

tion.901

For a complex syntactic expression s composed 902

of constituents s1, s2, . . . , sn, the semantic repre- 903

sentation vs is computed using a compositional 904

function f that integrates both the vectors of the 905

constituents and the syntactic operations applied: 906

vs = f (vs1 ,vs2 , . . . ,vsn ,Syntactic structure)
(8) 907

This function f is designed to reflect syntac- 908

tic compositionality by structurally combining the 909

embeddings of the constituents according to the 910

syntactic rules governing their combination. 911

In the context of a specific transformer-based 912

LM model implementing an interpretation func- 913

tion of an input s, the question which is central to 914

this work is whether the contiguous composition 915

of tokens is reflected within the structure of the 916

transformer-based LMs and its constituent parts, 917

layers l0...ln, multi-head attention, feedforward 918

layers and residual connections, i.e. whether the 919

representations h(k)
i at each layer lk explicitly en- 920

code the composition of contiguous tokens ti, ti+1, 921

and how the model’s components contribute to this 922

encoding. 923

B Elaborations on Experimental Setup 924

B.1 Downstream Task Definitions 925

The tasks selected for this study are designed to 926

evaluate the effects of compositional aggregation, 927

focusing on tasks that are strictly dependent on in- 928

put tokens and their compositional semantics while 929

minimising variability. Each task produces a single- 930

token output, and predictions are considered cor- 931

rect if they exactly match the target token. The 932

following are the formal definitions for each task. 933

Inverse Definition Modelling (IDM): The IDM 934

task involves predicting a term T based on a 935

given natural language definition D. Let D = 936

{d1, d2, . . . , dn} represent the sequence of tokens 937

constituting the definition. The goal is to generate 938

the corresponding term T , where: 939

T = argmax
t∈V

P (t | D) (9) 940

Here, V is the vocabulary of possible terms, and t 941

is a candidate term. A prediction is correct if the 942

term T exactly matches the target term. The task 943

prompt used for IDM was structured as follows: 944

"<definition> is called a" 945
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For example, given the definition "A domesticated946

carnivorous mammal that typically has a long snout,947

an acute sense of smell, non-retractile claws, and a948

barking or howling voice," the task would require949

the model to predict the term "dog."950

Synonym Prediction (SP): The SP task requires951

the model to generate a synonym S for a given952

word W . Let W ∈ V represent the input word.953

The task is to predict a synonym S, such that:954

S = argmax
s∈V

P (s | W ) (10)955

where s is a candidate synonym from the vocab-956

ulary V . The prediction is considered correct if957

S exactly matches the target synonym. The task958

prompt used for SP was structured as follows:959

"<word> is a synonym of"960

For instance, given the input word "happy," the961

task would ask the model to predict the synonym962

"joyful."963

Hypernym Prediction (HP): The HP task in-964

volves predicting a more general term, or hyper-965

nym, H for a given word W . Let W ∈ V represent966

the input word. The objective is to predict a hyper-967

nym H , such that:968

H = argmax
h∈V

P (h | W ) (11)969

where h is a candidate hypernym. The prediction970

is correct if H exactly matches the intended hyper-971

nym. The task prompt used for HP was structured972

as follows:973

"<word> is a type of"974

For example, given the word "cat," the task would975

ask the model to predict the hypernym "animal."976

These tasks focus on generating precise, single-977

token predictions, allowing for a rigorous evalua-978

tion of the model’s ability to capture and process979

compositional semantics.980

B.2 Dataset Descriptions and Preprocessing981

The training and test datasets are constructed by982

extracting definitions, hypernyms, and synonyms983

for each synset from WordNet (Fellbaum, 1998),984

whose usage is unencumbered by licensing restric-985

tions. WordNet is a lexical database of the En-986

glish language, containing over 117,000 synsets of987

nouns, verbs, adjectives, and adverbs. Each synset988

represents a unique concept and is annotated with989

part of speech, definition, hypernyms, synonyms,990

and other semantic relationships. It is focused on991

Model Task Original Test Set Fine-tuned Test Set

GPT2 (S,M,L)
IDM 11,948 8,651
SP 7,753 5,578
HP 25,364 18,273

Gemma-2B
IDM 24,831 17,859
SP 16,014 11,533
HP 44,687 32,209

Llama3 (3B, 8B
IDM 14,991 10,828
SP 9,360 6,723
HP 31,962 23,070

Qwen2.5 (0.5B, 1.5B, 3B)
IDM 14,927 10,780
SP 9,195 6,598
HP 31,845 23,000

Table 2: Test set sizes for each model and task (IDM:
Inverse Dictionary Modelling, SP: Synonym Prediction,
HP: Hypernym Prediction) derived from WordNet.

Model Params Layers Dmodel Heads Act. MLP Dim
GPT2-small 124M 12 768 12 GELU 3072
GPT2-medium 302M 24 1024 16 GELU 4096
GPT2-large 708M 36 1280 20 GELU 5120
Gemma-2B 2B 32 4096 16 GELU 8192
LLama3-3B 3.2B 28 3072 24 SiLU 8192
LLama3-8B 7.8B 32 4096 32 SiLU 14336
Qwen2.5-0.5B 391M 24 896 14 SiLU 4864
Qwen2.5-1.5B 1.4B 28 1536 12 SiLU 8960
Qwen2.5-3B 3.0B 36 2048 16 SiLU 11008

Table 3: Model properties across architectures. Params:
number of parameters, Layers: number of layers, Dmodel:
size of word embeddings and hidden states, Heads: num-
ber of attention heads, Act.: Activation function, MLP
Dim: dimensionality of the FF layers.

general-purpose vocabulary and does not target 992

specific demographic groups or domains. Defi- 993

nitions were cleaned using typical preprocessing 994

techniques, such as removing special characters, 995

punctuation, and extra spaces, and removing paren- 996

thesised content when necessary. The dataset was 997

initially split 80-20, with 20% used for training. 998

The remaining 80% was then split 90-10, with 10% 999

for validation and 90% for testing. The test dataset 1000

was filtered to retain only single-token predictions 1001

matching each model’s tokenisation. Table 2 shows 1002

the test dataset sizes used for each task and model, 1003

including inverse dictionary modelling (IDM), syn- 1004

onym prediction (SP), and hypernym prediction 1005

(HP). 1006

B.3 Model Specifications and Fine-tuning 1007

Parameters 1008

Table 3 provides a comparative overview of various 1009

Transformer models used in this study. We used 1010

GPT2 models (released under the Modified MIT 1011

License), Gemma-2B (released under the Gemma 1012

Terms of Use), Llama3 models (released under the 1013

Meta Llama 3 Community License), and Qwen 1014

models (released under Apache License 2.0). The 1015

used models were mainly pre-trained on English 1016
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Model Original Fine-tuned
IDM SP HP IDM SP HP

GPT2-small 7.10% 2.59% 17.04% 13.52% 8.18% 26.59%
GPT2-medium 10.70% 4.27% 16.77% 16.34% 11.65% 28.75%

GPT2-large 11.33% 5.93% 13.90% 17.80% 11.78% 27.66%
Gemma-2B 16.76% 6.38% 10.16% 9.57% 10.75% 23.31%
Llama3-8B 25.17% 10.80% 15.30% 18.28% 10.75% 24.14%
Llama3-3B 20.51% 8.26% 12.19% 26.42% 13.43% 31.1%
Qwen-0.5B 8.21% 6.10% 12.03% 18.83% 10.94% 28.03%
Qwen-1.5B 12.35% 7.61% 14.64% 30.01% 13.70% 31.31%
Qwen-3B 13.35% 7.53% 14.40% 31.80% 13.66% 31.95%

Table 4: Baseline performance of various models on
three tasks: (inverse dictionary modelling) IDM, syn-
onym prediction (SP), and hypernym prediction (HP).
The values represent the accuracy of each model’s origi-
nal and fine-tuned versions.

data, with Qwen and LLama models providing1017

additional multilingual support, which is English,1018

German, French, Italian, Portuguese, Hindi, Span-1019

ish, and Thai for LLama, and more than 10 lan-1020

guages, including Chinese, English, French, Span-1021

ish, Portuguese, Russian, Arabic, Japanese, Korean,1022

Vietnamese, Thai, and Indonesian for Qwen. All1023

models were used for research purposes, specifi-1024

cally for language modelling and text generation1025

in English, aligning with their intended usage. The1026

models differ in their number of parameters, layers,1027

heads, and feedforward (FF) dimensions. The num-1028

ber of parameters ranges from 85M for GPT2-small1029

to 7.8B for LLama3-8B. The activation functions1030

and FF dimensions also highlight variations in the1031

internal processing architecture, influencing the1032

models’ performance across different tasks. In ad-1033

dition to these architectural differences, the models1034

were fine-tuned using a consistent set of hyperpa-1035

rameters. The fine-tuning process spanned over1036

three training epochs with a batch size of 16. The1037

learning rate was set to 5e-5, while a weight decay1038

of 0.01 was applied to prevent overfitting. Training1039

logs were generated every 200 steps, with model1040

checkpoints saved every 1000 steps, but limited to1041

retaining only one checkpoint to manage storage ef-1042

ficiently. The evaluation strategy during fine-tuning1043

was set to evaluate at the end of each epoch, and1044

similarly, the model was saved at the end of each1045

epoch as well.1046

B.4 Handling of Sequence Reduction and1047

Positional Encoding in CAP1048

CAP reduces the number of token-level activa-1049

tions from the original input length K to a shorter1050

grouped sequence length G, by merging activations1051

corresponding to word-level or phrase-level con-1052

stituents. This reduction is applied post-token em-1053

bedding and affects intermediate activations within1054

the transformer, specifically the outputs of residual 1055

blocks or their internal components (e.g., attention 1056

or feedforward sublayers). From the point of CAP 1057

application onward, the model processes a reduced- 1058

length sequence of size G. This operation does not 1059

alter the model’s input embeddings or positional 1060

encodings. 1061

Effect of Positional Encoding Schemes. The im- 1062

pact of this reduction depends on the positional en- 1063

coding strategy used by the model: (i) GPT2 mod- 1064

els use Sinusoidal positional embeddings, where 1065

each position index corresponds to a unique learned 1066

embedding. While CAP does not alter these em- 1067

beddings directly, reducing the sequence length at 1068

intermediate layers can introduce misalignment be- 1069

tween positional indices and semantic content. This 1070

may disrupt downstream attention or feedforward 1071

computations that assume consistent positional con- 1072

text; (ii) LLaMA, Qwen, and Gemma models use 1073

rotary positional encodings (RoPE), which encode 1074

position relationally through rotation in embedding 1075

space. These relative encodings are more robust to 1076

changes in sequence length, and CAP has a milder 1077

impact on positional semantics in these models. 1078

Nevertheless, changes in sequence structure may 1079

still affect how models integrate cross-token con- 1080

text. 1081

Although CAP does not interfere with the 1082

model’s input or positional embedding layer, it al- 1083

ters the spatial structure of activations mid-forward 1084

pass. This may influence how transformers ag- 1085

gregate information across positions, especially in 1086

models with absolute position encoding. Never- 1087

theless, we did not observe severe performance 1088

degradation in those models compared to others. 1089

We acknowledge this as a potential contributing 1090

factor to the observed degradation under CAP and 1091

consider it an important area for future study. 1092

Namely, Embedding-level analysis represents 1093

a promising direction for future exploration. Al- 1094

though this work evaluates a wide range of models 1095

with differing positional encoding schemes, we ac- 1096

knowledge the need for more targeted analysis of 1097

how CAP interacts with these embeddings. In par- 1098

ticular, it would be valuable to quantify the impact 1099

of CAP under controlled conditions that isolate em- 1100

bedding effects. For instance, experiments using 1101

fixed or masked positional encodings, or applying 1102

CAP to models trained from scratch with alterna- 1103

tive positional schemes, could help disentangle the 1104

influence of compositional pooling from that of 1105
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Model Task Mean ± Std

GPT2 (S)
IDM 3± 5
SP 27± 9
HP 27± 10

GPT2 (M)
IDM 3± 5
SP 28± 10
HP 26± 11

GPT2 (L)
IDM 3± 5
SP 27± 9
HP 26± 11

Gemma-2B
IDM 9± 4
SP 19± 9
HP 30± 9

Llama3-3B
IDM 10± 5
SP 23± 6
HP 28± 6

Llama3-8B
IDM 10± 5
SP 21± 7
HP 28± 9

Qwen 0.5B
IDM 3± 5
SP 9± 11
HP 20± 10

Qwen 1.5B
IDM 3± 5
SP 12± 10
HP 19± 10

Qwen 3B
IDM 3± 5
SP 12± 10
HP 19± 10

Table 5: Reduction percentages

positional structure.1106

C Token Reduction Analysis1107

Table 5 presents an analysis of activation reduc-1108

tion percentages across different LLMs, particu-1109

larly for the token-to-words case. In this context,1110

the mean represents the average reduction percent-1111

ages across samples, while the standard deviation1112

indicates the variability of these reductions. While1113

models within a family (e.g., Qwen) share the same1114

tokeniser and vocabulary, the reduction percentages1115

still vary across tasks (e.g., SP vs. HP) because dif-1116

ferent tasks involve input definitions or prompts1117

with different average sentence lengths and syn-1118

tactic complexity, which in turn affect how many1119

groupings are formed under CAP. In other words,1120

although the tokeniser is fixed, the number and1121

size of groupable units (e.g., multi-token words or1122

phrases) are input-dependent. The purpose is to as-1123

sess whether token reduction across models would1124

highly influence the results of CAP.1125

Token reduction is a factor but not the sole de-1126

terminant of performance degradation. The1127

results presented in Tables 9, 10, and 11 indicate1128

that while token reduction percentage influences1129

performance degradation, it is not the sole deter-1130

mining factor. Several key observations support1131

this conclusion, which is discussed below. 1132

First, we observe that higher token reduction 1133

does not always lead to a greater performance 1134

drop. For instance, models such as Gemma-2B and 1135

Llama3-8B exhibit high token reduction percent- 1136

ages (Table 5), yet their performance degradation 1137

varies significantly across tasks and layer positions. 1138

Also, despite lower token reduction percentages, 1139

the models Qwen 0.5B and GPT2-small still show 1140

substantial accuracy drops, particularly in early lay- 1141

ers in the SP and HP tasks. Second, model size and 1142

depth influence degradation, as evident in the larger 1143

models (e.g., Llama3-8B, Gemma-2B) exhibiting 1144

greater fragility to CAP interventions, particularly 1145

in early layers (1% and 25%). Third, as discussed 1146

in the paper, layer-specific variability suggests hi- 1147

erarchical processing differences. Early-layer CAP 1148

interventions cause severe accuracy drops in large 1149

models but have a less pronounced effect in smaller 1150

models, suggesting that deeper architectures defer 1151

compositional integration to later layers. Further, 1152

fine-tuning reduces degradation in later layers (75% 1153

and 100%), implying that learned representations 1154

in deeper layers mitigate the effects of early pertur- 1155

bations. Finally, architectural differences influence 1156

sensitivity. We observe that higher MLP dimen- 1157

sions (e.g., Llama3-8B: 14,336 vs. GPT2-small: 1158

3,072) correlate with greater vulnerability to CAP 1159

perturbations, likely due to increased parameter 1160

redundancy and disruption of the key-value recall 1161

mechanism in MLPs (Meng et al., 2022). 1162

While the token reduction percentage contributes 1163

to performance degradation, it is insufficient to 1164

fully explain the observed variations. Task nature, 1165

model size, layer depth, activation functions, and 1166

MLP dimensions collectively influence the robust- 1167

ness of CAP interventions. Larger, deeper models 1168

demonstrate greater sensitivity to early perturba- 1169

tions, while fine-tuning helps recover performance 1170

in later layers. These findings suggest that effec- 1171

tive compositional representations in LLMs are dis- 1172

tributed rather than localised, requiring specialised 1173

architectures or training objectives to improve ro- 1174

bustness. 1175

D Evaluating Parsing Accuracy and 1176

Addressing the Impact of Benepar 1177

Parser Errors 1178

A key potential bias in our results comes from the 1179

reliance on the constituency parser for token-to- 1180

phrase experiments. Inaccuracies in parsing may 1181
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Figure 3: Average grouped accuracy of CAP across different aggregation functions for normalised layer positions
(0%-100%) is shown for word-level CAP (TW) and phrasal-level CAP (TP). Sub-figures (a)-(c) illustrate the
CAP effect on the original (Org) models, while sub-figures (d)-(f) show its impact on the fine-tuned (FT) models.
Fine-tuning consistently improves performance, particularly in the middle to late layers (25%-100%), while early
layers (0%-25%) show more variability and lower accuracy across models.

distort the results of CAP. To address this, we re-1182

port the chosen parser’s accuracy by testing it on1183

the Stanford Sentiment Treebank (SST) dataset, a1184

dataset that offers golden labels for parsing. We1185

aim to alleviate concerns about the parser’s impact1186

on our findings by showcasing its accuracy on the1187

SST dataset. The parser evaluation was conducted1188

as follows:1189

Dataset. A subset of 1,000 randomly sampled1190

sentences from the test split of the SST dataset was1191

used for the analysis. The Stanford Sentiment Tree-1192

bank (SST) provides annotated constituency labels,1193

which serve as the golden labels for comparison1194

with parser outputs. While WordNet definitions of-1195

fer rich semantic information, they lack annotated1196

golden constituency labels, making direct parser1197

validation infeasible. The use of SST’s annotations1198

enables reliable parser evaluation and indirectly1199

supports the validation of the parsing correctness1200

for WordNet definitions, provided they follow stan-1201

dard syntactic structures.1202

Parser. The Benepar parser was employed for1203

parsing sentences due to its strong performance1204

in constituency parsing tasks. Benepar is widely1205

recognised for its robustness and ability to handle 1206

diverse syntactic structures. For this evaluation, 1207

the constituency structures generated by Benepar 1208

were directly compared against SST’s golden anno- 1209

tations to assess its parsing accuracy. 1210

Evaluation metrics. The parser’s performance 1211

was evaluated using the following metrics: (i) Preci- 1212

sion: Proportion of correctly predicted constituents 1213

out of all predicted constituents; (ii) Recall: Pro- 1214

portion of correctly predicted constituents out of all 1215

ground truth constituents; (iii) F1-Score: Harmonic 1216

mean of precision and recall, providing an overall 1217

performance measure; and (iv) Accuracy: Percent- 1218

age of sentences where the predicted constituency 1219

structure fully matches the ground truth. 1220

Results robustness. To ensure robustness and 1221

consistency, the evaluation was repeated across five 1222

different random seeds. This allowed for an assess- 1223

ment of variability in performance across multiple 1224

subsets of the dataset. Additionally, constituents 1225

were evaluated at hierarchical levels—such as root 1226

level, phrase level, and token level—to analyse 1227

parsing performance across varying syntactic gran- 1228

ularities. 1229
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Results. The evaluation yielded the following av-1230

eraged metrics across five seeds for the default level1231

of parsing (Level 1, the immediate children of the1232

root node):

Metric Mean ± Std
Precision 0.956 ± 0.001
Recall 0.956 ± 0.001
F1-Score 0.956 ± 0.001
Accuracy 0.956 ± 0.001

Table 6: Aggregated evaluation metrics for Level 1 con-
stituents using the Benepar parser, averaged across five
seeds.

1233

Interpretation. The results demonstrate consis-1234

tently high parsing accuracy across all evaluation1235

metrics, with minimal variability (as indicated by1236

the low standard deviation). These findings validate1237

the Benepar parser’s reliability for parsing Level 11238

constituents, which form the backbone of sentence1239

structure. Consequently, the parser’s impact on1240

CAP results is minimal, ensuring robustness and1241

validity of our conclusions.1242

E Detailed Performance Evaluation and1243

Results1244

E.1 Baseline Performance1245

Table 4 summarises the baseline performance of1246

the models used in this paper on the three tasks.1247

The results include the accuracy of each model’s1248

original and FT versions on the test set described1249

in Table 2. Fine-tuning generally improves perfor-1250

mance, particularly in the larger models such as1251

Gemma-2B and Llama3-8B, which show notable1252

increases in accuracy in most tasks, except the IDM1253

task.1254

E.2 Qualitative Analysis of CAP-Induced1255

Prediction Shifts.1256

Tables 7 and 8 present representative examples of1257

predictions from multiple models across all the1258

tasks, before and after CAP is applied. These ex-1259

amples are drawn from inputs that the model origi-1260

nally predicted correctly, allowing us to isolate the1261

effects of CAP perturbations without confounding1262

them with unrelated model failures. Each example1263

specifies the CAP layer, CAP type (token-to-word1264

or token-to-phrase), and the model involved. Ta-1265

ble 7 focuses on predictions made by original (non-1266

fine-tuned) models, while Table 8 includes out-1267

puts from fine-tuned variants. Observed shifts in-1268

clude truncation of multi-token terms (e.g., “diary”1269

→ “di”), polarity inversion (e.g., “plain” → “orna- 1270

ment”), loss of abstraction (“polygon” → “plane”), 1271

and domain misalignment (e.g., “tree” → “street”). 1272

These qualitative differences provide inter- 1273

pretability insights that complement the aggregate 1274

metrics reported earlier. They reveal how CAP af- 1275

fects not only performance but the nature of model 1276

outputs, especially in terms of semantic generalisa- 1277

tion, abstraction shifts, and lexical precision. While 1278

we do not observe a uniform trend across layers 1279

or model families, TP-CAP consistently induces 1280

more severe semantic degradation. This suggests 1281

that as model capacity increases, internal represen- 1282

tations may become more sensitive to disruptions 1283

from externally imposed syntactic structures, po- 1284

tentially due, as argued in the main paper, to a 1285

stronger reliance on learned token-level dependen- 1286

cies that diverge from higher-level compositional 1287

groupings. This analysis highlights the nature of 1288

semantic and lexical shifts induced by CAP, rein- 1289

forcing the need for future task-specific fine-tuning 1290

strategies that improve robustness to structured rep- 1291

resentation pooling. 1292

E.3 Comprehensive CAP Results for All 1293

Models and Tasks 1294

Figure 3 and Tables 9- 13, and 14 present the 1295

reduction in accuracy when applying word-level 1296

and phrasal CAP, respectively, across models and 1297

the three tasks: IDM, SP, and HP. The results of 1298

phrasal-level CAP for Gemma-2B and Llama3-8B 1299

are not reported due to the severe degradation in 1300

model performance under these conditions, render- 1301

ing the outputs effectively unusable. 1302

Let Ao represent the original accuracy and Ac 1303

represent the accuracy after applying CAP. The 1304

reported drop in accuracy, ∆A, is calculated as: 1305

∆A = Ao −Ac (12) 1306

This ∆A value is expressed in percentage points. 1307

For example, ∆A = 40 indicates that the model’s 1308

accuracy has decreased by 40 percentage points 1309

from its original performance, which could repre- 1310

sent a change from Ao = 100% to Ac = 60%, or 1311

any other pair of accuracies with a 40 percentage 1312

point difference. The tables report ∆A for differ- 1313

ent layer positions (1%, 25%, 75%, and 100%) in 1314

both Original and Fine-tuned settings, using three 1315

CAP protocols: Max, Mean, and Sum. This repre- 1316

sentation allows for a direct comparison of CAP’s 1317

impact across different models and tasks, indepen- 1318

dent of their baseline performance levels. 1319
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Task / Input Prompt Model CAP Layer
(Type)

Prediction
(No CAP)

Prediction
(W/ CAP)

Observation / Interpretation

IDM: lacking embellishment or
ornamentation is called a: "

Qwen2.5-
1.5B

Layer 8
(TW)

plain ornament Prediction shifts from correct to
antonymic, likely due to token
merging altering polarity.

IDM: remaining after all deduc-
tions is called a: "

LLaMA3.1-
8B

Layer 4
(TW)

net gain Subtle financial distinction lost;
CAP causes confusion between
output and intermediate step.

IDM: make an effort or attempt
is called a:"

Gemma-
2B

Layer 1
(TP)

try <h1> Invalid token generation suggests
breakdown in early compositional
encoding.

IDM: a formal series of state-
ments showing that if one thing
is true something else necessar-
ily follows from it is called a:"

GPT2-L Layer 24
(TP)

proof form Loss of logical structure leads to
a more abstract or vague concept.

SP: "journal" is a synonym of Qwen2.5-
1.5B

Layer 18
(TW)

diary di Output truncated, likely due to
disruption in longer multi-token
word embedding.

SP: "get" is a synonym of Qwen2.5-
0.5B

Layer 16
(TW)

catch break Semantic drift under CAP; verb
meaning shifts from acquisition
to interruption.

HP: "voice" is a type of Gemma1-
2B

Layer 16
(TW)

sound noise Precision reduced; CAP causes
substitution with a noisier, less
neutral concept.

HP: "guama" is a type of LLaMA3.2-
3B

Layer 12
(TW)

tree street The output reflects a contextual
domain shift, likely due to token-
level confusion post-CAP.

Table 7: Representative examples of model predictions with and without CAP applied at various layers. Examples
highlight semantic degradation and conceptual drift caused by TW-CAP or TP-CAP applied to original models.

Task / Input Prompt Model CAP Layer
(Type)

Prediction
(No CAP)

Prediction
(W/ CAP)

Observation / Interpretation

IDM: prepare for eating by ap-
plying heat is called a: "

GPT2-S Layer 4
(TW)

cook heat CAP leads to a shift from action
to cause, indicating surface-level
generalisation.

IDM: fail to attend an event or
activity is called a: "

LLaMA3.2-
3B

Layer 1
(TW)

miss catch CAP appears to invert the mean-
ing, suggesting confusion in early
compositional buildup.

IDM: general term for any
insect or similar creeping or
crawling invertebrate is called
a:"

Gemma-
2B

Layer 11
(TP)

bug un Invalid token generation suggests
breakdown in compositional en-
coding

IDM: an institution of higher ed-
ucation created to educate and
grant degrees often a part of a
university is called a:"

GPT2-S Layer 1
(TP)

college regular CAP reduces specificity, misclas-
sifying to a generic adjective.

SP: "one fourth" is a synonym
of

Gemma1-
2B

Layer 10
(TW)

fourth half CAP merges related quantities but
loses precision, leading to broader
but incorrect substitution.

HP: "hotel" is a type of Qwen2.5-
3B

Layer 16
(TW)

building room Shift from category to subcom-
ponent suggests CAP disrupted
higher-level abstraction.

HP: "hexagon" is a type of Qwen2.5-
3B

Layer 16
(TW)

polygon plane Hierarchical class (shape) re-
placed by domain (geometry); ab-
straction misaligned.

Table 8: Representative examples of model predictions with and without CAP applied at various layers. Each
example shows the prompt, model, CAP configuration (layer and type), predictions, and qualitative interpretation.
All examples applied to fine-tuned (FT) models.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

IDM (Inverse Dictionary Modelling)

GPT2-small

1% 4.76% 4.44% 4.69% 8.04% 7.72% 7.22%
25% 3.09% 2.74% 3.26% 5.87% 5.85% 6.24%
75% 2.64% 2.36% 2.74% 2.72% 2.47% 2.35%

100% 1.43% 1.24% 1.24% 0.46% 0.39% 0.39%

GPT2-medium

1% 16.75% 16.36% 13.77% 24.51% 12.70% 7.44%
25% 6.73% 5.692% 6.22% 5.04% 4.84% 5.36%
75% 18.61% 2.13% 2.89% 11.79% 2.09% 1.72%

100% 1.58% 0.41% 0.41% 2.27% 1.29% 1.29%

GPT2-large

1% 8.06% 9.15% 6.70% 10.61% 10.01% 7.83%
25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%

100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%

Gemma-2B

1% 97.91% 23.51% 23.75% 57.58% 22.70% 21.99%
25% 86.32% 16.20% 19.27% 50.45% 14.08% 15.57%
75% 52.38% 31.03% 24.74% 21.77% 14.99% 12.80%

100% 6.87% 10.61% 10.61% 2.21% 2.05% 2.05%

Llama3-8B

1% 25.49% 24.99% 24.94% 24.44% 23.42% 23.48%
25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%

100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%

Llama3-3B

1% 28.79% 26.36% 25.96% 25.54% 22.71% 22.74%
25% 31.73% 8.08% 6.99% 13.44% 5.84% 5.8%
75% 12.27% 5.84% 5.22% 8.54% 5.03% 5.15%

100% 3.62% 1.99% 1.99% 2.37% 1.82% 1.85%

Qwen2.5-0.5B

1% 10.12% 8.2% 8.23% 7.85% 6.39% 6.00%
25% 5.19% 4.21% 4.45% 4.35% 3.29% 3.49%
75% 3.56% 2.82% 3.15% 2.39% 2.24% 2.15%

100% 0.98% 0.98% 0.98% 0.23% 0.28% 0.33%

Qwen2.5-1.5B

1% 14.56% 11.04% 10.22% 9.47% 7.36% 7.48%
25% 13.29% 4.45% 5.34% 6.83% 3.86% 4.00%
75% 7.03% 2.68% 2.84% 4.21% 2.74% 2.79%

100% 0.7% 0.4% 0.4% 0.65% 0.23% 0.23%

Qwen2.5-3B

1% 12.63% 12.27% 11.44% 7.85% 6.71% 6.48%
25% 18.61% 8.59% 9.11% 10.66% 4.75% 5.82%
75% 7.23% 4.00% 3.79% 3.65% 2.83% 2.8%

100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

Table 9: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B),
and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Inverse Dictionary Modelling (IDM)
task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned
settings, using three CAP protocols: Max, Mean, and Sum.

18



Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

SP (Synonym Prediction)

GPT2-small

1% 99.04% 99.04% 99.04% 59.68% 49.40% 34.68%
25% 98.56% 98.56% 97.60% 61.09% 30.85% 29.64%
75% 96.15% 94.23% 93.75% 40.12% 9.68% 10.48%

100% 6.73% 7.21% 7.21% 3.23% 2.42% 2.42%

GPT2-medium

1% 96.43% 96.43% 96.43% 83.35% 82.50% 84.06%
25% 96.13% 96.43% 96.43% 79.22% 80.22% 80.79%
75% 63.93% 48.30% 56.63% 48.36% 23.23% 24.53%

100% 6.68% 3.41% 3.41% 6.55% 5.12% 5.12%

GPT2-large

1% 98.49% 98.49% 98.06% 78.61% 78.33% 80.17%
25% 97.63% 97.63% 97.63% 80.93% 81.78% 79.89%
75% 34.27% 27.59% 28.52% 11.91% 10.02% 10.49%

100% 1.29% 1.51% 1.51% 1.22% 39.12% 0.61%

Gemma-2B

1% 99.99% 99.80% 83.47% 99.93% 99.15% 96.38%
25% 99.99% 97.46% 63.68% 90.20% 90.24% 65.82%
75% 84.63% 60.66% 61.15% 89.87% 75.68% 68.65%

100% 4.30% 8.69% 8.69% 2.98% 4.57% 4.57%

Llama3-8B

1% 99.99% 99.90% 99.90% 99.99% 99.88% 99.88%
25% 85.55% 83.50% 82.81% 87.63% 85.75% 85.63%
75% 53.35% 50.55% 49.77% 31.29% 30.29% 29.91%

100% 9.28% 9.96% 9.96% 5.20% 5.82% 5.82%

Llama3-3B

1% 100% 100% 100% 100% 100% 100%
25% 85.81% 86.2% 85.16% 88.47% 84.54% 85.48%
75% 40.18% 39.3% 38.91% 14.77% 16.48% 15.64%

100% 5.77% 6.16% 6.16% 5.8% 6.12% 6.12%

Qwen2.5-0.5B

1% 81.77% 88.89% 79.17% 64.24% 58.36% 53.3%
25% 90.8% 91.15% 86.11% 54.51% 54.38% 37.22%
75% 63.72% 66.32% 39.06% 48.87% 48.57% 24.29%

100% 8.51% 10.07% 8.51% 3.67% 3.8% 3.8%

Qwen2.5-1.5B

1% 89.35% 84.52% 84.23% 64.55% 56.79% 56.03%
25% 90.58% 83.48% 83.19% 60.45% 55.5% 54.79%
75% 22.06% 22.21% 18.8% 10.88% 10.34% 10.02%

100% 6.82% 3.55% 3.55% 8.19% 7.87% 7.87%

Qwen2.5-3B

1% 81.39% 81.53% 73.58% 55.93% 49.35% 49.57%
25% 93.04% 89.91% 82.81% 72.41% 42.78% 38.47%
75% 77.84% 69.6% 49.43% 43.24% 22.13% 15.25%

100% 3.98% 3.13% 3.13% 1.4% 1.29% 1.29%

Table 10: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B),
and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Synonym Prediction (SP) task. Results
are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned settings, using
three CAP protocols: Max, Mean, and Sum.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

HP (Hypernym Prediction)

GPT2-small

1% 99.75% 99.75% 99.75% 91.19% 91.08% 88.20%
25% 99.47% 99.29% 98.94% 81.35% 76.76% 72.63%
75% 95.40% 91.16% 91.32% 48.75% 38.54% 38.40%

100% 8.12% 6.39% 6.39% 1.35% 1.38% 1.28%

GPT2-medium

1% 99.42% 99.40% 99.44% 93.42% 92.17% 91.69%
25% 99.11% 98.55% 97.85% 91.64% 86.11% 85.76%
75% 74.83% 33.22% 41.52% 3.86% 2.23% 2.33%

100% 4.42% 1.79% 1.79% 3.86% 2.23% 2.32%

GPT2-large

1% 99.27% 99.32% 99.20% 91.49% 90.90% 89.80%
25% 98.81% 98.75% 98.10% 87.30% 87.54% 84.16%
75% 45.17% 29.85% 35.66% 7.61% 6.89% 6.22%

100% 2.14% 0.45% 0.90% 0.69% 0.50% 0.56%

Gemma-2B

1% 99.99% 98.97% 70.22% 99.88% 95.39% 74.03%
25% 99.98% 90.58% 86.35% 90.98% 73.78% 86.01%
75% 68.14% 80.06% 80.20% 58.56% 72.57% 66.56%

100% 5.89% 10.99% 10.99% 1.58% 2.12% 2.12%

Llama3-8B

1% 99.99% 99.99% 99.14% 99.99% 99.10% 99.14%
25% 80.85% 76.97% 76.81% 72.67% 71.86% 71.40%
75% 24.43% 24.39% 23.11% 19.65% 19.71% 18.77%

100% 3.83% 4.49% 4.49% 4.63% 4.04% 4.20%

Llama3-3B

1% 100% 99.95% 99.95% 99.93% 99.86% 99.82%
25% 88.04% 83.87% 84.34% 65.53% 63.92% 64.17%
75% 26.06% 24.47% 23.4% 11.06% 10.52% 10.79%

100% 4.34% 4.31% 4.31% 3.85% 4.08% 3.86%

Qwen2.5-0.5B

1% 93.76% 90.95% 85.27% 86.33% 80.55% 77.91%
25% 97.12% 97.51% 89.18% 74.83% 75.41% 75.77%
75% 76.74% 77.96% 55.39% 50.69% 49.71% 48.81%

100% 6.15% 5.56% 5.56% 2.48% 2.34% 2.34%

Qwen2.5-1.5B

1% 97.14% 90.5% 88.96% 88.52% 83.19% 77.21%
25% 98.12% 95.66% 94.04% 72.29% 68.18% 68.33%
75% 18.27% 18.72% 17.94% 8.94% 9.64% 9.51%

100% 7.13% 6.81% 6.81% 3.95% 3.8% 3.8%

Qwen2.5-3B

1% 83.26% 82.41% 68.8% 75.13% 72.56% 70.69%
25% 97.36% 96.32% 88.81% 92.69% 79.67% 79.63%
75% 86.56% 71.45% 45.47% 40.87% 30.95% 33.04%

100% 2.07% 1.89% 1.89% 0.45% 0.35% 0.41%

Table 11: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B,
8B), and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Hypernym Prediction (HP)
task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned
settings, using three CAP protocols: Max, Mean, and Sum.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

IDM (Inverse Dictionary Modelling)

GPT2-small

1% 93.00% 93.94% 96.56% 77.912% 77.73% 80.28%
25% 90.20% 87.85% 91.41% 65.73% 62.95% 72.31%
75% 87.81% 78.66% 84.90% 55.74% 46.81% 55.73%
100% 48.10% 45.10% 38.04% 11.11% 8.45% 8.11%

GPT2-medium

1% 87.96% 89.87% 92.52% 81.12% 82.37% 81.83%
25% 77.06% 82.71% 86.54% 69.53% 75.19% 77.55%
75% 76.35% 48.76% 57.68% 60.60% 29.52% 33.12%
100% 29.23% 23.12% 23.21% 13.03% 9.75% 9.94%

GPT2-large

1% 87.06% 89.91% 88.44% 81.14% 85.35% 79.46%
25% 73.54% 78.18% 82.48% 69.39% 73.85% 71.90%
75% 49.02% 42.06% 40.38% 20.59% 19.78% 21.45%
100% 28.14% 24.22% 24.78% 6.46% 6.67% 8.44%

Qwen2.5-0.5B

1% 93.97% 91.19% 87.15% 90.94% 84.44% 78.85%
25% 84.64% 76.78% 78.00% 76.36% 66.24% 67.16%
75% 61.75% 57.95% 63.86% 48.86% 41.8% 46.25%
100% 32.29% 26.8% 19.5% 13.55% 10.17% 15.08%

Qwen2.5-1.5B

1% 98.24% 95.8% 95.82% 93.31% 87.33% 80.81%
25% 96.4% 84.72% 89.41% 79.52% 63.00% 65.53%
75% 69.68% 64.6% 60.33% 19.11% 14.72% 24.01%
100% 68.03% 60.04% 56.6% 12.01% 7.46% 12.72%

Qwen2.5-3B

1% 96.51% 94.37% 94.64% 90.11% 86.02% 80.57%
25% 96.82% 89.89% 92.39% 90.24% 76.55% 76.28%
75% 82.27% 74.71% 77.07% 47.45% 36.06% 39.95%
100% 62.26% 62.21% 58.12% 7.41% 5.52% 8.18%

Table 12: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.

Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

SP (Synonym Prediction)

GPT2-small

1% 99.99% 99.99% 99.99% 64.90% 58.47% 53.22%
25% 92.97% 93.36% 93.36% 61.27% 37.19% 74.69%
75% 92.58% 90.63% 92.19% 43.35% 20.57% 52.22%

100% 58.46% 47.92% 51.43% 13.27% 7.57% 12.45%

GPT2-medium

1% 97.55% 95.11% 99.99% 88.92% 84.23% 84.80%
25% 97.55% 99.73% 97.55% 75.00% 76.85% 85.65%
75% 71.20% 68.21% 77.45% 47.72% 22.16% 45.88%

100% 66.30% 39.40% 52.17% 12.93% 6.68% 9.52%

GPT2-large

1% 96.67% 98.33% 96.67% 92.55% 80.76% 79.58%
25% 96.67% 96.44% 97.90% 79.44% 80.48% 82.86%
75% 78.83% 66.72% 66.32% 18.63% 15.80% 21.00%

100% 67.10% 45.83% 56.68% 9.69% 7.15% 8.33%

Qwen2.5-0.5B

1% 99.32% 95.88% 92.87% 81.67% 61.89% 57.95%
25% 98.65% 95.91% 96.45% 60.19% 58.75% 58.43%
75% 93.21% 84.66% 77.4% 56.29% 49.3% 44.94%

100% 68.78% 45.74% 43.92% 13.56% 7.47% 16.79%

Qwen2.5-1.5B

1% 98.1% 96.33% 94.43% 72.33% 58.5% 59.55%
25% 97.55% 96.2% 95.38% 63.79% 55.84% 68.93%
75% 75.72% 55.17% 48.41% 19.33% 14.48% 26.87%

100% 70.39% 38.68% 36.29% 18.73% 10.41% 20.97%

Qwen2.5-0.5B

1% 96.47% 95.52% 90.31% 74.05% 67.1% 56.57%
25% 99.32% 98.1% 94.29% 94.89% 56.93% 57.38%
75% 94.02% 89.46% 83.4% 86.43% 64.01% 43.39%

100% 47.00% 35.56% 31.32% 20.07% 15.19% 21.15%

Table 13: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

HP (Hypernym Prediction)

GPT2-small

1% 99.40% 99.26% 47.24% 89.31% 89.86% 88.76%
25% 99.31% 98.12% 46.38% 77.72% 73.12% 76.08%
75% 95.63% 91.78% 45.57% 47.73% 336.59% 48.32%

100% 65.62% 45.84% 34.80% 4.80% 3.64% 4.00%

GPT2-medium

1% 99.77% 99.56% 99.950% 92.67% 90.40% 92.54%
25% 99.92% 99.35% 99.47% 90.38% 84.29% 86.84%
75% 77.77% 58.17% 80.58% 63.00% 21.55% 23.32%

100% 59.28% 27.47% 30.54% 8.46% 5.10% 5.10%

GPT2-large

1% 99.77% 99.71% 99.76% 91.63% 92.56% 88.92%
25% 99.82% 98.72% 98.82% 85.31% 85.35% 84.58%
75% 66.58% 49.79% 63.56% 9.87% 8.79% 9.73%

100% 35.57% 24.79% 26.69% 6.99% 5.05% 4.82%

Qwen2.5-0.5B

1% 99.06% 97.77% 92.97% 94.46% 81.39% 79.64%
25% 99.85% 98.54% 96.95% 75.14% 76.07% 86.94%
75% 94.87% 87.81% 88.37% 56.27% 53.09% 63.33%

100% 68.71% 27.91% 27.92% 10.6% 7.68% 15.16%

Qwen2.5-1.5B

1% 99.81% 97.07% 92.75% 90.34% 84.61% 78.76%
25% 99.64% 97.97% 96.98% 72.81% 68.48% 77.13%
75% 84.28% 47.63% 43.15% 17.12% 14.76% 28.18%

100% 82.22% 26.00% 27.7% 13.49% 9.08% 17.98%

Qwen2.5-3B

1% 93.95% 91.81% 82.05% 77.6% 73.86% 71.41%
25% 99.24% 98.54% 95.97% 93.6% 80.32% 80.77%
75% 94.48% 88.91% 78.88% 54.32% 38.19% 57.87%

100% 55.28% 27.4% 25.1% 15.1% 8.77% 13.77%

Table 14: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.
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