Interpreting token compositionality in LLLMs: A robustness analysis

Anonymous ACL submission

Abstract

Understanding the internal mechanisms of
large language models (LLMs) is integral to
enhancing their reliability, interpretability, and
inference processes. We present Constituent-
Aware Pooling (CAP), a methodology designed
to analyse how LLMs process compositional
linguistic structures. Grounded in principles
of compositionality, mechanistic interpretabil-
ity, and information theory, CAP systemati-
cally intervenes in model activations through
constituent-based pooling at various model lev-
els. Our experiments on inverse definition mod-
elling, hypernym and synonym prediction re-
veal critical insights into transformers’ limita-
tions in handling compositional abstractions.
No specific layer integrates tokens into uni-
fied semantic representations based on their
constituent parts. We observe fragmented in-
formation processing, which intensifies with
model size, suggesting that larger models strug-
gle more with these interventions and exhibit
greater information dispersion. This fragmen-
tation likely stems from transformers’ training
objectives and architectural design, prevent-
ing systematic and cohesive representations.
Our findings highlight fundamental limitations
in current transformer architectures regarding
compositional semantics processing and model
interpretability, underscoring the critical need
for novel approaches in LLM design to address
these challenges.

1 Introduction

Large language models (LLMs) based on Trans-
former architectures have rapidly expanded in
scope and capability, demonstrating strong perfor-
mance across a wide range of NLP tasks. However,
critical limitations remain, including hallucinations,
poor interpretability, and limited semantic trans-
parency. One open challenge concerns linguistic
compositionality: how models combine smaller
units of text (e.g., morphemes, words, phrases) into

coherent meaning structures, and how this process
is reflected in internal representations.

Understanding how and where compositional
structure is encoded in LLMs is essential for bridg-
ing the gap between user intent and model be-
haviour. Prior work has explored this by align-
ing model inputs and outputs (Yin et al., 2024),
embedding spaces (Haslett, 2024), or layer-wise
activations (Yu and Ettinger, 2020; Modarressi
et al., 2023) with expected semantic representa-
tions. These approaches are grounded in two intu-
itive assumptions: (1) that LL.Ms internally repre-
sent compositional structure at the token or word
level, and (2) that this information should be at
least partially localisable at specific layers during
inference.

Several studies have revealed that LLMs are of-
ten brittle under perturbation (Wang et al., 2023;
Fodor et al., 2024; Hu et al., 2024), and that phrase-
level representations may fail to align with ex-
pected semantics (Carvalho et al., 2025). Despite
this, the mechanisms behind such fragility, partic-
ularly at the level of internal activations, remain
poorly understood.

To investigate this, we propose Constituent-
Aware Pooling (CAP), a structured perturbation
method that groups token-level activations into
larger constituent units (e.g., words or phrases) at
arbitrary layers. CAP enables systematic probing
of whether, and where, semantic meaning is ro-
bustly composed within the model. By applying
CAP at varying depths, we assess the fragility of
internal representations to compositional pertur-
bations and examine whether, and how, semantic
abstraction is distributed across layers.

Our empirical findings challenge common as-
sumptions of hierarchical semantic buildup. Rather
than gradually constructing compositional mean-
ing across layers, LLMs often retain token-level
focus well into the middle layers. Applying CAP,
even at semantically coherent groupings, results

IDM task: distant object viewer is called <telescope>
SP task: motor vehicle is a synonym of <automobile>
HP task: golden retriever is a type of <canine>

Constituent-Aware Pooling (CAP)

o

|

One residual block

Layermﬂ[S(m+1}1a s{m+1)2u S(m+1)3m
%

=
=
b1
3
=S
15}
E
1)
by
77}

Layerp, {snu Smz smd Smy m5}

a(R) > Ryrouped |

Layer,, [Sz | Sie Si5 J

Output: [S,, m m]

>
g
s
{ logits] 206
2
—_—
1 : AR) = Ryrouped g
{ Unmbedding] G o4
3
3
A S i S a(P) = Pgrouped £02 Q=
Layery, L1 L2 L3 = <
x o Feed Forward 00
B
} Z 0 20 40 60 80 100
5
S

ad)— Agruupcd

l

gmuped

o
®

Normalized Layer Position (%)

* Spi: activation of token i at layer j

activation of token i at layer j

T
Embedding }

o | CAP aggregation protocols o h;: attention head
‘ ﬁ ﬁ é Let the input state be: [1.2,0.8,2.5,3.7,09] + activati i

Let the Constituent Segmentation be: [(1, 2), (3, 4), (5)]

* Qg Select the maximum from each segment — {1.2,3.7,0.9} e P: FF activation
® Oyeqn: Compute the mean of each segment — {1.0, 3.1, 0.9} * A: Attention activation
Ogym: Sum the values in each segment — {2.0,6.2,0.9} * R: residual stream activation

e« activation pooling based on constituent
segmentation

Figure 1:

Ilustration of the CAP process. Constituent segmentation identifies linguistic units (e.g., words or

phrases), and CAP pools their activations at layer m using aggregation (e.g., max, mean, sum). This operation
reduces sequence length, and the modified activations are propagated to layer m+1. The results graph shows task

accuracy under CAP at different depths.

in substantial accuracy degradation, especially in
earlier layers. Surprisingly, larger models are more
sensitive to such perturbations than smaller ones,
suggesting increased representational fragility with
scale.

We contextualise these results using an
information-theoretic lens, proposing that Trans-
former models delay aggregation to maximise
token-level information throughput. This leads
to distributed, rather than localised, composition
across layers, resulting in longer dependency paths
and reduced mutual redundancy at each layer.

In summary, our contributions are:

* A systematic analysis of how current LLMs
handle constituent-level composition, evalu-
ated via CAP across layers, models, and tasks.

* A theoretical explanation grounded in infor-
mation theory, suggesting that LLMs optimise
for prediction by postponing semantic integra-
tion, thus fragmenting compositional meaning
across depth.

We conclude that compositional semantics are
not reliably localisable within any fixed layer of
standard Transformer models. This holds across
model scales, supervision types, and inference
tasks, and instead appears tied to architectural

depth. Our results suggest that recovering explicit
compositional structure may require specialised
training objectives or architectural constraints. Sup-
porting code and datasets are available at a public
repository!.

2 Tokenisation and compositionality in
LLMs

Intuitively, aggregating the representations of to-
kens that compose a single meaning unit (e.g., av-
eraging the embeddings of ‘m’, ‘amm’ and ‘al’ to
form a single token embedding) and then to larger
phrasal units (e.g. adjectival and noun composi-
tions), would have a relatively small impact on
model inference, since they have a strong depen-
dence on each other in a given context and thus
share significant information. However, it has been
shown that LLMs are highly sensitive to token
placement (Yin et al., 2024; Hu et al., 2024) and
that their internal representations have no signifi-
cant correlation with phrasal composition seman-
tics (Yu and Ettinger, 2020; Carvalho et al., 2025).

The observed disconnection between LLM in-
ternal representations and linguistic knowledge re-
garding compositionality raises practical and the-
oretical questions towards the robustness of such
models to perturbations strictly tied to composi-

'< anonymised url>

tional semantics (Appendix A). Such questions are
especially relevant in solving semantic gaps be-
tween input prompts and expected responses, as
well as localising linguistic knowledge and improv-
ing interpretability. One way in which they can be
addressed is by systematically assessing the impact
of said perturbations on model inference perfor-
mance, at each model layer. We elaborate on the
methodology to achieve this goal in the following
section.

3 Assessing compositional aggregation
robustness

To accurately assess the effects of compositional
grouping at different layers of abstraction within
transformer models, the inference objective should
be a task that is both: 1) strictly dependent on the
input tokens and their composition, with few pos-
sible input variations; 2) contains as few tokens as
possible in the output. For this reason, the follow-
ing tasks were selected (Figure 1):

1. Inverse definition modelling (IDM): predicting a
term given its definition.

2. Synonym prediction (SP): producing a synonym
for a given word.

3. Hypernym prediction (HP): generating a more
general term for a given word.

Formal task definitions and input formats are de-
tailed in Appendix B.1.

Constituent-Aware Pooling (CAP). To introduce
compositional perturbations, we propose CAP, a
method for pooling (i.e., grouping) LLM activa-
tions corresponding to individual tokens into cohe-
sive linguistic units. CAP operates at two levels:
(i) word-level: grouping tokens that form a sin-
gle word, and (ii) phrase-level: grouping tokens
that form a single phrase. At the word-level, CAP
reverse-maps each model’s tokeniser to reconstruct
complete words and identify their activation ranges.
At the phrase-level, CAP uses a syntactic parser,
such as Benepar (Kitaev et al., 2019; Kitaev and
Klein, 2018), to align tokens with their correspond-
ing phrasal constituents and define their activation
ranges. Further details on the parser evaluation
methodology are provided in Appendix D.

CAP Pooling Protocols. CAP is applied progres-
sively across layers using three protocols a:: Max:
selects the maximum activation within a segment,
identifying dominant features and their propaga-
tion through layers; Mean: computes the average
activation, providing a balanced representation of

all token contributions and their collective impact
on model decisions; and Sum: sums the activations,
capturing cumulative information flow and aggre-
gates effects of token interactions. These protocols
offer complementary insights into how models pro-
cess and integrate information: Max reveals feature
prominence patterns, Mean shows distributed rep-
resentation effects, and Sum reflects accumulated
semantic content across segments.

Transformer conceptualisation and the for-
malisation of CAP. This work builds on the math-
ematical framework of transformers introduced by
(Elhage et al., 2021), where computation is for-
malised into sequential residual blocks. Each layer
reads inputs from the residual stream, processes
them through its components (attention heads and
feed-forward neural networks (FF)), and writes the
outputs back into the residual stream. Attention
heads are responsible for transferring information
between tokens through the self-attention mecha-
nism, allowing each token to attend to others in
the sequence. FF apply non-linear transforma-
tions independently to each token representation,
enhancing the model’s expressive capacity. The
residual stream stores and propagates information
across layers, enabling the integration of new out-
puts with existing representations while preserving
original input information through residual connec-
tions. Let the transformer model have L layers,
input sequence of length K, batch size B, and in-
ner activations X, with with tensor shapes varying
by model component as follows:

* Attention layers output: X € REXExHm
where H,, is the hidden dimension after pro-
jection.

e FF: X € REBXKXHy where Hy is the feed-
forward dimension.

e Residual stream: X € RB*XExHn where H),
is the hidden dimension.

Let S = {(s1,€1),.--(Sn,en)} be the set of syn-
tactic unit ranges (e.g., tokens, words or phrases),
where s; and e; denote the start and end indices of
the i-th range. CAP pools/groups activations within
these ranges, reducing the sequence dimension K
to a grouped dimension (&, where

G = K — Eﬁzl(ei — Si) (1)

For each syntactic unit, CAP applies the grouping
function « over the range [s;, €;] in one of three

ways, formalised as follows:

Sum: «([s;,ei]) = i: X|t] (2)

t=s;

1 o
Mean: o([s;, e;]) = po—— > X[t 3)

t=s;

Max: «([s;, e;]) = max X[t] 4)

tG[Si,ei}
The grouped activations transform as follows:

* For attention layers output, X € RBXKxHm

becomes X € RBXGxHm,

e For FF, X € RBxEXH; pecomes X €
RB><G><Hf'

* For residual stream:, X € RB*XExHn pe.
comes X € RBxGxHn,

This process consolidates activations for each syn-
tactic unit, enabling systematic evaluation of com-
positional robustness across layers. For simplicity,
we demonstrate the operation over these compo-
nents, but this approach can be extended to any
transformer’s components, provided that the di-
mensional requirements for information flow, as
described in (Elhage et al., 2021), are respected.
For example, consider attention layer internal acti-
vations of shape X € REXHaxXKXK where H, is
the number of attention heads, and K represents the
query and key token dimensions. Applying CAP
with the Sum protocol involves aggregating activa-
tions over the query range [s;, ;] and the key range
[s;,e;]. The grouped activations are computed as:
a([siﬂ 61]? [$j7 ej]) = fi:si :’j:s]- X[b’ h,t, t/]~
After applying CAP, the grouped activations have
the shape X € RB*HaxGXCG where @ is the num-
ber of grouped syntactic units. This ensures that
query-key interactions are consolidated into co-
hesive syntactic units, aligning activations with
higher-level linguistic structures. We examine
CAP’s reduction ratio (KX — G) at the word-level
and its effects across models, with detailed anal-
ysis in Appendix C. We refer the reader to Ap-
pendix B.4 for further details on how CAP affects
sequence length and interacts with positional en-
codings.

The CAP effect on models is evaluated by mea-
suring their accuracy post-CAP on a baseline test
consisting of examples correctly predicted by the
original models. This ensures that the evaluation

focuses on instances where CAP directly tests com-
positional robustness. Specifically, we report three
key metrics: the original accuracy (A,), which rep-
resents the model’s accuracy on the baseline test
before applying CAP and establishes a reference
for evaluating the grouping effect; the grouped ac-
curacy (A.), which measures the model’s accuracy
post-CAP, averaged across all CAP protocols (sum,
mean, max) and reflects how well the model retains
its predictions after compositional grouping; and
the accuracy drop (A A), defined as AA = A,— A,
which quantifies the performance loss due to CAP,
where lower A A values indicate more robust com-
positional behaviour and better preservation of se-
mantic information across layers. These metrics
offer a framework for comparing tasks and models,
allowing a granular assessment of compositional
representations.

4 Empirical analysis

4.1 Experimental setup & datasets

Datasets and metrics. The CAP effect
is evaluated wusing three WordNet-derived
datasets—definitions, hypernyms, and syn-

onyms—corresponding to the IDM, HP, and SP
tasks (Fellbaum, 1998). Test examples correctly
predicted by the original models (A,) form the
baseline for subsequent CAP evaluation. Grouped
accuracy (A.) is calculated post-CAP for this
subset, ensuring that CAP’s effect is isolated to
examples where the original models performed
correctly. The drop in accuracy (A A) is reported
per protocol (sum, mean, max) to assess the
impact of different aggregation methods on model
performance. See Appendix B.2 for dataset details
and Appendix E.3 for comprehensive results.

LLMs and evaluated dimensions. The method-
ology was tested across various decoder-only trans-
former models (Vaswani, 2017). Our main focus
was on GPT-2 (small: 124M, medium: 355M, large:
774M parameters) (Radford et al., 2019), Gemmal
(2B parameters) (Team et al., 2024), Llama (3B,
and 8B parameters) (Dubey et al., 2024), and
Qwen (0.5B, 1.5B, and 3B parameters) (Yang et al.,
2024). These models use different tokenisation
approaches: byte-level BPE (GPT-2, Qwen), ex-
panded BPE with 128K vocabulary (LLlama3), and
SentencePiece (Gemma). Models were tested be-
fore and after task-specific fine-tuning (3 epochs,
learning rate 5e-5). This selection spans diverse
architectures, sizes, and tokenisation strategies (see

Model Layer Original Fine-tuned

Position Max Mean Sum Max Mean Sum

1% 8.06% 9.15% 6.70% 10.61% 10.01% 7.83%

GPT2-large 25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%

100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%

1% 9791% 23.51% 23.75% | 57.58% 22.710% 21.99%

Gemma-2B 25% 86.32% 16.20% 19.27% | 50.45% 14.08% 15.57%

75% 5238% 31.03% 24.74% | 21.77% 14.99% 12.80%

100% 6.87% 10.61% 10.61% 2.21% 2.05% 2.05%

1% 12.63% 12.27% 11.44% 7.85% 6.71% 6.48%

3B 25% 18.61% 8.59% 9.11% 10.66% 4.75% 5.82%

Qwen- 5% | 7.23% 4.00% 379% | 3.65% 2.83% 1.85%
100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

1% 25.49% 24.99% 24.94% | 24.44% 23.42% 23.48%

Llama3-8B 25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%

100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%

Table 1: IDM accuracy drop A in the word-level CAP, highlighting and values in both original and

fine-tuned models. The layer numbers were normalised to layer positions as percentages of the total layers, which
allows comparing equivalent relative depths across models, such as 25% or 75% of the total layers, rather than using
absolute layer numbers. This method ensures fair comparisons between models, even with different architectures.

Appendix B.3 for further details on the models and
fine-tuning parameters).

Experimental setup. All experiments were con-
ducted using 2x NVIDIA RTX A6000 and 2x
NVIDIA RTX A100 GPUs, with the experimen-
tal framework being developed in Python 3.11.5.
We used the Transformers (v4.44.2) and PyTorch
(v2.4.1) libraries, along with Transformer-lens
(v2.6.0), to train and evaluate models and for prob-
ing. Benepar (v0.2.0) was used for sentence pars-
ing, and statistical analysis was supported by Scikit-
learn (v1.5.2).

4.2 Results and discussion

Compositional inference in LLMs is not a purely
incremental process. Contrary to expectations
of a smooth and steady layer-wise performance
improvement, we observe significant fluctuations
when CAP is applied across layers. Performance
drops notably in early and middle layers, followed
by sharp improvements (Figure 2 (a)-(c), (e), and
(1)), suggesting these layers struggle to process
CAPed activations, particularly the pooled linguis-
tic features captured in earlier layers. Rather than
progressively building semantic information from
individual tokens to complex phrases, the models
appear to focus heavily on isolated token features.

An important distinction arises between TW-
CAP, which groups tokens according to model-
specific tokenisation, and TP-CAP, which applies
externally parsed syntactic structures. While TP-
CAP introduces richer constituent information, it

may not align with the model’s internal segmen-
tation or syntactic reasoning. This misalignment
is not a flaw in CAP, but rather a diagnostic sig-
nal: if LLMs encoded human-like syntax, TP-based
grouping should be minimally disruptive. The ob-
served drop in performance under TP-CAP sug-
gests that LL.Ms do not consistently internalise hi-
erarchical syntactic structures. This finding under-
scores the model’s emphasis on local token-level
information and supports the conclusions drawn in
our information-theoretic analysis.

The results indicate that attention is distributed
over input tokens and model layers in a non-
systematic and decentralised manner that is highly
context-dependent, showing minimal reliance on
sequential or positional relationships of con-
stituents. This phenomenon is particularly evident
in the sharp decline in SP and HP tasks, where con-
textual information is limited during phrase-level
CAP application. We argue that this behaviour
stems from the model’s training objective, which
maximises information gain in each layer towards
predicted tokens at the cost of reducing mutual in-
formation between tokens in a single layer. This
behaviour means that aggregation, including syn-
tactic, is performed across multiple layers and thus
is not localisable from any single given layer. An
information theoretical analysis elaborates this rea-
soning in Section 5. Our findings highlight how
compositional structures are highly sensitive to to-
ken representation dynamics across layers, suggest-
ing that performance fluctuations can be attributed

to information loss incurred as a function of token
mutual information across layers.

Larger models are more fragile to composi-
tional perturbations. The IDM task highlights
this fragility in larger models, as larger models
rely on finer feature extraction. Within families,
distinct patterns emerge: original Qwen’s smaller
variants show better IDM robustness (e.g., at posi-
tion 25% there was a 7.69% drop on Qwen-1.5B
vs 12.11% on Qwen-3B), while Llama3 exhibits
capacity-dependent behaviour with the 3B variant
being more vulnerable than 8B. Despite having
similar reduction ratios to Llama models (see Ap-
pendix C), Gemma-2B shows greater sensitivity to
perturbations (e.g., at position 1% Max: Gemma-
2B drops 97.91% vs. Llama3-8B’s 25.49%), likely
due to its larger vocabulary enabling finer-grained
tokenisation. While fine-grained token knowledge
benefits standard tasks, it appears to increase sus-
ceptibility to compositional perturbations. The
superior performance of Llama3-8B over its 3B
variant can be attributed to its enhanced capacity
for maintaining feature relationships across layers
while preserving key compositional information.
While larger models excel in standard tasks (see
Appendix E.1), they exhibit a greater reliance on
the identification of intrinsic features in the early
layers. We find that phrasal-level CAP substantially
impacts Gemma-2B and Llama models, suggesting
a heavy dependence on layer-wise information gain,
where they separate features in an uncorrelated and
highly distinct manner. While this aids in identify-
ing complex feature patterns, it also makes them
more vulnerable to contextual noise—a weakness
that threatens their robustness and integrity. No-
tably, Qwen models outperform Llama and Gemma
despite similar parameter counts, likely due to byte-
level BPE tokenisation and multilingual training,
which enhance compositional stability, whereas
Llama’s expanded BPE and Gemma’s Sentence-
Piece prioritise efficiency over phrase retention,
increasing vulnerability to CAP interventions.
Activation abstraction vs the information loss.
Table 1 reveals significant variations in aggrega-
tion function performance across sample models
for the IDM task (see Appendix E.3 for the rest
of the models and tasks results). The Max aggre-
gation shows the most dramatic impact. This find-
ing supports our argument that these models tend
to distribute information in a fragmented manner,
lacking the integration of compositional (lexical
and semantic) information across tokens and con-

tiguous layers. The Mean aggregation provides
more balanced results, though performance drops
still indicate absence of consistent compositional
mechanisms. This issue becomes more pronounced
in token-phrases experiments (Figure 2). The Sum
aggregation consistently outperformed other meth-
ods, with Mean aggregation following closely be-
hind, particularly in original models. The Sum
aggregation reflects the cumulative effect of aggre-
gating tokens into larger segments, reinforcing our
earlier conclusion. Instead of progressively build-
ing semantic information across layers, the models
exhibit cumulative information loss, particularly
when interventions occur in early layers.

Fine-tuning enhances recovery -capabilities
across models. Figure 2 (d-f) demonstrates im-
proved performance maintenance post-fine-tuning
across all model families, with strongest gains in
75%-100% layer positions. SP tasks showed maxi-
mum benefit, attributed to high task specificity and
minimal activation reduction under CAP. Max ag-
gregation displayed the greatest improvement post-
fine-tuning, likely due to enhanced retention of
key information. For instance, Gemma-2B’s accu-
racy drop decreased from 97.91% to 57.65% in the
1% layer, while Qwen-3B improved from 7.23%
to 3.65% in the 75% layer. Mean aggregation
benefits were also substantial in smaller models,
with Gemma-2B’s 75% layer drop reducing from
31.03% to 15.00%. The Qwen family showed con-
sistent improvements across all aggregation types,
though smaller models like GPT2-large demon-
strated minimal gains, suggesting potential over-
fitting. Notably, larger models like Llama3-8B
showed minimal gains from fine-tuning in IDM
tasks, indicating that standard fine-tuning objec-
tives may not directly enhance compositional ro-
bustness. Although fine-tuning strengthens models’
resilience under CAP, it does not fully resolve the
challenge of forming stable compositional seman-
tic representations, highlighting an architectural
limitation in current transformer models.

5 Information Gain & Token Mutual
Information

The empirical findings can be explained by look-
ing at the autoregressive next-token objective of
a transformer model from an information theo-
retical standpoint: examining the relationship be-
tween each generated token Y to the input token
representations R;(X) of each layer [, in terms

IDM (Org) - accuracy under CAP by layer

1.0

10 FE—
g Mo ek R
e i e

%

%=

°
®

e
x” A

N

Accuracy
Accuracy

o
IS

>
/0/'/ /

S

o /0

o
N

0.0

SP (Org) - accuracy under CAP by layer

HP (Org) - accuracy under CAP by layer

Accuracy

IDM (FT) - accuracy under CAP by layer
1.0 . o
;’3’}4""“‘;":§f,__55:T!§ ,,5:-)33:5./'

e

Accuracy
Accuracy

Accuracy

0% 25% 50% 75% 100% 0% 25%
Normalised Layer Position

name —— GPT2-large Gemma-2B

Normalised Layer Position

—— Llama3-3B

50% 75% 100% 0% 25% 50% 75% 100%

Normalised L;yer Position

—— Qwen-1.5B CAP level —e— TP

Figure 2: Average grouped accuracy of CAP across different aggregation functions for normalised layer positions
(0%-100%) is shown for word-level CAP (TW) and phrasal-level CAP (TP). Sub-figures (a)-(c) illustrate the
CAP effect on the original (Org) models, while sub-figures (d)-(f) show its impact on the fine-tuned (FT) models.
Fine-tuning consistently improves performance, particularly in the middle to late layers (25%-100%), while early
layers (0%-25%) show more variability and lower accuracy across models.

of Information Gain IGy g, (x), and the aggre-
gation of a pair of input token representations
Ry(X;), Ri(X;) in terms of their Mutual Informa-
tion I(R;(X;), Ri(X;)).

IGy, g, (x) quantifies the amount of information
gained about the predicted token Y from the ob-
servation of the R;(X), for which the expectation
is the mutual information I(Y, R;(X)) of Y and
R;(X), which is equivalent to the reduction in en-
tropy of Y achieved by learning the state of R;(X):
1Gy g x)(Y,r) = H(Y) — H(Y]r).

During training, R;(X) will be adjusted in a way
that reduces the uncertainty about Y, meaning it
will promote the maximisation of /Gy, (x) for
any given layer [, which can be expressed as:

IGy,x =max()_I1Gy p,x)) (5)
1

where /Gy, x represents the information gain of Y’
w.r.t. input token X.

When looking at two input tokens X;, X, the
higher the mutual information I (R;(X;), R;(X;))
is, the lower the impact that aggregating R;(X;)
and R;(X;) would have over /Gy, x, as those vari-
ables share more of the same information. In-
tuitively, that would apply to linguistic composi-
tion, e.g., tokens that form a word and thus have a
stronger dependence when observed together.

However, as the model’s ability to predict Y
is contingent on the accumulated information of
all layers, and Equation 5 is independent of layer
order, there is an intrinsic incentive to delay the
aggregation of information (to later layers), as

Vp < q <,
(6)

where p, ¢ and r are layer indices, i.e., subse-
quent layers have more information about the in-
puts than previous ones. This can be explained
in that optimising Equation 5 can be achieved by
retaining at each R; (X') only the necessary infor-
mation to maximise Zi,j IGqu (X:),MHA(Ry, (X;))>
where M HA(R;, (X)) is the multi-head atten-
tion weighted representation. Such an objec-
tive implies minimising the mutual information
I(Ry,(X;), Ry, (X)), ie., reducing redundancy
across tokens from the same layer. Therefore, token
dependencies will tend to be modelled by aggre-
gation paths spanning multiple layers, with more
layers allowing for more complex and longer paths.
This is in line with the findings of Mechanistic In-
terpretability studies (Elhage et al., 2021; Conmy
et al., 2023). Equation 6 also implies that the ear-
lier an aggregation is done, the larger the impact
it will have on IGy, x, which explains the empir-
ical results. The effects of I(R;(X;), R;(X;)) on
LLMs are further compounded by the tokenisation

I1G R, (x),r,(x) < IGR (x),R;, (X);

objective (e.g., BPE, WordPiece), which minimises
I(X;, X;), i.e., token redundancy, as a means of
reducing the vocabulary size, leading to longer ag-
gregation paths.

6 Related work

Compositionality, the principle that the meaning
of complex expressions is derived from their parts
and structure, is foundational in linguistics, cogni-
tive science, and Al (Fodor, 1975; Montague and
Thomason, 1975; Tull et al., 2024). In neural mod-
els, compositionality enables generalisation and in-
terpretability, yet remains difficult to diagnose and
enforce (Donatelli and Koller, 2023). Several stud-
ies investigate how and where compositional repre-
sentations emerge in transformer models. Carvalho
et al. (2025) observed similar effects in adjective-
noun phrase probing, while Haslett (2024) found
that models struggle to segment or represent mor-
phemes, especially in non-Latin scripts, suggesting
breakdowns in both form and meaning composi-
tion. The logit lens (Nostalgebraist, 2020) demon-
strated that transformers build predictions progres-
sively where early layers make initial guesses and
deeper layers refine guesses with broader context.
(Dai et al., 2022) show feed-forward layers act as
key-value memories, combining information for
complex predictions. MEMIT (Meng et al., 2023)
and PMET (Li et al., 2025) show how controlled
inferences can be built by manipulating models’
components. Some nuance emerges in later-layer
behaviours. DecompX (Modarressi et al., 2023)
traced token representations layer-by-layer and ob-
served partial shifts toward integration. Yu and Et-
tinger (2020) tested model encoding and found that
transformers mainly encode individual word con-
tent rather than true phrase-level meaning. While
some models appear more compositional under cer-
tain conditions, general trends remain unclear. For
example, Dankers et al. (2022) demonstrate that
models can show unexpectedly high or low compo-
sitionality depending on the data and task, suggest-
ing exposure and framing affect outcomes as much
as architecture. Petty et al. (2024) show that deeper
Transformers tend to generalise more composition-
ally than shallower ones, though the benefits di-
minish beyond a certain depth. This highlights
that architectural depth, not just scale, may shape
compositional ability, though with diminishing re-
turns. In multi-step reasoning tasks, models often
fall back on shallow pattern matching rather than

true decomposition (Dziri et al., 2023).

Prior work has primarily relied on synthetic tasks
to assess compositional generalisation, focusing on
properties such as systematicity, productivity, and
substitutivity (Hupkes et al., 2020; Lake and Ba-
roni, 2018), these setups often abstract away from
the complexities of natural language. More recent
studies using natural data are often limited to small
domains such as semantic parsing or machine trans-
lation (Lake and Baroni, 2018; Kim and Linzen,
2020), and typically lack insight into internal rep-
resentations.

In contrast to prior works focused on final out-
puts or synthetic tasks, CAP is a method for prob-
ing compositional structure within LLMs using real
inputs. It intervenes directly on hidden activations,
merging token-level representations into word- or
phrase-level constituents at various depths. This
allows us to evaluate where semantic composition
occurs and how robust LLMs to structured pertur-
bations. Unlike surface-level probes, CAP provides
a targeted, activation-level lens on how meaning
is constructed and distributed across model layers
and linguistic units.

7 Conclusion

This work systematically analyses the robustness of
transformer-based LLMs to compositional pertur-
bations. Motivated by studies highlighting an unex-
pected gap between linguistic compositionality and
LLM representations, we characterised the impact
of compositional aggregation at each inference step
and provided an information-theoretical explana-
tion. Our findings indicate a pattern where token
dependencies are modelled by aggregation paths
spanning multiple layers, and complex token struc-
ture learning comes at the cost of higher sensitivity
to perturbations at inputs and earlier layers. Based
on the relation between information gain from input
to predicted token and mutual information between
token representations, we postulate that composi-
tional semantic representations cannot be isolated
to any particular (intermediate) stage of a standard
transformer model. These insights suggest that fu-
ture compositional-aware models should explore
specialised architectures or training objectives. Nat-
ural extensions include analysing encoder-based
and encoder-decoder transformers and investigat-
ing final token representations to further understand
internal compositional mechanisms.

Limitations

Several limitations are acknowledged in our paper.
First, the WordNet dataset may not fully represent
language diversity across all domains. Second, the
employed transformer models are decoder-based
only and could be subject to biases from their train-
ing data. Third, our findings depend on the Benepar
parsing model, which may introduce inaccuracies
in linguistic analysis. Additionally, while our tasks
provide an indirect signal of meaning preservation,
incorporating explicit reconstruction tasks in future
work could offer complementary insight into how
CAP affects the retention of input-level informa-
tion. Finally, the applicability of our results to other
languages has not been tested. Expanding CAP to
multilingual settings and testing with alternative
parsers or models trained with different positional
encodings would further validate the generality of
our findings.

Ethical Statement

The proposed framework aims to have a positive
impact on improving the critical understanding of
the mechanisms involved in language interpretation
in transformers. A more complete understanding of
these mechanisms requires coordination with other
interpretability methods.

References

Danilo S Carvalho, Edoardo Manino, Julia Rozanova,
Lucas Cordeiro, and André Freitas. 2025. Montague
semantics and modifier consistency measurement in
neural language models. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 5515-5529.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adria Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318-16352.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022.
The Paradox of the Compositionality of Natural Lan-
guage: A Neural Machine Translation Case Study.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 41544175, Dublin, Ireland.
Association for Computational Linguistics.

Lucia Donatelli and Alexander Koller. 2023. Composi-
tionality in computational linguistics. Annual Review
of Linguistics, 9(Volume 9, 2023):463-481.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12.

Christiane Fellbaum. 1998. Wordnet: An electronic
lexical database. MIT Press google schola, 2:678—
686.

JA Fodor. 1975. The language of thought.

James Fodor, Simon De Deyne, and Shinsuke Suzuki.
2024. Compositionality and Sentence Meaning:
Comparing Semantic Parsing and Transformers on a
Challenging Sentence Similarity Dataset. Computa-
tional Linguistics, pages 1-52.

Gottlob Frege. 1892. Uber sinn und bedeutung [on
sense and reference]. Zeitschrift fiir Philosophie Und
Philosophische Kritik, 100:25-50.

David A. Haslett. 2024. How much semantic infor-
mation is available in large language model tokens?
Preprint available on OSF.

Zhibo Hu, Chen Wang, Yanfeng Shu, Hye-Young Paik,
and Liming Zhu. 2024. Prompt perturbation in
retrieval-augmented generation based large language
models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 1119-1130.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? (extended abstract).
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20,
pages 5065-5069. International Joint Conferences on
Artificial Intelligence Organization. Journal track.

Ray Jackendoff. 1997. The Architecture of the Lan-
guage Faculty. MIT Press.

https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.1146/annurev-linguistics-030521-044439
https://doi.org/10.1146/annurev-linguistics-030521-044439
https://doi.org/10.1146/annurev-linguistics-030521-044439
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://doi.org/10.1162/coli_a_00536
https://doi.org/10.1162/coli_a_00536
https://doi.org/10.1162/coli_a_00536
https://doi.org/10.1162/coli_a_00536
https://doi.org/10.1162/coli_a_00536
https://osf.io/mzybx
https://osf.io/mzybx
https://osf.io/mzybx
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708

Jerrold J. Katz and Paul M. Postal. 1963. Semantic in-
terpretation of idioms and sentences containing them.
Quarterly Progress Report, 70:275-282.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087-9105, Online. As-
sociation for Computational Linguistics.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499-3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676-2686, Melbourne, Australia. Association
for Computational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873-2882. PMLR.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang,
Jun Ma, and Jie Yu. 2025. Pmet: precise model edit-
ing in a transformer. In Proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence
and Thirty-Sixth Conference on Innovative Applica-
tions of Artificial Intelligence and Fourteenth Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI'24/TAAT’24/EAAT’24. AAAI Press.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass edit-
ing memory in a transformer. The Eleventh Inter-
national Conference on Learning Representations
(ICLR).

Ali Modarressi, Mohsen Fayyaz, Ehsan Aghazadeh,
Yadollah Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2023. Decompx: Explaining transformers deci-
sions by propagating token decomposition. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2649-2664.

Richard Montague. 1970a. English as a formal lan-
guage. In Linguaggi nella societa e nella tecnica,
pages 189-223. Edizioni di Comunita.

Richard Montague. 1970b. Universal grammar. Theo-
ria, 36(3):373-398.

10

Richard Montague and Richmond H Thomason. 1975.
Formal philosophy. selected papers of richard mon-
tague. Erkenntnis, 9(2).

Nostalgebraist. 2020. Interpreting gpt: The logit lens.
LessWrong.

Barbara H. Partee. 1984. Compositionality. In Fred
Landman and Frank Veltman, editors, Varieties of
Formal Semantics, pages 281-312. Foris Publica-
tions.

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei
Sha, Dan Garrette, and Tal Linzen. 2024. The Im-
pact of Depth on Compositional Generalization in
Transformer Language Models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 7239-7252, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Sean Tull, Robin Lorenz, Stephen Clark, Ilyas Khan,
and Bob Coecke. 2024. Towards compositional inter-
pretability for xai. arXiv preprint arXiv:2406.17583.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,
Sen Zhang, Li Shen, et al. 2023. Are large language
models really robust to word-level perturbations? In
Socially Responsible Language Modelling Research
Workshop.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2.5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Yongjing Yin, Lian Fu, Yafu Li, and Yue Zhang. 2024.
On compositional generalization of transformer-
based neural machine translation. Information Fu-
sion, 111:102491.

Lang Yu and Allyson Ettinger. 2020. Assessing phrasal
representation and composition in transformers. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4896—4907.

https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402

A Compositionality and Localisation

The concept of linguistic compositionality has
evolved from its origins in Frege’s work (Frege,
1892), which started conceptualising the notion that
the meaning of a complex expression is determined
by its constituent parts and their syntactic arrange-
ment. This principle was formalised by Montague
(Montague, 1970b,a), who applied mathematical
rigour to natural language semantics, thereby rein-
forcing the compositional approach within formal
semantics. Linguistic phenomena such as idioms,
context-dependence, and metaphor, which seemed
to violate compositionality, prompted debates on
its universality (Katz and Postal, 1963; Jackendoff,
1997), with theoretical accounts evolving to inte-
grate these phenomena, leading to a more nuanced
understanding that balances strict compositional
rules with allowances for non-compositional ele-
ments (Partee, 1984).

While the syntactic-logical connection entailed
by formal models is not assumed to be induced
by neural language models, there is a common
assumption that those models should entail a syn-
tactic compositionality function, which allows for
a systematic model for meaning composition, i.e.,
that the syntactic structure of a complex expression
s is significantly determined by the syntactic prop-
erties of its constituent parts and the rules used to
combine them. Formally, for any sentence s, its
syntactic properties can be defined as a function
f of the syntactic properties of its immediate con-
stituents s1, sa, . . . , S, and the syntactic operations
applied:

Syntax(s) = f (Syntax(sy), Syntax(sz), ...,
Syntax (s,), Rules)
(7)

Within the context of distributed representations,
a meaning representation can be factored into its
syntactic and content (term embedding) compo-
nents. A compositional distributional semantic
model merges syntactic compositionality with dis-
tributional semantics by representing token mean-
ings as vectors (token embeddings) in a continuous
semantic space and combining them according to
syntactic structure. Formally, each token ¢t is as-
sociated with a vector v; € R" that captures its
semantic content based on distributional informa-
tion.

11

For a complex syntactic expression s composed
of constituents s1, So, ..., Sy, the semantic repre-
sentation v is computed using a compositional
function f that integrates both the vectors of the
constituents and the syntactic operations applied:

., Vs, , Syntactic structure)
(®)
This function f is designed to reflect syntac-
tic compositionality by structurally combining the
embeddings of the constituents according to the
syntactic rules governing their combination.

VS = f(V817V827"

In the context of a specific transformer-based
LM model implementing an interpretation func-
tion of an input s, the question which is central to
this work is whether the contiguous composition
of tokens is reflected within the structure of the
transformer-based LMs and its constituent parts,
layers [g...l,,, multi-head attention, feedforward
layers and residual connections, i.e. whether the
representations hgk) at each layer [;, explicitly en-
code the composition of contiguous tokens t;, ;41,
and how the model’s components contribute to this
encoding.

B Elaborations on Experimental Setup

B.1 Downstream Task Definitions

The tasks selected for this study are designed to
evaluate the effects of compositional aggregation,
focusing on tasks that are strictly dependent on in-
put tokens and their compositional semantics while
minimising variability. Each task produces a single-
token output, and predictions are considered cor-
rect if they exactly match the target token. The
following are the formal definitions for each task.
Inverse Definition Modelling (IDM): The /DM
task involves predicting a term 7" based on a
given natural language definition D. Let D =
{di1,da,...,d,} represent the sequence of tokens
constituting the definition. The goal is to generate
the corresponding term 7', where:
T = arg max P(t| D))
Here, V is the vocabulary of possible terms, and ¢
is a candidate term. A prediction is correct if the
term 1" exactly matches the target term. The task
prompt used for IDM was structured as follows:

"<definition> is called a”

For example, given the definition "A domesticated
carnivorous mammal that typically has a long snout,
an acute sense of smell, non-retractile claws, and a
barking or howling voice," the task would require
the model to predict the term "dog."

Synonym Prediction (SP): The SP task requires
the model to generate a synonym S for a given
word W. Let W & V represent the input word.
The task is to predict a synonym .S, such that:

5= P(s | W
argmax P(s | W)

(10)

where s is a candidate synonym from the vocab-
ulary V. The prediction is considered correct if
S exactly matches the target synonym. The task
prompt used for SP was structured as follows:

"<word> is a synonym of"

For instance, given the input word "happy,"” the
task would ask the model to predict the synonym
"joyful."

Hypernym Prediction (HP): The HP task in-
volves predicting a more general term, or hyper-
nym, H for a given word W. Let W € V represent
the input word. The objective is to predict a hyper-
nym H, such that:

H= argr}rngi(P(h | W) 1n
where h is a candidate hypernym. The prediction
is correct if H exactly matches the intended hyper-
nym. The task prompt used for HP was structured
as follows:

"<word> is a type of”

For example, given the word "cat," the task would
ask the model to predict the hypernym "animal."

These tasks focus on generating precise, single-
token predictions, allowing for a rigorous evalua-
tion of the model’s ability to capture and process
compositional semantics.

B.2 Dataset Descriptions and Preprocessing

The training and test datasets are constructed by
extracting definitions, hypernyms, and synonyms
for each synset from WordNet (Fellbaum, 1998),
whose usage is unencumbered by licensing restric-
tions. WordNet is a lexical database of the En-
glish language, containing over 117,000 synsets of
nouns, verbs, adjectives, and adverbs. Each synset
represents a unique concept and is annotated with
part of speech, definition, hypernyms, synonyms,
and other semantic relationships. It is focused on

12

Model Task | Original Test Set | Fine-tuned Test Set
IDM 11,948 8,651
GPT2 (S,M,L) SP 7,753 5,578
HP 25,364 18,273
IDM 24,831 17,859
Gemma-2B SP 16,014 11,533
HP 44,687 32,209
IDM 14,991 10,828
Llama3 (3B, 8B SP 9,360 6,723
HP 31,962 23,070
IDM 14,927 10,780
Qwen2.5 (0.5B, 1.5B,3B) | SP 9,195 6,598
HP 31,845 23,000

Table 2: Test set sizes for each model and task (IDM:
Inverse Dictionary Modelling, SP: Synonym Prediction,
HP: Hypernym Prediction) derived from WordNet.

Model Params | Layers | Dyogel | Heads | Act. MLP Dim
GPT2-small 124M 12 768 12 GELU 3072
GPT2-medium | 302M 24 1024 16 GELU 4096
GPT2-large 708M 36 1280 20 GELU 5120
Gemma-2B 2B 32 4096 16 GELU 8192
LLama3-3B 3.2B 28 3072 24 SiLU 8192
LLama3-8B 7.8B 32 4096 32 SiLU 14336
Qwen2.5-0.5B | 391M 24 896 14 SiLU 4864
Qwen2.5-1.5B 1.4B 28 1536 12 SiLU 8960
Qwen2.5-3B 3.0B 36 2048 16 SiLU 11008

Table 3: Model properties across architectures. Params:
number of parameters, Layers: number of layers, Dpoger:
size of word embeddings and hidden states, Heads: num-
ber of attention heads, Act.: Activation function, MLP
Dim: dimensionality of the FF layers.

general-purpose vocabulary and does not target
specific demographic groups or domains. Defi-
nitions were cleaned using typical preprocessing
techniques, such as removing special characters,
punctuation, and extra spaces, and removing paren-
thesised content when necessary. The dataset was
initially split 80-20, with 20% used for training.
The remaining 80% was then split 90-10, with 10%
for validation and 90% for testing. The test dataset
was filtered to retain only single-token predictions
matching each model’s tokenisation. Table 2 shows
the test dataset sizes used for each task and model,
including inverse dictionary modelling (IDM), syn-
onym prediction (SP), and hypernym prediction
(HP).

B.3 Model Specifications and Fine-tuning
Parameters

Table 3 provides a comparative overview of various
Transformer models used in this study. We used
GPT?2 models (released under the Modified MIT
License), Gemma-2B (released under the Gemma
Terms of Use), Llama3 models (released under the
Meta Llama 3 Community License), and Qwen
models (released under Apache License 2.0). The
used models were mainly pre-trained on English

Fine-tuned
Sp
8.18%
11.65%
11.78%
10.75%
10.75%
13.43%
10.94%
13.70%
13.66%

Original
SP
2.59%
4.27%
5.93%
6.38%
10.80%
8.26%
6.10%
7.61%
7.53%

Model

GPT2-small
GPT2-medium
GPT2-large
Gemma-2B
Llama3-8B
Llama3-3B
Qwen-0.5B
Qwen-1.5B
Qwen-3B

IDM
7.10%
10.70%
11.33%
16.76%
25.17%
20.51%
8.21%
12.35%
13.35%

HP
26.59%
28.75%
27.66%
23.31%
24.14%

31.1%
28.03%
31.31%
31.95%

HP
17.04%
16.77%
13.90%
10.16%
15.30%
12.19%
12.03%
14.64%
14.40%

IDM
13.52%
16.34%
17.80%
9.57%
18.28%
26.42%
18.83%
30.01%
31.80%

Table 4: Baseline performance of various models on
three tasks: (inverse dictionary modelling) IDM, syn-
onym prediction (SP), and hypernym prediction (HP).
The values represent the accuracy of each model’s origi-
nal and fine-tuned versions.

data, with Qwen and LLama models providing
additional multilingual support, which is English,
German, French, Italian, Portuguese, Hindi, Span-
ish, and Thai for LLama, and more than 10 lan-
guages, including Chinese, English, French, Span-
ish, Portuguese, Russian, Arabic, Japanese, Korean,
Vietnamese, Thai, and Indonesian for Qwen. All
models were used for research purposes, specifi-
cally for language modelling and text generation
in English, aligning with their intended usage. The
models differ in their number of parameters, layers,
heads, and feedforward (FF) dimensions. The num-
ber of parameters ranges from 85M for GPT2-small
to 7.8B for LLama3-8B. The activation functions
and FF dimensions also highlight variations in the
internal processing architecture, influencing the
models’ performance across different tasks. In ad-
dition to these architectural differences, the models
were fine-tuned using a consistent set of hyperpa-
rameters. The fine-tuning process spanned over
three training epochs with a batch size of 16. The
learning rate was set to Se-5, while a weight decay
of 0.01 was applied to prevent overfitting. Training
logs were generated every 200 steps, with model
checkpoints saved every 1000 steps, but limited to
retaining only one checkpoint to manage storage ef-
ficiently. The evaluation strategy during fine-tuning
was set to evaluate at the end of each epoch, and
similarly, the model was saved at the end of each
epoch as well.

B.4 Handling of Sequence Reduction and
Positional Encoding in CAP

CAP reduces the number of token-level activa-
tions from the original input length K to a shorter
grouped sequence length G, by merging activations
corresponding to word-level or phrase-level con-
stituents. This reduction is applied post-token em-
bedding and affects intermediate activations within

13

the transformer, specifically the outputs of residual
blocks or their internal components (e.g., attention
or feedforward sublayers). From the point of CAP
application onward, the model processes a reduced-
length sequence of size GG. This operation does not
alter the model’s input embeddings or positional
encodings.

Effect of Positional Encoding Schemes. The im-
pact of this reduction depends on the positional en-
coding strategy used by the model: (i) GPT2 mod-
els use Sinusoidal positional embeddings, where
each position index corresponds to a unique learned
embedding. While CAP does not alter these em-
beddings directly, reducing the sequence length at
intermediate layers can introduce misalignment be-
tween positional indices and semantic content. This
may disrupt downstream attention or feedforward
computations that assume consistent positional con-
text; (i) LLaMA, Qwen, and Gemma models use
rotary positional encodings (RoPE), which encode
position relationally through rotation in embedding
space. These relative encodings are more robust to
changes in sequence length, and CAP has a milder
impact on positional semantics in these models.
Nevertheless, changes in sequence structure may
still affect how models integrate cross-token con-
text.

Although CAP does not interfere with the
model’s input or positional embedding layer, it al-
ters the spatial structure of activations mid-forward
pass. This may influence how transformers ag-
gregate information across positions, especially in
models with absolute position encoding. Never-
theless, we did not observe severe performance
degradation in those models compared to others.
We acknowledge this as a potential contributing
factor to the observed degradation under CAP and
consider it an important area for future study.

Namely, Embedding-level analysis represents
a promising direction for future exploration. Al-
though this work evaluates a wide range of models
with differing positional encoding schemes, we ac-
knowledge the need for more targeted analysis of
how CAP interacts with these embeddings. In par-
ticular, it would be valuable to quantify the impact
of CAP under controlled conditions that isolate em-
bedding effects. For instance, experiments using
fixed or masked positional encodings, or applying
CAP to models trained from scratch with alterna-
tive positional schemes, could help disentangle the
influence of compositional pooling from that of

Model Task | Mean + Std
IDM 3+5
GPT2 (S) SP 27+ 9
HP 27+ 10
IDM 3+5
GPT2 M) SP 28 £ 10
HP 26 £ 11
IDM 3+5
GPT2 (L) SP 27+9
HP 26 =11
IDM 944
Gemma-2B SP 19+9
HP 30+9
IDM 10+5
Llama3-3B SP 2316
HP 28 + 6
IDM 10+£5
Llama3-8B SP 21+ 7
HP 284+ 9
IDM 3+5
Qwen 0.5B SP 9+11
HP 20+ 10
IDM 3+5
Qwen 1.5B SP 124+ 10
HP 19+ 10
IDM 3+5
Qwen 3B SP 124+10
HP 19+ 10

Table 5: Reduction percentages

positional structure.

C Token Reduction Analysis

Table 5 presents an analysis of activation reduc-
tion percentages across different LLMs, particu-
larly for the token-to-words case. In this context,
the mean represents the average reduction percent-
ages across samples, while the standard deviation
indicates the variability of these reductions. While
models within a family (e.g., Qwen) share the same
tokeniser and vocabulary, the reduction percentages
still vary across tasks (e.g., SP vs. HP) because dif-
ferent tasks involve input definitions or prompts
with different average sentence lengths and syn-
tactic complexity, which in turn affect how many
groupings are formed under CAP. In other words,
although the tokeniser is fixed, the number and
size of groupable units (e.g., multi-token words or
phrases) are input-dependent. The purpose is to as-
sess whether token reduction across models would
highly influence the results of CAP.

Token reduction is a factor but not the sole de-
terminant of performance degradation. The
results presented in Tables 9, 10, and 11 indicate
that while token reduction percentage influences
performance degradation, it is not the sole deter-
mining factor. Several key observations support

14

this conclusion, which is discussed below.

First, we observe that higher token reduction
does not always lead to a greater performance
drop. For instance, models such as Gemma-2B and
Llama3-8B exhibit high token reduction percent-
ages (Table 5), yet their performance degradation
varies significantly across tasks and layer positions.
Also, despite lower token reduction percentages,
the models Qwen 0.5B and GPT2-small still show
substantial accuracy drops, particularly in early lay-
ers in the SP and HP tasks. Second, model size and
depth influence degradation, as evident in the larger
models (e.g., Llama3-8B, Gemma-2B) exhibiting
greater fragility to CAP interventions, particularly
in early layers (1% and 25%). Third, as discussed
in the paper, layer-specific variability suggests hi-
erarchical processing differences. Early-layer CAP
interventions cause severe accuracy drops in large
models but have a less pronounced effect in smaller
models, suggesting that deeper architectures defer
compositional integration to later layers. Further,
fine-tuning reduces degradation in later layers (75%
and 100%), implying that learned representations
in deeper layers mitigate the effects of early pertur-
bations. Finally, architectural differences influence
sensitivity. We observe that higher MLP dimen-
sions (e.g., Llama3-8B: 14,336 vs. GPT2-small:
3,072) correlate with greater vulnerability to CAP
perturbations, likely due to increased parameter
redundancy and disruption of the key-value recall
mechanism in MLPs (Meng et al., 2022).

While the token reduction percentage contributes
to performance degradation, it is insufficient to
fully explain the observed variations. Task nature,
model size, layer depth, activation functions, and
MLP dimensions collectively influence the robust-
ness of CAP interventions. Larger, deeper models
demonstrate greater sensitivity to early perturba-
tions, while fine-tuning helps recover performance
in later layers. These findings suggest that effec-
tive compositional representations in LLMs are dis-
tributed rather than localised, requiring specialised
architectures or training objectives to improve ro-
bustness.

D Evaluating Parsing Accuracy and
Addressing the Impact of Benepar
Parser Errors

A key potential bias in our results comes from the
reliance on the constituency parser for token-to-
phrase experiments. Inaccuracies in parsing may

IDM (original) - accuracy under CAP by layer SP (original) -

0.8 0.8

o
=)
o
o

Accuracy
Accuracy

o
~
o
IS

0.2 0.2

accuracy under CAP by layer

HP (original) - accuracy under CAP by layer

0.8

Accuracy
o
>

o
=

0.2

0.0

0.0

K e e g

0.8 0.8

=4
=Y
o
=)

Accuracy

o
IS

Accuracy

o
~

02 | 02

0.0

0.8

Accuracy
°
>

o
IS

0.2

0.0

0.0

0% 25% 50% 75%

Normalised Layer Position

100% 0% 25%

GPT2-medium
—— GPT2-small

Gemma-2B
Llama3-3B

Model name
—— GPT2-large

50%
Normalised Layer Position

~— Llama3-8B
Qwen-0.5B

0.0

25% 50% 75% 100%

Normalised Layer Position

75% 100%

—— Qwen-1.5B CAP level ™

Qwen-3B

- TP %

Figure 3: Average grouped accuracy of CAP across different aggregation functions for normalised layer positions
(0%-100%) is shown for word-level CAP (TW) and phrasal-level CAP (TP). Sub-figures (a)-(c) illustrate the
CAP effect on the original (Org) models, while sub-figures (d)-(f) show its impact on the fine-tuned (FT) models.
Fine-tuning consistently improves performance, particularly in the middle to late layers (25%-100%), while early
layers (0%-25%) show more variability and lower accuracy across models.

distort the results of CAP. To address this, we re-
port the chosen parser’s accuracy by testing it on
the Stanford Sentiment Treebank (SST) dataset, a
dataset that offers golden labels for parsing. We
aim to alleviate concerns about the parser’s impact
on our findings by showcasing its accuracy on the
SST dataset. The parser evaluation was conducted
as follows:

Dataset. A subset of 1,000 randomly sampled
sentences from the test split of the SST dataset was
used for the analysis. The Stanford Sentiment Tree-
bank (SST) provides annotated constituency labels,
which serve as the golden labels for comparison
with parser outputs. While WordNet definitions of-
fer rich semantic information, they lack annotated
golden constituency labels, making direct parser
validation infeasible. The use of SST’s annotations
enables reliable parser evaluation and indirectly
supports the validation of the parsing correctness
for WordNet definitions, provided they follow stan-
dard syntactic structures.

Parser. The Benepar parser was employed for
parsing sentences due to its strong performance
in constituency parsing tasks. Benepar is widely

15

recognised for its robustness and ability to handle
diverse syntactic structures. For this evaluation,
the constituency structures generated by Benepar
were directly compared against SST’s golden anno-
tations to assess its parsing accuracy.

Evaluation metrics. The parser’s performance
was evaluated using the following metrics: (i) Preci-
sion: Proportion of correctly predicted constituents
out of all predicted constituents; (ii) Recall: Pro-
portion of correctly predicted constituents out of all
ground truth constituents; (iii) F1-Score: Harmonic
mean of precision and recall, providing an overall
performance measure; and (iv) Accuracy: Percent-
age of sentences where the predicted constituency
structure fully matches the ground truth.

Results robustness. To ensure robustness and
consistency, the evaluation was repeated across five
different random seeds. This allowed for an assess-
ment of variability in performance across multiple
subsets of the dataset. Additionally, constituents
were evaluated at hierarchical levels—such as root
level, phrase level, and token level—to analyse
parsing performance across varying syntactic gran-
ularities.

Results. The evaluation yielded the following av-
eraged metrics across five seeds for the default level
of parsing (Level 1, the immediate children of the
root node):

Metric Mean + Std
Precision | 0.956 +£0.001
Recall 0.956 = 0.001
F1-Score | 0.956 +0.001
Accuracy | 0.956 £ 0.001

Table 6: Aggregated evaluation metrics for Level 1 con-
stituents using the Benepar parser, averaged across five
seeds.

Interpretation. The results demonstrate consis-
tently high parsing accuracy across all evaluation
metrics, with minimal variability (as indicated by
the low standard deviation). These findings validate
the Benepar parser’s reliability for parsing Level 1
constituents, which form the backbone of sentence
structure. Consequently, the parser’s impact on
CAP results is minimal, ensuring robustness and
validity of our conclusions.

E Detailed Performance Evaluation and
Results

E.1 Baseline Performance

Table 4 summarises the baseline performance of
the models used in this paper on the three tasks.
The results include the accuracy of each model’s
original and FT versions on the test set described
in Table 2. Fine-tuning generally improves perfor-
mance, particularly in the larger models such as
Gemma-2B and Llama3-8B, which show notable
increases in accuracy in most tasks, except the IDM
task.

E.2 Qualitative Analysis of CAP-Induced
Prediction Shifts.

Tables 7 and 8 present representative examples of
predictions from multiple models across all the
tasks, before and after CAP is applied. These ex-
amples are drawn from inputs that the model origi-
nally predicted correctly, allowing us to isolate the
effects of CAP perturbations without confounding
them with unrelated model failures. Each example
specifies the CAP layer, CAP type (token-to-word
or token-to-phrase), and the model involved. Ta-
ble 7 focuses on predictions made by original (non-
fine-tuned) models, while Table 8 includes out-
puts from fine-tuned variants. Observed shifts in-
clude truncation of multi-token terms (e.g., “diary”

16

— “di”), polarity inversion (e.g., “plain” — “orna-
ment”), loss of abstraction (“polygon” — “plane”),
and domain misalignment (e.g., “tree” — “street”).

These qualitative differences provide inter-
pretability insights that complement the aggregate
metrics reported earlier. They reveal how CAP af-
fects not only performance but the nature of model
outputs, especially in terms of semantic generalisa-
tion, abstraction shifts, and lexical precision. While
we do not observe a uniform trend across layers
or model families, TP-CAP consistently induces
more severe semantic degradation. This suggests
that as model capacity increases, internal represen-
tations may become more sensitive to disruptions
from externally imposed syntactic structures, po-
tentially due, as argued in the main paper, to a
stronger reliance on learned token-level dependen-
cies that diverge from higher-level compositional
groupings. This analysis highlights the nature of
semantic and lexical shifts induced by CAP, rein-
forcing the need for future task-specific fine-tuning
strategies that improve robustness to structured rep-
resentation pooling.

E.3 Comprehensive CAP Results for All
Models and Tasks

Figure 3 and Tables 9- 13, and 14 present the
reduction in accuracy when applying word-level
and phrasal CAP, respectively, across models and
the three tasks: IDM, SP, and HP. The results of
phrasal-level CAP for Gemma-2B and Llama3-8B
are not reported due to the severe degradation in
model performance under these conditions, render-
ing the outputs effectively unusable.

Let A, represent the original accuracy and A,
represent the accuracy after applying CAP. The
reported drop in accuracy, A A, is calculated as:

AA=A,— A (12)

This A A value is expressed in percentage points.
For example, AA = 40 indicates that the model’s
accuracy has decreased by 40 percentage points
from its original performance, which could repre-
sent a change from A, = 100% to A. = 60%, or
any other pair of accuracies with a 40 percentage
point difference. The tables report A A for differ-
ent layer positions (1%, 25%, 75%, and 100%) in
both Original and Fine-tuned settings, using three
CAP protocols: Max, Mean, and Sum. This repre-
sentation allows for a direct comparison of CAP’s
impact across different models and tasks, indepen-
dent of their baseline performance levels.

Task / Input Prompt Model CAP Layer | Prediction | Prediction | Observation / Interpretation
(Type) (No CAP) (W/ CAP)
IDM: lacking embellishment or | Qwen2.5- | Layer 8 | plain ornament Prediction shifts from correct to
ornamentation is called a: " 1.5B (TW) antonymic, likely due to token
merging altering polarity.
IDM: remaining after all deduc- | LLaMA3.1- Layer 4 | net gain Subtle financial distinction lost;
tions is called a: " 8B (TW) CAP causes confusion between
output and intermediate step.
IDM: make an effort or attempt | Gemma- Layer 1] try <hl> Invalid token generation suggests
is called a:" 2B (TP) breakdown in early compositional
encoding.
IDM: a formal series of state- | GPT2-L Layer 24 | proof form Loss of logical structure leads to
ments showing that if one thing (TP) a more abstract or vague concept.
is true something else necessar-
ily follows from it is called a:"
SP: "journal” is a synonym of Qwen2.5- | Layer 18 | diary di Output truncated, likely due to
1.5B (TW) disruption in longer multi-token
word embedding.
SP: "get" is a synonym of Qwen2.5- | Layer 16 | catch break Semantic drift under CAP; verb
0.5B (TW) meaning shifts from acquisition
to interruption.
HP: "voice" is a type of Gemmal- | Layer 16 | sound noise Precision reduced; CAP causes
2B (TW) substitution with a noisier, less
neutral concept.
HP: "guama" is a type of LLaMA3.2-| Layer 12 | tree street The output reflects a contextual
3B (TW) domain shift, likely due to token-
level confusion post-CAP.

Table 7: Representative examples of model predictions with and without CAP applied at various layers. Examples
highlight semantic degradation and conceptual drift caused by TW-CAP or TP-CAP applied to original models.

Task / Input Prompt Model CAP Layer | Prediction | Prediction | Observation / Interpretation
(Type) (No CAP) (W/ CAP)

IDM: prepare for eating by ap- | GPT2-S Layer 4 | cook heat CAP leads to a shift from action

plying heat is called a: " (TW) to cause, indicating surface-level
generalisation.

IDM: fail to attend an event or | LLaMA3.2- Layer 1| miss catch CAP appears to invert the mean-

activity is called a: " 3B (TW) ing, suggesting confusion in early
compositional buildup.

IDM: general term for any | Gemma- Layer 11 | bug un Invalid token generation suggests

insect or similar creeping or | 2B (TP) breakdown in compositional en-

crawling invertebrate is called coding

a:"

IDM: an institution of higher ed- | GPT2-S Layer 1 | college regular CAP reduces specificity, misclas-

ucation created to educate and (TP) sifying to a generic adjective.

grant degrees often a part of a

university is called a:"

SP: "one fourth" is a synonym | Gemmal- | Layer 10 | fourth half CAP merges related quantities but

of 2B (TW) loses precision, leading to broader
but incorrect substitution.

HP: "hotel" is a type of Qwen2.5- | Layer 16 | building room Shift from category to subcom-

3B (TW) ponent suggests CAP disrupted

higher-level abstraction.

HP: "hexagon" is a type of Qwen2.5- | Layer 16 | polygon plane Hierarchical class (shape) re-

3B (TW) placed by domain (geometry); ab-

straction misaligned.

Table 8: Representative examples of model predictions with and without CAP applied at various layers. Each
example shows the prompt, model, CAP configuration (layer and type), predictions, and qualitative interpretation.
All examples applied to fine-tuned (FT) models.

17

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
IDM (Inverse Dictionary Modelling)
1% 4.76% 4.44% 4.69% 8.04% 7.72% 7.22%
GPT2-small 25% 3.09% 2.74% 3.26% 5.87% 5.85% 6.24%
75% 2.64% 2.36% 2.74% 2.72% 2.47% 2.35%
100% 1.43% 1.24% 1.24% 0.46% 0.39% 0.39%
1% 16.75% 16.36% 13.77% | 24.51% 12.710% 7.44%
GPT2-medium 25% 6.73% 5.692% 6.22% 5.04% 4.84% 5.36%
75% 18.61% 2.13% 2.89% | 11.79% 2.09% 1.72%
100% 1.58% 0.41% 0.41% 2.27% 1.29% 1.29%
1% 8.06% 9.15% 6.70% | 10.61% 10.01% 7.83%
GPT2-large 25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%
100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%
1% 9791% 23.51% 23.75% | 57.58% 22.710% 21.99%
Gemma-2B 25% 86.32% 16.20% 19.27% | 50.45% 14.08% 15.57%
75% 52.38% 31.03% 24.74% | 21.77% 14.99% 12.80%
100% 6.87% 10.61% 10.61% | 2.21% 2.05% 2.05%
1% 2549% 24.99% 2494% | 2444% 23.42% 23.48%
Llama3-8B 25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%
100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%
1% 28.79% 26.36% 25.96% | 25.54% 22.71% 22.74%
Llama3-3B 25% 31.73% 8.08% 6.99% | 13.44% 5.84% 5.8%
75% 1227% 5.84% 5.22% 8.54% 5.03% 5.15%
100% 3.62% 1.99% 1.99% 2.37% 1.82% 1.85%
1% 10.12% 8.2% 8.23% 7.85% 6.39% 6.00%
Qwen2.5-0.5B 25% 5.19% 4.21% 4.45% 4.35% 3.29% 3.49%
75% 3.56% 2.82% 3.15% 2.39% 2.24% 2.15%
100% 0.98% 0.98% 0.98% 0.23% 0.28% 0.33%
1% 14.56% 11.04% 10.22% | 9.47% 7.36% 7.48%
Qwen2.5-1.5B 25% 1329% 4.45% 5.34% 6.83% 3.86% 4.00%
75% 7.03% 2.68% 2.84% 4.21% 2.74% 2.79%
100% 0.7% 0.4% 0.4% 0.65% 0.23% 0.23%
1% 12.63% 12.27% 11.44% | 7.85% 6.71% 6.48%
Qwen2.5-3B 25% 18.61% 8.59% 9.11% | 10.66% 4.75% 5.82%
75% 7.23% 4.00% 3.79% 3.65% 2.83% 2.8%
100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

Table 9: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B),
and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Inverse Dictionary Modelling (IDM)
task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned
settings, using three CAP protocols: Max, Mean, and Sum.

18

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
SP (Synonym Prediction)

1% 99.04% 99.04% 99.04% | 59.68% 49.40% 34.68%
GPT2-small 25% 98.56% 98.56% 97.60% | 61.09% 30.85% 29.64%
75% 96.15% 94.23% 93.75% | 40.12% 9.68% 10.48%

100% 6.73% 7.21% 7.21% 3.23% 2.42% 2.42%
1% 96.43% 96.43% 96.43% | 83.35% 82.50% 84.06%
GPT2-medium 25% 96.13% 96.43% 96.43% | 79.22% 80.22% 80.79%
75% 63.93% 48.30% 56.63% | 48.36% 23.23% 24.53%

100% 6.68% 341% 3.41% 6.55% 5.12% 5.12%
1% 98.49% 98.49% 98.06% | 78.61% 78.33% 80.17%
GPT2-large 25% 97.63% 97.63% 97.63% | 80.93% 81.78% 79.89%
75% 3427% 27.59% 28.52% | 11.91% 10.02% 10.49%

100% 1.29% 1.51% 1.51% 1.22% 39.12% 0.61%
1% 99.99% 99.80% 83.47% | 99.93% 99.15% 96.38%
Gemma-2B 25% 99.99% 97.46% 63.68% | 90.20% 90.24% 65.82%
75% 84.63% 60.66% 61.15% | 89.87% 75.68% 68.65%

100% 4.30% 8.69% 8.69% 2.98% 4.57% 4.57%
1% 99.99% 99.90% 99.90% | 99.99% 99.88% 99.88%
Llama3-8B 25% 85.55% 83.50% 82.81% | 87.63% 85.75% 85.63%
75% 53.35% 50.55% 49.77% | 31.29% 30.29% 29.91%

100% 9.28% 9.96% 9.96% 5.20% 5.82% 5.82%

1% 100% 100% 100% 100% 100% 100%
Llama3-3B 25% 85.81% 86.2% 85.16% | 88.47% 84.54% 85.48%
75% 40.18% 393% 3891% | 1477% 16.48% 15.64%

100% 5.77% 6.16% 6.16% 5.8% 6.12% 6.12%

1% 81.77% 88.89% 79.17% | 64.24% 58.36% 53.3%
Qwen2.5-0.5B 25% 90.8% 91.15% 86.11% | 54.51% 5438% 37.22%
75% 63.72% 66.32% 39.06% | 48.87% 48.57% 24.29%

100% 851% 10.07% 8.51% 3.67% 3.8% 3.8%
1% 89.35% 84.52% 84.23% | 64.55% 56.79% 56.03%
Qwen2.5-1.5B 25% 90.58% 83.48% 83.19% | 60.45% 55.5% 54.79%
75% 22.06% 2221% 188% | 10.88% 10.34% 10.02%

100% 6.82% 3.55% 3.55% 8.19% 7.87% 7.87%
1% 81.39% 81.53% 73.58% | 5593% 49.35% 49.57%
Qwen2.5-3B 25% 93.04% 8991% 82.81% | 72.41% 42.78% 38.47%
75% 77.84% 69.6% 4943% | 43.24% 22.13% 15.25%

100% 3.98% 3.13% 3.13% 1.4% 1.29% 1.29%

Table 10: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B),
and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Synonym Prediction (SP) task. Results
are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned settings, using
three CAP protocols: Max, Mean, and Sum.

19

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
HP (Hypernym Prediction)

1% 99.75% 99.75% 99.75% | 91.19% 91.08% 88.20%
GPT2-small 25% 99.47% 99.29% 98.94% | 81.35% 76.76% 72.63%
75% 95.40% 91.16% 91.32% | 48.75% 38.54% 38.40%

100% 8.12% 6.39% 6.39% 1.35% 1.38% 1.28%
1% 99.42% 99.40% 99.44% | 9342% 92.17% 91.69%
GPT2-medium 25% 99.11% 98.55% 97.85% | 91.64% 86.11% 85.76%
75% 74.83% 33.22% 41.52% | 3.86% 2.23% 2.33%

100% 4.42% 1.79% 1.79% 3.86% 2.23% 2.32%
1% 99.27% 99.32% 99.20% | 91.49% 90.90% 89.80%
GPT2-large 25% 98.81% 98.75% 98.10% | 87.30% 87.54% 84.16%
75% 45.17% 29.85% 35.66% | 7.61% 6.89% 6.22%

100% 2.14% 0.45% 0.90% 0.69% 0.50% 0.56%
1% 99.99% 98.97% 70.22% | 99.88% 95.39% 74.03%
Gemma-2B 25% 99.98% 90.58% 86.35% | 90.98% 73.78% 86.01%
75% 68.14% 80.06% 80.20% | 58.56% 72.57% 66.56%

100% 5.89% 10.99% 10.99% | 1.58% 2.12% 2.12%
1% 99.99% 99.99% 99.14% | 99.99% 99.10% 99.14%
Llama3-8B 25% 80.85% 7697% 76.81% | 72.67% 71.86% 71.40%
75% 2443% 2439% 23.11% | 19.65% 19.71% 18.77%

100% 3.83% 4.49% 4.49% 4.63% 4.04% 4.20%
1% 100% 99.95% 99.95% | 99.93% 99.86% 99.82%
Llama3-3B 25% 88.04% 83.87% 84.34% | 6553% 63.92% 64.17%
75% 26.06% 2447% 234% | 11.06% 10.52% 10.79%

100% 4.34% 4.31% 4.31% 3.85% 4.08% 3.86%
1% 93.76% 90.95% 85.27% | 86.33% 80.55% 7791%
Qwen2.5-0.5B 25% 97.12% 97.51% 89.18% | 74.83% 7541% 75.77%
75% 76.74% 77.96% 55.39% | 50.69% 49.71% 48.81%

100% 6.15% 5.56% 5.56% 2.48% 2.34% 2.34%
1% 97.14% 90.5% 88.96% | 88.52% 83.19% 77.21%
Qwen2.5-1.5B 25% 98.12% 95.66% 94.04% | 72.29% 68.18% 68.33%
75% 1827% 18.72% 17.94% | 8.94% 9.64% 9.51%

100% 7.13% 6.81% 6.81% 3.95% 3.8% 3.8%
1% 8326% 8241% 688% | 75.13% T72.56% 70.69%
Qwen2.5-3B 25% 97.36% 96.32% 88.81% | 92.69% 79.67% 79.63%
75% 86.56% 71.45% 4547% | 40.87% 30.95% 33.04%

100% 2.07% 1.89% 1.89% 0.45% 0.35% 0.41%

Table 11: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B,
8B), and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Hypernym Prediction (HP)
task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned
settings, using three CAP protocols: Max, Mean, and Sum.

20

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
IDM (Inverse Dictionary Modelling)

1% 93.00% 93.94% 96.56% | 77.912% 77.73% 80.28%
GPT2-small 25% 90.20% 87.85% 91.41% | 65.73% 6295% 72.31%
75% 87.81% 78.66% 84.90% | 55.74% 46.81% 55.73%

100% 48.10% 45.10% 38.04% | 11.11% 8.45% 8.11%
1% 87.96% 89.87% 92.52% | 81.12% 82.37% 81.83%
GPT2-medium 25% 77.06% 82.71% 86.54% | 69.53% 75.19% 77.55%
75% 76.35% 48.76% 57.68% | 60.60% 29.52% 33.12%

100% 29.23% 23.12% 23.21% | 13.03% 9.75% 9.94%
1% 87.06% 8991% 88.44% | 81.14% 8535% 79.46%
GPT2-large 25% 73.54% 78.18% 82.48% | 69.39% 73.85% T71.90%
75% 49.02% 42.06% 4038% | 20.59% 19.78% 21.45%

100% 28.14% 24.22% 24.78% 6.46% 6.67% 8.44%
1% 93.97% 91.19% 87.15% | 90.94% 84.44% 78.85%
Qwen2.5-0.5B 25% 84.64% 76.718% 78.00% | 76.36% 66.24% 67.16%
75% 61.75% 5795% 63.86% | 48.86% 41.8% 46.25%
100% 3229% 26.8% 19.5% 13.55% 10.17% 15.08%
1% 98.24% 958% 95.82% | 9331% 87.33% 80.81%
Qwen2.5-1.5B 25% 96.4% 84.72% 89.41% | 79.52% 63.00% 65.53%
75% 69.68% 64.6% 6033% | 19.11% 14.72% 24.01%
100% 68.03% 60.04% 56.6% 12.01% 746% 12.72%
1% 96.51% 94.37% 94.64% | 90.11% 86.02% 80.57%
Qwen2.5-3B 25% 96.82% 89.89% 92.39% | 90.24% 76.55% 76.28%
75% 8227% T14.71% 77.07% | 47.45% 36.06% 39.95%
100% 62.26% 62.21% 58.12% 7.41% 5.52% 8.18%

Table 12: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
SP (Synonym Prediction)

1% 99.99% 99.99% 99.99% | 64.90% 58.47% 53.22%
GPT2-small 25% 9297% 93.36% 93.36% | 61.27% 37.19% 74.69%
75% 9258% 90.63% 92.19% | 43.35% 20.57% 52.22%
100% 5846% 47.92% 51.43% | 13.27% 7.57% 12.45%
1% 97.55% 95.11% 99.99% | 88.92% 84.23% 84.80%
GPT2-medium 25% 97.55% 99.73% 97.55% | 75.00% 76.85% 85.65%
75% 71.20% 6821% 77.45% | 47.72% 22.16% 45.88%

100% 66.30% 39.40% 52.17% | 12.93% 6.68% 9.52%
1% 96.67% 98.33% 96.67% | 92.55% 80.76% 79.58%
GPT2-large 25% 96.67% 96.44% 97.90% | 79.44% 80.48% 82.86%
75% 78.83% 66.72% 66.32% | 18.63% 15.80% 21.00%

100% 67.10% 45.83% 56.68% | 9.69% 7.15% 8.33%
1% 99.32% 95.88% 92.87% | 81.67% 61.89% 57.95%
Qwen2.5-0.5B 25% 98.65% 9591% 96.45% | 60.19% 58.75% 58.43%
75% 9321% 84.66% 77.4% | 56.29% 493% 44.94%
100% 68.78% 45.74% 43.92% | 13.56% 7.47% 16.79%
1% 98.1% 96.33% 94.43% | 72.33% 58.5% 59.55%
Qwen2.5-1.5B 25% 97.55% 96.2% 95.38% | 63.79% 55.84% 68.93%
75% 75.72% 55.17% 48.41% | 19.33% 14.48% 26.87%
100% 70.39% 38.68% 36.29% | 18.73% 10.41% 20.97%
1% 96.47% 95.52% 90.31% | 74.05% 67.1% 56.57%
Qwen2.5-0.5B 25% 99.32% 98.1% 94.29% | 94.89% 56.93% 57.38%
75% 94.02% 89.46% 83.4% | 86.43% 64.01% 43.39%
100% 47.00% 35.56% 31.32% | 20.07% 15.19% 21.15%

Table 13: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.

21

o Original Fine-tuned
Model Layer Position Max Mean Sum Max Mean Sum
HP (Hypernym Prediction)

1% 99.40% 99.26% 47.24% | 89.31% 89.86% 88.76%
GPT2-small 25% 99.31% 98.12% 46.38% | 71.72% 73.12% 76.08%
75% 95.63% 91.78% 4557% | 47.73% 336.59% 48.32%

100% 65.62% 45.84% 34.80% 4.80% 3.64% 4.00%
1% 99.77% 99.56% 99.950% | 92.67% 90.40% 92.54%
GPT2-medium 25% 99.92% 99.35% 99.47% | 90.38% 84.29% 86.84%
75% 77.77% 58.17% 80.58% | 63.00% 21.55% 23.32%

100% 59.28% 2747% 30.54% 8.46% 5.10% 5.10%
1% 99.77% 99.71% 99.76% | 91.63% 92.56% 88.92%
GPT2-large 25% 99.82% 98.72% 98.82% | 8531% 8535% 84.58%
75% 66.58% 49.79% 63.56% 9.87% 8.79% 9.73%

100% 3557% 24.79% 26.69% 6.99% 5.05% 4.82%
1% 99.06% 97.77% 9297% | 94.46% 81.39% 79.64%
Qwen2.5-0.5B 25% 99.85% 98.54% 96.95% | 75.14% 76.07% 86.94%
75% 94.87% 87.81% 8837% | 56.27% 53.09% 63.33%
100% 68.71% 2791% 27.92% 10.6% 7.68% 15.16%
1% 99.81% 97.07% 92.75% | 90.34% 84.61% 78.76%
Qwen2.5-1.5B 25% 99.64% 97.97% 96.98% | 72.81% 68.48% 77.13%
75% 84.28% 47.63% 43.15% | 17.12% 14.76% 28.18%
100% 82.22% 26.00% 27.7% 13.49% 9.08% 17.98%
1% 93.95% 91.81% 82.05% 77.6% 73.86% 71.41%
Qwen2.5-3B 25% 99.24% 98.54% 95.97% 93.6% 80.32% 80.77%
75% 94.48% 8891% 78.88% | 54.32% 38.19% 57.87%
100% 55.28% 27.4% 25.1% 15.1% 8.77% 13.77%

Table 14: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and

Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.

22

	Introduction
	Tokenisation and compositionality in LLMs
	Assessing compositional aggregation robustness
	Empirical analysis
	Experimental setup & datasets
	Results and discussion

	Information Gain & Token Mutual Information
	Related work
	Conclusion
	Compositionality and Localisation
	Elaborations on Experimental Setup
	Downstream Task Definitions
	Dataset Descriptions and Preprocessing
	Model Specifications and Fine-tuning Parameters
	Handling of Sequence Reduction and Positional Encoding in CAP

	Token Reduction Analysis
	Evaluating Parsing Accuracy and Addressing the Impact of Benepar Parser Errors
	Detailed Performance Evaluation and Results
	Baseline Performance
	Qualitative Analysis of CAP-Induced Prediction Shifts.
	Comprehensive CAP Results for All Models and Tasks

