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Abstract

Motivated by the first priority of safety in many
real-world applications, we propose MAXSAFE,
a chance-constrained bi-level optimization frame-
work for safe reinforcement learning. MAXSAFE
first minimizes the unsafe probability and then
maximizes the return among the safest policies.
We provide a tailored Q-learning algorithm for the
MAXSAFE objective, featuring a novel learning
process for optimal action masks with theoretical
convergence guarantees. To enable the applica-
tion of our algorithm to large-scale experiments,
we introduce two key techniques: safety polar-
ization and safety prioritized experience replay.
Safety polarization generalizes the optimal action
masking by polarizing the Q-function, which as-
signs low values to unsafe state-action pairs, ef-
fectively discouraging their selection. In parallel,
safety prioritized experience replay enhances the
learning of optimal action masks by prioritizing
samples based on temporal-difference (TD) errors
derived from our proposed state-action reacha-
bility estimation functions. This approach effi-
ciently addresses the challenges posed by sparse
cost signals. Experiments on diverse autonomous
driving and safe control tasks show that our meth-
ods achieve near-maximal safety and an optimal
reward-safety trade-off.
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1. Introduction
Safety is a critical bottleneck for deploying reinforcement
learning (RL) algorithms in real-world applications due to
the catastrophic consequences of unsafe decisions, such as
crashes in autonomous driving (Leurent & Mercat, 2019).
In such scenarios, safety takes precedence over all other
objectives, and RL algorithms must prioritize achieving
maximal safety (Gu et al., 2024; Garcı́a & Fernández, 2015).
A widely adopted framework for safe RL is the Constrained
Markov Decision Process (CMDP) (Altman, 1999; Achiam
et al., 2017; Tessler et al., 2019; Ray et al., 2019; Yang et al.,
2022), which enforces safety by constraining the expected
cumulative safety cost to remain below a predefined budget.
While this framework provides a practical way to manage
safety constraints, it is inherently limited to ensuring a user-
specified safety level rather than learning the optimal safety
cost. Furthermore, CMDP-based algorithms typically rely
on dense cost signals to guide the agent’s behavior, making
them ill-suited for scenarios where safety costs are sparse
but highly consequential. To address these limitations, our
work focuses on developing RL algorithms that maximize
cumulative rewards while ensuring the unsafe probability is
minimized.

There are two primary methodologies in the literature for
providing frequent safety guidance to learning agents: ac-
tion correction and action masking. Action correction modi-
fies unsafe actions by either replacing them with safe ones
based on a predefined backup policy or projecting them
back to the safe set (Alshiekh et al., 2017; Zhang et al.,
2023). However, this approach often leads to suboptimal re-
wards due to the over-conservatism of the backup policy or
projection. In contrast, action masking excludes unsafe ac-
tions, allowing agents to explore safe options and potentially
achieve optimal rewards while maintaining maximal safety.
Despite its promise, designing effective action-masking pro-
cedures remains challenging. For instance, Srinivasan et al.
(2020) masks actions with unsafe probabilities exceeding
a fixed threshold ε. However, this uniform, state-agnostic
threshold may fail to differentiate actions with varying un-
safe probabilities, limiting the policy’s ability to learn the
safest actions and compromising safety performance.

In this work, we propose a novel chance-constrained bi-
level optimization framework, namely MAXSAFE, for the
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maximal-safety RL problem. In our framework, we mask
the actions where the estimated unsafe probability is above
a state-dependent safety threshold ζ(s) that is learned from
the interaction with the environment. Our estimated unsafe
probability is the undiscounted safety cost of the optimal
policy, which is more aligned with the definition of the
unsafe probability compared to the discounted cost used
in Srinivasan et al. (2020). This undiscounted safety cost
is learned by our proposed state-action dependent reacha-
bility estimation (namely the SA-REF backward induction),
which is adapted from the techniques in Ganai et al. (2023).
We show theoretically that our SA-REF backward induction
converges to the unsafe probability of the optimal policy
(Theorem 4.3). We then show that jointly learning the policy
and the action mask rules (including the unsafe probability
and the state-dependent safety threshold) yields the optimal
policy (Theorem 4.4).

To enable applications in large-scale safety-critical RL tasks,
we propose a soft masking technique called safety polar-
ization, based on a pre-selected polarization function fpol .
This technique reduces the Q-function values used for action
selection under unsafe state-action pairs, with the decrement
in Q-value determined by the unsafe probability and a state-
dependent threshold. To better address the sparsity of safety
cost signals, we incorporate techniques inspired by Prior-
itized Experience Replay (PER) in Q-learning (Schulman
et al., 2017), originally designed for sparse reward signals.
Specifically, we use the TD error of our proposed SA-REF
to prioritize samples in the replay buffer. This prioritiza-
tion enables the algorithm to focus on safety-critical transi-
tions. It enhances the learning of unsafe probabilities and
improves the safety performance of the algorithm. We con-
duct extensive experiments on autonomous driving and safe
control tasks, demonstrating that our proposed algorithms,
SPOM and SPOM PER, achieve superior safety and the
best reward-safety trade-off among state-of-the-art safe RL
methods (Section 6).

2. Related Work
Constrained RL by CMDP. The classical framework ad-
dressing safety constraints in RL is the CMDP (Altman,
1999), which aims to maximize the expected reward while
keeping the expected cost below a predetermined threshold.
Primal-dual approaches use Lagrangian relaxation to trans-
form the original constrained optimization problem into an
unconstrained one, as in PPOLag (Ray et al., 2019) and
RCPO (Tessler et al., 2019). Trust region methods perform
local policy improvements within the constrained region,
such as CPO (Achiam et al., 2017), FOCOPS (Zhang et al.,
2020), and CUP (Yang et al., 2022). Recent studies have
incorporated Hamilton-Jacobi reachability (Bansal et al.,
2017) into the CMDP framework to identify the largest fea-

sible set, thereby enhancing safe policy optimization, as in
RCRL (Yu et al., 2022a) and RESPO (Ganai et al., 2023).

Action-correction-based Safe RL. The first line of works
replace the detected unsafe action to a safe one instructed
by a backup policy, e.g., a shielding policy via formal meth-
ods (Alshiekh et al., 2017; Anderson et al., 2020), a re-
covery policy (Thananjeyan et al., 2020) that recovers the
agent back to safe states, an intervention policy (Wagener
et al., 2021), a safety editor policy (Yu et al., 2022b), etc.
Another line of works project the unsafe action back to
the safe set, e.g., the projection based on control barrier
function (Cheng et al., 2019) with known dynamics, the
Unrolling Safety Layer (Zhang et al., 2023), the Reduced
Policy Optimization method (Ding et al., 2023), the Barrier
Certificate method (Yang et al., 2023), etc. In general, the
performance of the above methods might be sub-optimal
due to the over-conservative nature of the backup policy or
the projection operation.

Action Masking for Safe RL. A large body of works use
specific assumptions or prior knowledge to build action
masks (Krasowski et al., 2023) for safe RL. Fulton & Platzer
(2018; 2019) construct the action masks based on theorem
proving of differential dynamic logic specifications (Platzer,
2008), which require the knowledge of the system dynam-
ics. Kalweit et al. (2020) propose Constrained Q-Learning
where the action masking is done via a set of one-step cost
constraints that query the dynamics to check whether the
next state is inside the constraints. Huang & Ontanón (2022)
give a more detailed analysis of the effects of action mask-
ing under the context of policy gradient algorithms. For
specific tasks, there are works studying action masking for
autonomous driving (Mirchevska et al., 2018; Brosowsky
et al., 2021; Krasowski et al., 2022) and traffic light con-
trol (Muller & Sabatelli, 2022) to ensure safety. Most of
the above works require domain knowledge that is not al-
ways accessible. In terms of learning approach, the typical
example is the Safety Q-functions for RL (SafeQ) proposed
in Srinivasan et al. (2020) and also in Tan et al. (2024),
which is then extended to other settings, e.g., safe explo-
ration (Bharadhwaj et al., 2021). As we will show, SafeQ
might fail to achieve the minimal unsafe probability.

Hamilton-Jacobi Reachability and Reachability Estima-
tion Function. Early works employ Hamilton-Jacobi(HJ)
reachability value functions to assess state feasibility, re-
lying on known system dynamics and numerical meth-
ods (Ganai et al., 2024). Some studies approximate un-
known dynamics using Gaussian Processes (Zhao et al.,
2023) or symbolic regression (Wang & Zhu, 2024). Once
reachability is computed, the state space is partitioned
into feasible/infeasible regions to guide policy optimiza-
tion (Zheng et al., 2024). Other works focus on formal safety
verification of DRL systems (Dong et al., 2024). However,
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HJ-based value functions are not well-suited for stochastic
MDPs during RL training. To address this, reachability es-
timation function(REF) estimates unsafe probabilities via
backward reduction. Our work extends REF to the state-
action level, enabling state-dependent action masking to
reduce safety violations.

Prioritized Experience Replay for Off-policy RL. Prior-
itized Experience Replay (PER) is a widely adopted tech-
nique in RL, designed to address the inefficiency of uniform
sampling in replay buffers. Initially introduced by Schul-
man et al. (2017), PER assigns priorities to transitions based
on their TD errors, enabling agents to learn more effectively
from high-impact experiences. Variants of PER have been
explored, such as annealing the prioritization exponent over
time (Horgan et al., 2018) and incorporating multi-step re-
turns into the prioritization process (Hessel et al., 2018) to
improve stability and learning efficiency. In our work, rather
than applying prioritization to the learning of the Q-function,
we tailor the prioritization process to the learning of our pro-
posed SA-REF function, addressing the challenges posed
by sparse and critical cost signals.

3. Preliminaries
In safe RL, most of the algorithms are designed un-
der the formulation of the Constrained Markov Decision
Process (CMDPs), which is defined as a tuple M =
(S,A, P, r, c, γ, ρ), where S is the state space, A is the
action space, P : S × A → ∆(S)1 is the transition prob-
ability function, r : S × A → R is the reward function,
c : S × A → R+ is the cost function, γ ∈ (0, 1) is the dis-
count factor and ρ is the initial state distribution. Typically,
the reward value function and the cost value function are de-
fined respectively as V πr (s) = Eτ∼(π,P )[

∑∞
t=0 γ

tr(st, at)]
and V πc (s) = Eτ∼(π,P )[

∑∞
t=0 γ

tc(st, at)], where τ =
{s0 = s, a0, s1, · · · } ∼ (π, P ) denotes a trajectory starting
from s under the given policy π and transition function P .
The goal is to find a policy π : S → ∆(A) that maximizes
the expected discounted cumulative reward while ensuring
that the cost value function remains below a predefined
safety budget d. Formally:

max
π

Es0∼ρ[V πr (s0)]

s.t. Es0∼ρ[V πc (s0)] ≤ d.
(1)

The CMDP framework ensures agents operate within an ex-
pected safety budget, but it may fall short in safety-critical
scenarios where a single unsafe action can cause catas-
trophic failure. This necessitates a stricter safety-oriented
framework.

We introduce Su ⊆ S to be the set of unsafe states. In this
paper, we assume that any unsafe state su ∈ Su is an absorb-

1∆(B) denotes the set of probability distributions over set B.

ing state, meaning that the episode will terminate once the
agent enters this region. This assumption imposes a stricter
safety constraint, motivated by the critical importance of
safety in practical applications. The overall goal of our pro-
posed MAXSAFE framework consists of chance-constrained
bi-level objective which maintains unsafe probability as low
as possible while maximizing the return:

max
π

Es0∼ρ[V πr (s0)]

s.t. π ∈ argmin
π

Pr
s0∼ρ,
τ∼(π,P )

[∃st ∈ τ : st ∈ Su]. (2)

We assume that there is sufficiently large policy space with
minimum unsafe probability, e.g., zero unsafe probability.
Such environments are common in autonomous driving and
robotic control, for instance there are many possible driving
policies that allow a vehicle to operate safely on the road
without collisions. Also, this assumption is already explored
in the literature, e.g., Ganai et al. (2023), which assumes
the existence of safest policies with zero cost.

Let π∗ be an optimal policy of MAXSAFE objective (2) and
let ζ(s) denote the unsafe probability at state s under π∗,
which is in fact minimal,

ζ(s) := Pr
τ∼(π∗,P )

[∃st ∈ τ : st ∈ Su|s0 = s]. (3)

Then we can define the optimal action mask Cζ(s) for
MAXSAFE as the set of safest actions at state s

Cζ(s) = {b ∈ A | Pr
τ∼(π∗,P )

[∃st ∈ τ : st ∈ Su|s0 = s,

a0 = b] ≤ ζ(s)}.
(4)

For tabular MDPs, Cζ(s) is optimal in the sense that, if
we know Cζ(s), we can define the Bellman operator Bζ :
R|S||A| → R|S||A| with optimal action masking Cζ ,

BζQ(s, a) = r(s, a) + γEs′ max
a′∈Cζ(s′)

Q(s′, a′), (5)

which can be iteratively applied to find an optimal policy
under MAXSAFE framework, as shown in the following
lemma:

Lemma 3.1. The following results hold:

(1) (Contraction). The Bellman operator (5) is a γ-
contraction and thus has a unique fixed point, which is
denoted by Q∗

ζ .

(2) (Safety Optimality). For all s ∈ S , we define π∗
ζ (s) :=

argmaxa∈Cζ(s)Q
∗
ζ(s, a) to be the corresponding pol-

icy induced by Q∗
ζ . Then the safety of π∗

ζ is optimal:
π∗
ζ ∈ argminπ Prs0∼ρ,τ∼(π,P )[∃st ∈ τ : st ∈ Su].

(3) (Reward Optimality). Reward of π∗
ζ is optimal among

the safe policies: Es0∼ρ[V π
∗
(s0)] = Es0∼ρ[V π

∗
ζ (s0)].

3



Safety-Polarized and Prioritized Reinforcement Learning

The proof of Lemma 3.1 can be found in Appendix B.1.
Grounded by Lemma 3.1, in the following section, we focus
on designing an algorithm that learns Cζ(s) on the fly which
then guides the Q-function to select the action with optimal
reward among the safest actions and thus ensure maximal
safety and reward to solve our MAXSAFE objective (2).

4. Learning the Optimal Action Masks
In this section, we focus on learning state-dependent optimal
action masks Cζ(s). Ganai et al. (2023) proposed a reacha-
bility estimation function (REF) to capture the probability
of constraint violation at state s under a given policy. In
our work, we extend the definition of REF to be state-action
dependent. As shown in Section 4.1, this extended REF can
serve as an estimate of the unsafe probability for a given
state-action pair. It is then utilized to construct our action
masks, forming the foundation of our learning solution to
the MaxSafe objective (2).

4.1. State-Action Reachability Estimation Functions

Definition 4.1. Given a policy π, we define the state-action
reachability estimation function (SA-REF) ψπ : S ×A →
[0, 1] as follows,

ψπ(s, a) := Eτ∼(π,P )

[
max
st∈τ

I[st ∈ Su]
∣∣ s0 = s, a0 = a

]
,

(6)

ψπ(s, a) represents the unsafe probability at state s and
action a under the current policy π, that is, ψπ(s, a) =
Prτ∼(π,P )[∃st ∈ τ : st ∈ Su|s0 = s, a0 = a]. Expressing
in the form of Equation (6) provides a convenient way to
compute ψπ(s, a) via backward induction.
Lemma 4.2. We have the following Bellman backup for the
SA-REF ψπ:

ψπ(s, a) =max{I[s ∈ Su],
Es′∼P (·|s,a),a′∼π(·|s′)[ψ

π(s′, a′)]}.
(7)

The proof of Lemma 4.2 is in Appendix B.3. For conve-
nience, we define the optimal SA-REF ψ∗ := ψπ

∗
where π∗

is our optimal policy of MAXSAFE. Based on our SA-REF
formulation, we can rewrite the definition in Equation (3) as

ζ(s) = Ea∼π∗(s)[ψ
∗(s, a)] = min

a∈A
ψ∗(s, a) (8)

since π∗ reaches the minimum unsafe probability, and the
optimal action mask becomes

Cζ(s) = {b ∈ A | ψ∗(s, b) ≤ ζ(s) = min
a∈A

ψ∗(s, a)}. (9)

Therefore, to find the optimal action mask Cζ , we would like
to learn the function ψ∗. Fortunately, this can be done via
backward induction by mimicking π∗ to take actions with
the minimum unsafe probability as follows.

Theorem 4.3. (Optimal SA-REF backward induction)
For tabular MDPs, with ψ0 = 0, the update

ψt+1(s, a) = max{I[st ∈ Su],Es′∼P (·|s,a) min
a′∈A

ψt(s
′, a′)}

(10)
will converge to the optimal SA-REF ψ∗ as t→ +∞.

The proof of Theorem 4.3 is deferred to Appendix B.3.

4.2. Safe Q-Learning with Optimal Action Masks

With Theorem 4.3, we provide an update of ψt in the finite-
sample form and incorporate this update with the Q-learning
algorithm to obtain a safe Q-learning algorithm with theo-
retical convergence-to-optimality guarantees.

The ψ update, starting from ψ0 = 0, goes as follows

ψt+1(st, at) = (1− βt)ψt(st, at)+
βtmax{I[st ∈ Su], min

a′∈A
ψt(st+1, a

′)}, (11)

where 0 < βt ≤ 1 is the step size, each at ∼ πb(·|st) is
sampled from a behavior policy πb. Following Equation (9)
we then define the learned optimal action masks as

Cζt(s) := {b ∈ A | ψt(s, b) ≤ ζt(s)}, (12)

where for a small enough constant κ > 0, ζt(s) :=
mina∈A ψt(s, a) + κ. Here κ is needed in order to tol-
erate the stochastic approximation error during the learning
process. Note that the threshold function ζt(s) is state-
dependent, which is the key for the action masks Cζt to
optimality.

We now propose our safe Q-learning update with optimal
action masks:

Qt+1(st, at)←(1− βt)Qt(st, at)+
βt(r(st, at) + γ max

a′∈Cζt (st+1)
Qt(st+1, a

′)),

(13)
where the difference from the original Q-learning algorithm
is that the action maximizing Q at the next state s′ is chosen
only from the learned optimal action mask during iteration
t as Cζt(s′). Now the learned policy is of the form

πt(s) := arg max
a∈Cζt (s)

Qt(s, a). (14)

The following convergence analysis is based on the fact that
Cζt(s′) will be the same as the optimal Cζ(s′) for t large
enough and after that the Q-update (13) will stably converge.

Theorem 4.4. For tabular MDPs, suppose the following
conditions hold:

(1) each state-action pair (s, a) is infinitely visited;

(2) the step size sequence {βt}t≥0 satisfies 0 < βt ≤ 1
and

∑
t≥0 βt = +∞,

∑
t≥0 β

2
t < +∞;
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Algorithm 1 Safety-Polarized Optimal action Masks with
Prioritized Experience Replay (SPOM PER)

1: Require: a polarization function fpol, safety prioritiza-
tion exponent α, importance sampling exponent θ

2: Initialize: a safety prioritized replay buffer D, Q-
network Q, ψ-network ψ, along with target networks Q̄
and ψ̄

3: for each time step do
4: Take action at based on π(st) (cf. Equation (17))

combined with any exploration strategy, e.g., ϵ-
greedy

5: Store the collected sample (st, at, rt, st+1) into D
with maximal priority pt = maxi<t pi

6: for each update step do
7: Sample a mini-batch of data (si, ai, ri, si+1) from

replay buffer according to their priorities i ∼ P (i)
(cf. Equation (19))

8: Compute importance sampling weight based wi
(cf. Equation (20))

9: Compute

aQi+1 = argmax
a∈A

Q(si+1, a) + fpol(1− ψ(si+1, a))

10: Compute Q targets yQi = ri + γQ̄(si+1, a
Q
i+1)

11: Minimize MSE loss between Q(si, ai) and yQi
12: Compute aψi+1 = argmina∈A ψ(si+1, a)
13: Compute ψ targets

yψi = max{I[si ∈ Su], γψ̄(si+1, a
ψ
i+1)}

and ψ-TD errors δi = yψi − ψ(si, ai)
14: Minimize weighted MSE loss between ψ(si, ai)

and yψi based on wi (cf. Equation (20))
15: Update transition priority pi based on ψ-TD errors
16: Update target networks Q̄ and ψ̄
17: end for
18: end for

(3) κ > 0 is small enough to identify the gap between
Cζ(s) and A \ Cζ(s), i.e., ∀b ∈ Cζ(s), e ∈ A \ Cζ(s),

ψ∗(s, b) + 2κ < ψ∗(s, e), (15)

then the ψt update in Equation (11) will converge to the
optimal SA-REF ψ∗, and our safe Q-learning update in
Equation (13) will converge to Q∗

ζ . Thus, the learned pol-
icy πt(s) will converge to an optimal policy π∗

ζ under our
MAXSAFE objective (2).

The proof of Theorem 4.4 is deferred to Appendix B.4.

5. Deep Q-Learning with Safety Polarization
and Safety Prioritized Experience Replay

In this section, we mainly focus on how we combine modern
deep Q-learning algorithms to solve practical safety-critical
RL tasks. In Section 5.1, we focus on a practical implemen-
tation that transfers our proposed masking strategy using
the polarization function. In Section 5.2, we adopt a tech-
nique inspired by prioritized experience replay to further
help maximize safety in long-horizon sparse cost signal
scenarios.

5.1. Safety Polarization for Q-functions

To fully implement our learned action masking in a deep RL
algorithm, we define the gating operator as

Γη(x) =

{
0, x ≤ η
1, otherwise.

Our action masking Cζt(s) defined in Equation 12 can be
viewed as adding −∞ to Qt at the masked action while
adding 0 to Qt at other action. Specifically, for actions
where Γζt(s)(ψ(s, a)) = 1, we penalize Qt during training.
We implement the following class of polarization function to
combine with the learned Q-function. Formally, we define
the polarization function class as follows:
Definition 5.1. Define the polarization function class Fpol

as the set of all polarization functions fpol : [0, 1] →
[−∞, 0] which is a monotonically increasing function satis-
fying fpol(1) = 0, fpol(0) := limx→0+ fpol(x) = −∞.

Examples of polarization functions include c · log(x), 1− 1
xc

for a constant value c > 0. Together with the gating operator
Γη and our learned optimal action mask Cζt(s), we derive
our learned MaxSafe policy can be rewritten as

πt(s) = arg max
a∈Cζ(s)

Qt(s, a)

= argmax
a∈A

[
Qt(s, a) + fpol(1− Γζ(s)(ψt(s, a)))

]
. (16)

During implementation, we further get rid of the hard mask-
ing rule induced by the gating operator Γ, and compose the
Q-function Qt with the SA-REF ψt through f as follows:

πt(s) := argmax
a∈A

Qt(s, a) + f(1− ψt(s, a)). (17)

Intuitively, if a state-action pair (s, a) is measured to be
unsafe, 1− ψt(s, a) will be close to 0, then f(1− ψt(s, a))
will be close to −∞ and the action a is likely not to be
chosen at state s since Qt(s, a) + fpol(1− ψt(s, a)) is very
low. Therefore the actions below the state-dependent thresh-
old ζt(s) are more likely to be selected. The choice of the
polarization function fpol provides a balance between explo-
ration and safety: we focus more on safety if fpol converges
faster to −∞ as x→ 0+, we encourages more exploration
otherwise.
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5.2. Safety Prioritized Experience Replay

Prioritized Experience Replay (PER) enhances off-policy
RL by assigning priorities to transitions based on their TD
errors, emphasizing those with the highest learning potential.
This approach improves sample efficiency and accelerates
convergence, particularly in scenarios with sparse reward
signals. In our work, to address the challenge of sparse cost
signals, we leverage PER to enhance the learning of the ψ
network. The motivation behind this approach is similar
to that of PER in traditional Q-learning, where transitions
with larger TD errors are prioritized to accelerate learning.
Furthermore, importance sampling is employed to mitigate
the distribution shift introduced by the prioritization process.

Specifically, we introduce a prioritization technique tailored
for the ψ network. The priority of a transition i is deter-
mined by the ψ-TD error, defined as

δi = max{I[si ∈ Su],min
a∈A

ψt(si+1, a)} − ψt(si, ai),
(18)

where the priority pi is calculated as pi = |δi|+ ϵ. Here, ϵ
is a small positive constant added to ensure that transitions
are not excluded from sampling when their error becomes
zero. The sampling probability for each transition is then
computed using the prioritization heuristic:

P (i) =
pαi∑N
k=1 p

α
k

, (19)

where α ∈ [0, 1] controls the degree of prioritization. Unlike
traditional PER in Q-learning, our prioritization scheme
is explicitly tied to the learned ψ network, reflecting the
specific requirements of safety-critical scenarios.

Since safety prioritized experience replay introduces sam-
pling bias by altering the transition distribution, we correct
this bias using importance-sampling (IS) weights during the
ψ update. The IS weight for a sampled transition i is defined
as:

wi =

(
1

N
· 1

P (i)

)θ
, (20)

where N is the size of the replay buffer, and θ ∈ [0, 1]
controls the degree of correction. Then the update of our ψ
network will become

ψt(st, at)←(1− wtβt)ψt(st, at)+
wtβtmax{I[st ∈ Su], min

a′∈A
ψt(st+1, a

′)}.
(21)

By incorporating safety-prioritized experience replay, our
approach effectively enhances the learning of the ψ network,
particularly in environments with long-horizon tasks and
sparse cost signals. This integration improves both safety
and sample efficiency.

5.3. Practical Implementation

For large-scale tasks with discrete action space A based on
DQN (Mnih et al., 2015), we use neural networks Q and
ψ to approximate the optimal Q-function and the SA-REF,
respectively (the corresponding target networks are Q̄ and
ψ̄). We select the Sigmoid function as the activation for
the output layer of the ψ-network to ensure that its output
remains bounded within the range [0, 1]. The pseudo-code
is presented in Algorithm 1.

When computing the targets for Q and ψ updates, we use a
double-Q-learning-style implementation (Van Hasselt et al.,
2015). Specifically, at lines 9 and 10 of Algorithm 1, the
target for Q is computed by querying the action aQi+1, which
combines the max Q-value with the safety polarization func-
tion penalty at the next state si+1. This is done using the
current policy π, composed of the current Q and ψ. Sim-
ilarly, the target for ψ (computed at lines 12 and 13 of
Algorithm 1) follows the same principle. Note that for the
ψ target at line 12, we multiply ψ̄ by the discount factor γ
to reduce the long-term variance in ψ backward induction.
This approach is analogous to the multiplication of Q̄ by γ
in DQN.

For the polarization function fpol used in our experiments,
we select 10 · log(x) which demonstrates the best empirical
performance. Additionally, we conduct an ablation study to
analyze the effects of different polarization functions (see
Section 6.3).

6. Experiments
6.1. Experiment Setup

Benchmarks. Our evaluation adopts the following four
tasks: TwoWay, Merge, Roundabout, and Intersection.
These tasks are from the highway-env environment (Leurent,
2018; Leurent & Mercat, 2019), designed for simulated au-
tonomous driving with diverse objectives that require intri-
cate behaviors to safely achieve the corresponding goals.
Additionally, our evaluation includes classical safe control
tasks such as Adaptive Cruise Control (ACC) (Anderson
et al., 2020) and Circle (Achiam et al., 2017). We highlight
that the cost functions used for the CMDP-based methods
are designed as c = 1 when a crash happens, and 0 oth-
erwise. More details about the environments, e.g., state
spaces, action spaces, reward functions, etc., can be found
in Appendix C.1.

Baselines. Our base unconstrained RL is DQN which,
in our implementation, uses the double Q-learning tech-
nique (Van Hasselt et al., 2015) by default. Other safe RL
baselines include the following:

• Reward Shaping. The reward is shaped to −10 when

6
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Table 1. SPOM PER achieves the best safety-reward tradeoff in terms of SWU score, while SPOM performs the best among the
remaining safe-RL baselines.

SWU Score ↑ TwoWay Merge Roundabout Intersection ACC Circle Overall

SPOM PER (ours) 0.98 0.94 1.22 0.68 1.07 0.96 0.98
SPOM (ours) 0.88 0.95 0.40 0.96 0.87 0.37 0.74
SafeQ 0.73 0.84 0.63 0.75 0.50 0.15 0.60
Recovery 0.34 0.66 0.81 0.66 0.85 0.25 0.60
RCDQN 0.41 0.81 0.48 0.57 0.46 0.14 0.48
RewsDQN 0.33 0.92 0.48 0.50 0.47 0.11 0.47
DQN 0.37 0.56 0.48 0.58 0.46 0.13 0.43
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Figure 1. Training curves of SPOM, SPOM PER and baselines in the four tasks from highway-env. The x-axis represents the number of
steps, and the y-axis: the first row is episode reward (higher is better); the second row is safety measured in crash rate (lower is better).
All experiments are run over 6 random seeds and the shaded areas are 95% confidence interval.

a crash occurs, which is a strong penalty, and we label
the reward-shaped DQN variant as RewsDQN.

• Direct ε-Masking. This is the SafeQ (Srinivasan et al.,
2020) as discussed before, which masks out the actions
whose estimated unsafe probability by a safety critic is
greater than ε. The original actor-critic based algorithm
in Srinivasan et al. (2020) is modified to be DQN-
based.

• Recovery RL. Originated from Thananjeyan et al.
(2020), labeled as Recovery here, this corresponds
to the action correction approach, where a task policy
selects an action, but if the estimated unsafe probability
from a safety critic is greater than ε, the action will be
corrected by a learned recovery policy. The task policy
and recovery policy are implemented via DQN.

• CMDP-based RL. We choose the reward constrained
approach in Tessler et al. (2019) which constrains the
reward through r − λc, where λ is the Lagrange mul-
tiplier and c is the cost signal corresponding to crash.
Then we use DQN to learn upon this constrained re-
ward. We denote this baseline by RCDQN.

For SafeQ and Recovery, the parameter ε is chosen to be
0.1 throughout experiments. Note that the above baselines
are implemented via DQN for fair competition, while the

common CMDP-based RL is built on an actor-critic frame-
work. For completeness and clarity of presentation, we add
additional CMDP-based approaches RESPO (Ganai et al.,
2023), PPOLag (Ray et al., 2019), which use Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) as the base
RL algorithm, in Appendix C.3, where we find that they fail
to optimize under our environments since the cost signal
corresponding to a crash is very sparse. The detailed imple-
mentations and hyperparameters of these baselines and our
algorithm SPOM and its safety prioritized experience replay
version SPOM PER are provided in Appendix C.2. Eval-
uation Metric. To clearly quantify the trade-off between
rewards and safety, we follow Yu et al. (2022b) and com-
pute the safety-weighted-utility (SWU) score as the final
evaluation metric. The SWU score is defined as:

SWU := min
{
1,

UnsafeRateTarget

UnsafeRate

}
· Utility

UtilityBaseRL

,

where BaseRL refers to the unconstrained RL algorithm
DQN in our experiments. We choose the Utility to be the
episode reward, and UnsafeRate is the crash rate. The
UnsafeRateTarget is chosen as the minimal crash rate
among the compared methods for each environment, since
we aim at achieving the maximal safety. To reduce variance,
Utility, UnsafeRate and UnsafeRateTarget are averaged
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Figure 2. Training curves of SPOM, SPOM PER and baselines in the classical safe control tasks: ACC and Circle. The x-axis represents
the number of steps, and the y-axis: the first row is episode reward (higher is better); the second row is safety measured in crash rate
(lower is better).

over the last 1
10 training steps (Yu et al., 2022b).2

6.2. Main Results

First, our proposed algorithms, SPOM PER and SPOM,
consistently achieve the best performance across all tasks,
demonstrating their effectiveness in balancing safety and
rewards. As shown in Table 1, SPOM PER achieves the
highest average SWU score of 0.90, followed by SPOM
with a score of 0.79, outperforming all other baselines by a
significant margin.

For the classical safe control tasks, ACC and Circle,
SPOM PER, thanks to the prioritization mechanism in the
replay buffer for the learning of the ψ network, achieves
significantly lower crash rates compared to other methods
while ensuring convergence to higher episode rewards. In
comparison, SPOM also performs competitively in ACC
and Circle but slightly lags behind SPOM PER in terms of
crash rate reduction. Baselines such as Recovery perform
reasonably well in ACC, but their inherent conservativeness
leads to suboptimal rewards, and they struggle significantly
in Circle.

For the four tasks from highway-env, both SPOM
and SPOM PER demonstrate leading performance.
SPOM PER achieves the highest SWU scores in Merge
and Roundabout, while SPOM leads in TwoWay and In-
tersection. The performance gap between SPOM and

2Code for the experiments is available at https://github.
com/FrankSinatral/Safety-PP.git.

SPOM PER is relatively small in these tasks, which we at-
tribute to the shorter episode lengths in the highway environ-
ment, reducing the impact of the prioritization mechanism.
Compared to baselines, SafeQ performs moderately well in
Merge and Intersection but struggles to achieve competitive
SWU scores in other tasks, failing to effectively balance
safety and rewards. Methods like Recovery and RCDQN
exhibit more conservative behavior, achieving lower crash
rates at the cost of significantly reduced rewards. DQN
and RewsDQN, on the other hand, fail to manage safety
effectively, resulting in much lower SWU scores across all
tasks.

Overall, the results validate that SPOM PER and SPOM
are highly effective in optimizing the trade-off between
safety and rewards, with SPOM PER excelling in long-
horizon tasks and maintaining the highest overall SWU
score.

6.3. Ablation Studies

We conduct ablation studies on the usage of different po-
larized function fpol and apply the optimal action masks
directly in Intersection and TwoWay. The results are shown
in Figure 3. Observe that, the direct optimal action masking
“OAM” is significantly conservative in Intersection, while
in TwoWay, its crash rate has little improvement but reward
is lower. This shows the hurt brought by optimal action
masking on an immature ψ network in the early stage of
training, which is also the reason of suboptimality of the
strong polarization effect given by “xp”, since masking is a
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Figure 3. Ablation studies, where “log”, “xp” represent using polarization function log(x) and 1− 1
x

, respectively, “10 log” is our default
choice 10 · log(x), and “OAM” means applying optimal action masks directly. The x-axis represents the number of steps, and the y-axis:
the first row is episode reward (higher is better); the second row is safety measured in crash rate (lower is better).

special case of safety polarization. Finally, for “log” its po-
larization effect is weak and thus cannot be safe enough like
our default “10 log”. The same phenomena can be observed
in other tasks. Full details are presented in Appendix C.3.

7. Conclusions
We propose MAXSAFE, a novel chance-constrained bi-level
optimization framework for safe RL, motivated by the prior-
itization of safety in real-world applications. We address the
MAXSAFE objective by learning optimal action masks and
introduce the technique of safety polarization as a practical
generalization of optimal action masks. Additionally, we
propose safety-prioritized experience replay, designed to
accelerate the learning of optimal action masks, especially
when cost signals are sparse. Extensive experiments demon-
strate that our method achieves an optimal trade-off between
reward and safety, delivering near-maximal safety.
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D., and Zöllner, J. M. Safe deep reinforcement learning
for adaptive cruise control by imposing state-specific safe
sets. In IEEE Intelligent Vehicles Symposium (IV), 2021.

Cheng, R., Orosz, G., Murray, R. M., and Burdick, J. W.
End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks. In
AAAI Conference on Artificial Intelligence (AAAI), 2019.

Ding, S., Wang, J., Du, Y., and Shi, Y. Reduced policy
optimization for continuous control with hard constraints.
In Neural Information Processing Systems (NeurIPS),
2023.

Dong, Y., Zhao, X., Wang, S., and Huang, X. Reachability
verification based reliability assessment for deep rein-
forcement learning controlled robotics and autonomous
systems. IEEE Robotics and Automation Letters, 9(4):
3299–3306, 2024.

Fulton, N. and Platzer, A. Safe reinforcement learning via
formal methods: Toward safe control through proof and
learning. In AAAI Conference on Artificial Intelligence
(AAAI), 2018.

Fulton, N. and Platzer, A. Verifiably safe off-model rein-
forcement learning. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems
(TACAS), 2019.

Ganai, M., Gong, Z., Yu, C., Herbert, S. L., and Gao, S. Iter-
ative reachability estimation for safe reinforcement learn-
ing. In Neural Information Processing Systems (NeurIPS),
2023.

Ganai, M., Gao, S., and Herbert, S. L. Hamilton-jacobi
reachability in reinforcement learning: A survey. IEEE
Open Journal of Control Systems, 3:310–324, 2024.

Garcı́a, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16:1437–1480, 2015.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
Yang, Y., and Knoll, A. A review of safe reinforcement
learning: Methods, theory and applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 46
(12):11216–11235, 2024.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI Conference on Artificial
Intelligence (AAAI), 2018.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed priori-
tized experience replay. In International Conference on
Learning Representations (ICLR), 2018.

Huang, S. and Ontanón, S. A closer look at invalid action
masking in policy gradient algorithms. In International
Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS), 2022.

Kalweit, G., Huegle, M., Werling, M., and Boedecker, J.
Deep constrained q-learning, 2020. URL https://
arxiv.org/abs/2003.09398.

Krasowski, H., Zhang, Y., and Althoff, M. Safe reinforce-
ment learning for urban driving using invariably safe
braking sets. In International Conference on Intelligent
Transportation Systems (ITSC), 2022.

Krasowski, H., Thumm, J., Müller, M., Schäfer, L., Wang,
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A. Why State-agnostic Masking Threshold is not Enough
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Figure 4. (a) The MDP structure: the reward is always 0. Taking action a ∈ A = {a0, a1} transitions to the next state with probability p
or to a fixed unsafe state (termination) with probability 1− p; blue arrows indicate transitions to the pointed state regardless of action. (b)
Learning curves of unsafe rates using our algorithm and SafeQ over 10 seeds. The x-axis represents the number of steps. Lower is better.

Our proposed optimal action masking (state-dependent) enjoys a convergence guarantee as shown above. In contrast, we will
show that the direct ε-masking method used by SafeQ, which masks actions with an estimated unsafe probability exceeding
a fixed, state-agnostic threshold ε, may fail to achieve the minimum unsafe probability εmin, even when ε is set to εmin. To
be more specific, we write SafeQ in the form of Q-learning and use the SA-REF ψ to be its unsafe probability estimator

Qt+1(st, at)← (1− βt)Qt(st, at)+
βt(rt + γ max

a′∈Cε(st+1)
Qt(st+1, a

′)), (22)

where Cε(s) := {b ∈ A | ψt(s, b) ≤ ε} is the action mask based on ε, and the ψ-update of SafeQ is

ψt+1(st, at)← (1− βt)ψt(st, at)+
βtmax{I[st ∈ Su], ψt(st+1, π̃t(st+1))},

(23)

where π̃t(s) := argmaxa∈Cε(s)Qt(s, a) is the learned policy by SafeQ.

Our bad example is based on the intrinsic shortcoming of SafeQ: if ∃a ̸= b ∈ Cε(s) while Qt(s, a) = Qt(s, b), then SafeQ
policy π̃t could not identify which action is better. The MDP structure of the bad example is presented in Figure 4(a)
where s0 is the fixed initial state and the reward function is set to 0. Clearly, the optimal policy is π∗(s0) = a0 and
π∗(s1) = a0, achieving the minimum unsafe probability εmin = 0.28. The sub-optimal policy πsub(s0) = a0 and
πsub(a0|s1) = πsub(a1|s1) = 1

2 has unsafe probability 0.32. We run our method and SafeQ in this example and find that,
even setting ε = 0.28 for SafeQ (the SafeQ(0.28) in Figure 4(b)), it only learns the sub-optimal policy πsub with unsafe
probability 0.32. This is because at state s1, the unsafe probability of executing action a0 or a1 is smaller than εmin = 0.28
and the action mask Cε(s1) with ε = 0.28 could not distinguish the difference between a0 and a1 since Qt ≡ 0 by our MDP.
Thus, SafeQ may only uniformly choose actions at s1. The same argument holds for larger ε, e.g., ε = 0.36 (SafeQ(0.36) in
Figure 4(b)) which is the unsafe probability of policy π(s0) = a0, π(s1) = a1. In contrast, our safe Q-learning with optimal
action masks converges to a minimum unsafe probability of 0.28, which aligns with our Theorem 4.4.

12



Safety-Polarized and Prioritized Reinforcement Learning

B. Theortical Proofs
B.1. Proofs of Lemma 3.1

Proof : For the contraction property, ∀(s, a) ∈ S ×A, we have∣∣∣BζQ1(s, a)− BζQ2(s, a)
∣∣∣

=
∣∣∣r(s, a) + γEs′∼P (·|s,a) max

a′∈Cζ(s′)
Q1(s

′, a′)− r(s, a)− γEs′∼P (·|s,a) max
a′∈Cζ(s′)

Q2(s
′, a′)

∣∣∣,
=

∣∣∣γEs′∼P (·|s,a)

[
max

a′∈Cζ(s′)
Q1(s

′, a′)− max
a′∈Cζ(s′)

Q2(s
′, a′)

]∣∣∣
≤ γEs′∼P (·|s,a)

[
max

a′∈Cζ(s′)

∣∣∣Q1(s
′, a′)−Q2(s

′, a′)
∣∣∣] (∣∣∣max

a
Q1 −max

a
Q2

∣∣∣ ≤ max
a

∣∣∣Q1 −Q2

∣∣∣)
≤ γmax

s′,a′

∣∣∣Q1(s
′, a′)−Q2(s

′, a′)
∣∣∣,

and thus

∥BζQ1 − BζQ2∥∞ ≤ γ∥Q1 −Q2∥∞,

where ∥Q∥∞ := maxs,a |Q(s, a)| is the L∞-norm. Therefore Bζ is a γ-contraction (with respect to the L∞-norm).

Let Q∗
ζ be the unique fixed point of Bζ and π∗

ζ (s) := argmaxa∈Cζ(s)Q
∗
ζ(s, a) be the corresponding policy induced by Q∗

ζ .

For the safety optimality of π∗
ζ , since π∗

ζ (s) always chooses actions among the optimal action mask Cζ(s),∀s ∈ S, which
masks out the action with non-minimal unsafe probability, the unsafe probability of π∗

ζ is the same as π∗ and thus safety
optimal, i.e.,

π∗
ζ ∈ argmin

π
Pr
s0∼ρ,
τ∼(π,P )

[∃st ∈ τ : st ∈ Su].

For the reward optimality, this follows from the fact that π∗ will only select actions in Cζ(s) since π∗ ∈
argminπ Pr s0∼ρ,

τ∼(π,P )
[∃st ∈ τ : st ∈ Su]. Therefore the Bellman backup of Qπ

∗
is the same as that of Q∗

ζ , which

implies that

Qπ
∗
(s, a) = Q∗

ζ(s, a),∀s ∈ S, a ∈ Cζ(s).

As a result, π∗
ζ is reward optimal.

B.2. Proof of Lemma 4.2

Proof : First, if s ∈ Su, then ψπ(s, a) = 1 by definition and the result holds clearly. Therefore we assume s /∈ Su. Let
τ = {s0 = s, a0 = a, s1, · · · , st, at, · · · } ∼ (π, P ) be a sampling trajectory starting from state s0 = s and action a0 = a
using policy π with transition function P . Then we have

ψπ(s, a) = Eτ∼(π,P )

[
max
st∈τ

I[st ∈ Su]
∣∣ s0 = s, a0 = a

]
= Es′∼P (·|s,a),a′∼π(·|s′)

[
Eτ1∼(π,P ) max

st∈τ1
I[st ∈ Su]

∣∣ s1 = s′, a1 = a′
]

= Es′∼P (·|s,a),a′∼π(·|s′)

[
ψπ(s′, a′)

]
where τ1 = {s1 = s′, a1 = a′, . . . , st, . . . } ∼ (π, P ) is the sampling trajectory starting from state s′ and action a′. This
completes the proof.
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B.3. Proof of Theorem 4.3

Proof : We convert the update of ψt to an equivalent undiscounted Q-function update as follows. Consider the following
undiscounted infinite horizon MDPMu := (S,A, ru, P, ρ) where

ru(s, a) =

{
−1, s ∈ Su,
0, otherwise.

Let Qπu(s, a) := limN→∞QπN (s, a), where

QπN (s, a) := Eπ
[N−1∑
i=0

ru(si, ai) | s0 = s, a0 = a
]
.

Since Su consists of absorbing states, Qπu(s) > −∞,∀π, s. Clearly, Prτ∼(π,P )[∃st ∈ τ : st ∈ Su|s0 = s, a0 = a] =
−Qπu(s, a). Then ψπ(s, a) = −Qπu(s, a) and ψ∗(s, a) = −Q∗

u(s, a), where Q∗
u(s, a) is the optimal undiscounted Q-value

inMu. Furthermore,

ψt+1(s, a) = max{I[s ∈ Su],Es′∼P (·|s,a) min
a′∈A

ψt(s
′, a′)}

⇔ Qu,t+1(s, a) = ru(s, a) + Es′∼P (·|s,a) max
a′∈A

[Qu,t(s
′, a′)] =: LQu,t(s, a).

According to Theorem 7.3.10. of Puterman (1994), starting from Qu,0 = 0, the iterative update Qu,t+1 = LQu,t converges
monotonically to Q∗

u, which is equivalent to the convergence of ψt to ψ∗ starting from ψ0 = 0. In this way we complete the
proof.

B.4. Proof of Theorem 4.4

Proof. First consider the ψ update,

ψt+1(st, at) = (1− βt)ψt(st, at) + βtmax{I[st ∈ Su], min
a′∈A

ψt(st+1, a
′)}

= ψt(st, at) + βt

(
F (ψt; st, at)− ψt(st, at) +Mt+1

)
.

(24)

where F : R|S||A| → R|S||A| is the ψ backup operator defined by

F (ψ; s, a) := max{I[s ∈ Su],Es′∼P (·|s,a) min
a′∈A

ψ(s′, a′)} (25)

and the noise term

Mt+1 := max{I[st ∈ Su], min
a′∈A

ψt(st+1, a
′)} −max{I[st ∈ Su],Es′∼P (·|st,at) min

a′∈A
ψt(s

′, a′)}. (26)

The associated ordinary differential equation (ODE), with initial condition ψ(0) = ψ0 = 0, is

ψ̇ = F (ψ)− ψ. (27)

The following lemma is borrowed from Borkar (2008), Page 127, Theorem 4.

Lemma B.1. (Borkar, 2008). Consider a stochastic approximation algorithm

Xt+1 = Xt + βt[F (Xt)−Xt +Mt+1], t ≥ 0,

where Xt ∈ Rd, F : Rd → Rd. Let the associated ODE be ẋ(t) = F (x(t))− x(t) starting from x(0) = X0. Define the
L∞-norm ∥X∥∞ := maxi∈[d] |Xi|. Assume:

14
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(A1) (Non-expansiveness of F ). ∀X,Y ∈ Rd, ∥F (X)− F (Y )∥∞ ≤ ∥X − Y ∥∞.

(A2) (Boundedness). ∥ supt≥0Xt∥∞ < +∞ almost surely.

(A3) (Diminishing step sizes). The sequence {βt}t≥0 satisfies 0 < βt ≤ 1 and
∑
t≥0 βt = +∞,

∑
t≥0 β

2
t < +∞.

(A4) (Martingale difference noise). Let Ft be the σ-algebra generated by (X0,M0, . . . , Xt,Mt). There exists K > 0 such
that ∀t, E[Mt+1|Ft] = 0 and E[∥Mt+1∥2∞|Ft] ≤ K(1 + ∥Xt∥2∞).

Under the above assumptions, if H := {X ∈ Rd | F (X) = X} is non-empty, then Xt → X∗ a single point in H
(depending on X0).

Claim. The ψ backup operator F in Equation (25) is non-expansive.

• Proof of Claim. This is due to, for any ψ, ϕ ∈ R|S||A|, and for any s ∈ S, a ∈ A,∣∣∣F (ψ; s, a)− F (ϕ; s, a)∣∣∣
=

∣∣∣max{I[s ∈ Su],Es′∼P (·|s,a) min
a′∈A

ψ(s′, a′)} −max{I[s ∈ Su],Es′∼P (·|s,a) min
a′∈A

ϕ(s′, a′)}
∣∣∣

≤
∣∣∣Es′∼P (·|s,a) min

a′∈A
ψ(s′, a′)− Es′∼P (·|s,a) min

a′∈A
ϕ(s′, a′)

∣∣∣
≤ max
s′∈S,a′∈A

∣∣∣ψ(s′, a′)− ϕ(s′, a′)∣∣∣
= ∥ψ − ϕ∥∞.

Claim. ψt is bounded: ∀t ≥ 0, ∥ψt∥∞ ≤ 1.

• Proof of Claim. We prove this by induction. First ψ0 = 0 and the claim holds at t = 0. Assume now the claim holds
at t. For t+ 1, if (s, a) ̸= (st, at) then |ψt+1(s, a)| = |ψt(s, a)| ≤ 1; if (s, a) = (st, at), then, since 0 < βt ≤ 1 we
have,

|ψt+1(st, at)| ≤ (1− βt)|ψt(st, at)|+ βt|max{I[st ∈ Su], min
a′∈A

ψt(st+1, a
′)}|

≤ (1− βt) + βt = 1.

Therefore ∥ψt+1∥∞ ≤ 1 and then the claim holds for all t ≥ 0.

Claim. The noise term Mt+1 in Equation (26) satisfies: ∀t, E[Mt+1|Ft] = 0 and E[∥Mt+1∥2∞|Ft] ≤ 4.

• Proof of Claim. First, using |ψt(s, a)| ≤ 1 and considering whether st ∈ Su or not, one can easily see that

E[Mt+1|Ft] = Est+1∼P (·|st,at)

[
max{I[st ∈ Su], min

a′∈A
ψt(st+1, a

′)
]

−max
{
I[st ∈ Su],Es′∼P (·|st,at)

[
min
a′∈A

ψt(s
′, a′)

]}
= 0.

Second, again by ∥ψt∥∞ ≤ 1,

E[∥Mt+1∥2∞|Ft]

= Est+1∼P (·|st,at)

[ ∣∣∣max{I[st ∈ Su], min
a′∈A

ψt(st+1, a
′)−max

{
I[st ∈ Su],Es′∼P (·|st,at)

[
min
a′∈A

ψt(s
′, a′)

]}∣∣∣2 ]
≤ 2Est+1∼P (·|st,at)

[ ∣∣∣max{I[st ∈ Su], min
a′∈A

ψt(st+1, a
′)
∣∣∣2

+
∣∣∣max

{
I[st ∈ Su],Es′∼P (·|st,at)

[
min
a′∈A

ψt(s
′, a′)

]}∣∣∣2 ]
≤ 4.

This proves the claim.
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As a result, the ψ update in Equation (24) satisfies the Assumption (A1)-(A4) in Lemma B.1. Therefore, according to the
Lemma B.1, ψt converges to a single point a ∈ H = {F (ψ) = ψ}. Since ψ(0) = 0, our ODE in Equation (27) converges
to a = ψ∗ by Theorem 4.3. Therefore the ψ update in Equation (24) will converge: ψt → a = ψ∗, starting from ψ0 = 0.

Next, we consider the Q update. We expand the Equation (13) as follows:

Qt+1(st, at) = Qt(st, at) + βt

(
rt + γ max

a∈Cζt (st+1)
Qt(st+1, a)−Qt(st, at)

)
= Qt(st, at) + βt

(
rt + γ max

a∈Cζ(st+1)
Qt(st+1, a)−Qt(st, at)

+ γ max
a∈Cζt (st+1)

Qt(st+1, a)− γ max
a∈Cζ(st+1)

Qt(st+1, a)
)

= Qt(st, at) + βt

(
rt + γEs′

[
max

a∈Cζ(s′)
Qt(s

′, a)
]
−Qt(st, at)

+ γ max
a∈Cζ(st+1)

Qt(st+1, a)− γEs′
[

max
a∈Cζ(s′)

Qt(s
′, a)

]
+ γ max

a∈Cζt (st+1)
Qt(st+1, a)− γ max

a∈Cζ(st+1)
Qt(st+1, a)

)

(28)

where we recall that
Cζ(s) = {b ∈ A | ψ∗(s, b) ≤ ζ(s) = min

a∈A
ψ∗(s, a)}

and Cζt(s) is the set of minimizers of ψt(st, ·):

Cζt(s) := {b ∈ A | ψt(s, b) ≤ ζt(s) = min
a∈A

ψt(s, a) + κ},

where κ > 0 is a small enough constant satisfying ψ∗(s, b) + 2κ < ψ∗(s, e) for any s ∈ S, b ∈ Cζ(s) and e ∈ A \ Cζ(s).

Since ψt converges to ψ∗ as t → +∞, we have for any ϵ > 0, there exists some T > 0 such that when t > T ,
|ψt(s, a)− ψ∗(s, a)| < ϵ,∀s ∈ S, a ∈ A. Taking ϵ = κ

2 , for any b ∈ Cζ(s) and e ∈ A \ Cζ(s), we have

ψt(s, b) + κ < ψ∗(s, b) + ϵ+ κ ≤ ψ∗(s, e)− 2κ+ ϵ+ κ ≤ ψt(s, e) + 2ϵ− κ = ψt(s, e). (29)

Claim. for any b ∈ Cζ(s), we have b ∈ Cζt(s), and for any e ∈ A \ Cζ(s), we have e ∈ A \ Cζt(s).

• Proof of Claim. Since ζ(s) = ψ∗(s, b), we also have ψt(s, b) ∈ [ζ(s)− ϵ, ζ(s) + ϵ]. Then

ζt(s) = min
a∈A

ψt(s, a) + ζ = min
b∈Cζ(s)

ψt(s, b) + ζ ≥ ζ(s)− ϵ+ ζ = ζ(s) + ϵ,

where the second equality is due to Equation (29) and the final equality is due to ϵ = ζ
2 . Thusψt(s, b) ≤ ζ(s)+ϵ ≤ ζt(s).

This shows that Cζ(s) ⊂ Cζt(s).
On the other hand, again by Equation (29), ψt(s, e) > ψt(s, b) + ζ ≥ mina∈A ψt(s, a) + ζ = ζt(s). This shows that
A \ Cζ(s) ⊂ A \ Cζt(s).

Therefore Cζt(s) will be the same as Cζ(s) after t > T . Taking t > T , the Equation (28) becomes

Qt+1(st, at) = Qt(st, at) + βt

(
rt + γEs′

[
max

a∈Cζ(s′)
Qt(s

′, a)
]
−Qt(st, at)

+ γ max
a∈Cζ(st+1)

Qt(st+1, a)− γEs′
[

max
a∈Cζ(s′)

Qt(s
′, a)

])
,

(30)

whose convergence to Q∗
ζ is guaranteed by classical Q-learning theory (Borkar, 2008). We complete the proof.
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(a) TwoWay (b) Merge (c) ACC

(d) Roundabout (e) Intersection (f) Circle

Figure 5. The visualization of our benchmarks.

C. Experiment Details
C.1. Benchmarks

In highway-env (Leurent, 2018), the state space can either be of kinetics type, which describes a list of nearby vehicles
by a set of location and velocity features, or be of time-to-collision type, which represents the predicted time-to-collision
of observed vehicles on the same road as the ego car. In TwoWay and Merge, we select the time-to-collision type for
state space, while in Roundabout and Intersection, we select the kinetics type. The action space consists of discrete meta
actions, which can change the target lane and speed that are used as setpoints for some low-level controllers, so that the ego
car can automatically follow the road at the desired speed. The rewards encourage agents to move fast and achieve their
corresponding goals, which are:

• TwoWay. The goal is to drive on a two-way lane as fast as possible with incoming traffic.

• Merge. The goal of ego car is to maintain a high speed while making room for the incoming cars to the access ramp so
that they can merge into the traffic safely.

• Roundabout. Facing the complex traffic flow, the ego car need to pass a roundabout safely following a pre-defined
route with high speed.

• Intersection. In the dense traffic, the ego car should cross a four-way intersection while avoiding crashing with other
cars.

For the other two safe control tasks, we give their detailed environment setup here:

• ACC. (Anderson et al., 2020) The ego car aims to follow a lead car as closely as possible without crashing into it.
The state s ∈ S consists of the relative distance d, the speed of ego car ve and the speed of lead car vℓ. There are
three actions: −1 (decelerate), 0 (idle), 1 (accelerate). The acceleration ∆vℓ of the lead car follows from a Gaussian
distribution ∆vℓ ∼ N (0, 0.2). We do not allow the lead car and ego car to go backward. The lead car is taken as
reference. When d ≤ −10 (staying too far) or d ≥ 0 (crashing), the episode is terminated and agent receives crash
reward 0; otherwise the reward r = 10 + d. The maximal episode length is 100.

• Circle. (Achiam et al., 2017; Wagener et al., 2021) A point robot gets rewards for fast circular movement, but
is constrained to stay inside the area restricted by two walls which is narrower than the target circle. The state
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Table 2. Hyperparameters for all DQN-based algorithms

Algorithm Parameter Value

Shared

optimizer Adam
discount factor 0.99
Q-network learning rate 5 · 10−4

batch size 64
update every 1
initial ϵ-greedy exploration rate 1
ϵ decay 0.995
ϵ min 0.01
number of random seeds 6

SPOM (ours) SA-REF ψ learning rate 5 · 10−4

polarization function fpol(x) = 10 log(x)

SPOM PER (ours) priority exponent α 0.6
importance sampling exponent θ 0.4

SafeQ and Recovery
safety critic Qrisk learning rate 5 · 10−4

εrisk 0.1
γrisk 0.99

RCDQN Lagrange multiplier learning rate 0.001

RewsDQN shaped crash reward −10

Table 3. Hyperparameters for PPO-based algorithms

Algorithm Parameter Value

Shared

optimizer Adam
discount factor 0.99
learning rates of actor and critic 3 · 10−4

GAE parameter 0.97
clip ratio 0.2

RESPO REF learning rate 1 · 10−4

Lagrange multiplier learning rate 5 · 10−5

PPOLag Lagrange multiplier learning rate 0.001

s = (x, y, ẋ, ẏ), where (x, y) is the xy-coordinate of the agent, ẋ and ẏ are the speeds at x-direction and y-
direction respectively. The action space consists of one idle action and the following eight directions for acceleration:
(cos(kπ/4), sin(kπ/4)), k = 0, 1, . . . , 7. After choosing an action a, the corresponding acceleration vector is aconst ·a,
where aconst > 0 is a constant acceleration scalar. The maximal episode length is 100. The rewards encourage circular
movement of radius R∗ and the unsafe state set Su restricts agent to stay inside the region |x| ≤ xmax:

Su = {s = (x, y, ẋ, ẏ) ∈ S | |x| ≤ xmax},

r(s, a) =


(ẋ, ẏ) · (−y, x)

1 + | ∥(x, y)∥2 −R∗ |
, if s /∈ Su,

− 1, otherwise.

For our experiments, we take aconst = 1, xmax = 2.5 and R∗ = 5.

C.2. Algorithms

C.2.1. IMPLEMENTATION

The original SafeQ (Srinivasan et al., 2020) and Recovery RL (Thananjeyan et al., 2020) are based on actor-critic frameworks.
Here we give detailed descriptions on their adaption to the DQN implementations.
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• SafeQ. (Srinivasan et al., 2020) A Q-network Q and a safety critic Qrisk are required with their corresponding target
networks Q̄ and Q̄risk. The safety critic Qrisk is used to predict the future discounted risk for safety violation, with
discounted risk factor γrisk ∈ (0, 1). SafeQ performs direct εrisk-masking:

π̃(s) = arg max
a∈Cεrisk

(s)
Q(s, a),

where Cεrisk(s) = {b ∈ A | Qrisk(s, b) ≤ εrisk} and εrisk > 0 is a fixed state-agnostic threshold. The target of safety
critic is computed through

yriskt = I[st ∈ Su] + (1− I[st ∈ Su])γriskQ̄risk(st+1, π̃(st+1)),

to estimate the unsafe risk under current masked policy π̃, and the target of Q-network is also based on π̃:

yQt = rt + γQ̄(st+1, π̃(st+1)).

• Recovery. (Thananjeyan et al., 2020) Here we also require a Q-network and a safety critic Qrisk. But the final policy π
is composed of a task policy πtask and a recovery policy πrec, where

πtask(s) = argmax
a∈A

Q(s, a), πrec(s) = argmin
a∈A

Qrisk(s, a),

and then π is obtained via an intervention-based scheme: if the action atask chosen by the task policy πtask has unsafe
risk greater than εrisk, then it will be overtaken by the recovery policy πrec which will choose the action with minimal
risk:

π(s) =

{
atask = πtask(s), if Qrisk(s, a

task) ≤ εrisk,
πrec(s), otherwise.

Note that according to Thananjeyan et al. (2020), the task policy is trained on the task buffer (st, ataskt , rt, st+1), and
the Q target is computed by

yQt = rt + γQ̄(st+1, πtask(st+1)),

while the safety critic Qrisk is trained on the real buffer (st, at, rt, st+1) and the Qrisk target is

yriskt = I[st ∈ Su] + (1− I[st ∈ Su])γriskQ̄risk(st+1, π(st+1)),

in order to estimate the unsafe risk under current policy π.

Since we focus on the persistent safety, for both SafeQ and Recovery, we will take γrisk = γ the discount factor of the
MDP.

• RCDQN. Following Tessler et al. (2019), we constrains the reward through r − λc, where λ is the Lagrange multiplier
and c is the cost signal corresponding to crash, and then we use DQN to learn upon this constrained reward. Note that
the Lagrange multiplier is updated via the on-policy samples, which relates to the safety of current policy more closely.

• RewsDQN. This reward-shaping-based DQN tries to inform the agent to avoid crashing via a strong penalty when a
crash occurs. The shaped crash reward is set to be −10 uniformly.

For completeness, we also choose some of the Proximal Policy Optimization (PPO) (Schulman et al., 2017) based based
algorithms under CMDP framework to our tasks. We include the following representative ones:

• RESPO. Ganai et al. (2023) propose the Reachability Estimation Safe Policy Optimization, where a state-dependent
reachability estimation function (REF) is learned to estimate the unsafe probability under current policy. Then RESPO
optimizes the rewards in safe regions while maintaining safety through Lagrangian methods, and optimizes the costs in
unsafe regions.

• PPOLag. (Ray et al., 2019) A classical primal-dual method, which uses a Lagrangian relaxation to transfer the original
CMDP-based constrained optimization problem to an unconstrained one and then adapts to PPO.

• PPOBarrier. (Yang et al., 2023) An extension of PPO that incorporates control-theoretic barrier certificates to ensure
policy safety by enforcing constraint satisfaction during both training and execution.
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Table 4. The SWU scores of all algorithms, including RESPO and PPOLag.

SWU Score↑ TwoWay Merge Roundabout Intersection ACC Circle Overall

SPOM PER (ours) 0.98 0.94 1.04 0.68 1.07 0.96 0.95
SPOM (ours) 0.88 0.95 0.34 0.96 0.87 0.37 0.73
SafeQ 0.73 0.84 0.54 0.75 0.50 0.15 0.59
Recovery 0.34 0.66 0.69 0.66 0.85 0.25 0.58
RCDQN 0.41 0.81 0.41 0.57 0.46 0.14 0.47
RewsDQN 0.33 0.92 0.41 0.50 0.47 0.11 0.46
DQN 0.37 0.56 0.41 0.58 0.46 0.13 0.42
RESPO 0.06 0.09 0.09 0.11 0.06 0.01 0.07
PPOLag 0.06 0.03 0.13 0.11 0.11 0.02 0.08

C.2.2. HYPERPARAMETERS

Network Architectures. In Roundabout and Intersection, to deal with the kinetics type of state, which contains a list of
features about nearby vehicles, we use the ego-attention-based architecture proposed by Leurent & Mercat (2019), which
can handle the permutation of the list input and thus is suitable for these two tasks.

In TwoWay and Merge, we use two-layer multi-layer perceptron (MLP) networks, with hidden layer of size 128. In ACC
and Circle, we also use two-layer MLP, with 256 hidden units.

Parameter Settings for DQN-based Algorithms. The exploration strategy is unified to be ϵ-greedy. In highway-env, we
use replay buffers of size 15000 and hard update for target networks with hard update interval 512, following the default
configuration in Leurent & Mercat (2019); while in ACC and Circle, we use the replay buffers of size 105 and soft update
with soft update coefficient 5 · 10−3 and interval 1, to ensure stable and fast learning. Other hyperparameters are unified
across tasks and can be found in Table 2.

Parameter Settings for PPO-based Algorithms. According to Ganai et al. (2023), RESPO should maintain that the
Lagrange multiplier learning < the REF learning rate < the actor and critic learning rates, in order to ensure a stable
convergence to a local optimum, and so we use their default parameters. For PPOLag, the Lagrange multiplier learning rate
is set to be larger than that of RESPO, to bias more towards constraint violation in the original primal-dual formulation.
The detailed hyperparameters are listed in Table 3.

C.3. Full Results

C.3.1. MAIN EXPERIMENTS

The full training curves of all baselines (DQN-based and PPO-based) and SPOM, SPOM PER are provided in Figure 6
and 7. We find that RESPO and PPOLag fail to optimize under our environments since the cost signal corresponding to a
crash is very sparse. The full SWU scores are presented in Table 4, where SPOM PER achieves the highest overall SWU
score of 0.90, and SPOM secures the second-best score of 0.79. Both algorithms demonstrate significant improvement over
baselines, with SPOM PER achieving over 50% improvement compared to most baselines.

We also list the average crash rates and episode rewards over the last 1
10 training steps and all random seeds, per algorithm

and per task, in Table 5. SPOM PER along with SPOM achieves the lowest or one of the lowest crash rates across almost
all tasks while maintaining competitive or superior episode rewards.

Comparison with direct ε-masking approach SafeQ: Across all tasks, SPOM PER and SPOM outperform SafeQ both in
terms of crash rates and rewards. This again validates our insight that a state-agnostic masking threshold is not enough to
ensure maximal safety.

Comparison with action-correction-based method Recovery: In ACC, SPOM PER achieves the best SWU score of 1.07,
outperforming Recovery, which sacrifices rewards to reduce crash rates. Similarly, in Circle, SPOM PER and SPOM
achieve significantly lower crash rates than Recovery while maintaining higher rewards. In Intersection, Recovery trains to
be safe faster but converges to lower rewards compared to SPOM PER. For other tasks, SPOM PER and SPOM achieve a
better trade-off between safety and rewards while being safer than Recovery.
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Table 5. The crash rates and episode rewards (mean and std), averaged over the last 1
10

training steps and six random seeds, of all
compared algorithms. SPOM achieves the lowest or one of the lowest crash rates while maintaining competitive episode rewards.

TwoWay Merge Roundabout Intersection ACC Circle

Crash Rate ↓

SPOM PER (ours) 0.073±0.011 0.043±0.008 0.055±0.027 0.086±0.025 0.163±0.011 0.038±0.010
SPOM (ours) 0.085±0.019 0.042±0.006 0.167±0.105 0.069±0.014 0.200±0.013 0.104±0.016
SafeQ 0.104±0.018 0.050±0.007 0.090±0.056 0.091±0.020 0.351±0.013 0.255±0.021
Recovery 0.134±0.016 0.063±0.007 0.062±0.031 0.068±0.023 0.205±0.011 0.119±0.029
RCDQN 0.176±0.061 0.052±0.008 0.120±0.029 0.113±0.028 0.350±0.009 0.268±0.018
RewsDQN 0.209±0.097 0.042±0.008 0.122±0.067 0.130±0.027 0.344±0.018 0.350±0.043
DQN 0.198±0.079 0.074±0.014 0.115±0.047 0.118±0.012 0.351±0.008 0.288±0.035
RESPO 0.704±0.391 0.228±0.247 0.047±0.104 0.403±0.169 0.932±0.062 0.239±0.017
PPOLag 0.509±0.354 0.406±0.276 0.140±0.184 0.355±0.209 0.729±0.043 0.148±0.022

Episode Reward ↑

SPOM PER (ours) 10.124±0.370 1.883±0.035 0.985±0.324 4.433±0.601 78.393±0.558 279.432±2.865
SPOM (ours) 10.520±0.389 1.823±0.028 0.947±0.218 4.978±0.210 78.337±0.551 279.432±2.865
SafeQ 10.636±0.163 1.929±0.043 0.799±0.111 5.115±0.112 73.013±0.551 268.774±4.754
Recovery 6.392±0.279 1.897±0.028 0.637±0.413 3.208±1.351 78.296±0.320 216.606±91.921
RCDQN 10.217±0.567 1.935±0.049 0.818±0.256 4.844±0.818 73.026±0.818 273.679±1.308
RewsDQN 9.775±0.472 1.764±0.075 0.827±0.177 4.932±0.286 72.571±1.084 209.573±85.724
DQN 10.284±0.250 1.919±0.040 0.789±0.292 5.125±0.121 73.278±1.077 270.404±5.609
RESPO 6.099±3.568 0.900±0.384 0.071±0.103 3.294±1.476 22.396±7.868 7.179±1.662
PPOLag 4.860±3.870 0.535±0.690 0.298±0.352 3.024±1.812 37.752±2.766 25.753±4.506

Comparison with CMDP-based approach RCDQN, RESPO, and PPOLag: The DQN-based RCDQN has stable perfor-
mance but fails to guide the policy effectively in terms of safety due to sparse cost signals. The PPO-based algorithms,
RESPO and PPOLag, suffer from high variance and fail to optimize either safety or rewards effectively. In highway-env,
their performance shows inconsistency between crash rates and rewards, and in ACC and Circle, they converge prematurely
to suboptimal solutions. Overall, CMDP-based methods struggle with sparse cost signals in our tasks, leading to subpar
performance compared to SPOM PER and SPOM.

Comparison with reward-shaping approach RewsDQN: While RewsDQN achieves competitive crash rates in some tasks
like Merge, its episode rewards are significantly lower. In Circle, RewsDQN fails to achieve comparable crash rates and
rewards as SPOM PER and SPOM, demonstrating the difficulty of balancing safety through reward shaping alone.

Note on vanilla DQN: Vanilla DQN can reduce crash rates to a certain level due to early termination in tasks. However, its
performance in balancing crash rates and rewards falls far behind SPOM PER and SPOM, which consistently achieve
better safety and reward trade-offs.

C.3.2. ADDITIONAL ABLATION STUDIES

We provide the training curves of our ablation studies for the remaining four tasks in Figure 8.

Once again, we can find the over-conservative phenomena of direct optimal action masking “OAM” in Merge and Roundabout
(the first two rows in Figure 8), where “OAM” shares similar crash rates as others while it significantly sacrifices the rewards
to achieve the same level of safety. This shows the hurt brought by optimal action masking on an immature ψ network in the
early stage of training, which is also the reason of suboptimality of the strong polarization effect given by “xp”. And the
weak polarization effect given by “log” cannot ensure to be safe enough. But in ACC and Circle, all ablation algorithms
have competitive safety and reward performance (the last two rows in Figure 8).

C.3.3. ADDITIONAL RESULTS COMPARED TO PPOBARRIER

We present the training curves on the four highway benchmarks, comparing our methods against the baseline PPOBarrier,
in Figure 9.
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Figure 6. Training curves across all environments. Each row shows the episode reward (left) and crash rate (middle) for a specific
environment. The rightmost panel in the third row shows the legend shared across all plots. Higher reward and lower crash rate are better.
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Figure 7. All training curves in Intersection, ACC, Circle. The x-axis represents the number of steps, and the y-axis: the first row is
episode reward (higher is better); the second row is safety measured in crash rate (lower is better).
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Figure 8. Training curves of other ablation studies, where “log”, “xp” represent using polarization function log(x) and 1− 1
x

, respectively,
“10 log” is our default choice 10 · log(x), and “OAM” means applying optimal action masks directly. The x-axis represents the number of
steps, and the y-axis: the odd rows are episode reward (higher is better); the even rows are safety measured in crash rate (lower is better).
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Figure 9. Training curves compared to PPOBarrier on four highway tasks.
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