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ABSTRACT

It is often assumed that aligning low-resource varieties with high-resource stan-
dards improves modeling in multilingual Large Language Models (LLMs). We
challenge this view with the first causal study showing that excessive representa-
tional entanglement with dominant varieties can reduce generative quality. We in-
troduce an online variational probing method that continuously estimates the sub-
space of a dominant variety during fine-tuning on a generative task and penalizes
it to reduce its span. Across six language families we find that reducing align-
ment consistently boosts low-resource translation performance, including +11.7
ChrF++ for European Portuguese, +5.3 for Indonesian, +4.6 for Kven Finnish, and
+2.7 for Low German. In Arabic, several dialects improve by up to +4.3 ChrF++
despite sharp drops for cross-lingual tasks such as translation to MSA, English,
or French, suggesting that the effect extends beyond simple cross-lingual align-
ment. Alongside these causal results, we present qualitative and observational
evidence from information-theoretic and geometric probing that further supports
our hypothesis. Together, our findings establish that disentangling high-resource
subspaces can unlock capacity for related low-resource varieties and provide prac-
tical tools for controlling representational allocation in multilingual LLMs. Code
will be released.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in multilingual Natural Lan-
guage Understanding (NLU) and Generation (NLG) tasks (Brown et al., 2020; Chowdhery et al.,
2022; Scao et al., 2022; Aryabumi et al., 2024). Beyond English, these models show strong cross-
lingual transfer, enabling low-resource varieties to benefit from related high-resource languages (Hu
et al., 2020; Conneau et al., 2020; Xue et al., 2021).

A less understood question, however, is whether closer alignment with a dominant, high-resource
variety always benefits related low-resource ones. Dialects provide a natural test case: they are
linguistically distinct, socially important, yet often heavily entangled with their standardized coun-
terpart in both data and models. Arabic exemplifies this dynamic, where Modern Standard Arabic
(MSA) dominates pretraining resources while dozens of dialects remain underrepresented and un-
derperform on benchmarks (Kantharuban et al., 2023). Similar dynamics arise in other orthograph-
ically and lexically close pairs such as Czech–Slovak, Indonesian-Malay, Standard-Low German,
Brazilian-European Portuguese, and Kven-Finnish. Understanding representational interactions in
such settings is crucial for inclusive generative modeling.

This paper challenges the assumption that alignment with a high-resource standard is always benefi-
cial. By studying six diverse linguistic groups, we show that excessive representational entanglement
with the higher-resource variety may hinder generative performance. Since parallel and labeled cor-
pora for other generative tasks across dialects/similar languages are scarce, we focus on machine
translation as a controlled proxy for dialect-sensitive generation.

Our study proceeds in two stages. First, we introduce a novel online variational probing framework
that continuously estimates the subspace of the high-resource standard during fine-tuning on a gen-
erative task like machine translation, enabling a novel subspace decoupling strategy. This causal in-
tervention promotes orthogonal representations and improves generative capacity for lower-resource
varieties. Then, we shift to a more qualitative/observational analysis honing in on Arabic to analyze
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Figure 1: Visualization of the intuition behind our method.

how LLMs internally represent Modern Standard Arabic (MSA) and dialects, revealing that stronger
generative performance correlates with greater representational separability from MSA.

Applied to 6 diverse language groups, our approach yields consistent improvements over standard
fine-tuning, consistently boosting lower-resource performance, including +11.7 ChrF++ for Euro-
pean Portuguese, +5.3 for Indonesian, +4.6 for Kven Finnish, and +2.7 for Low German. In Arabic,
several dialects improve by up to +4.3 ChrF++ despite drops in cross-lingual tasks such as translation
to MSA, English, or French, indicating the presence of factors that go beyond simple cross-lingual
alignment. More broadly, our findings provide the first causal evidence that representational domi-
nance by high-resource standards can limit generative modeling in closely related varieties.

Contributions.

• We introduce and verify a novel online probing-based subspace decoupling method that
improves generative performance for underrepresented varieties.

• For the first time, we demonstrate that despite helping with cross-lingual performance
alignment has a detrimental effect on dialectal/similar-language performance.

• We empirically demonstrate consistent gains across 6 language groups, highlighting im-
plications for related language families where orthographic and lexical similarity creates
similar entanglement.

• We present the first large-scale representational analysis of dialects in generative LLMs,
unifying geometric and information-theoretic probing.

2 RELATED WORKS

This work investigates how LLMs internally allocate representational capacity across closely related
language varieties.

Multilingualism in Large Language Models. Recent studies have analyzed how multilingual
LLMs encode language-specific knowledge. For example, Wang et al. (2024) and Kojima et al.
(2024) explore neuron sharing and language-specific activations, showing that subtle modifications
can alter generation in particular languages. Our perspective differs: rather than focusing on neuron-
level behavior, we ask whether dialects remain representationally distinct from their standardized
counterpart and how this distinction (or entanglement) affects generative performance. This question
is not limited to one particular group or family, but applies broadly to orthographically and lexically
similar pairs with a resource imabalance.

At the representational level, Chang et al. (2022) show that languages occupy distinct subspaces in
encoder-only models, while Shah et al. (2024) link geometric differences to cross-lingual transfer.
We extend these insights to large generative models, showing that the degree of subspace separability
between varieties correlates with downstream generation quality. Similarly, Nigatu et al. (2023) find
that models struggle to capture dialectal nuances; our results both confirm this for recent LLMs and
provide causal evidence that mitigating representational entanglement improves performance.

Information-Theoretic Probing. Information-theoretic probes have been used to study how lin-
guistic signals emerge during pretraining (Voita & Titov, 2020; Müller-Eberstein et al., 2023). Build-
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ing on this, we introduce probes not just for analysis but as part of training: our “variety probes”
continuously estimate the dominant higher-resource variety subspace during fine-tuning, enabling
us to directly intervene by penalizing entanglement. This extends probing from a diagnostic tool to
a mechanism for causal representational control.

Dialectal and Low-Resource NLP. Dialectal variation presents a persistent challenge for gener-
ative modeling. Prior work has documented large performance gaps as dialects deviate from their
standardized counterpart (Kantharuban et al., 2023; Ziems et al., 2023). For Arabic, evaluation
resources such as AraBench (Sajjad et al., 2020) and MADAR (Bouamor et al., 2018) have been
developed, and recent studies examine MT and NLG across varieties (Kadaoui et al., 2023; Nagoudi
et al., 2023). Efforts like the Tatoeba challenge (Tiedemann, 2020) and FRMT (Riley et al., 2023)
provide region-aware and tail-end language few-shot machine translation resources. Our work de-
parts from these by focusing not on resource creation or evaluation but on how varieties are internally
represented in LLMs and how interventions on representational subspaces can improve generative
capacity. While Arabic provides a uniquely rich testbed given its extensive dialectal spectrum, the
implications extend to other under-resourced language varieties that share high orthographic and
lexical overlap with a dominant variety.

3 BACKGROUND: DIALECTS AND SIMILAR LANGUAGE VARIETIES

Languages vary internally due to cultural, environmental, geographical, and administrative factors
(Honkola et al., 2018). These variations often diverge into distinct varieties, with speakers of mi-
nority varieties facing socioeconomic disadvantages that are mirrored in multilingual LLMs (Kan-
tharuban et al., 2023). While LLMs leverage scraped data and cross-lingual transfer, such benefits
are less evident for lower-resource varieties closely related to higher-resource ones than for more
distinct low-resource languages. We address this gap by moving beyond alignment-based solutions
and investigating representational dominance in LLMs as a key driver of disparities. The distinc-
tion between “dialects” and “languages” is scientifically and politically problematic, often yielding
artificial boundaries (Melinger, 2018). We therefore use the neutral term variety to refer to any spo-
ken or written linguistic form, and group varieties based on demonstrated lexical and orthographic
similarity. An illustration for Arabic varieties is shown in Table 1.

Table 1: Sample of 5-way parallel sentences meaning ” How much does the breakfast cost ?” in
5 different varieties of Arabic from the MADAR 26 corpus (Bouamor et al., 2018). The yellow
highlights the interrogative element (roughly “how much”), the green (when present) highlights the
explicit cost word, and the blue highlights the breakfast term.

Dialect Arabic Transliteration (Buckwalter)
Modern Standard Arabic ?PA¢

	
¯B


@

�
é
	
®Ê¾

�
K Õ» kam taklifaT al-’ifTar?

Egyptian Arabic ?PA¢
	
®Ë @ ÐA¾K. bkam al-fiTar?

Levantine Arabic ?
�
é
�
®K
ð

Q��Ë @
�
�k ø



X


@ ’addi Haq al-tarwiqa?

Gulf Arabic ?
�
�ñK
QË@ ÕºK. bkam al-riyooq?

Maghrebi Arabic ?hAJ.�Ë@ Pñ¢
	
¯

�
�@Y

�
®K. bqaddash fuToor al-SabaaH?

4 METHODOLOGY

We present a methodology designed to first diagnose and then causally intervene in the representa-
tional geometry of multilingual models. Our approach uses a controlled generative task to probe
model capabilities, analyze the underlying representations through geometric and information-
theoretic lenses, and introduce a novel training technique to mitigate representational entanglement.
We clarify our Large Language Model use for this paper in Appendix H.
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4.1 TASK FORMULATION: MACHINE TRANSLATION AS A GENERATIVE TESTBED

To study varietal generation in a controlled setting, we formulate the task of Inter-variety Machine
Translation (VarMT). Given a sentence in a higher-resource variety, the model must generate the se-
mantically equivalent sentence in a lower-resource variety. This setup serves as a proxy for broader
conditional generation, enabling precise measurement of a model’s ability to manipulate linguistic
style while preserving meaning. We adopt MT as our testbed due to the relative availability of paral-
lel data, in contrast to other generative tasks (e.g., summarization, open-ended dialogue). Prompting
details are provided in Appendix A. For our causal experiments (Sec. 4.3), we fine-tune models with
a bidirectional VarMT objective (higher-resource ↔ lower-resource). This prevents models from
trivially degrading higher-resource representations in favor of lower-resource performance, ensuring
a fairer evaluation of subspace dynamics and intervention effects. The only exceptions are Indone-
sian–Malay and Czech–Slovak. Since these groups are typically considered distinct languages, we
instead train with English as a pivot (English → language), providing complementary evidence to
the VarMT setup.

4.2 QUANTIFYING PERFORMANCE AND REPRESENTATIONAL GEOMETRY

Evaluation. We evaluate generation quality using chrF++ (Popović, 2015), a character n-gram
F-score. Its character-level nature makes it well-suited for morphologically rich languages and ro-
bust to the minor lexical variations common across varieties, while remaining sensitive to subtle
character-level shifts. Like other automated metrics, chrF++ cannot fully capture the nuances of
“varietal distinctness.” Human annotation would be the only true alternative, but is largely infea-
sible given the small native-speaker populations of many varieties. LLM-based metrics are also
unsuitable, as they risk reintroducing the very biases that hinder variety-sensitive generation.

4.3 CAUSAL INTERVENTION: ONLINE SUBSPACE DECOUPLING

To test the hypothesis that representational entanglement with a high-resource varieties harms low-
resource generation, we introduce a novel training method: Online Subspace Decoupling. This
method acts as a causal intervention by actively discouraging lower-resource varietal representations
from overlapping with the higher-resource variety subspace during fine-tuning.

The procedure is as follows:

1. Identify Higher-resource Variety Subspace: We train a variational linear probe (as in
Sec. 4.4) to distinguish the higher-resource variety from all other varieties in a group. We
then use Singular Value Decomposition (SVD) on the learned probe weights to extract an
orthonormal basis UHR for the higher-resource subspace and form its projection matrix:
PHR = UHRU

⊤
HR.

2. Define Decoupling Loss: During fine-tuning on the VarMT task, we add a penalty term to
the standard language modeling loss. This decoupling loss penalizes the magnitude of the
projection of the model’s hidden states H onto the higher-resource subspace:

Ldecouple = E [∥HPHR∥2] (1)

The total loss is L = LLM + λLdecouple, where λ is a hyperparameter (we use λ =1e-4
across all setups after ablation, check Appendix E.2.).

Crucially, the probe is periodically retrained on fresh model checkpoints during fine-tuning. This
online updating of PHR ensures that our intervention targets the evolving higher-resource subspace
before the probe becomes too stale, enabling a precise and adaptive causal manipulation of the
model’s representational geometry. Further details are in Appendix E.

Representational Geometry. To understand how models represent varieties, we analyze their in-
ternal geometry. For the observational part of our study we hone in on Arabic dialects due to the
unique availability of 28-way parallel resources (MADAR 26 (Bouamor et al., 2018)). Furthermore,
Arabic provides a plethora of different varieties each with their own unique characteristics which
can be compared to the standard. We measure the Geometric Separability between sentence rep-
resentations using L2 and cosine distance, anchoring all comparisons to Modern Standard Arabic

4
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(MSA) representations. This allows us to quantify how distinct dialectal representations are from the
high-resource standard. Furthermore, we compute Subspace Angles (SSA) (Müller-Eberstein et al.,
2023) to measure the alignment between subspaces corresponding to different dialects. Smaller an-
gles indicate greater alignment. This allows us to track how fine-tuning and our proposed interven-
tions reshape the model’s internal organization of linguistic information.

4.4 INFORMATION-THEORETIC PROBING

To complement the geometric analysis, we employ an information-theoretic variational linear probe
(similar to our online subspace decoupling intervention) (Voita & Titov, 2020; Müller-Eberstein
et al., 2023). The probe is a sparsity-regularized classifier trained to identify a variety from token-
level representations. The resulting negative cross-entropy provides a tight lower bound on the mu-
tual information I(h(ℓ);Y ) between a model’s hidden states and the variety’s identity. This allows
us to quantify how easily variety-specific information can be linearly decoded from the model’s
representations, layer by layer, and how this changes during training. Further details are in Ap-
pendix D. Again similarly to the geometric analysis, when this tool is used observationally (i.e. not
in our causal intervention) we hone in only on Arabic for practical considerations.

4.5 EXPERIMENTAL SETUP

Data. We cover six groups of varieties. To be able to cover this range, we utilize data resources
from four dataset resources. For Arabic we use the MADAR 26 corpus (Bouamor et al., 2018),
which contains 2,000 parallel sentences across 25 city-level Arabic dialects, MSA, English, and
French. This fine-grained, multi-dialect parallel resource is unique and enables controlled observa-
tional study. For Brazilian-European Portuguese, we use the FRMT resource (Riley et al., 2023). For
Indonesian-Malay and Czech-Slovak we use the Flores-200 dataset (Costa-jussà et al., 2022; Goyal
et al., 2021). For Standard-Low German and Kven-Finnish we use the Tatoeba challenge (Tiede-
mann, 2020). We elaborate on the precide processing and splits of each dataset in Appendix B

Models. We analyze a suite of state-of-the-art open-weight multilingual models: Jais-family 30B
(Sengupta et al., 2023), Gemma 3 1B (Team, 2025a), Aya expanse 8B (Dang et al., 2024), and Qwen
3 14B (Team, 2025b). For our causal intervention experiments, we deliberately select Gemma 3 1B.
For finetuning we start with the base (non-instruction tuned model). Its smaller parameter count
implies a more constrained representational space, making it a challenging and informative test case
for the benefits of explicit subspace management. Furthermore, its weaker baseline performance
provides a clear opportunity to measure improvement from our method.

5 RESULTS AND ANALYSIS

We now present our empirical investigation, which first validates our hypothesis with a causal in-
tervention on multiple language groups then explores the representational pathologies hindering
dialectal generation in multilingual models by focusing on Arabic. We place the numerical results
for all setups in Appendix F.

5.1 CAUSAL VALIDATION: ONLINE SUBSPACE DECOUPLING BOOSTS PERFORMANCE

Table 2: Higher-resource Va-
rieties

Language Group Higher-Resource Variety

Portuguese Brazilian Portuguese
Czech/Slovak Czech
Finnish/Kven Finnish
German Standard German
Malay/Indonesian Indonesian
Arabic Modern Standard Arabic

We test our hypothesis of excessive representational dominance/-
conflation negatively affecting lower-resource generative abilities
of multilingual LLMs on lower-resource varieties by directly using
our proposed Online Subspace Decoupling method (Section 4.3).
By adding an explicit penalty term that penalizes over-sized higher-
resource variety subspaces. The choices for which variety’s sub-
space to penalize per group are outlined in Table 2. We make these
choices based on previously reported performance disparities (Kan-
tharuban et al., 2023) and if they are considered the standard (if
applicable).
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Figure 2: The mean delta in ChrF++ on several target varieties and languages between our Online
Decoupling Training and Baseline SFT on VarMT. A positive delta indicates superior performance
from our method.

Table 3: ChrF++ of Random Subspace Decou-
pling vs. Baseline SFT.

Target Baseline Random ∆ Random-Baseline

Sanaa 18.4 17.9 -0.5
Benghazi 21.0 18.3 -2.7
Riyadh 23.0 19.9 -3.1
Cairo 16.9 16.1 -0.8
Basra 20.1 17.5 -2.6
Muscat 18.6 18.0 -0.6
Mosul 20.9 17.7 -3.2
Fes 22.5 21.2 -1.3
Jerusalem 22.6 18.5 -4.1
Salt 22.0 17.9 -4.1
Aleppo 20.6 17.2 -3.4
Khartoum 22.1 18.2 -3.9
Baghdad 20.4 15.7 -4.7
Aswan 20.2 18.8 -1.4
Tripoli 21.2 18.8 -2.4
Doha 21.8 17.7 -4.1
Rabat 19.9 19.0 -0.9
Alexandria 21.9 19.1 -2.8
Jeddah 21.2 18.0 -3.2
Amman 20.4 16.7 -3.7
Beirut 18.5 16.7 -1.8
Tunis 17.9 16.0 -1.9
Sfax 18.2 18.1 -0.1
Algiers 23.6 20.1 -3.5
Damascus 20.6 17.1 -3.5
French 27.7 22.0 -5.7
English 31.4 22.9 -8.5

In Figure 2, we compare online subspace
decoupling against baseline supervised fine-
tuning. Improvements are most consistent
for lower-resource target varieties, where in-
flated subspaces of high-resource counterparts
are explicitly penalized and disentangled. Eu-
ropean Portuguese is particularly illustrative:
despite Brazilian Portuguese dominating cor-
pus size and representational allocation, decou-
pling yields a striking +11.7 ChrF++ improve-
ment, showing that naive fine-tuning can in fact
be hindered by conflation with a related high-
resource variety. Smaller but still meaningful
gains are observed for Kven (+4.6 ChrF++),
Low German (+2.7), and Slovak (+1.1). Im-
portantly, the dominant higher-resource vari-
eties change little under decoupling (with the
exception of Czech, which shows a minor de-
cline, and MSA, which worsens). This sup-
ports the claim that our method reallocates rep-
resentational capacity toward underrepresented
varieties rather than amplifying already domi-
nant ones. A one-sided Wilcoxon signed-rank
test on overall ChrF++ scores confirms that on-
line decoupling significantly outperforms base-
line fine-tuning across variety setups (excluding
variety→MSA translation), yielding a p-value
of 0.00195. Online decoupling achieves higher ChrF++ in 9 of 10 setups, with an average gain
of +4.45 points. At the sentence-level, one-sided Wilcoxon tests further show that online decou-
pling significantly improves over the baseline (p < 0.05) for nearly all varieties, with exceptions
in Finnish, Czech, and many Arabic dialects (notably Amman, Cairo, Muscat, and Salt do reach
significance) (see Appendix G). Together, these results demonstrate that decoupling systematically
benefits lower-resource varieties but may not harm their higher-resource counterparts on many of
the language groups observed.

Arabic dialects provide further support for our hypothesis. Constraining Modern Standard Arabic
(MSA) subspaces yields gains of up to +4.3 ChrF++ (Sanaa) for many dialects, even as MSA itself
and cross-lingual transfers (e.g., to English or French) decrease. This asymmetry shows that domi-
nance by the standard variety does not linearly benefit dialect modeling and can suppress dialectal

6
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Figure 3: (Left) During baseline SFT, the subspace angle (SSA) between MSA and dialects consis-
tently increases, indicating growing representational separation. (Right) This increase in separation
correlates directly with improved chrF++ scores. This provides strong evidence that disentangling
from MSA is a key mechanism for improving dialectal generation.

expressivity. Online Subspace Decoupling effectively reallocates capacity to underrepresented di-
alects, unlocking performance that would otherwise be constrained by MSA.

Interestingly, some higher-resource varieties also improve under decoupling: Indonesian gains +5.3
ChrF++ and Brazilian Portuguese +13.0, the largest observed increase. This indicates that entan-
gled subspaces can distort both lower- and higher-resource varieties. By disentangling, decoupling
could be sharpening the boundaries between varieties, reducing interference and enabling special-
ization. Penalizing oversized subspaces may also prevent dominant varieties from overfitting shared
structures, benefiting both high- and low-resource generation.

To rule out gains from generic hidden space regularization, we tested random subspace shrinking on
Arabic dialects. As shown in Table 3, performance consistently dropped below baseline for MSA,
the dialects, French, and English, confirming that improvements arise specifically from disentan-
gling oversized higher-resource subspaces rather than from indiscriminate regularization.
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t-SNE Visualization of Dialect Representations

Figure 4: t-SNE of sentence representations. Higher-performing models (e.g., Qwen, Aya) ex-
hibit clearer separation between dialectal clusters in their intermediate layers, unlike weaker models
(Gemma, Jais).

5.2 EXPLORATION I: GEOMETRIC ANALYSIS LINKS PERFORMANCE TO
REPRESENTATIONAL SEPARATION

Now we move on from causal experimentation to quantitative and qualitative observation of model
geometry across multiple models of varying sizes and families on Arabic. To investigate the underly-
ing representational geometry, we visualize the hidden states of parallel sentences from MADAR 25
using t-SNE (with perplexity=20) (Figure 4). The visualizations reveal a striking pattern: stronger
models like Qwen and Aya learn to separate representations by dialect in their intermediate layers,
whereas weaker models like Jais and Gemma maintain entangled representations. This qualitative
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Figure 5: Layer-wise L2 (Top) and Cosine (Bottom) distance between dialectal representations and
MSA. High-performing models show distinct geometric patterns, with Aya treating dialects more
like separate languages (high L2 distance).
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Figure 6: Layer-wise Pearson correlation between representational distance from MSA (L2-Top,
Cosine-Bottom) and downstream generation performance. The consistent negative correlation with
cosine distance suggests that subspace alignment is beneficial.

observation suggests a link between a model’s ability to geometrically isolate dialectal subspaces
and its downstream generative performance.

We quantify this by measuring the L2 and cosine distance between MSA and dialectal sentence rep-
resentations across all layers (Figure 5). We observe that different distance metrics capture different
geometric properties: L2 distance reflects the degree of spatial separation, while cosine distance
measures the alignment of subspaces. To substantiate the link to performance, we compute the
layer-wise correlation between these distances and the chrF++ score (Figure 6). A consistent nega-
tive correlation emerges between cosine distance and performance, especially in early-to-mid layers.
This suggests that better alignment (lower cosine distance) in these layers is beneficial, likely facili-
tating the transfer of semantic information from the high-resource MSA. Conversely, the relationship
with L2 distance is more complex, with models like Aya benefiting from greater spatial separation
in intermediate layers. This indicates a delicate balance: subspaces must be aligned enough for
knowledge transfer but separate enough to preserve unique dialectal features.
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5.3 EXPLORATION II: INFORMATION-THEORETIC EVIDENCE OF MSA’S
REPRESENTATIONAL DOMINANCE

The geometric analysis suggests entanglement with MSA is problematic. We further interrogate
this using information-theoretic probing during standard supervised fine-tuning (SFT) on the VarMT
task in Arabic. We track the ELBO code length required to identify dialects from the model’s hidden
states (a proxy for how accessible this information is). As shown in Figure 7, standard fine-tuning
causes the code length for all dialects to increase slightly, as the model specializes for generation
rather than classification. However, the increase is disproportionately large for MSA. This indi-
cates that the model is actively making MSA-specific information less linearly accessible, suggesting
its pre-trained MSA representation is oversized and detrimental to the dialectal generation task.

This “pruning” of the MSA subspace has a direct geometric consequence. As we fine-tune, the
Subspace Angle (SSA) between MSA and the dialectal subspaces consistently increases (Figure 3,
left). That is, the dialectal subspaces systematically drift away from the MSA subspace. Crucially,
this growing separation directly correlates with improvements in generation performance (Figure 3,
right).

Taken together, these analyses provide compelling correlational evidence for our central hypothesis:
the representational dominance of the higher-resource varieties actively hinders a model’s ability
to generate text in related low-resource varieties. Fine-tuning implicitly alleviates this by pushing
dialectal representations away from the MSA subspace.
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Figure 7: Code Length evolution over baseline
training.

There are a few limitations to keep in mind, the
MADAR dataset, while unique in its breadth of
dialects, is composed of relatively short sen-
tences. This setting may not fully capture
model behaviors on tasks requiring longer-form
generation, thereby defining the scope of our
current findings. We hope future work ad-
dresses this gap in data availability.

6 DISCUSSION & FUTURE WORK

This work shows that representational entan-
glement with high-resource languages is a key
bottleneck for generative modeling in closely-
related, low-resource varieties. Using online
subspace decoupling, we dynamically discour-
age dominance by higher-resource varieties
during fine-tuning, establishing causal evidence across six language groups that managing subspace
dominance yields substantial gains (up to +13.0 ChrF++). Geometric and information-theoretic
analyses on Arabic dialects further suggest that Modern Standard Arabic (MSA) dominance im-
pedes dialectal generation, highlighting the importance of representational allocation in multilingual
models. Future directions include:

• Scalable and Efficient Methods: Developing computationally cheaper alternatives, such
as subspace-aware adapters or pre/post-training objectives that balance representational
spaces.

• Inference-Time Interventions: Using activation steering, targeted neuron editing, or dis-
tributional shifts to mitigate higher-resource interference without gradient updates.

• Interpretability for Benefit Prediction: Investigating which representational or linguistic
factors (e.g., corpus size, syntactic divergence, shared subspaces) most strongly influence
the gains from decoupling, enabling more principled and predictive model design.
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Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar,
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A VARMT PROMPTS

Language Group Prompt Template

Non-Arabic (e.g., Portuguese, Finnish, German, Malay, Czech/Slovak) Translate the following sentence from {src lang name} to {tgt lang name}:
{src lang name}: {src sentence}
{tgt lang name}: {tgt sentence}

Arabic (MSA to dialect) Rewrite the following MSA sentence to the dialect of {city}:
MSA: {msa}
{city}:

Arabic (MSA to English/French) Rewrite the following MSA sentence to {city}:
MSA: {msa}
{city}:

Table 4: Prompting templates used for fine-tuning. For non-Arabic pairs we use a direct Translate
the following sentence prompt, while for Arabic we adopt a Rewrite to dialect formulation that
mirrors natural usage of MSA as the standard reference. For instruction-tuned or chat models, these
prompts are wrapped inside the model’s recommended system/user templates.

B DATA PROCESSING AND SPLITS

To ensure consistency across language groups and prevent data leakage, we follow the principles
below:

B.1 ARABIC (MADAR 26)

For Arabic, we exclusively use the Madar 26 split. Both the translation models and dialect identifi-
cation probes are trained on this split. The official test set is never used during training or probing
and serves solely for final evaluation, ensuring no data leakage.

B.2 FLORES-200

For FLORES-200, we use the devtest split as the training/dev set and the test split as the test
set. Because FLORES-200 is already small, we do not perform additional sampling. Otherwise,
we follow the same principles as for other datasets: probes are trained on the same set as the trans-
lation model, and the test set is kept fully separate to prevent leakage.

B.3 CONSISTENT TRAIN/DEV SPLITS FOR PROBING

Across all languages and models, probes are always trained on the same training/dev set as the
translation model, while the test split is kept entirely separate. This ensures that no information
from the test set can influence probe training or model tuning.

B.4 LOW-RESOURCE / FEW-SHOT SAMPLING

For large datasets (e.g., Tatoeba or other multilingual resources), we adopt a controlled low-
resource setup to normalize the training regime across languages:
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• From any dataset with more than approximately 1000 parallel training samples, we create
a training/dev split of 1000 parallel sentences.

• The test split also consists of 1000 parallel sentences.
• This approach allows us to simulate a few-shot scenario and maintain comparability be-

tween high- and low-resource language pairs.

For example, in the Tatoeba preprocessing pipeline:

de_lo_mt = make_mt_dataset(de_lo, "de", "lo", dev_size=1000
, test_size=1000)
de_lo_id = make_dialect_id_dataset(de_lo_mt["dev"].to_pandas(),
"de", "lo", 1, 0)

B.5 PORTUGUESE (FRMT DATASET)

For Brazilian and European Portuguese, we process multiple FRMT buckets to extract aligned sen-
tence pairs. The workflow mirrors the Tatoeba setup:

• Merge BR/PT parallel sentences on the English pivot to create the translation dataset
(tr dataset).

• Sample 1000 sentences per variant for dialect identification probes (id dataset).
• Push both datasets to Hugging Face Hub for standardized access.

tr_dataset = build_translation_dataset(files)
id_dataset = build_dialect_id_dataset(files)

B.6 KVEN–FINNISH

Kven–Finnish is an inherently low-resource language pair, with only 797 total parallel sentence
samples in Tatoeba. To handle this, we create a training/dev set of 500 samples and use the remaining
samples as the test set. This setup ensures the training and probing data remain separate from
evaluation data while respecting the limited resource size.

B.7 RATIONALE

This uniform low-resource setup across all language groups ensures comparability, even though
parallel sentence availability varies greatly across language pairs. For instance, Kven–Finnish
has far fewer resources than German–Low German or Portuguese. Limiting all datasets to a few-
shot regime allows systematic study of translation and dialect probing under consistent conditions.
We release all the splitting code for reproducibility (with fixed random seeds, however we can not
share the data directly as we do not have permission to do so.

C CITY NAMES TO DIALECT CODE FOR ARABIC

D MORE INFORMATION ABOUT PROBING

To complement geometric subspace analysis, we adopt an information-theoretic variational linear
probe (Voita & Titov, 2020; Müller-Eberstein et al., 2023) to quantify how much dialect iden-
tity information is recoverable from token-level model representations. For a given token, let
{h(0), . . . ,h(ℓ)} ∈ Rd denote its hidden states from all ℓ layers, including the non-contextualized
layer 0. The probe computes a learned weighted average over layers:

h′ =

ℓ∑
i=0

αih
(i),

where α ∈ Rℓ are learned combination weights.
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City Code
Rabat RAB
Fes FES
Algiers ALG
Tunis TUN
Sfax SFX
Tripoli TRI
Benghazi BEN
Cairo CAI
Alexandria ALX
Aswan ASW
Khartoum KHA
Jerusalem JER
Amman AMM
Salt SAL
Beirut BEI
Damascus DAM
Aleppo ALE
Mosul MOS
Baghdad BAG
Basra BAS
Doha DOH
Muscat MUS
Riyadh RIY
Jeddah JED
Sana’a SAN

Table 5: City Names and Their Codes

This aggregated representation is fed to a linear classifier with weight matrix θ ∈ Rd×c for c dialect
classes. Following Voita & Titov (2020), each weight w in θ is drawn from a normal distribution

w ∼ N (zµ, z2σ2),

where the scaling factor z is also drawn from

z ∼ N (µz, σ
2
z).

The pair (w, z) is given a joint normal–Jeffreys prior

γ(w, z) ∝ |z|−1 N (w | 0, z2)

which encourages sparsity by pushing weights toward zero with low variance.

The probe parameters (α,θ) are trained to minimize

L = CE(y, ŷ) + β DKL(q(θ) ∥ γ(θ)) ,

where CE is the cross-entropy loss for one-vs-rest dialect classification, and the KL term regular-
izes θ toward the sparsity-inducing prior. This objective maximizes compression while preserving
predictive accuracy, yielding a layer-combined, token-level estimate of recoverable dialect identity
information. The one-vs-rest objective hones in on dialect specific information that can help the
model discern between similar dialects and offers counter-examples. We construct the training set
for each dialect/variety/language by taking all the target’s sentences in MADAR 26’s training set, we
construct an equal number of counter-examples from all the other dialects and languages. We make
this data available (anonymized). We include training hyperparameters for the probes in Table 6.

E ONLINE DECOUPLING TRAINING DETAILS

This appendix outlines the key design decisions underlying our online higher-resource variety sub-
space decoupling method, as well as the exact hyperparameters used in our experiments.
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Hyperparameter Value
Model name google/gemma-3-1b-pt
KL weight 1.0
Number of epochs 30 (for analysis)

15 (for decoupling training)
Early stopping patience 5

Table 6: Training hyperparameters for variational probe experiments.

E.1 DESIGN CHOICES

Projection Subspace Estimation. We estimate the higher-resource variety subspace using a vari-
ational linear probe trained on a higher-resource variety vs. lower-resource variety identification
task over the training sets of the corpora used. We recover the subspace basis from the learned probe
parameters using Singular Value Decomposition (SVD) of the parameter matrix θHR. The number
of retained singular vectors equals the probe’s latent dimension.

Online Updating. Rather than estimating the higher-resource variety subspace once before train-
ing, we periodically retrain the probe on the current model checkpoint during fine-tuning. This
ensures that the projection matrix PHR remains synchronized with the evolving hidden representa-
tion geometry. The projection matrix is updated every Nupdate gradient steps. We ablate the choice
of Nupdate in Appendix E.3.

Layer Aggregation. Hidden representations from all layers are combined using a learned set of
attention weights α ∈ RL+1 from the variational probe. This allows the method to focus the decou-
pling penalty on layers most predictive of MSA features.

Penalty Formulation. We penalize the ℓ2 norm of the projection of the aggregated hidden states
onto the higher-resource subspace:

Ldecouple = E [∥HPHR∥2] , (2)

where H are the contextual hidden states and PHR is the projection matrix.

Loss Weighting. The decoupling penalty is scaled by a coefficient λ and added to the standard
causal language modeling loss:

L = LLM + λ · Ldecouple. (3)

Bidirectional Training Data. To encourage symmetric modeling of both higher-resource vari-
ety → lower-resource variety and dialect → MSA directions, we construct bidirectional rewriting
prompts for each sentence pair.

E.2 LOSS COEFFICIENT λ ABLATION

λ Average ChrF++ std

1e-4 21.8749 2.0365
1e-3 18.1038 1.4634
1e-2 20.8508 1.3012

0.1 20.7082 1.7187
1.0 11.4210 1.0222

10.0 7.0045 0.4444

Table 7: Average Chrf++ and standard deviation across Arabic dialects over several values of λ.
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Nupdate Average ChrF++ std

100 21.8 1.8
500 22.7 2.0

1000 21.5 1.8

Table 8: Average Chrf++ and standard deviation across Arabic dialects over several values of Nupdate.

Parameter Value / Setting
Base model google/gemma-3-1b-pt
Tokenizer Matching HF tokenizer (pad token = eos token)
Batch size (per device) 1
Gradient accumulation steps 4
Max sequence length 512
Optimizer AdamW (via HF Trainer default)
Learning rate 5× 10−5 (default HF schedule)
Loss coefficient λ 1e-4
Probe update steps Nupdate 500
Probe training epochs 15
Probe input type Sequence-level dialect identification
Number of probe classes 2 (MSA vs. non-MSA)
Projection estimation SVD on θHR
Subspace dimensionality Full rank of θHR
Layer aggregation Learned attention weights α
Early stopping patience 3 epochs (validation loss)
Early stopping threshold 0.01
Train/validation split 90% / 10%

Table 9: Hyperparameters used in online decoupling experiments.

E.3 NUPDATE ABALATION

E.4 HYPERPARAMETERS

F DETAILED DECOUPLING RESULTS FOR ALL VARIETIES

G STATISTICAL SIGNIFICANCE TESTING PER VARIETY/SETUP

H LLM USE

We utilize LLM assistants in this paper as follows:

• Paper Writing: LLMs are used to polish language and style, as well as for brevity and
phrasing throughout this paper. The analysis, however, is originally drafted by the authors.

• Coding: LLM assistants were used to help draft and clean the code used for our method-
ology, experimentation, and visualization. The code was manually reviewed and tested/re-
viewed for correctness.
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src target online baseline random delta online baseline delta online random

European Portuguese Brazilian Portuguese 45.900 32.900 13.000
Brazilian Portuguese European Portuguese 46.200 34.500 11.700
English Indonesian 50.100 44.800 5.300
Finnish Kven Finnish 50.400 45.800 4.600
Modern Standard Arabic Sanaa 22.700 18.400 17.900 4.300 4.800
Modern Standard Arabic Benghazi 24.800 21.000 18.300 3.800 6.500
Low German Standard German 49.500 46.300 3.200
Modern Standard Arabic Riyadh 26.200 23.000 19.900 3.200 6.300
Standard German Low German 52.300 49.600 2.700
Modern Standard Arabic Cairo 19.400 16.900 16.100 2.500 3.300
English Malay 50.000 47.800 2.200
Modern Standard Arabic Basra 22.300 20.100 17.500 2.200 4.800
Modern Standard Arabic Muscat 20.500 18.600 18.000 1.900 2.500
Modern Standard Arabic Mosul 22.700 20.900 17.700 1.800 5.000
Modern Standard Arabic Fes 24.000 22.500 21.200 1.500 2.800
Modern Standard Arabic Jerusalem 24.100 22.600 18.500 1.500 5.600
Kven Finnish Finnish 40.500 39.100 1.400
Modern Standard Arabic Salt 23.400 22.000 17.900 1.400 5.500
Modern Standard Arabic Aleppo 21.800 20.600 17.200 1.200 4.600
Modern Standard Arabic Khartoum 23.300 22.100 18.200 1.200 5.100
Modern Standard Arabic Baghdad 21.500 20.400 15.700 1.100 5.800
Modern Standard Arabic Aswan 21.300 20.200 18.800 1.100 2.500
English Slovak 32.300 31.300 1.000
Modern Standard Arabic Tripoli 22.100 21.200 18.800 0.900 3.300
Modern Standard Arabic Doha 22.700 21.800 17.700 0.900 5.000
Modern Standard Arabic Rabat 20.700 19.900 19.000 0.800 1.700
Modern Standard Arabic Alexandria 22.700 21.900 19.100 0.800 3.600
Modern Standard Arabic Jeddah 22.000 21.200 18.000 0.800 4.000
Modern Standard Arabic Amman 21.100 20.400 16.700 0.700 4.400
Modern Standard Arabic Beirut 19.000 18.500 16.700 0.500 2.300
Modern Standard Arabic Tunis 18.400 17.900 16.000 0.500 2.400
English Czech 31.600 32.200 -0.600
Modern Standard Arabic Sfax 17.500 18.200 18.100 -0.700 -0.600
Modern Standard Arabic English 30.700 31.400 22.900 -0.700 7.800
Modern Standard Arabic Algiers 22.700 23.600 20.100 -0.900 2.600
Modern Standard Arabic Damascus 19.600 20.600 17.100 -1.000 2.500
Modern Standard Arabic French 25.900 27.700 22.000 -1.800 3.900
Muscat Modern Standard Arabic 15.800 19.200 -3.400
Khartoum Modern Standard Arabic 15.600 19.400 -3.800
Algiers Modern Standard Arabic 14.400 18.900 -4.500
Riyadh Modern Standard Arabic 14.100 19.000 -4.900
Jeddah Modern Standard Arabic 13.700 18.900 -5.200
Aswan Modern Standard Arabic 13.100 18.300 -5.200
Fes Modern Standard Arabic 13.800 19.100 -5.300
Cairo Modern Standard Arabic 13.700 19.000 -5.300
Tripoli Modern Standard Arabic 12.800 18.200 -5.400
Salt Modern Standard Arabic 13.200 18.700 -5.500
Aleppo Modern Standard Arabic 12.800 18.300 -5.500
Baghdad Modern Standard Arabic 13.700 19.200 -5.500
Basra Modern Standard Arabic 13.000 18.600 -5.600
Jerusalem Modern Standard Arabic 12.800 18.500 -5.700
Sanaa Modern Standard Arabic 13.000 18.700 -5.700
Alexandria Modern Standard Arabic 13.200 19.000 -5.800
Benghazi Modern Standard Arabic 13.300 19.100 -5.800
Sfax Modern Standard Arabic 11.800 17.600 -5.800
Rabat Modern Standard Arabic 12.600 18.600 -6.000
Mosul Modern Standard Arabic 12.400 18.600 -6.200
Amman Modern Standard Arabic 13.400 19.600 -6.200
Doha Modern Standard Arabic 12.900 19.200 -6.300
Damascus Modern Standard Arabic 12.700 19.200 -6.500
Beirut Modern Standard Arabic 12.000 18.500 -6.500
Tunis Modern Standard Arabic 11.400 18.300 -6.900
French Modern Standard Arabic 0.300 17.700 -17.400
English Modern Standard Arabic 0.300 18.400 -18.100

Table 10: All the results across all of our experimental settings.
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Group Target N CHRFF(base) CHRFF(online) ∆ p1−sided sig

Arabic Aleppo 200 21.31 20.45 -0.87 0.501
Arabic Alexandria 200 22.97 20.75 -2.22 0.706
Arabic Algiers 200 24.50 20.01 -4.49 0.999
Arabic Amman 200 21.37 23.80 2.43 0.0128 *
Arabic Aswan 200 20.23 20.49 0.26 0.178
Arabic Baghdad 200 21.07 20.56 -0.51 0.65
Arabic Basra 200 20.06 21.04 0.98 0.153
Arabic Beirut 200 18.94 19.08 0.13 0.224
Arabic Benghazi 200 22.16 23.00 0.84 0.147
Arabic Cairo 200 16.50 18.22 1.72 0.00656 *
Arabic Damascus 200 21.97 22.21 0.24 0.113
Arabic Doha 200 23.28 24.09 0.81 0.0677
Arabic English 200 33.69 28.99 -4.70 0.999
Arabic Fes 200 23.24 19.77 -3.47 0.998
Arabic French 200 27.52 23.65 -3.87 1
Arabic Jeddah 200 23.23 21.95 -1.29 0.515
Arabic Jerusalem 200 24.15 23.59 -0.56 0.502
Arabic Khartoum 200 23.30 21.86 -1.44 0.691
Arabic Mosul 200 21.75 21.17 -0.58 0.814
Arabic Muscat 200 18.43 19.76 1.33 0.0133 *
Arabic Rabat 200 19.59 19.02 -0.58 0.641
Arabic Riyadh 200 24.71 25.27 0.56 0.238
Arabic Salt 200 22.61 25.42 2.81 0.00118 *
Arabic Sanaa 200 18.36 19.98 1.62 0.165
Arabic Sfax 200 17.98 17.26 -0.72 0.647
Arabic Tripoli 200 21.78 20.42 -1.36 0.661
Arabic Tunis 200 18.11 17.25 -0.86 0.777
Czech-slovak eng Latn to ces Latn 1012 29.33 28.63 -0.71 0.964
Czech-slovak eng Latn to slk Latn 1012 28.44 29.38 0.94 0.00086 *
German-low german de to lo 1000 52.10 54.50 2.40 1.85e-06 *
German-low german lo to de 1000 48.59 51.49 2.90 5.22e-07 *
Indo-malay eng Latn to ind Latn 1012 42.47 47.96 5.49 3.81e-41 *
Indo-malay eng Latn to zsm Latn 1012 44.91 47.22 2.30 3.23e-12 *
Kven-finnish fi to fkv 297 47.90 53.10 5.20 0.000155 *
Kven-finnish fkv to fi 297 41.49 43.09 1.61 0.0896
Portuguese br to pt 985 35.24 45.88 10.64 6.42e-64 *
Portuguese pt to br 985 33.01 45.24 12.23 2.28e-74 *

Table 11: Individual Wilcoxon p-test on each translation direction (online vs. baseline SFT).
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