
Under review as a conference paper at ICLR 2024

A COEFFICIENT MAKES SVRG EFFECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic Variance Reduced Gradient (SVRG), introduced by Johnson & Zhang
(2013), is a theoretically compelling optimization method. However, as Defazio &
Bottou (2019) highlights, its effectiveness in deep learning is yet to be proven. In
this work, we demonstrate the potential of SVRG in optimizing real-world neural
networks. Our analysis finds that, for deeper networks, the strength of the variance
reduction term in SVRG should be smaller and decrease as training progresses.
Inspired by this, we introduce a multiplicative coefficient α to control the strength
and adjust it through a linear decay schedule. We name our method α-SVRG.
Our results show α-SVRG better optimizes neural networks, consistently reducing
training loss compared to both baseline and the standard SVRG across various
architectures and image classification datasets. We hope our findings encourage
further exploration into variance reduction techniques in deep learning.

1 INTRODUCTION

A decade ago, Johnson & Zhang (2013) proposed a simple approach for reducing gradient variance
in SGD – Stochastic Variance Reduced Gradient (SVRG). SVRG keeps a snapshot model and uses it
to form a variance reduction term to adjust the gradient of the current model. This variance reduction
term is the difference between the snapshot’s stochastic gradient and its full gradient on the whole
dataset. Utilizing this term, SVRG is able to reduce SGD’s gradient variance and accelerate it to be
almost as fast as the full-batch gradient descent in a strongly convex setting.

Over the years, numerous SVRG variants have emerged. Some focus on further accelerating con-
vergence in convex settings (Xiao & Zhang, 2014; Lin et al., 2015; Defazio, 2016), while others
are tailored for non-convex scenarios (Allen-Zhu & Hazan, 2016; Reddi et al., 2016; Nguyen et al.,
2017; Fang et al., 2018). Both SVRG and its variants have shown effectiveness in optimizing sim-
pler machine learning models like logistic and ridge regression (Allen-Zhu, 2017; Lei et al., 2017).
In addition, SVRG has also influenced reinforcement learning (Papini et al., 2018; Du et al., 2018).

Despite the theoretical value of SVRG and its subsequent works, they have seen limited practical
success in neural network training. Most SVRG research in non-convex settings is limited to modest
experiments: training basic models like Multi-Layer Perceptrons (MLP) or simple CNNs on small
datasets like MNIST and CIFAR-10. These studies usually exclude evaluations on more capable and
deeper networks. More recently, Defazio & Bottou (2019) have exploited several variance reduction
methods, including SVRG, to deep vision models. They have found that SVRG fails to reduce
gradient variance for deep neural networks because the model parameters update so quickly on the
loss surface that the snapshot model becomes outdated.

In this work, we show that adding a multiplicative coefficient to SVRG’s variance reduction term
can make it effective for deep models. Our exploration is motivated by an intriguing observation:
SVRG can only reduce gradient variance in the initial training stages, but actually increase it later.
To tackle this problem, we mathematically derive the optimal coefficient for the variance reduction
term to minimize the gradient variance. Our empirical analysis then leads to two key observations
about this optimal coefficient: (1) as depth of the model increases, the optimal coefficient becomes
smaller; (2) as training advances, the optimal coefficient decreases, consistently dropping well below
the standard SVRG’s default coefficient of 1. These findings explain why a constant coefficient of 1
in standard SVRG, while initially effective, eventually fails to reduce gradient variance.

Based on these observations, we introduce a linearly decaying coefficient α to control the strength
of the variance reduction term in SVRG. We call our method α-SVRG and illustrate it in Figure 1.

1



Under review as a conference paper at ICLR 2024

variance reduced gradient

snapshot full gradient

loss
lowhigh

snapshot stochastic gradientsnapshot model

variance reduction term model stochastic gradient

(a) SVRG (b) ⍺-SVRG

α

Figure 1: SVRG vs. α-SVRG. Both SVRG (left) and α-SVRG (right) use the difference between
snapshot stochastic gradient (gray) and snapshot full gradient (blue) to form variance reduction term
(orange), which modifies model stochastic gradient (black) into variance reduced gradient (red). But
α-SVRG employs an coefficient α to modulate the strength of the variance reduction term. With the
coefficient, α-SVRG reduces the variance of each update and results in faster convergence.

α-SVRG stably reduces gradient variance and optimizes models better. We evaluate α-SVRG on a
range of architectures and multiple image classification datasets. α-SVRG consistently achieves a
lower training loss than baseline and the standard SVRG. Our results highlight the value of SVRG
in deep learning. We hope our work can offer insights about SVRG and stimulate more research in
variance reduction approaches for optimization in neural networks.

2 MOTIVATION: SVRG MAY NOT ALWAYS REDUCE VARIANCE

SVRG formulation. We first introduce the basic formulation of SVRG. We adopt the following
notation: t is the iteration index, θt represents the current model parameters, and ∇fi(·) denotes the
gradient of loss function f for the i-th mini-batch1. When the subscript i is omitted, ∇f(·) represents
the full gradient across the entire dataset. A key concept in SVRG is the snapshot model, represented
as θ̃. It is a snapshot of the model at a previous iteration before t, acting as an approximation of θt.
We store its full gradient ∇f(θ̃). This snapshot is taken periodically. SVRG defines the variance
reduced gradient gt

i , as follows:

gt
i = ∇fi(θ

t)− (∇fi(θ̃)−∇f(θ̃))︸ ︷︷ ︸
variance reduction term

. (1)

Intuitively, SVRG uses the difference between the mini-batch gradient and the full gradient of a past
model to modify the current mini-batch gradient. This could make gt better aligned with the full
gradient and therefore stabilize each update on the current model.

Initially, SVRG was introduced in the context of vanilla SGD. Subsequent studies (Dubois-Taine
et al., 2021; Wang & Klabjan, 2022) have integrated SVRG into alternative base optimizers. Fol-
lowing these works, we directly input the variance reduced gradient gt

i into the base optimizer. Thus,
for all the experiments, SVRG and α-SVRG use the same optimizer as the baseline. Additionally,
we follow the practice in Defazio & Bottou (2019) to take the snapshot once per training epoch.

Gradient variance. Our goal is to assess SVRG’s effectiveness in reducing gradient variance. To
this end, we gather N mini-batch gradients, denoted as {gt

i |i ∈ {1, · · · , N}}, by performing back-
propagation on checkpoints of the model at the iteration t with randomly selected N mini-batches.
For SVRG, each gradient is further modified based on Equation 1. To present a comprehensive view,
we employ three existing metrics from prior studies to quantify gradient variance in Table 1.

1In SVRG’s original work (Johnson & Zhang, 2013), this corresponds to the i-th data point.

2



Under review as a conference paper at ICLR 2024

name formula description

metric 1∗ 2
N(N−1)

∑
i ̸=j

1
2

(
1− ⟨gt

i ,g
t
j⟩

∥gt
i∥

2∥gt
j∥

2

)
the directional variance of the gradients

metric 2† ∑d
k=1 Var(g

t
i,k) the variance of gradients across each component

metric 3‡ λmax(
1
N

∑N
i=1(g

t
i − gt)(gt

i − gt)T ) the magnitude of the most significant variation

Table 1: Gradient variance metrics. gt is the empirical mean of the gradients gt
i . k indexes the

k-th component of gradient gti,k. References: ∗ Liu et al. (2023b), † Defazio & Bottou (2019),
‡ Jastrzebski et al. (2020).

SVRG’s effect on gradient variance. To understand how SVRG affects training, we examine two
simple models: a single linear layer (Logistic Regression) and a 4-layer Multi-Layer Perceptron
(MLP-4). We train them over 30 epochs on CIFAR-10 (Krizhevsky, 2009). We compare SVRG
with SGD against the baseline using only vanilla SGD.

0 4 8 12 16 20
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 4 8 12 16 20
epochs

0

2

4

6

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 4 8 12 16 20
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 6 12 18 24 30
epochs

1.6

1.7

1.8

1.9

tra
in

 lo
ss

SGD
+ SVRG

Figure 2: SVRG on Logistic Regression. SVRG effectively reduces the gradient variance for
Logistic Regression, leading to a lower training loss than the baseline.

We plot Logistic Regression’s gradient variance (top two and bottom left) and the training loss
(bottom right) in Figure 2. For the Logistic Regression, SVRG consistently reduces both the gradient
variance and training loss throughout the entire training process.

0 4 8 12 16 20
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 4 8 12 16 20
epochs

0

4

8

12

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 4 8 12 16 20
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 6 12 18 24 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SGD
+ SVRG

Figure 3: SVRG on MLP-4. In the first few epochs, SVRG substantially reduces the gradient
variance for MLP-4, but afterwards, SVRG increases it, well above the baseline. As a result, SVRG
exhibits a higher training loss than the baseline at the end of training.

3



Under review as a conference paper at ICLR 2024

In contrast, for MLP-4, SVRG may not always reduce gradient variance. As shown in Figure 3,
SVRG only manages to decrease the gradient variance in the first five epochs. However, SVRG can
greatly increase gradient variance thereafter. Consequently, SVRG has a larger final training loss
than the baseline, suggesting that the increase in gradient variance hinders MLP-4’s convergence.

This surprising empirical observation in a slightly deeper model leads us to question whether SVRG
may alter the gradient too excessively at certain phases of training. Can we mitigate this adverse
effect? We explore these questions starting from a theoretical framework in the following section.

3 A CLOSER LOOK AT CONTROL VARIATES IN SVRG

Control variates (Lavenberg et al., 1977) is a technique initially developed in Monte Carlo methods
to reduce variance. We aim to estimate the expected value of a random variable X. The variance of
this estimate usually depends on Var(X). To form a less variate estimate X∗, we can use a control
variate Y that correlates with X and a coefficient α to regulate the influence of Y and E[Y] :

X∗ = X − α(Y − E[Y]). (2)

This estimate remains unbiased for any value of α. The coefficient that minimizes the variance of
the estimate can be derived as:

α∗ =
Cov(X,Y)

Var(Y)
= ρ(X,Y)

σ(X)

σ(Y)
, (3)

where ρ(X,Y) represents the correlation coefficient between X and Y; σ(·) denotes the standard
deviation. The derivation is detailed in Appendix A. The minimized variance becomes Var(X∗) =
(1− ρ(X,Y)2)Var(X). The higher the correlation is, the lower the variance of the estimate is.

Note that SVRG uses control variates to reduce variance in each component of the gradient. This
variance reduction occurs at each iteration t. Take a closer look at Equation 1 and 2: the model
stochastic gradient fi(θt) is the random variable X; the snapshot stochastic gradient fi(θ̃) is the
control variate Y; and the snapshot full gradient f(θ̃) is the expectation E[Y].

A key difference between SVRG and control variates is that SVRG omits the coefficient α, default-
ing it to 1. This is possibly because the gradient distribution does not change drastically in strongly
convex settings. Yet, SVRG’s subsequent studies, even those addressing non-convex cases, have
neglected the coefficient and formulated their theories based on Equation 1.

Motivated by this, we introduce a time-dependent coefficient vector αt ∈ Rd in SVRG:

gt
i = ∇fi(θ

t)−αt ⊙ (∇fi(θ̃)−∇f(θ̃)), (4)

where ⊙ represents the element-wise multiplication.

Optimal coefficient. We adopt the same gradient variance definition as Defazio & Bottou (2019)
(metric 2 above) and aim to determine the optimal αt∗ that minimizes it at each iteration. Specifi-
cally, our objective is to minimize the sum of variances across each component of gt. Let k index
the k-th component α∗

t,k and the k-th component of the gradient ∇f·,k(·). For clarity, we omit the
mini-batch index i. This can be formally expressed as the following optimization problem:

min
αt

d∑
k=1

Var(gt·,k) =

d∑
k=1

min
αt

k

Var(gt·,k). (5)

The order of minimization and summation in Equation 5 can be switched because the variance of
the k-th component of the gradient only depends on the k-th component of the coefficient by our
formulation. Applying Equation 3 yields the optimal coefficient αt∗

k :

αt∗
k =

Cov(∇f·,k(θ̃),∇f·,k(θ
t))

Var(∇f·,k(θ̃))
= ρ(∇f·,k(θ̃),∇f·,k(θ

t))
σ(∇f·,k(θ

t))

σ(∇f·,k(θ̃))
, (6)

A stronger correlation between the snapshot and model gradients leads to a larger optimal coefficient.

For small networks like MLP-4, calculating the optimal coefficient at each iteration is feasible by
gathering all mini-batch gradients for both the current and snapshot models. For larger networks,
however, this method becomes impractical; we will address this challenge later in the paper.

4



Under review as a conference paper at ICLR 2024

Observations on optimal coefficient. To explore how the optimal coefficient evolves in a normal
training setting, we train 1, 2, and 4-layer MLPs (Logistic Regression, MLP-2, and MLP-4) using
SGD and AdamW (Loshchilov & Hutter, 2019) on CIFAR-10 without using SVRG. Given the small
size of these models, we can analytically compute the optimal coefficient at each iteration. We plot
its mean value over all indices k in Figure 4. We can make two notable observations as below.

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

op
tim

al
 c

oe
ffi

ci
en

t

Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

op
tim

al
 c

oe
ffi

ci
en

t

(b) AdamW

Figure 4: Optimal coefficient. At the start of each epoch, a snapshot is taken. Consequently, the
optimal coefficient initiates at a value of 1 and results in a periodic upward jump.

Observation 1: deeper models have smaller optimal coefficients. For Logistic Regression, the opti-
mal coefficient remains relatively stable, hovering near 1. For MLP-2, the coefficient deviates from
1, dropping to about 0.6. For MLP-4, it decreases more sharply, reaching approximately 0.4.

Observation 2: average optimal coefficients of deeper model’s in each epoch generally decrease as
training progresses. This suggests that as training advances, the average correlation (Equation 6) of
each epoch decreases. We further analyze this epoch-wise decreasing pattern in Appendix D.

These observations shed light on why the standard SVRG struggles to reduce gradient variance or
training loss in later training stages (Figure 3). A default coefficient of 1 proves to be too high and
the weakening correlation between snapshot and model gradients necessitates a smaller coefficient.
Without a suitable coefficient, gradient variance may increase, leading to oscillations in SGD.

Optimal coefficient’s effect on gradient variance. We evaluate whether optimal coefficient makes
SVRG more effective in reducing gradient variance. Specifically, we use SVRG with optimal coef-
ficient to train a MLP-4 by computing the optimal coefficient (Equation 6) and adjust the gradient
(Equation 4) at each iteration. We compare SVRG with optimal coefficient to the standard SVRG
and the baseline. The results are presented in Figure 5. Using the optimal coefficient enables SVRG
to reduce gradient variance in the early stages of training without increasing it later. The consistent
gradient variance reduction yields a lower training loss than the baseline and the standard SVRG.

0 4 8 12 16 20
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 4 8 12 16 20
epochs

0

4

8

12

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 4 8 12 16 20
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 6 12 18 24 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SGD
+ SVRG
+ SVRG (opt. coef.)

Figure 5: SVRG with optimal coefficient on MLP-4. SVRG with the optimal coefficient reduces
gradient variance stably and achieves a substantially lower training loss than the baseline.

5



Under review as a conference paper at ICLR 2024

4 α-SVRG

From our analysis above, it becomes clear that the best coefficient for SVRG is not necessarily 1 for
multi-layer networks. However, computing the optimal coefficient at each iteration would result in
a complexity similar to full batch gradient descent. This approach quickly becomes impractical for
larger networks like ResNet (He et al., 2016). In this section, we demonstrate how using a preset
schedule of α values can achieve a similar effect of using the computed optimal coefficients.

α-SVRG. Given the decreasing trend (Figure 4) and the computational challenge, we propose to
apply a linearly decreasing scalar coefficient (more in Appendix F) for SVRG, starting from an
initial value α0 and decreasing to 0. This is our main method in this paper, and we name it α-SVRG.

α-SVRG vs. optimal coefficient. To evaluate how well α-SVRG matches SVRG with optimal
coefficient, we train a MLP-4 using α-SVRG and compare it to SVRG with optimal coefficient and
the baseline. For all experiments in this section, we set α0 = 0.5. The results are presented in
Figure 6. Interestingly, α-SVRG exhibits a gradient variance trend that is not much different from
SVRG with optimal coefficient. A similar pattern is observed in training loss. α-SVRG only has a
slightly higher training loss than SVRG with optimal coefficient but still lower than the baseline.

0 4 8 12 16 20
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 4 8 12 16 20
epochs

0

3

6

9

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 4 8 12 16 20
epochs

0.00

0.14

0.28

0.42

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 6 12 18 24 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SGD
+ SVRG (opt. coef.)
+ α-SVRG

Figure 6: α-SVRG on MLP-4. α-SVRG behaves similarly to SVRG with optimal coefficient.

α-SVRG with AdamW. Since AdamW (Loshchilov & Hutter, 2019) is a widely used optimizer in
modern neural network training, we assess the performance of α-SVRG with AdamW. We replace
the baseline optimizer SGD with AdamW to train a MLP-4 on CIFAR-10. We compare α-SVRG

0 4 8 12 16 20
epochs

0.075

0.175

0.275

0.375

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 4 8 12 16 20
epochs

0.0

1.6

3.2

4.8

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 4 8 12 16 20
epochs

0.03

0.12

0.21

0.30

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 6 12 18 24 30
epochs

0.2

0.7

1.2

1.7

tra
in

 lo
ss

AdamW
+ SVRG
+ α-SVRG

Figure 7: α-SVRG with AdamW on MLP-4. α-SVRG lowers the gradient variance throughout
the entire training process, leading to a decrease in the training loss.

6



Under review as a conference paper at ICLR 2024

with the standard SVRG and the baseline. The results are shown in Figure 7. α-SVRG exhibits a
pronounced gradient variance reduction and a smaller training loss for MLP-4 than the baseline.

α-SVRG on deeper networks. We further study the effectiveness of α-SVRG with AdamW on
real-world neural architectures, moving beyond simple MLPs. To this end, we train a modern Con-
vNet architecture, ConvNeXt-Femto (ConvNeXt-F) (Liu et al., 2022; Wightman, 2019), on CIFAR-
10 using the default AdamW optimizer. We compare α-SVRG with the standard SVRG and the
baseline. We show the results in Figure 8. α-SVRG reduces gradient variance, in contrast to the
standard SVRG increasing it. Furthermore, while the training loss of the standard SVRG stagnates
after around 100 epochs, the training loss of α-SVRG continues to decrease, outperforming that of
the baseline. This demonstrates the potential of α-SVRG in handling more complex models. We
further delve into this exploration with additional experiments next.

50 100 150 200
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 1
)

50 100 150 200
epochs

0.0

0.4

0.8

1.2

gr
ad

. v
ar

. (
m

et
ric

 2
)

50 100 150 200
epochs

0.0

0.1

0.2

0.3

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 100 200 300
epochs

1.4

1.7

2.0

2.3
tra

in
 lo

ss

AdamW
+ SVRG
+ α-SVRG

Figure 8: α-SVRG on ConvNeXt-F. α-SVRG effectively reduces the gradient variance for
ConvNeXt-F, leading to faster convergence compared to the baseline.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We evaluate α-SVRG using ImageNet-1K classification (Deng et al., 2009) as well as
smaller image classification datasets: CIFAR-100 (Krizhevsky, 2009), Flowers (Nilsback & Zisser-
man, 2008), Pets (Parkhi et al., 2012), STL-10 (Coates et al., 2011), Food-101 (Bossard et al., 2014),
DTD (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), and EuroSAT (Helber et al., 2018; 2019).

Models. We use recently proposed vision models on ImageNet-1K, categorized into two groups:
(1) smaller models with 5-19M parameters, including ConvNeXt-F (Wightman, 2019; Liu et al.,
2022), ViT-T/16 (Dosovitskiy et al., 2021), Swin-F (Liu et al., 2021b), and Mixer-S/32 (Tolstikhin
et al., 2021); (2) larger models featuring 86M and 89M parameters: ViT-B/16 and ConvNeXt-B.
ConvNeXt-F is also evaluated on all smaller image classification datasets.

Training. We report both the training loss and the validation accuracy. Our basic training setting fol-
lows ConvNeXt (Liu et al., 2022), which uses AdamW (our baseline optimizer). On small datasets,
we choose the best α0 from {0.5, 0.75, 1}. We find the coefficient is robust and does not require ex-
tensive tuning. Therefore, for ImageNet-1K, we set α0 to 0.75 for smaller models and 0.5 for larger
ones. Other training settings for α-SVRG remain the same with the baseline. Further experimental
settings can be founded in Appendix B.

5.2 RESULTS

Table 2 presents the results of training various models on ImageNet-1K. The standard SVRG often
increases the training loss, especially in larger models. In contrast, α-SVRG decreases the training
loss, confirming the effectiveness of the added coefficient to optimize real-world neural networks.
This also supports our earlier finding that deeper models benefit from lower coefficient values.

7



Under review as a conference paper at ICLR 2024

ConvNeXt-F ViT-T Swin-F Mixer-S ViT-B ConvNeXt-B

train loss
baseline 3.487 - 3.443 - 3.427 - 3.635 - 2.817 - 2.644 -
+ SVRG 3.505 ↑ .018 3.431 ↓ .012 3.389 ↓ .038 3.776 ↑ .141 3.309 ↑ .492 3.113 ↑ .469
+ α-SVRG 3.467 ↓ .020 3.415 ↓ .028 3.392 ↓ .035 3.609 ↓ .026 2.806 ↓ .011 2.642 ↓ .002

validation accuracy
baseline 76.0 - 73.9 - 74.3 - 71.0 - 81.6 - 83.7 -
+ SVRG 75.7 ↓ 0.3 74.3 ↑ 0.4 74.3 ↑ 0.0 68.8 ↓ 2.2 78.0 ↓ 3.6 80.8 ↓ 2.9
+ α-SVRG 76.3 ↑ 0.3 74.2 ↑ 0.3 74.8 ↑ 0.5 70.5 ↓ 0.5 81.6 ↑ 0.0 83.1 ↓ 0.6

Table 2: Results on ImageNet-1K. The standard SVRG increases the train loss for most models,
whereas α-SVRG consistently decreases it for all models.

CIFAR-100 Pets Flowers STL-10 Food-101 DTD SVHN EuroSAT

train loss
baseline 2.66 - 2.20 - 2.40 - 1.64 - 2.45 - 1.98 - 1.59 - 1.25 -
+ SVRG 2.94 ↑ 0.28 3.42 ↑ 1.22 2.26 ↓ 0.14 1.90 ↑ 0.26 3.03 ↑ 0.58 2.01 ↑ 0.03 1.64 ↑ 0.05 1.25 0.00
+ α-SVRG 2.62 ↓ 0.04 1.96 ↓ 0.24 2.16 ↓ 0.24 1.57 ↓ 0.07 2.42 ↓ 0.03 1.83 ↓ 0.15 1.57 ↓ 0.02 1.23 ↓ 0.02

validation accuracy
baseline 81.0 - 72.8 - 80.8 - 82.3 - 85.9 - 57.9 - 94.9 - 98.1 -
+ SVRG 78.2 ↓ 2.8 17.6 ↓ 55.2 82.6 ↑ 1.8 65.1 ↓ 17.2 79.6 ↓ 6.3 57.8 ↓ 0.1 95.7 ↑ 0.8 97.9 ↓ 0.2
+ α-SVRG 81.4 ↑ 0.4 77.8 ↑ 5.0 83.3 ↑ 2.5 84.0 ↑ 1.7 85.9 ↑ 0.0 61.8 ↑ 3.9 95.8 ↑ 0.9 98.2 ↑ 0.1

Table 3: Results on smaller classification datasets. While the standard SVRG mostly hurts the
performance, α-SVRG decreases the train loss and increases the validation accuracy.

Table 3 displays the results of training ConvNeXt-F on smaller image classification datasets. The
standard SVRG generally elevates the training loss and impairs the generalization. On the contrary,
α-SVRG lowers the training loss and improves the validation accuracy across all small datasets.

Note that a lower training loss in α-SVRG does not always lead to better generalization. For smaller
models, a lower training loss usually directly translates to a higher validation accuracy. In larger
models (Mixer-S, ViT-B, and ConvNeXt-B), additional adjustments to regularization strength may
be needed for better generalization. This is out of scope for α-SVRG as an optimization method, but
warrants future research on co-adapting optimization and regularization. Intriguingly, SVRG with
negative one coefficient has recently shown to be able to improve generalization (Jin et al., 2019).

5.3 ANALYSIS

We analyze various components from α-SVRG. In the following experiments, we use an initial
value α0 = 0.5 and ConvNeXt-F on STL-10 as the default setting. Because the standard SVRG is
ineffective here as discussed above, we omit it and only compare α-SVRG with an AdamW baseline.

Coefficient value. We investigate the impact of the initial value of the coefficient α0 for α-SVRG.
We vary it between 0 and 1 and observe its effect on the training loss. The results are presented in
Figure 9. The favorable range for initial values in α-SVRG is quite broad, ranging from 0.2 to 0.9.
This robustness indicates α-SVRG requires minimal tuning in the practical setting.

0.1 0.3 0.5 0.7 0.9
coefficient

1.56

1.59

1.62

1.65

tra
in

 lo
ss

1.64
1.63

1.62

1.59 1.59

1.56 1.56
1.58

1.59

AdamW
+ α-SVRG

Figure 9: Coefficient value. α-SVRG is effec-
tive with a wide range of coefficient values.

32 64 128 256 512
batch size

1.55

1.70

1.85

2.00

tra
in

 lo
ss

1.69
1.64 1.64

1.69 1.71

1.94

1.74

1.58 1.58
1.62

AdamW
+ α-SVRG

Figure 10: Batch size. α-SVRG’s effectiveness
is observed for larger batch sizes.

8



Under review as a conference paper at ICLR 2024

Batch size. Since the batch size controls the variance among mini-batch data, we change the batch
size to understand how it affects α-SVRG. We also scale the learning rate linearly (Goyal et al.,
2017). The default batch size is 128. In Figure 10, we can see that α-SVRG leads to a lower training
loss when the batch size is larger, but it is worse than the baseline when the batch size is smaller.
This may stem from the weakening correlation between snapshot gradients and model gradients as
the batch size decreases. Therefore, a sufficiently large batch size is essential for α-SVRG.

Inner Loop Size. The inner loop size specifies the number of iterations between two consecutive
snapshot takens. We vary it from 1 to 312 iterations to understand its effect on α-SVRG. The default
value is 39 iterations (one epoch). Figure 11 illustrates α-SVRG has a lower training loss than the
baseline even with a larger inner loop size, where snapshot is relatively distant from the current
model. On the other hand, a smaller inner loop size results in a lower training loss but requires
additional training time, as a full gradient must be calculated each time a snapshot is taken.

1 4 16 64 256
inner loop size

1.35

1.45

1.55

1.65

tra
in

 lo
ss

1.37
1.43

1.48 1.49

1.58
1.55 1.55 1.54

AdamW
+ α-SVRG

Figure 11: Inner loop size. Although greater inner loop size leads to weakening correlations be-
tween the model gradients and the snapshot gradients, α-SVRG still lowers the training loss.

6 RELATED WORK

Variance reduction in optimization. There are a range of methods aiming at reducing gradient
variance by directly modifying stochastic gradient. Initial works (Johnson & Zhang, 2013; Shalev-
Shwartz & Zhang, 2013; Schmidt et al., 2016) focus on simple convex settings. Subsequent research
further enhances these methods (Defazio et al., 2014a;b; Mairal, 2015; Babanezhad Harikandeh
et al., 2015; Lin et al., 2015; Defazio, 2016; Allen-Zhu, 2017; Lin et al., 2018; Sebbouh et al., 2019)
or handles finite sums in non-convex landscapes (Allen-Zhu & Hazan, 2016; Reddi et al., 2016;
Nguyen et al., 2017; Lei et al., 2017; Fang et al., 2018; Li & Li, 2018; Wang et al., 2019; Elibol
et al., 2020; Kavis et al., 2022). While these studies concentrate more on theoretical aspects of
SVRG and do not show its effectiveness in optimizing real-world neural networks, we primarily
explore the practical utility of SVRG. Gower et al. (2020) provide a comprehensive overview.

Implicit variance reduction. Apart from methods that explicitly adjust the gradient, there are vari-
ance reduction techniques that implicitly reduce gradient variance through other means. A variety
of optimizers (Zeiler, 2012; Kingma & Ba, 2015; Dozat, 2016; Lydia & Francis, 2019; Loshchilov
& Hutter, 2019; Liu et al., 2021a; 2023a; Chen et al., 2023) utilize momentum to mitigate gradient
variance. They achieve this by averaging past gradients exponentially, thus stabilizing subsequent
updates. Lookahead optimizer (Zhang et al., 2019) reduces gradient variance by only updating
model once every k iterations. Dropout (Hinton et al., 2012) is also found to reduce gradient vari-
ance and better optimize models when used at early training (Liu et al., 2023b).

7 CONCLUSION

Over the past decade, SVRG has been a method with significant impact in the theory of optimization.
In this work, we explore the practical effectiveness of SVRG in real-world neural network training.
Our key insight is the optimal strength for the variance reduction term in SVRG is not necessarily
1. It should be lower for deeper networks and decrease as training advances. This motivates us to
introduce α-SVRG: applying a linearly decreasing coefficient α to SVRG. α-SVRG leads to a steady
reduction in gradient variance and optimizes models better. Our experiments show that α-SVRG
consistently achieves a lower training loss compared to both the baseline and the standard SVRG.
Our results motivate further research in variance reduction methods in neural network training.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Sympo-
sium on Theory of Computing, 2017.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In ICML,
2016.

Reza Babanezhad Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub
Konečný, and Scott Sallinen. Stopwasting my gradients: Practical svrg. In NeurIPS, 2015.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In ECCV, 2014.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc Le. Symbolic discovery of opti-
mization algorithms. arXiv:2302.06675, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Ekin Cubuk, Barret Zoph, Jonathon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In CVPR Workshops, 2020.

Aaron Defazio. A simple practical accelerated method for finite sums. In NeurIPS, 2016.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. arXiv:1812.04529, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In NeurIPS, 2014a.

Aaron Defazio, Tibério Caetano, and Justin Domke. Finito: A faster, permutable incremental gradi-
ent method for big data problems. In ICML, 2014b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In ICLR, 2016.

Simon Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance reduction
methods for policy evaluation. 2018.

Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Simon Lacoste-
Julien. Svrg meets adagrad: Painless variance reduction. arXiv:2102.09645, 2021.

Melih Elibol, Lihua Lei, and Michael Jordan. Variance reduction with sparse gradients. In ICLR,
2020.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path integrated differential estimator. In NeurIPS, 2018.

Robert Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
machine learning. Proceedings of the IEEE, 2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet
in 1 hour. arXiv:1706.02677, 2017.

10



Under review as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover classification. In IGARSS
2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580,
2012.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. In ICLR, 2020.

Hao Jin, Dachao Lin, and Zhihua Zhang. Towards better generalization: Bp-svrg in training deep
neural networks. 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NeurIPS, 2013.

Ali Kavis, Stratis Skoulakis, Kimon Antonakopoulos, Leello Tadesse Dadi, and Volkan Cevher.
Adaptive stochastic variance reduction for non-convex finite-sum minimization. In NeurIPS,
2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Stephen Lavenberg, Thomas L Moeller, and Peter D Welch. The application of control variables
to the simulation of closed queueing networks. In Proceedings of the 9th conference on Winter
simulation-Volume 1, 1977.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael Jordan. Non-convex finite-sum optimization via
scsg methods. In NeurIPS, 2017.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In NeurIPS, 2018.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In NeurIPS, 2015.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex
optimization: from theory to practice. JMLR, 2018.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv:2305.14342, 2023a.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

11



Under review as a conference paper at ICLR 2024

Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, and Trevor Darrell. Dropout reduces underfit-
ting. In ICML, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Agnes Lydia and Sagayaraj Francis. Adagrad—an optimizer for stochastic gradient descent. JMLR,
2019.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 2015.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In ICML, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics & Image Processing, 2008.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. 2018.

Omkar Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR,
2012.

Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In ICML, 2016.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv:1309.2388, 2016.

Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis Bach, and Robert Gower. Towards
closing the gap between the theory and practice of svrg. In NeurIPS, 2019.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. JMLR, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, 2021.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In ICCV, 2021.

Ruiqi Wang and Diego Klabjan. Divergence results and convergence of a variance reduced version
of adam. arXiv:2210.05607, 2022.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster
stochastic variance reduction algorithms. In NeurIPS, 2019.

Ross Wightman. GitHub repository: Pytorch image models. GitHub repository, 2019.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 2014.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV,
2019.

Matthew Zeiler. Adadelta: An adaptive learning rate method. arXiv:1212.5701, 2012.

12



Under review as a conference paper at ICLR 2024

Hongyi Zhang, Moustapha Cisse, Yann Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018.

Michael Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS, 2019.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In AAAI, 2020.

13



Under review as a conference paper at ICLR 2024

APPENDIX

A DERIVATION OF THE OPTIMAL COEFFICIENT

We present the full derivation of the optimal coefficient for control variates:

min
α

Var(X∗) = min
α

Var(X − αY) (7)

= min
α

Var(X)− 2αCov(X,Y) + α2Var(Y). (8)

Differentiating the objective with respect to α, we can determine the optimal coefficient α∗:

2αVar(Y)− 2Cov(X,Y) = 0, (9)

=⇒ α∗ =
Cov(X,Y)

Var(Y)
. (10)

Lastly, we can plug the definition of correlation coefficient:

ρ(X,Y) =
Cov(X,Y)

σ(X)σ(Y)
(11)

into the optimal coefficient and rewrite Equation 10 as:

α∗ = ρ(X,Y)
σ(X)

σ(Y)
. (12)

B EXPERIMENTAL SETTINGS

Training recipe. Table 4 outlines our training recipe. It is based on the setting in ConvNeXt (Liu
et al., 2022). For all experiments, the base learning rate is set at 4e-3, except for training ConvNeXt-
F on ImageNet-1K using α-SVRG, where increasing it to 8e-3 reduces the training loss very much.

Training Setting Configuration
weight init trunc. normal (0.2)
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
learning rate schedule cosine decay
warmup schedule linear
randaugment (Cubuk et al., 2020) (9, 0.5)
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
random erasing (Zhong et al., 2020) 0.25
label smoothing (Szegedy et al., 2016) 0.1
layer scale (Touvron et al., 2021) 1e-6

Table 4: Our basic training recipe, adapted from ConvNeXt (Liu et al., 2022).

Hyper-parameters. Table 4 details the batch size, warmup epochs, and training epochs for each
dataset. All the hyper-parameters selections are done on the baseline. We set the batch size in
proportion to the total size of each dataset. We tune the total number of training epochs for each

C-100 Pets Flowers STL-10 Food DTD SVHN EuroSAT IN1K
batch size 1024 128 128 128 1024 128 1024 512 4096
warmup epochs 50 100 100 50 50 100 20 40 50
training epochs 300 600 600 300 300 600 100 200 300

Table 5: Hyper-parameter setting.
14



Under review as a conference paper at ICLR 2024

dataset to achieve reasonable performance with the AdamW baseline. The warmup epochs are set
to one-fifth or one-sixth of the total training epochs.

We do not use stochastic depth (Huang et al., 2016) on small models. For larger models, we adhere
to the original work (Dosovitskiy et al., 2021; Liu et al., 2022), using a stochastic depth rate of 0.4
for ViT-B and 0.5 for ConvNeXt-B. In these models, we maintain a consistent stochastic pattern
between the current model and the snapshot at each iteration (Defazio & Bottou, 2019).

C DIFFERENT INITIAL COEFFICIENTS

Table 6 shows the performance of ConvNeXt-F trained with α-SVRG using different initial co-
efficients α0 on multiple small datasets. α-SVRG reduces the training loss of ConvNeXt-F and
enhances the validation accuracy on most datasets, regardless of the choice of initial coefficient α0.
This demonstrates the robustness of α-SVRG to the initial coefficient.

CIFAR-100 Pets Flowers STL-10

baseline 2.659 - 2.203 - 2.400 - 1.641 -
+ SVRG 2.937 ↑ 0.278 3.424 ↑ 1.221 2.256 ↓ 0.144 1.899 ↑ 0.258
+ α-SVRG (α0 = 0.5) 2.622 ↓ 0.037 1.960 ↓ 0.243 2.265 ↓ 0.135 1.583 ↓ 0.058
+ α-SVRG (α0 = 0.75) 2.646 ↓ 0.013 2.004 ↓ 0.199 2.162 ↓ 0.238 1.568 ↓ 0.073
+ α-SVRG (α0 = 1) 2.712 ↑ 0.053 1.994 ↓ 0.209 2.259 ↓ 0.141 1.573 ↓ 0.068

Food-101 DTD SVHN EuroSAT

baseline 2.451 - 1.980 - 1.588 - 1.247 -
+ SVRG 3.026 ↑ 0.575 2.009 ↑ 0.029 1.639 ↑ 0.051 1.249 ↑ 0.002
+ α-SVRG (α0 = 0.5) 2.423 ↓ 0.028 1.865 ↓ 0.115 1.572 ↓ 0.016 1.243 ↓ 0.004
+ α-SVRG (α0 = 0.75) 2.461 ↑ 0.010 1.829 ↓ 0.151 1.573 ↓ 0.015 1.237 ↓ 0.010
+ α-SVRG (α0 = 1) 2.649 ↑ 0.198 1.790 ↓ 0.190 1.585 ↓ 0.003 1.230 ↓ 0.017

(a) train loss

CIFAR-100 Pets Flowers STL-10

baseline 81.0 - 72.8 - 80.8 - 82.3 -
+ SVRG 78.2 ↓ 2.8 17.6 ↓ 55.2 82.6 ↑ 1.8 65.1 ↓ 17.2
+ α-SVRG (α0 = 0.5) 81.4 ↑ 0.4 77.8 ↑ 5.0 83.3 ↑ 2.5 83.5 ↑ 1.2
+ α-SVRG (α0 = 0.75) 80.6 ↓ 0.4 76.7 ↑ 3.9 82.6 ↑ 1.8 84.0 ↑ 1.7
+ α-SVRG (α0 = 1) 80.0 ↓ 1.0 77.3 ↑ 4.5 81.9 ↑ 1.1 84.0 ↑ 1.7

Food-101 DTD SVHN Euro

baseline 85.9 - 57.9 - 94.9 - 98.1 -
+ SVRG 79.6 ↓ 6.3 57.8 ↓ 0.1 95.7 ↑ 0.8 97.9 ↓ 0.2
+ α-SVRG (α0 = 0.5) 85.9 ↑ 0.0 57.0 ↓ 0.9 95.4 ↑ 0.5 98.2 ↑ 0.1
+ α-SVRG (α0 = 0.75) 85.0 ↓ 0.9 60.3 ↑ 2.4 95.7 ↑ 0.8 98.2 ↑ 0.1
+ α-SVRG (α0 = 1) 83.8 ↓ 2.1 61.8 ↑ 3.9 95.8 ↑ 0.9 98.2 ↑ 0.1

(b) validation accuracy

Table 6: Results on smaller classification datasets with different initial coefficients. While
SVRG negatively affects performance on most of these datasets, α-SVRG consistently reduces the
train loss and improves the validation accuracy for almost any initial coefficient on each dataset.

D CORRELATION VISUALIZATION

In Equation 6, the optimal coefficient can be decomposed into a correlation and a ratio between two
standard deviations. In section 3, we hypothesize it is the decreasing correlation between snapshot

15



Under review as a conference paper at ICLR 2024

gradients and model gradients that leads to the decreasing optimal coefficient. To further confirm
this, we separately visualize the standard deviation ratio in Figure 12 the correlation in Figure 13.

2 3 4 5 6 7 8 9 10 11
epochs

0.200

0.567

0.933

1.300
st

d.
 ra

tio

Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.200

0.567

0.933

1.300

st
d.

 ra
tio

(b) AdamW

Figure 12: Standard deviation ratio. The ratio between the standard deviations of the model
gradients and the snapshot gradients sometimes oscillates around 1, but is relatively stable overall.

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

co
rre

la
tio

n

Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

co
rre

la
tio

n

(b) AdamW

Figure 13: Correlation. The correlation between the snapshot gradients and the model gradients
behaves very similar to the optimal coefficient.

E STANDARD DEVIATION RESULTS

We employ 3 random seeds to run the baseline and α-SVRG in Table 3. Table 7 presents the results.
α-SVRG consistently decreases the mean train loss and improves the mean validation accuracy. The
mean difference is usually larger than one standard deviation, indicating the reliability of α-SVRG.

CIFAR-100 Pets Flowers STL-10

baseline 2.645 ± 0.013 2.326 ± 0.088 2.436 ± 0.038 1.660 ± 0.017
+ α-SVRG 2.606 ± 0.017 2.060 ± 0.071 2.221 ± 0.042 1.577 ± 0.022

Food-101 DTD SVHN EuroSAT

baseline 2.478 ± 0.021 2.072 ± 0.066 1.583 ± 0.005 1.259 ± 0.017
+ α-SVRG 2.426 ± 0.007 1.896 ± 0.075 1.572 ± 0.011 1.239 ± 0.016

(a) train loss

CIFAR-100 Pets Flowers STL-10

baseline 81.02 ± 0.07 70.61 ± 1.55 80.33 ± 1.01 80.80 ± 1.46
+ α-SVRG 81.07 ± 0.22 76.37 ± 1.06 84.15 ± 1.15 83.65 ± 0.92

Food-101 DTD SVHN EuroSAT

baseline 85.29 ± 0.47 56.21 ± 1.19 94.29 ± 0.67 97.91 ± 0.12
+ α-SVRG 85.45 ± 0.43 61.44 ± 0.35 94.94 ± 0.60 98.13 ± 0.07

(b) validation accuracy

Table 7: Results on smaller classification datasets with standard deviation.

16



Under review as a conference paper at ICLR 2024

F SCHEDULES

Notations. For clarity, we decompose the global iteration index t into the epoch-wise index s and
the iteration index i within an epoch. We also denote the total training epochs as T and the number
of iterations in one epoch M .

Linear schedule. Throughout the paper, we employ a coefficient that decays linearly across epochs
and keeps as a constant between any two consecutive snapshots for α-SVRG, as follows:

αt
linear = α0(1−

s

T
), (13)

Other global schedules. Nevertheless, there are other potential decaying schedules, such as
quadratic decay or geometric decay. They can be formally expressed as:

αt
quadratic =

α0

T 2
s2, (14)

αt
geometric = α0(

10−2

α0
)

s
T . (15)

Double schedules. In Figure 4, within an epoch, the coefficient starts from 1 and decreases over
iterations. Motivated by this local behavior, we introduce three additional schedules that combine
both the local and the global decrease: d(ouble)-linear, d-quadratic, and d-geometric. In addition to
the global decay that schedules every epoch, each double has a local decay within each epoch that
starts at 1 and decreasing to an ending value specified by the global decay.

αt
d-linear = (1− α0(1−

s

T
)) (1− i

M
)︸ ︷︷ ︸

local decay

+α0(1−
s

T
)︸ ︷︷ ︸

global decay

(16)

αt
d-quadratic = (1− α0

T 2
s2)

1

M2
(M − i)2︸ ︷︷ ︸

local decay

+
α0

T 2
s2︸ ︷︷ ︸

global decay

(17)

αt
d-geometric = (α0(

10−2

α0
)

s
T + 10−2)

i
M (18)

We evaluate six above schedules with three different initial coefficients α0 from {0.5, 0.75, 1} by
training ConvNeXt-Femto on STL-10. Results are presented in Table 8. α-SVRG with double
schedules surprisingly increases the train loss for any initial coefficient. This could be because the
locally decreasing coefficient sometimes overestimates the optimal coefficient and increases gradient
variance. In contrast, α-SVRG with global schedules consistently achieves a lower train loss than the
baseline (1.641) regardless the choice of initial coefficients. This confirms our previous empirical
finding that the average optimal coefficient for each epoch should decrease as training progresses.

train loss linear quadratic geometric d-linear d-quadratic d-geometric

α0 = 0.5 1.583 1.607 1.616 2.067 1.967 1.808
α0 = 0.75 1.568 1.576 1.582 2.069 2.003 1.931
α0 = 1 1.573 1.563 1.574 1.997 1.970 1.883

Table 8: Schedules. α-SVRG with global schedules outperforms that with double schedules.

G DERIVATION OF THE OPTIMAL MATRIX

In Section 3, we assume that different components of the variance-reduced gradient are uncorrelated,
applying Equation 3 to each component independently. In this section, we acknowledges the poten-
tial correlations between these components and extends the coefficient vector at to the coefficient
matrix At, presenting a generalized version of the optimal condition in SVRG. For notation, At

denotes the coefficient matrix; (at
k)

T represents the row of the coefficient matrix; atk,n as the entry
of the coefficient matrix at the kth row and nth column; and K represents the covariance matrix.

17



Under review as a conference paper at ICLR 2024

Formally, the generalization of SVRG using the coefficient matrix can be written as:

gt
i = ∇fi(θ

t)−At(∇fi(θ̃)−∇f(θ̃)) (19)
We adopt the same gradient variance definition in Section3 and aim to determine the optimal coeffi-
cient matrix At∗ that minimizes it at each iteration.

min
At

d∑
k=1

Var(gt·,k) =

d∑
k=1

min
at

k

Var(gt·,k) (20)

The order of minimization and summation in Equation 5 can be switched because the variance of
the k-th component of the gradient only depends on the k-th row of the coefficient matrix. We then
expand the variance reduced gradient with the definition of the variance:

=

d∑
k=1

min
at

k

Var(∇fi,k(θ
t)− (at

k)
T∇fi(θ̃)) (21)

=

d∑
k=1

min
at

k

Var(∇fi,k(θ
t)−

d∑
n=1

atk,n∇fi,n(θ̃)) (22)

=

d∑
k=1

min
at

k

(
Var(∇fi,k(θ

t)) +

d∑
n=1

(atk,n)
2Var(∇fi,n(θ̃)) (23)

−2

d∑
n=1

atk,nCov(∇fi,k(θ
t),∇fi,n(θ̃)) + 2

d∑
n=1

∑
m̸=n

atk,na
t
k,mCov(∇fi,m(θ̃),∇fi,n(θ̃))

)
(24)

Differentiating the objective with respect to atk,n, we can determine the optimal matrix At∗ satisfies:

∀k, n : 2atk,nVar(∇fi,n(θ̃))− 2Cov(∇fi,k(θ
t),∇fi,n(θ̃)) (25)

+2
∑
m̸=n

at
k,mCov(∇fi,m(θ̃),∇fi,n(θ̃)) = 0 (26)

=⇒ ∀k : K∇fi(θ̃),∇fi(θ̃)
at
k =

Cov(∇fi,k(θ
t),∇fi,1(θ̃))
...

Cov(∇fi,k(θ
t),∇fi,d(θ̃))

 (27)

=⇒ ∀k : at
k = K−1

∇fi(θ̃),∇fi(θ̃)

Cov(∇fi,k(θ
t),∇fi,1(θ̃))
...

Cov(∇fi,k(θ
t),∇fi,d(θ̃))

 (28)

=⇒ ∀k : (at
k)

T =

Cov(∇fi,k(θ
t),∇fi,1(θ̃))
...

Cov(∇fi,k(θ
t),∇fi,d(θ̃))


T

K−1

∇fi(θ̃),∇fi(θ̃)
(29)

=⇒ At∗ = K∇fi(θt),∇fi(θ̃)
K−1

∇fi(θ̃),∇fi(θ̃)
(30)

H STOCHASTIC RECURSIVE GRADIENTS WITH OPTIMAL COEFFICIENT

SpiderBoost formulation. Stochastic Recursive Gradients were invented particularly for the opti-
mization problems in the non-convex settings (Fang et al., 2018; Nguyen et al., 2017; Wang et al.,
2019; Kavis et al., 2022). In this section, we analyze one of the such methods SpiderBoost (Wang
et al., 2019). Like SVRG, SpiderBoost also takes a snapshot and evaluates its full gradient ∇f(θ̃)
periodically. Denote the iteration for taking the last snapshot as t0. However, different from SVRG,
it constructs the variance reduction term purely based on the information at the previous iteration.
Formally, SpiderBoost defines the variance reduced gradient gt recursively, as follows:

gt = ∇fi(θ
t)− (∇fi(θ

t−1)− gt−1)︸ ︷︷ ︸
variance reduction term

, gt0 = ∇f(θ̃). (31)

18



Under review as a conference paper at ICLR 2024

Control variates on SpiderBoost. We can also introduce a time-dependent coefficient vector αt ∈
Rd to control the strength of the variance reduction term in SpiderBoost:

gt = ∇fi(θ
t)−αt ⊙ (∇fi(θ

t−1)− gt−1), gt0 = ∇f(θ̃). (32)

Note the previous control variates framework can no longer be applied here because the expectation
of the variance reduction term is not zero. To see this, if conditioning the expectation on all the
randomness from t0 to t−1, the expectation of the first term in the variance reduction term becomes:

E[∇fi(θ
t−1)] = ∇f(θt−1). (33)

However, the expectation of gt−1 could only be the same as Equation 33 if we condition the expec-
tation on all the randomness from t0 to t− 2.

α-SpiderBoost. Despite the incompatibility of the control variates method on SpiderBoost, we still
find intriguing empirical results when applying a linearly decreasing coefficient, starting from an
initial value α0 and decreasing to 0, to SpiderBoost. We refer to this approach as α-SpiderBoost.

We employ α-SpiderBoost with three different initial coefficients α0 from {0.5, 0.75, 1} to train
ConvNeXt-Femto on a variety of small datasets. All the experiments use the same training recipe
and the hyper-parameters as before (detailed in Appendix C). We present the result and compare it
to the baseline, the standard SVRG, α-SVRG, and the standard SpiderBoost in Table 9.

CIFAR-100 Pets Flowers STL-10

baseline 2.659 - 2.203 - 2.400 - 1.641 -
+ SVRG 2.937 ↑ 0.278 3.424 ↑ 1.221 2.256 ↓ 0.144 1.899 ↑ 0.258
+ SpiderBoost 2.604 ↓ 0.055 1.955 ↓ 0.248 2.291 ↓ 0.109 1.516 ↓ 0.125
+ α-SVRG (α0 = 0.5) 2.622 ↓ 0.037 1.960 ↓ 0.243 2.265 ↓ 0.135 1.583 ↓ 0.058
+ α-SVRG (α0 = 0.75) 2.646 ↓ 0.013 2.004 ↓ 0.199 2.162 ↓ 0.238 1.568 ↓ 0.073
+ α-SVRG (α0 = 1) 2.712 ↑ 0.053 1.994 ↓ 0.209 2.259 ↓ 0.141 1.573 ↓ 0.068
+ α-SpiderBoost (α0 = 0.5) 2.565 ↓ 0.094 2.032 ↓ 0.171 2.263 ↓ 0.137 1.544 ↓ 0.097
+ α-SpiderBoost (α0 = 0.75) 2.567 ↓ 0.092 1.994 ↓ 0.209 2.266 ↓ 0.134 1.518 ↓ 0.123
+ α-SpiderBoost (α0 = 1) 2.585 ↓ 0.074 1.956 ↓ 0.247 2.265 ↓ 0.135 1.526 ↓ 0.115

Food-101 DTD SVHN EuroSAT

baseline 2.451 - 1.980 - 1.588 - 1.247 -
+ SVRG 3.026 ↑ 0.575 2.009 ↑ 0.029 1.639 ↑ 0.051 1.249 ↑ 0.002
+ SpiderBoost 2.431 ↓ 0.020 1.978 ↓ 0.002 1.525 ↓ 0.063 1.289 ↑ 0.042
+ α-SVRG (α0 = 0.5) 2.423 ↓ 0.028 1.865 ↓ 0.115 1.572 ↓ 0.016 1.243 ↓ 0.004
+ α-SVRG (α0 = 0.75) 2.461 ↑ 0.010 1.829 ↓ 0.151 1.573 ↓ 0.015 1.237 ↓ 0.010
+ α-SVRG (α0 = 1) 2.649 ↑ 0.198 1.790 ↓ 0.190 1.585 ↓ 0.003 1.230 ↓ 0.017
+ α-SpiderBoost (α0 = 0.5) 2.392 ↓ 0.059 1.997 ↑ 0.017 1.506 ↓ 0.082 1.269 ↑ 0.022
+ α-SpiderBoost (α0 = 0.75) 2.398 ↓ 0.053 2.005 ↑ 0.025 1.513 ↓ 0.075 1.281 ↑ 0.034
+ α-SpiderBoost (α0 = 1) 2.408 ↓ 0.043 2.002 ↑ 0.022 1.512 ↓ 0.076 1.277 ↑ 0.030

Table 9: α-SpiderBoost on smaller classification datasets.

For small datasets (Pets, STL-10, and DTD), the standard SpiderBoost achieves a lower train loss
than the baseline, but α-SpiderBoost could have a higher train loss. Intuitively, for small datasets,
the number of iterations within an epoch is small. As a result, the correlation between the model
stochastic gradients and the snapshot stochastic gradients is still high enough for SpiderBoost to
reduce gradient variance. This might also suggest SpiderBoost does optimize models better than
SVRG on small datasets where SVRG consistently increases the train loss.

However, for relatively large datasets (CIFAR100, Food-101, and SVHN), α-SpiderBoost could
achieve a substantially lower train loss than the standard SpiderBoost and even α-SVRG. This is
likely because as the number of iterations within an epoch increases, the strength of the variance
reduction term should decrease and a linearly decreasing coefficient helps weaken the strength.

19



Under review as a conference paper at ICLR 2024

The above paradoxical results of α-SpiderBoost warrant future research to further understand how
to make SpiderBoost more effective in training neural networks.

I LIMITATION

In this work, we have shown that α-SVRG can optimize models better by reducing gradient variance.
However, we must acknowledge that it typically requires 3x computation cost compared to vanilla
SGD or AdamW. In our implementation, we manage to reduce this to 2x by caching the snapshot
mini-batch gradient ∇fi(θ

past) in memory when evaluating the snapshot full gradient ∇f(θpast).
Later on, in constructing the variance reduced gradient, we retrieve the corresponding snapshot mini-
batch gradient from memory, saving 1x computation cost. However, this approach still demands
higher computational resources. Therefore, we believe it would be very valuable to explore ways to
enhance α-SVRG’s efficiency in the future.

20


	Introduction
	Motivation: SVRG may not always reduce variance
	A closer look at control variates in SVRG
	-SVRG
	Experiments
	Settings
	Results
	Analysis

	Related Work
	Conclusion
	Derivation of the Optimal Coefficient
	Experimental Settings
	Different Initial Coefficients
	Correlation Visualization
	Standard Deviation Results
	Schedules
	Derivation of the Optimal Matrix
	Stochastic Recursive Gradients with optimal coefficient
	Limitation

