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ABSTRACT

We introduce Hierarchy-based Clifford Group Equivariant Message Passing Neu-
ral Network (HCGE-MPNN), a Clifford group equivariant U-Net with skip-
connection. Our method integrates the expressivity of Clifford group-equivariant
layers with hierarchical pooling/unpooling in an encoder-decoder fashion. Our
architecture admits major classes of pooling methods, sparse and dense pooling
methods. We also introduce a Clifford group invariant projection operator, a gen-
eralized projection operator defined on the Clifford space, to make our end-to-
end architecture equivariant to Clifford group action. Our method outperforms
state-of-the-art (Clifford-)Equivariant MPNNs by up to 7% in prediction MSE for
Multi-Nbody datasets and 22% for motion capture dataset.

1 INTRODUCTION

Simulation is of huge importance to model and understand multi-body physical systems, such as
inorganic material or biological systems, and is widely used to compute properties of the physical
systems. However simulation is very sensitive to the accuracy of the description of the governing
laws, which typically includes geometric interplay between objects such as symmetry of the systems.

Recent geometric deep learning (Bronstein et al., 2021) has made promising progress for modelling
multi-body physical systems. Geometric graphs are typically embedded in a topological space such
as a metric space or a manifold. The node features of these graphs include geometric features, like
positions or velocities and these quantities are transformed under spatial operations like rotations,
reflections, or translations (Cohen & Welling, 2016). E(n)-Equivariant Graph Neural Networks (EG-
NNs) (Satorras et al., 2021) are designed to preserve these transformation by imposing an invariance
and/or equivariance structure tailored to tasks.

More recently Clifford neural network models (Brandstetter et al., 2022; Melnyk et al., 2021; Ruhe
et al., 2023; Spellings, 2022) have been proposed to model high-order interactions of physical sys-
tems. Clifford algebra can represent higher-order elements such as bivectors and trivectors and is
capable of modeling not only low-order information such as magnitude of vector but high-order in-
formation such as area or volume spanned by multiple vectors. The expressive power of the networks
with Clifford representation is shown in diverse applications. However, while the Clifford equivari-
ant neural network is capable of higher-order information processing, the networks only conduct flat
information propagation, which hinders propagation of the spatial and dynamical information.

In this paper, we propose Hierarchical Clifford Group Equivariant Message Passing Neural Network
(HCGE-MPNN), an end-to-end trainable model to discover important substructures, respecting Clif-
ford group action (see Section 3). HCGE-MPNN comprises an encoder and decoder equivariant to
Clifford group, specifically in our case E(3) group actions (that represents translation and rota-
tions) represented as elements in the algebra. The encoder encodes the input of thee system from
fine-scale to coarse-scale and the decoder restore both the topological and numeric information of
the input systems. We introduce two pooling operations, sparse and dense pooling, and show their
equivariance by introducing a novel projection operator on the Clifford space. We demonstrate our
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HCGE-MPNN in two benchmarks of multi n-body systems and motion capture dataset. We show up
to 22% reduction in prediction accuracy compared to state-of-the-art geometric group equivariant
methods.

2 BACKGROUND AND RELATED WORK

Clifford Algebra and Clifford Neural Networks. We start by introducing Clifford algebra (Lund-
holm & Svensson, 2009), also known as geometric algebra (Hestenes & Sobczyk, 2012), over the
Euclidean space Rn and some its properties. We follow similar notation as in Ruhe et al. (2023).
The Clifford algebra Cl(Rn, q) is the quotient space over the tensor algebra over Rn with an equiv-
alence relation q(v) = v ⊗ v (∀v ∈ Rn) defined by a quadratic form q : Rn → R. Since the
anti-commutative relation v ⊗ w + w ⊗ v = q(v + w) − q(v) − q(w) holds for ∀v,w ∈ Rn,
Cl(Rn, q) is a finite (up to 2n) dimensional linear space and every element x ∈ Cl(Rn, q) may
be written with a finite index I as x =

∑
i∈I ci · vi,1 ⊗ · · · ⊗ vi,ki

, ci ∈ R, vi,j ∈ Rn. Here,
the expression v ⊗w of elements v,w ∈ Rn represents the geometric product of v,w, which is a
natural generalization of the canonical inner and outer products on Rn. We note that we hereinafter
abuse the notation of the tensor product on the tensor algebra for the geometric product. The ge-
ometric product defines vector subspaces Cl(m)(Rn, q) (m = 0, 1, · · · , n), called grades, whose
elements are m-fold geometric product of v ∈ Rn. We also write x(m) for x ∈ Cl(Rn, q) as the
component of x belonging to Cl(m)(Rn, q). An advantage of the Clifford algebra is the flexibility
to allow for algebraic representation of physical systems and manipulation of geometric quantities.
This geometric arithmetic is injected as an inductive bias to various machine learning models to
solve problems in some applications (Melnyk et al., 2021; Spellings, 2022; Brandstetter et al., 2022)
and implementation in PyTorch (Alesiani), JAX (Kahlow, a) and TensorFlow (Kahlow, b) are also
available. Although the models incorporate various modes of Clifford algebra, it is yet unclear which
kinds of symmetry the models can preserve, which hinders the models from being applied to diverse
application domains.

Equivariant Clifford Neural Networks. Ruhe et al. (2023) first introduces a concept of equivari-
ance for Clifford neural networks and propose Clifford Group Equivariant (graph) neural networks
(CGENNs). The key concepts are the Clifford group and its associated representation into the en-
domorphisms of Cl(Rn, q). The Clifford group Γ(Rn, q) is a set of invertible multi-vectors be-
longing to even or odd grades equipped with the induced geometric product. Then a representation
ρ : Γ(Rn, q) → End(Cl(Rn, q)), called (adjusted) twisted conjugation, is defined and it induces
the following equivariant property: for any multivariate polynomial F ∈ R[T1, · · · , Tl] , we have
ρ(ω)F (x1, · · · ,xl) = F (ρ(ω)x1, · · · , ρ(ω)xl), ∀x1, · · · ,xl ∈ Cl(Rn, q), ∀ω ∈ Γ(Rn, q),

in which the geometric product is peformed as product. It is worth noting that when the target of ρ
is restricted to the base space Rn, ρ induces an isomorphism between Γ(Rn, q) and the orthogonal
group on Rn up to scalar R×. This means ρ defines a high-order action on the Clifford space, while
it models the Euclidean rotational action on the underlying Euclidean space. Although CGENNs
can respect the symmetry of physical systems while allowing for representation of higher-order
interaction of objects, CGENNs (and non-equivariant Clifford neural networks) still only conduct
flat information propagation.

3 HIERARCHY-BASED CLIFFORD GROUP EQUIVARIANT MESSAGE PASSING
NEURAL NETWORKS (HCGE-MPNN)

Notaion. Each input representing multi-body system is represented as a graph G(V,E) consisting
of N nodes V , representing particles, and the set of edges E ⊂ V ×2, where each edge represents
the existence of multi-body interactions. Each node i is assigned with a feature (z

(0)
i ,h

(0)
i ): z

(0)
i

represents a directional vector in Rmn, such as the concatenation of location and velocity of particles,
and h

(0)
i ∈ Rs is the non-directional feature, such as the charges or category types of the atoms.

We embed both features into Cl(Rn, q), and denote corresponding embeddings by (z̃
(0)
i , h̃

(0)
i ) ∈

Cl(Rn, q)×(m+s). Note that, we here assume the natural extension of the group action ρ(ω) to
the product space Cl(Rn, q)×(m+s) and z

(0)
i is equivariant to the orthogonal action while h

(0)
i is

invariant to the action.
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Figure 1: Schematic diagram of HCGE-MPNN. HCGE-MPNN is composed of an encoder and a
decoder. Each module has corresponding Clifford group equivariant pooing and unpooling layers.

Problem definition. Our task is to predict the future state of system at a certain time T , given
directional state z

(0)
i , that is, to find a model Φ able to predict a future state z

(T )
i for given T and

z
(0)
i . Our model Φ should be equivariant to Clifford group action, which means

ρ(ω)z
(T )
i = Φ({ρ(ω)(z̃

(0)
i , h̃

(0)
i )}Ni=1) = ρ(ω)Φ({(z̃(0)

i , h̃
(0)
i )}Ni=1), ∀ω ∈ Γ(Rn, q).

When Φ is based on message passing neural networks, we formulate HCGE-MPNN as an encoder-
decoder architecture with skip-connection:

{vlow
i }, Glow = CE-Encode({x̃high

i }, Ghigh), {yout
i }, Gout = CE-Decode( {vlow

i }, Glow),

which perform the pooling and unpooling operations (see also Figure 1), with x̃i = (z̃i, h̃i), and
the encoded and output features vlow

i ,yout
i . The encoder applies multiple poolings to nodes in G to

capture the multi-scale features of the graph. Specifically, CE-Encode performs pooling operations
CE-Pool(h) and message passing with Clifford Group Equivariant MPNNs (CGE-MPNNs, Ruhe
et al. (2023)) iteratively, up to H times. The decoder maps information from the low level (h = H)
to the high level graphs (h = 1) using the unpooling operator CE-UnPool(h).

CLIFFORD GROUP EQUIVARIANT POOLING AND UNPOOLING

CE-Pool(h)(1 ≤ h ≤ H) is responsible for making decision on which nodes in a graph are pooled
and reconstructing a graph according to the pooled nodes. The pooling process is composed of three
processes: scoring stage, node creation stage, and topology reconstruction stage. In the scoring
stage, our model first takes a graph G(h) as an input and computes scores {ri}i∈V (h) over all the
nodes. In the node creation stage, new nodes of a pooled graph are generated based on the scores
computed in the scoring stage. Here, we can take two ways to perform node creation, sparse and
dense pooling methods. After the new nodes are generated, edges are reconstructed. We will mainly
discuss the sparse method in the main text, while the dense method is explained in Appendix A.

Clifford group-invariant scoring function. Scores {ri}i∈V (h) need to be invariant to Clifford
group action since pooled graphs should have same topological structure up to equivariant configu-
rations. To meet this requirement, we introduce multi-blade projection over Cl(Rn, q)×C :

fθ(x) =
∑

c:channel

(xc ⊗ pθ(xc))
(0)∑

∥p(0)θ (xc)∥
, x = (x1, . . . ,xC) ∈ Cl(Rn, q)×C

Here, pθ denotes a trainable endomorphism of Cl(Rn, q) and ∥p(0)θ (x)∥ denotes ∥(pθ(x) ⊗
pθ(x))

(0)∥. We then have the following theorem for the multi-blade projection:
Theorem 3.1. Let x,p ∈ Rn and C a positive integer. Then,

(i) if C = 1 and pθ(x̃) = p̃,xc = x̃ ∈ Cl(1)(Rn, q), then the multi-blade projection is the
projection of x over p in Rn.

(ii) If pθ is equivariant to Γ(Rn, q), the multi-blade projection is invariant to Γ(Rn, q).
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The proof can be found in Appendix C. Theorem 3.1 indicates that the the multi-blade projection is
a generalization of the projection defined on Rn and guaranties to generate same scores no matter
how the Clifford group acts on multi-vectors. We will use the multi-blade projection fθ as the score
function in the rest of the paper.

Sparse pooling and unpooling. Sparse pooling CE-Pool(h)sparse first computes a score for each
node (requiring O(N) space), and reduce a graph G(h) into G(h+1) by keeping only the top ⌈rN⌉
scoring ones and dropping the rest. Here r is the ratio that limits the amount of pooled nodes and
given as a hyperparamter. We store all the edges E(h) and (z̃

(h)
i , h̃

(h)
i ) of dropped nodes. The

stored information are used when unpooling (CE-UnPool(h)) G(h) to G(h−1): E(h) is used to
restore graph topology for G(h−1) and the restored nodes are complemented with some Γ(Rn, q)-
invariant node features such as mean of node features at G(h) or zero vectors. The overall pooling
architecture is similar to TopK-pooling (Gao & Ji, 2019; Cangea et al., 2018), but TopK-pooling is
not rotational equivariance since scoring function is not O(n)-invariant.

Dense Pooling and Unpooling. Dense pooling CE-Pool
(h)
dense is an extension of the multi-blade

projection, in which all nodes in G(h) are explicitly assigned to a pooled node in G(h+1). We first
pre-define a number of clusters, which we denote as K(h+1) (K(1) = N ), as the number of nodes for
the pooled graph G(h+1). To ensure the equivariance CE-Pool

(h)
dense, we then compute confidence

scores with the multi-blade projection, but here we have the same number of multi-blade projections
(f

(k)
θ (x(h)))1≤k≤K(h+1) as the clusters (= K(h+1)) and we define the K(h) × K(h+1) assignment

matrix S(h) = {S(h)
i,k } as follows:

S
(h)
i,k =

(
f
(k)
θ (x

(h)
i ) =

∑
c:channel

(x
(h)
i,c ⊗ pθ(k)(x

(h)
i,c ))

(0)∑
c ∥p

(0)

θ(k)(x
(h)
i,c )∥

)
1≤i≤K(h),1≤k≤K(h+1)

.

We assign nodes in G(h) to a cluster according to S(h), possibly with channel-wise normalization.
Then, the node feature and edges of G(h+1) are computed as follows:

X(h+1) =

1 ·

(
1∑K(h)

i=1 S
(h)
i,j

)T

j

⊙ (S(h))TX(h), 1 ∈ RK(h)

(1)

A(h+1) = (S(h))TA(h)S(h). (2)
When performing the dense pooling by (4) and (5), we also store E(h), and use the stored edges’
information as edges for G(h+1) to be pooled while restoring node features as follows:

X(h) = S(h)X(h+1), X(h)T = (x
(h)
1 , . . . ,x

(h)

K(h)) (3)
These operations are similar to the method proposed in Han et al. (2022), but their architecture is
Euclidean group-equivariant, while our method is equivariant to the Clifford group action that can
respect high-order symmetry of systems.

For these two sparse and dense (un)pooling methods, we can impose equivariance to Clifford-group
action, by adopting multi-blade projection. The claim is derived as a corollary of Theorem 3.1,
whose proofs are given in Appendix C.
Corollary 3.2. Let pθ be a trainable Γ(Rn, q)-equivariant endomorphism of Cl(Rn, q). Then, the
sparse and dense (un)poolings are Γ(Rn, q)-equivariant.

Training objective. We define the training objective of HCGE-MPNN, depending on the pooling
modes:

L =

{
1
N

∑N
i=1 ||(yout

i )(1) − ygt
i ||pp, if sparse∑N

i=1 ||(yout
i )(1) − ygt

i ||F + λ
∑H

h=1 ||(S(h))TA(h)S(h)||F . if dense

Here, the norm for the sparse pooling mode represents lp-norm and we found that p = 2 achieves
the best performance. We use the Frobenius norm instead for the dense pooling mode. We call the
second term (without the weight λ) in the dense pooling mode connectivity loss. The purpose of
having this term is to encourage more connections within the pooling nodes and smaller cuts among
clusters (Ying et al., 2018).
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Table 1: Prediction error (×10−2) on Multi N-Body dataset. The “Multiple System” contains
J = 5 different systems. For each column, (M,N/M) indicates that each system contains M
complexes of average size N/M . Results averaged across 3 runs.

Single System (J = 1) Multiple Systems (J = 5)
(3,3) (5,5) (3,3) (5,5)

EGNN (Satorras et al., 2021) 12.69 (0.19) 15.37 (0.13) 13.33 (0.12) 15.48 (0.16)
EGHN (Han et al., 2022) 11.58 (0.10) 14.42 (0.80) 12.80 (0.56) 14.85 (0.30)

CGE-MPNN (Ruhe et al., 2023) 9.44 (0.41) 8.18 (0.14) 9.60 (0.21) 7.18 (0.36)

HCGE-MPNN (sparse) 8.75 (0.24) 8.21 (0.13) 9.14 (0.40) 7.29 (0.61)

4 EXPERIMENTS

Multi N-Body. The Multi N-Body dataset is based on (Kipf et al., 2018; Han et al., 2022) and it
consists of N charged particles {xi,vi, ci}Ni=1 that belongs to M disjoint complex systems {Sj}Mj=1,
where xi,vi, ci are particles’ position, velocity and change.The task consists of predicting the final
position of the all the particles after T = 1500 steps, given the initial positions and velocities. The
accuracy of the prediction is measure in mean-squared error (MSE). The detail for the experiment
is described in Appendix D. The results are reported in Table 1. Our method outperforms the two
baselines and also perform better than CGE-MPNN for most of the settings. Even for the larger
systems such as (5, 5)-systems, the method is competitive to CGE-MPNN. The results indicate the
efficacy of employing hierarchical structure of underlying system together along with arithmetic of
the Clifford algebra as inductive bias for the neural network, but also reveals its limitation. The more
discussion of the result and the visualization of the results can be found in Appendix E and H

Motion Capture.

Table 2: Prediction error MSE (×10−2) on
motion-capture dataset. Results are averaged
across 3 runs.

Walk (#35)
EGNN (Satorras et al., 2021) 7.9 (0.4)
EGHN (Han et al., 2022) 7.2 (0.1)

CGE-MPNN (Ruhe et al., 2023) 7.7 (0.5)

HCGE-MPNN (sparse) 6.3 (0.2)
HCGE-MPNN (dense) 6.0 (0.1)

We also evaluate our model on CMU Motion
Capture Database CMU (2003), especially on
walking (Subject # 35) dataset, in the task of pre-
dicting future configuration. For each of the mod-
els, we run experiments 3 times and average the
results. The detail for the experiment is described
in Appendix D. The results are shown in Table 2.
We see that HCGE-MPNN outperforms the other
strong baselines and the dense mode achieves the
best among the other models. The number of
parameters for HCGE-MPNN are around 70,000
which is comparable to other baselines. The more
discussion of the result and the visualization of
the results can be found in Appendix E and H.
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APPENDIX

A CLIFFORD EQUIVARIANT DENSE POOLING AND UNPOOLING

Dense pooling CE-Pool
(h)
dense is an extension of the multi-blade projection, in which all nodes in

G(h) are explicitly assigned to a pooled node in G(h+1). We first pre-define a number of clusters,
which we denote as K(h+1) (K(1) = N ), as the number of nodes for the pooled graph G(h+1). To
ensure the equivariance CE-Pool

(h)
dense, we then compute confidence scores with the multi-blade

projection, but here we have the same number of multi-blade projections (f
(k)
θ (x(h)))1≤k≤K(h+1)

as the clusters (= K(h+1)) and we define the K(h) ×K(h+1) assignment matrix S(h) = {S(h)
i,k } as

follows:

S
(h)
i,k =

(
f
(k)
θ (x

(h)
i ) =

∑
c:channel

(x
(h)
i,c ⊗ pθ(k)(x

(h)
i,c ))

(0)∑
c ∥p

(0)

θ(k)(x
(h)
i,c )∥

)
1≤i≤K(h),1≤k≤K(h+1)

.

We assign nodes in G(h) to a cluster according to S(h), possibly with channel-wise normalization.
Then, the node feature and edges of G(h+1) are computed as follows:

X(h+1) =

1 ·

(
1∑K(h)

i=1 S
(h)
i,j

)T

j

⊙ (S(h))TX(h), 1 ∈ RK(h)

(4)

A(h+1) = (S(h))TA(h)S(h). (5)
When performing the dense pooling by (4) and (5), we also store E(h), and use the stored edges’
information as edges for G(h+1) to be pooled while restoring node features as follows:

X(h) = S(h)X(h+1), X(h)T = (x
(h)
1 , . . . ,x

(h)

K(h)) (6)

These operations are similar to the method proposed in Han et al. (2022), but their architecture is
Euclidean group-equivariant, while our method is equivariant to the Clifford group action that can
respect high-order symmetry of systems.

B TRAINING OBJECTIVE

We define the training objective of HCGE-MPNN, depending on the pooling modes:

L =

{
1
N

∑N
i=1 ||(yout

i )(1) − ygt
i ||pp, if sparse∑N

i=1 ||(yout
i )(1) − ygt

i ||F + λ
∑H

h=1 ||(S(h))TA(h)S(h)||F . if dense
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Here, the norm for the sparse pooling mode represents lp-norm and we found that p = 2 achieves
the best performance. We use the Frobenius norm instead for the dense pooling mode. We call the
second term (without the weight λ) in the dense pooling mode connectivity loss. The purpose of
having this term is to encourage more connections within the pooling nodes and smaller cuts among
clusters (Ying et al., 2018).

C PROOF OF EQUIVARIANCE

Proof of Theorem 3.1. (i) Since pθ(x̃) = p̃ and xc = x̃ ∈ Cl(1)(Rn, q), x̃ and p̃ may be written as

x̃ =

n∑
i=1

xiei, p̃ =

n∑
i=1

piei, xi, pi ∈ R.

Here, {ei} is the canonical orthogonal basis of Rn. Then, by taking the geometric product,

x̃⊗ pθ(x̃) = x̃⊗ p̃

=(

n∑
i=1

xiei)⊗ (

n∑
i=1

piei)

=

n∑
i=j

xipjei ⊗ ej +

n∑
i̸=j

xipjei ⊗ ej

=

n∑
i=1

xipi +

n∑
i<j

(xipj − xjpi)ei ⊗ ej ,

and therefore we get

(x̃⊗ pθ(x̃))
(0) =

n∑
i=1

xipi.

In a manner similar to the above derivation, we can also deduce

(pθ(x̃)⊗ pθ(x̃))
(0) =

n∑
i=1

pipi.

Therefore,
(x̃⊗ pθ(x̃))

(0)

(pθ(x̃)⊗ pθ(x̃))(0)
=

∑n
i=1 xipi∑n
i=1 pipi

=
< x,p >

< p,p >
.

(ii) Note that in general, for ∀x,y ∈ Cl(Rn, q), we have the following relation

(ρ(w)x⊗ ρ(w)y) = ρ(w)(x⊗ y), ∀w ∈ Γ(Rn, q).

Then,

(ρ(w)x)⊗ (pθ(ρ(w)x)) = (ρ(w)x)⊗ (ρ(w)pθ(x))

=ρ(w)(x⊗ pθ(x)).

Since Clifford group acts on the scalar compoonent identically, we get.

ρ(w)(x⊗ pθ(x))
(0) = (x⊗ pθ(x))

(0).

Similar argument holds for ∥pθ(x)(0)∥, and this completes the proof.

Proof of Corollary 3.2.

Sparse case. Since the scoring function is invariant to the Clifford group action, the pooled nodes
are same across the inputs acted by any ω ∈ Γ(Rn, q). The pooled nodes are sampled from the
nodes in a graph, the features on the sampled nodes are equivariant to Γ(Rn, q). Unpooled nodes
on the other hand are equipped with invariant features, such as zero multi-vectors or mean of the
multi-vectors in the Clifford space, the unpooling operation is also equivariant to Γ(Rn, q)-action.

8
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Dense case. Note that the assignment matrix S is invariant to Γ(Rn, q)-action, since the multi-blade
projection is Γ(Rn, q)-invariant. By Theorem 3.2 of Ruhe et al. (2023), linear transform is Γ(Rn, q)-
equivariant, and therefore Equation 4 is Γ(Rn, q)-equivariant. On the other hand, the adjacent matrix
A(h+1) in equation 5 is invariant to Γ(Rn, q)-action, since S is Γ(Rn, q)-invariant. Therefore, the
dense pooling method is Γ(Rn, q)-equivariant. Similar argument applies to the equation 6, therefore
the dense unpooling is also Γ(Rn, q)-equivariant.

D EXPERIMENTAL SETTINGS

Multi N-Body dataset. The Multi N-Body dataset is based on (Kipf et al., 2018; Han et al., 2022)
and it consists of N charged particles {xi,vi, ci}Ni=1 that belongs to M disjoint complex systems
{Sj}Mj=1, where xi,vi, ci are particles’ position, velocity and change. Withing each system Sj the
particples are rigidly connected in pairs (bonds), triangles and tetrahedrons. The dynamics of the
M systems is driven by electromagnetic forces between pairs of particles. The task consists of
predicting the final position of the all the particles after T = 1500 steps, given the initial positions
and velocities. J independent systems are samples, each composed of M independent systems,
with the number of participles sampled from uniform distribution with mean N/M . This system is
called (M,N/M, J). Withing each system Sj the particples are rigidly connected in pairs (bonds),
triangles and tetrahedrons.

As graph topologies over which we perform message passing with HCGE-MPNN, we use the same
graph topologies Aglobal and Alocal as adopted in Han et al. (2022). In this experiment, we model pθ
with CGE-MPNN and use Alocal as an input of pθ to compute the scoring function of CE-Pool(h).
Aglobal is used to update node features by CGE-MPNNs composing CE-Encode and CE-Decode.
Both Alocal and Aglobal are pooled based on the scores computed over Alocal, and pooled Alocal

and Aglobal are used in the next round of pooling process.

Throughout this experiment, we set 2-layers and 14-channels for hidden layers of CGE-MPNN in
our model. Pooling depth is set to be 1 and the ratio of pooled nodes (for sparse pooling) is 0.5.
For dense pooling, the number of cluster is set to be same as the number of system in each of
the experiments. For the N-body simulation system, we compared with Linear Prediction, EGNN
(Satorras et al., 2021), EGHN (Han et al., 2022), following the implementation of Han et al. (2022).
The accuracy of the prediction is measured in mean-squared error (MSE).

Motion capture dataset. The CMU Motion Capture Database CMU (2003) is a large collection of
motion capture recordings for various tasks (such as walking, running, and dancing) performed by
human subjects. We here focus on recorded walking motion data of a single subject (subject ♯ 35).
The data is in the form of 31 3D trajectories, each tracking a single joint of the human body. For
the training dataset, we adopt the same splitting strategy as Han et al. (2022), with 1100 frame pairs
1 for training, 600 for validation, and another 600 for tests. The interval between each pair is 30
frames in both scenarios. In this task nodes are the joints and edges are defined as the neighbor of
nodes. We again use the same graph topologies Aglobal and Alocal as adopted in Han et al. (2022).

For the number of clusters K for dense pooling, we empirically find that K = 4 yields promising
results. We set 2-layers and 14-channels for hidden layers of CGE-MPNN in our proposed method.
The pooling ratio for the sparse pooling is 0.5. In this experiment, we compare HCGE-MPNN with
Euclidean group equivariant models such as EGNN (Satorras et al., 2021) and EGHN (Han et al.,
2022) as well as CGE-MPNN. The prediction accuracy is measured in mean-squared error (MSE).

E RESULTS OF DENSE POOLING

Multi N-body dataset. Table 3 is the result of N-body dataset experiments. Our sparse-pooling
mode performs better or competitive to CGE-MPNN. However, the dense-pooling mode performs
worse even than CGE-MPNN. We observed that our model with the both modes suffers from se-
vere overfitting during training even with small hyperparamters such as message-passing layers or
the channel dimension of CGE-MPNN. This could happen since the clifford representation of the

1Han et al. (2022) uses 200 frame pairs for the training data, but the reported scores for the walk experiment
in the paper was not reproduced. We instead use 1100 frame pairs and train baseline models on them.

9
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canonical vectors retains abundant information compared to the original vectors, which has huge
impact on overfitting when the training data is small – we followed the same setting as that in Han
et al. (2022), in which the training samples are 1,500 and the samples of validation and test datasets
are 2,000. We plan to increase the number of training samples to see if the tendency is observed in
this case.

Motion capture dataset. Table 2 is the result of motion capture dataset. Both of the pooling modes
outperform all the baselines and the dense-pooling mode achieves the best performance among the
others. In general, the dense-pooling mode pools nodes to create small graphs with smaller diameters
to facilitate propagation of graph information while keeping the number of message-passing layers
small. Therefore, the result indicates the need of dense-pooling method, since the graph topology
of the data is sparse and its diameter is about 15, which require the flat message passing methods
to have deep message passing layers to capture long-range dependency involving taking risks of
over-smoothing or over-squashing. Although the sparse-pooling method also outperforms baseline
methods, this mode essentially does not facilitate the message propagation in a manner of dense-
pooling since it essentially drops nodes and does not increase the connectivity of the pooled graph.

Table 3: Prediction error (×10−2) of dense and sparse pooling modes on Multi N-Body dataset.
The “Multiple System” contains J = 5 different systems. For each column, (M,N/M) indicates
that each system contains M complexes of average size N/M . Results averaged across 3 runs.

Single System (J = 1) Multiple Systems (J = 5)
(3,3) (5,5) (3,3) (5,5)

EGNN (Satorras et al., 2021) 12.69 (0.19) 15.37 (0.13) 13.33 (0.12) 15.48 (0.16)
EGHN (Han et al., 2022) 11.58 (0.10) 14.42 (0.80) 12.80 (0.56) 14.85 (0.30)

CGE-MPNN (Ruhe et al., 2023) 9.44 (0.41) 8.18 (0.14) 9.60 (0.21) 7.18 (0.36)

HCGE-MPNN (dense) 11.63 (1.45) 10.95 (1.39) 11.79 (1.28) 9.34 (0.64)
HCGE-MPNN (sparse) 8.75 (0.24) 8.21 (0.13) 9.14 (0.40) 7.29 (0.61)
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F ABLATION STUDY

Table 4: Ablation study on motion-
capture dataset. Prediction error is
set to be MSE (×10−2) and results are
averaged across 3 runs.

HCGE-MPNN (Dense) Walk (#35)
hidden channels = 8 7.2
hidden channels = 14 6.0
clusters = 3 7.1
clusters = 7 6.5
w/o hierarchy 7.7
w/o Connectivity loss 6.7

HCGE-MPNN (Sparse) Walk (#35)
hidden channels = 8 7.5
hidden channels = 14 6.3
pooling ratio = 0.2 8.5
pooling ratio = 1.0 7.2

We perform the ablation study of HCGE-MPNN with the
motiona capture dataset. We conducted the study for each
of the dense and sparse modes and report the scores in Table
4. For our dense pooling method, we change the number of
clusters to 3 and 7, both of which yield worse performance.
We also modify the hidden channels from 14 to 8, and we
observed that HCGE-MPNN with 14 hidden channels per-
forms better. Notably if we omit the connectivity loss, in
whcih the topology of poolded graphs are regularized to en-
sure being sparse, its performance degrades. This shows the
importance of having the connectivity loss in the training
objective. We also investigate the necessity of having sparse
pooling for this experiment. We modify the hidden channel
from 14 to 8 and pooling ratio from 0.5 to 0.2 and 1.0, all
of which degrades its performance. Setting pooling ratio
to be 1.0 is equivalent to CGE-MPNN model with the skip
connection. We conclude this section by noting that we did
not perform experiments with larger hidden-channels and
larger hidden layers to keep the maximum computational
budget same across all the ablation models.

G RELATED WORKS

HIERARCHICAL GRAPH NEURAL NETWORKS (POOLING AND UNPOOLING)

Hierarchy is common in various domains and it is typically employed in the concept of information
coarsening, where multi-resolution representations of information are obtained at different levels
of abstraction along the hierarchy. Coarsening provides simple, yet effective methods to extract
features, and the idea is key in image-processing Fukushima (1980); LeCun et al. (1989) and has
recently played a vital role in unstructured-data processing Gao & Ji (2019); Cangea et al. (2018);
Lee et al. (2019); Ying et al. (2018); Bianchi et al. (2020); Khasahmadi et al. (2020); Yuan & Ji
(2020). These studies focus mainly on generic data, and more importantly, they do not respect the
symmetry of geometric data stemmed from physical systems.

Graph Neural Networks (GNNs) have achieved a substantial improvement over various tasks, from
node-level tasks such as node classification to graph-level tasks such as graph regression and clas-
sification. In order to obtain an effective graph representation, many designs of graph hierarchical
pooling, an operation to iteratively coarsen graphs into smaller size, have been proposed. These
methods typically involve learnable score functions to compute likelihood of nodes to be pooled.
Such formulation includes sparse method (Gao & Ji, 2019; Cangea et al., 2018; Lee et al., 2019;
Knyazev et al., 2019; Zhang et al., 2020; Ranjan et al., 2019; Ma et al., 2020), which computes
a score for each node and reduces the graph by keeping only a fraction of top scoring ones and
dropping the rest, and dense method (Ying et al., 2018; Bianchi et al., 2020; Khasahmadi et al.,
2020; Yuan & Ji, 2020; Tsitsulin et al., 2023) that computes for each node a soft-assignment to a
fixed number of clusters. Although the methods can effectively obtain representation of graphs, the
methods do not respect symmetry of physical systems, which limits their generalization on real-
world geometric data such as ones in the context of multi-scale modelling. One important exception
is the work of Han et al. (2022), that is formulated in an equivariant encoder-decoder form with
skip-connections. Our method is also aligned with the encoder-decoder form, but instead respects
Clifford group action, that involves higher-order action to geometrical data.

H VISUALIZATION
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Figure 2: Visualization of the output of HCGE-MPNN and ground-truth for Multi N-Body
dataset. Figures represent the 3d coordinates of the particles composing (3, 3, 1)-system. Edges
correspond to the frame of each sub-system and each sub-system is fully connected.
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Figure 3: Visualization of the output of HCGE-MPNN and ground-truth for motion capture
dataset. Figures represent the 3d coordinates of the joints representing body.
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