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ABSTRACT

Generative models can be categorized into two types: i) explicit generative mod-
els that define explicit density forms and allow exact likelihood inference, such
as score-based diffusion models (SDMs) and normalizing flows; ii) implicit gen-
erative models that directly learn a transformation from the prior to the data dis-
tribution, such as generative adversarial nets (GANs). While these two types of
models have shown great success, they suffer from respective limitations that hin-
der them from achieving fast sampling and high sample quality simultaneously.
In this paper, we propose a unified theoretic framework for SDMs and vanilla
GANs (Goodfellow et al. (2020)). We mainly show that: i) the generation process
of both SDMs and GANs can be described as a novel SDE named Discriminator
Denoising Diffusion Flow (DiffFlow), where the drift can be determined by some
weighted combinations of scores of the real data and the generated data; ii) By ad-
justing the relative weights between different score terms, we can obtain a smooth
transition between SDMs and GANs while the marginal distribution of the SDE
remains invariant to the change of the weights; iii) we prove the asymptotic and
non-asymptotic convergence of the continuous SDE dynamics of DiffFlow by
some weak isoperimetry of the smoothed target distribution; iv) under our unified
theoretic framework, we introduce several instantiations of DiffFlow that incorpo-
rate some recently proposed hybrid algorithms of GAN and diffusion models, for
instance, the TDPM (Zheng et al., 2022) as a special case. Our framework uni-
fies GANs and SDMs into a continuous spectrum. Hence, it offers the potential
to design new generative learning algorithms that could achieve a flexible trade-
off between high sample quality and fast sampling speed beyond existing GAN-
and/or SDM-like algorithms.

1 INTRODUCTION

Generative modeling is a fundamental task in machine learning: given finite i.i.d. observations from
an unknown target distribution, the goal is to learn a parametrized model that transforms a known
prior distribution (e.g., Gaussian noise) to a distribution that is “close” to the unknown target distri-
bution. In the past decade, we have witnessed rapid developments of a plethora of deep generative
models (i.e., generative modeling based on deep neural networks): starting from VAEs (Kingma &
Welling, 2013), GANs (Goodfellow et al., 2020), Normalizing Flows (Rezende & Mohamed, 2015),
and more recently, score-based diffusion models (SDMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020). These deep generative models have demonstrated remarkable capabilities in modeling high-
dimensional distributions, which pose challenges for traditional “shallow” generative models such
as Gaussian Mixture Models.

Despite the existence of a large family of deep generative models, they can be categorized into
two groups based on sampling and likelihood inference. The first one is explicit generative mod-
els, which define explicit density forms and enable exact likelihood inference (Huang et al., 2021;
Song et al., 2021a; Kingma et al., 2021) using the well-known Feynman-Kac formula (Karatzas
et al., 1991). Score-based diffusion models and normalizing flows are typical examples of explicit
generative models. Another group is implicit generative models such as GANs directly learn a
transformation from a noise prior to the data distribution, making the closed-form density of the
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learned distribution intractable. In this work, we focus on GANs as representatives of implicit gen-
erative models and SDMs as representatives of explicit generative models, as they exhibit superior
performance within their respective classes of generative models.

GANs are trained through a minimax game between the generator network and the discriminator
network. They have been one of the pioneering implicit generative models that have dominated the
field of image generation for many years. The sampling process of GANs is fast since it only requires
a single pass through the generator network to transform the noise vector into a data vector. However,
GANs suffer from training instability due to the nonconvex-nonconcave objective function, and the
quality of generated samples is often inferior compared to the current state-of-the-art score-based
diffusion models (Dhariwal & Nichol, 2021). In contrast to GANs, SDMs achieve high-quality
image generation without adversarial training. SDMs (Song et al., 2021b) are explicit generative
models that define a forward diffusion process, iteratively transforming the data into random noise,
and the learning objective is to reverse this forward diffusion process using a reverse denoising
process. The relationship between denoising and score matching is well-known in the literature
(Hyvärinen & Dayan, 2005), which explains the term “score” in SDMs. However, the iterative
nature of SDMs makes both the training and sampling processes significantly slower compared to
GANs.

While significant progress has been made in the individual fields of GANs and diffusion models,
there has been limited research on linking and studying the relationship between these two ap-
proaches. In this work, our objective is to address the following research question:

Can we develop a unified theoretical framework for GANs and SDMs
that allows for a flexible trade-off between high sample quality and fast sampling speed?

The goal of this paper is to provide a positive response to the aforementioned question. Our contri-
butions can be summarized into four parts:

1. Our key observation is that the generation process of both SDMs and GANs can be de-
scribed by a novel stochastic differential equation (SDE) named Discriminator Denoising
Diffusion Flow (DiffFlow). The drift term of DiffFlow comprises a weighted combination
of scores from the current marginal distribution pt(x) at time t and the target distribution
q(x).

2. By carefully adjusting the weights of the scores in the drift term, we achieve a smooth
transition between GANs and SDMs. Here, “smooth” implies that the marginal distribu-
tion pt(x) remains unchanged during the weight adjustments from GANs to SDMs. We
refer to this property as the “Marginal Preserving Property,” which we rigorously define in
Section 3.4.3.

3. We provide asymptotic and non-asymptotic convergence analyses of the dynamics of the
proposed SDE under certain weak isoperimetry properties of the smoothed target distribu-
tion. Additionally, we derive a training objective that guarantees maximal likelihood.

4. Finally, within our unified SDE framework, we present several instantiations of SDE dy-
namics that encompass various recently proposed empirical hybrid algorithms of GANs
and diffusion models as special cases. One notable example is the truncated probabilistic
diffusion models (Zheng et al., 2022), which employ a two-stage algorithm: GANs learn
a one-step mapping from pure noise to a noisy target distribution, and the remaining chain
is implemented by standard diffusion steps. Our unified framework offers the potential to
design new generative learning algorithms that allow for a flexible trade-off between high
sample quality and fast sampling speed.

The remainder of this paper is organized as follows: Section 2 provides background information for
general readers. Our unified SDE framework is presented in Section 3, and the asymptotic conver-
gence analysis is discussed in Section 4. Section 5 covers the related work. Due to space constraints,
we defer all proofs and some theoretical results to the Appendix. Specifically, the non-asymptotic
convergence analysis of DiffFlow is deferred to Appendix H, and the derivation of the maximal
likelihood training scheme is deferred to Appendix I. Appendix J further discusses new algorithms
generated by our framework and the analytic continuation of the noise coefficients. In Appendix K,
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we explore potential design spaces under our framework and their relationship to existing hybrid al-
gorithms of GANs and diffusion models, such as TDPM proposed by (Zheng et al., 2022). Finally,
we conclude the paper in Section 6.

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

SDMs are a type of generative models trained by denoising samples corrupted by various levels of
noise. The generation process involves sampling vectors from pure noise and progressively denois-
ing them to generate images. Song et al. (2021b) formally describes these processes using a forward
diffusion stochastic differential equation (SDE) and a reverse denoising SDE.

Specifically, let the data distribution be denoted by q(x). By sampling a particle X0 ∼ q(x), the
forward diffusion process {Xt}t∈[0,T ] is defined by the following SDE:

dXt = f(Xt, t)dt+ g(t)dWt, (1)

where T > 0 is a fixed constant, f(·, ·) : Rk × [0, T ] → Rk is the drift coefficient, g(·) : [0, T ] →
R≥0 is a predefined diffusion noise scheduler, and {Wt}t∈[0,T ] is the standard Brownian motion in
Rk. If we denote the probability density ofXt by pt(x), our goal is to have the distribution of pT (x)

be close to a tractable Gaussian distribution π(x). Setting f(Xt, t) ≡ 0 and g(t) =
√

2t, Karras
et al. (2022) yields pt(x) = q(x)~N (0, t2I) := q(x; t), where ~ denotes the convolution operation
and q(x, T ) ≈ π(x) = N (0, T 2I).

The reverse process, as defined by Song et al. (2021b), involves sampling an initial particle from
X0 ∼ π(x) ≈ pT (x). The reverse denoising process {Xt}t∈[0,T ] is then defined by the following
SDE:

dXt =
[
g2(T − t)∇ log pT−t(Xt)− f(Xt, T − t)

]
dt+ g(T − t)dWt. (2)

It is worth mentioning that this denoising process is a trivial time-reversal of the original reverse
process defined by Song et al. (2021b) and also appears in previous work (Huang et al., 2021) for
notational simplicity.

In the denoising process1, the critical term to be estimated is ∇ log pT−t(x), which represents the
score function of the forward process at time T−t. pT−t(x) is often a noise-corrupted version of the
target distribution q(x). For example, as discussed earlier, if we set f(Xt, t) ≡ 0 and g(t) =

√
2t,

then ∇ log pT−t(x) becomes ∇ log q(x, T − t), which can be estimated through denoising score
matching (Song et al., 2021b; Karras et al., 2022) using a time-indexed network sθ(x, t) (Ho et al.,
2020).

2.2 GENERATIVE ADVERSARIAL NETWORKS

In 2014, Goodfellow et al. (2020) introduced the seminal work on generative adversarial nets
(GANs). The training dynamics of GANs can be formulated as a minimax game between a dis-
criminator network dθD (·) : X → [0, 1] and a generator network GθG(·) : Z → X . Intuitively, the
discriminator network is trained to classify images as fake or real, while the generator network is
trained to produce images from noise that “fool” the discriminator. This alternating procedure for
training the generator and discriminator can be formulated as a minimax game:

min
θG

max
θD

Ex∼q(x)[log dθD (x)] + Ez∼π(z)[log(1− dθD (GθG(z)))], (3)

where z ∼ π(z) is sampled from Gaussian noise. The training dynamics of GANs are unstable
due to the high non-convexity of the generator and discriminator, which hinders the existence and
uniqueness of the equilibrium in the minimax objective (Farnia & Ozdaglar (2020)).

Despite significant progress in the fields of diffusion models and GANs in recent years, little is
known about the connection between them. In the next section, we will provide a general framework
that unifies GANs and diffusion models, demonstrating that the generation dynamics of GANs and
diffusion models can be recovered as a special case of our general framework.

1We omit the word “reverse” since this process is the time-reversal of the original reverse process.
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3 GENERAL FRAMEWORK

To establish a unified stochastic differential equation (SDE) framework for GANs and SDMs, we
propose disregarding the terminologies “forward process” and “reverse process” commonly used in
diffusion models literature. Our objective is to construct a learnable (potentially stochastic) process
{Xt}t∈[0,T ] indexed by continuous time variable 0 ≤ t ≤ T , such that X0 ∼ π(x), where π(x) is
a known Gaussian distribution, and XT ∼ pT (x), which is “close” to the target distribution q(x).
The measure of closeness can be defined by a divergence or metric, on which we later will provide
details.

Specifically, given X0 ∼ π(x) sampled from the noise distribution, we consider the following
evolution equation for Xt ∼ pt(x), where t ∈ [0, T ] and T > 0:

dXt =

[
f(Xt, t) + β(t,Xt)∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt

+
√
g2(t)− λ2(t)dWt. (4)

Here, f(·, ·) : Rk × [0, T ] → Rk, β(·, ·) : Rk × [0, T ] → R≥0, and u(·), σ(·), g(·), λ(·) : [0, T ] →
R≥0 are predefined scaling functions.

For ease of presentation, we refer to the above SDE as the Discriminator Denoising Diffusion Flow
(DiffFlow). At first glance, the physical interpretation behind DiffFlow may not be immediately
apparent. However, we will provide a detailed explanation of how the name DiffFlow is derived
and how it unifies GANs and SDMs in subsequent subsections. By carefully tuning the scaling
functions, we can recover the dynamics of GANs and SDMs respectively, while keeping the marginal
distributions pt(x) unchanged. Furthermore, we will demonstrate how DiffFlow unifies a broader
“continuous” spectrum of generative models, where GANs and diffusion models represent specific
cases of DiffFlow with specialized scaling functions.

3.1 SINGLE NOISE-LEVEL LANGEVIN DYNAMICS

Let us begin with the simplest case: the single-noise level Langevin dynamics. In DiffFlow, if we
set u(t) ≡ 1, f(Xt, t) ≡ 0, λ(t) ≡ 0, β(t,Xt) ≡ β(t), g(t) ≡

√
2β(t), and σ(t) ≡ σ0 for some

fixed σ0 ≥ 0, then we obtain

dXt = β(t)∇ log q(Xt;σ0)dt+
√

2β(t)dWt, (5)

which corresponds to the classical Langevin algorithm. However, as pointed out by Song & Ermon
(2019; 2020), the single noise level Langevin algorithm suffers from slow mixing time due to sep-
arate regions of the data manifold. Consequently, it is unable to model complex high-dimensional
data distributions and fails to learn and generate meaningful features on datasets like MNIST (Song
& Ermon, 2019). Therefore, it is reasonable to introduce perturbations with multiple noise levels
and perform multiple noise-level Langevin dynamics, such as the Variance Explosion SDE with
Corrector-Only Sampling (NCSN) (Song et al., 2021b).

3.2 SCORE-BASED DIFFUSION MODELS

3.2.1 VARIANCE EXPLOSION SDE

Without loss of generality, we consider the Variance Explosion (VE) SDE adopted by Karras et al.
(2022). DiffFlow can be easily adapted to other VE SDEs by simply changing the noise schedule
σ(t) and scaling β(t,Xt). For instance, setting u(t) ≡ 1, f(Xt, t) ≡ 0, β(t,Xt) ≡ 2(T − t),
λ(t) ≡

√
β(t) =

√
T − t, g(t) ≡

√
2β(t) = 2

√
T − t, and σ(t) ≡ T − t, we obtain

dXt = 2(T − t)∇ log q(Xt;T − t)dt+
√

2(T − t)dWt, (6)

which corresponds to the VE SDE from Karras et al. (2022). In the case of a general VE SDE as
described by Song et al. (2021b), the denoising process is given by

dXt =
d[σ2(T − t)]

dt
∇ log q

(
Xt;

√
σ2(T − t)− σ2(0)

)
+

√
d[σ2(T − t)]

dt
dWt, (7)
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This can be obtained by setting u(t) ≡ 1, f(Xt, t) ≡ 0, β(t,Xt) ≡ d[σ2(T−t)]
dt ,

λ(t) ≡
√
β(t,Xt) =

√
d[σ2(T−t)]

dt , g(t) ≡
√

2β(t,Xt) =
√

2d[σ
2(T−t)]
dt , and σ(t) ≡√

σ2(T − t)− σ2(0) in DiffFlow.

3.2.2 VARIANCE PRESERVING SDE

Similar to the previous analysis, for the Variance Preserving (VP) SDE described by Song et al.
(2021b), the denoising process is given by

dXt =

[
β(T − t)∇ log pT−t(Xt) +

1

2
β(T − t)Xt

]
dt+

√
β(T − t)dWt. (8)

According to the marginal distribution of VP SDE derived in Appendix A, this can be obtained by
setting u(t) ≡ exp

(
1
2

∫ T−t
0

β(s)ds
)

, f(Xt, t) ≡ 1
2β(T − t)Xt, β(t,Xt) ≡ β(T − t), λ(t) ≡√

β(T − t), g(t) ≡
√

2β(T − t), and σ(t) ≡ 1 − exp
(
−
∫ T−t
0

β(s)ds
)

in DiffFlow. A similar
procedure can demonstrate that the sub-VP SDE proposed by Song et al. (2021b) also lies within
the framework with specialized scaling functions, which we omit the derivations here for brevity.

3.2.3 DIFFUSION ODE FLOW

Similar to the previous analysis, for the diffusion ODE corresponding to the VE SDE by Song et al.
(2021b), the denoising process is given by

dXt =
1

2

d[σ2(T − t)]
dt

∇ log q
(
Xt;

√
σ2(T − t)− σ2(0)

)
. (9)

This can be obtained by setting u(t) ≡ 1, f(Xt, t) ≡ 0, β(t,Xt) ≡ 1
2
d[σ2(T−t)]

dt ,

λ(t) ≡
√

2β(t,Xt) =
√

2d[σ
2(T−t)]
dt , g(t) ≡

√
2β(t,Xt) =

√
2d[σ

2(T−t)]
dt , and σ(t) ≡√

σ2(T − t)− σ2(0) in DiffFlow. The ODEs corresponding to VP SDEs and sub-VP SDEs can
be obtained from DiffFlow by specializing the scaling functions using a similar procedure. How-
ever, we omit the derivations here for brevity.

3.3 GENERATIVE ADVERSARIAL NETWORKS

To start with the simplest case, let us demonstrate how DiffFlow recovers the training dynamics of
the vanilla GAN (Goodfellow et al., 2020). First, we set u(t) ≡ 1, f(Xt, t) ≡ 0, λ(t) ≡ 0, g(t) ≡ 0,
and σ(t) ≡ σ0 ≥ 0. It is worth noting that σ0 is typically set to a small positive constant to ensure
the smoothness of the generator’s gradient. With these settings, DiffFlow reduces to the following
DiffODE:

dXt =

[
β(t,Xt)∇ log

q(Xt;σ0)

pt(Xt)

]
dt. (10)

Next, we demonstrate that by coarsely approximating the dynamics of this ODE using a generator
network with specialized β(t,Xt), one can recover the dynamics of the Vanilla GAN.

The critical term to be estimated in the DiffODE is ∇ log q(Xt;σ0)
pt(Xt)

, which represents the gradient
field of the classifier between the real data and the generated data at time t. This term can be
estimated by computing gradients with respect to the logistic classifier defined as follows:

Dt(x) := log
q(x;σ0)

pt(x)
= arg min

D

[
Ex∼q(x;σ0) log

(
1 + e−D(x)

)
+ Ex∼pt(x) log

(
1 + eD(x)

)]
.

We can then update the samples using the following equation:

Xt+1 = Xt + ηtβ(t,Xt)∇Dt(Xt), (11)

where ηt > 0 represents the discretization step size.
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Figure 1: A Continuous Spectrum of Generative
Models (Best Viewed in Color).

It is well established in the existing litera-
ture (Gao et al., 2019; Yi et al., 2023) that
the vanilla GAN or non-saturating GAN dy-
namics can be exactly recovered by one-step
distillation of the discriminator-guided particle
dynamics, i.e., the aforementioned DiffODE.
The equivalence between the vanilla GAN and
discriminator-guided dynamics GANs can be
obtained by rescaling the gradient of the least
square distillation objective. For the sake of
completeness and due to space limitations, we
provide detailed discussions on the equivalence
between DiffODE and vanilla GANs in Ap-
pendix B, as well as several improvements of
vanilla GANs from the perspective of DiffODE
in Appendix C.

3.4 A UNIFIED SDE FRAMEWORK

In the previous sections, we have demonstrated
that by customizing the scaling functions of
DiffFlow, we can recover the dynamics of the
single-noise Langevin algorithm, diffusion models, and GANs. However, DiffFlow provides a
broader continuous spectrum of generative models, with GANs and SDMs representing specific
corner cases on this spectrum, as depicted in Figure 1.

3.4.1 DIFFFLOW DECOMPOSITION

Recall that the dynamics of DiffFlow can be described by

dXt =

 f(Xt, t)︸ ︷︷ ︸
Regularization

+β(t)∇ log
q(u(t)Xt;σ(t))

pt(Xt)︸ ︷︷ ︸
Discriminator

+
g2(t)

2
∇ log pt(Xt)︸ ︷︷ ︸
Denoising

 dt
+

√
g2(t) + λ̃2(t)dWt︸ ︷︷ ︸

Diffusion

, (12)

where we assign names to each term based on their physical interpretation in particle evolutions: the
first term f(Xt, t), acting similarly to weight decay when f(Xt, t) = c‖Xt‖22 for some constant c >
0, represents regularization; the second term, named the discriminator, corresponds to the gradient
of the classifier between target data and real data; the third term, denoising, removes Gaussian noise
with standard deviation g(t) according to the Kolmogorov Forward Equation; and the last term is
the diffusion.

While the physical meanings of the aforementioned terms are evident, explaining the continuous
evolution of models between GANs and SDMs through the scaling functions g(·) and λ(·) is chal-
lenging. However, it is worth noting that when g2(t) ≤ 2β(t), the DiffFlow equation can be alter-
natively written as:

dXt =

[
g2(t)

2
∇ log q(u(t)Xt;σ(t))

]
dt+

√
g2(t)− λ2(t)dWt

+

[(
β(t)− g2(t)

2

)
∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+ f(Xt, t)

]
dt.

This decomposition implies that when g2(t) ≤ 2β(t), DiffFlow can be seen as a mixed particle
dynamics between GANs and SDMs, where the relative mixture weight is controlled by g(t) and
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β(t). If we fix β(t) and increase g(t) to
√

2β(t), the dynamics of GANs would vanish. In the limit
where g(t) =

√
2β(t) and λ(t) ≡ 0, DiffFlow reduces to the pure Langevin algorithm. On the other

hand, in the limit where g(t) ≡ 0 and λ(t) ≡ 0, DiffFlow reduces to the pure GANs algorithm.

Regarding the evolution from the pure Langevin algorithm to diffusion SDE models, we need to
increase λ(t) from 0 to g(t)/

√
2 to match the stochasticity of VP/VE SDE. If we further increase

λ(t) to g(t), we obtain the diffusion ODE (Song et al., 2021b).

3.4.2 DIFFUSION-GAN: A UNIFIED ALGORITHM

Notice that when 0 < g(t) <
√

2β(t), DiffFlow exhibits a mixed particle dynamics of SDMs and
GANs, which we refer to as Diffusion-GANs:

dXt =

[
g2(t)

2
∇ log q(u(t)Xt;σ(t))

]
dt+

√
g2(t)− λ2(t)dWt

+

[(
β(t)− g2(t)

2

)
∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+ f(Xt, t)

]
dt.

Under the DiffFlow framework, one can implement Diffusion-GANs by learning a time-indexed
discriminator using logistic regression dθ∗t (x, t) ≈ log q(u(t)Xt;σ(t))

pt(Xt)
and a score network using score

matching sθ′∗(x, t) ≈ ∇ log q(u(t)Xt;σ(t)). The sampling process is then defined by discretizing
the following SDE within the interval t ∈ [0, T ]:

dXt =

[
g2(t)

2
sθ′∗(x, t)

]
dt+

√
g2(t)− λ2(t)dWt +

[(
β(t)− g2(t)

2

)
∇dθ∗t (x, t) + f(Xt, t)

]
dt.

It is important to tune λ(t) to achieve an appropriate level of stochasticity. The optimal noise level
for generating high-quality samples remains an open problem both empirically and theoretically.

3.4.3 MARGINAL PRESERVING PROPERTY

One may argue that the current framework of DiffFlow is simply a combination of particle dynamics
from GANs and SDMs, where g(·) serves as an interpolation weight between them. It is well-known
in the literature that both GANs (Gao et al., 2019; Yi et al., 2023) and SDMs (Song et al., 2021b)
can be modeled as particle dynamics using different ordinary or stochastic differential equations.

However, we want to emphasize that despite GANs and SDMs being modeled as ODEs/SDEs with
different drift and diffusion terms, the underlying dynamics of these differential equations are dis-
tinct: even with the same initial particle configurations, the path measure deviates significantly
between GANs and SDMs. Therefore, a simple linear interpolation between the dynamics of GANs
and SDMs lacks both theoretical and practical motivations. We require a sophisticated design of
each term in the differential equations to align the marginal distributions of the different classes of
generative models represented by SDMs and GANs. This work presents a well-designed unified
SDE called “DiffFlow” for GANs and SDMs, enabling flexible interpolations between them by ad-
justing the scaling functions in the SDE. Furthermore, we demonstrate in the following proposition
that the interpolation is “smooth” from GANs to SDMs: the marginal distribution pt(x) for all t ≥ 0
remains invariant to the interpolation factor g(·). This proposition is a direct consequence of the
Fokker-Planck equation (Jordan et al. (1998)).

Proposition 1 (Marginal Preserving Property, Proved in Appendix D). The marginal distribution
pt(x) of DiffFlow, given by

dXt =

[
f(Xt, t) + β(t)∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+

√
g2(t)− λ2(t)dWt

remains invariant with respect to g(·).
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The Marginal Preserving Property implies that as we increase g(·), DiffFlow transitions smoothly
from GANs to SDMs and further to SLCD (see Appendix J for details), as illustrated in Figure 1,
while the marginal distribution pt(x) remains unchanged. Another important factor, λ(·), is used to
control the stochasticity of DiffFlow, aligning the noise level among Langevin Dynamics, diffusion
SDEs, and diffusion ODEs.

4 CONVERGENCE ANALYSIS

For ease of presentation, without loss of generality, we set f(Xt, t) ≡ 0, β(t,Xt) ≡ 1, u(t) ≡ 1,
σ(t) ≡ σ0 for some α, σ0 > 0, and λ(t) ≡ 0. By this, the DiffFlow simplifies to the following SDE:

dXt =

[
∇ log

q(Xt;σ0)

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+ g(t)dWt.

Remark 1. The current simplified DiffFlow is general enough to incorporate the full dynamics of
the original DiffFlow. By rescaling the particles and gradients, we can recover general f(Xt, t),
β(t) and u(t), as in DDIM (Song et al., 2020). The general forms of λ(t) and σ(t) can be recovered
by modifying the noise scheduler from constant values to the desired annealing scheduler. The
convergence analysis for annealing noise scheduler could be extended based on current analysis
some techniques in Tang & Zhou (2021)

To study the convergence of DiffFlow dynamics, we need to identify its variational formulation,
i.e., a functional that DiffFlow minimizes. Finding such a functional is not difficult, as shown
in Appendix E, where it is revealed that the functional is exactly the KL divergence between the
generated and target distributions.

The main tool for proving the asymptotic convergence of DiffFlow is the Gaussian Poincaré inequal-
ity from Ledoux (2006):
Definition 1 (Gaussian Poincaré Inequality). Suppose f : Rk → R is a smooth function, and X
follows a multivariate Gaussian distribution X ∼ N (0, σ2I), where I ∈ Rk×k. Then,

V ar[f(X)] ≤ σ2E
[
‖∇f(X)‖22

]
, (13)

holds. We also show that under Gaussian smoothing, the log-density exhibits quadratic growth.
Lemma 1 (Bound on the Log-Density of Smoothed Distributions, Proved in Appendix F). Consider
a probability distribution q(x), and let q(x;σ) be the distribution of x + ε where x ∼ q(x) and
ε ∼ N (0, σ2I). Then, there exist constants Aσ, Bσ > 0, and Cσ such that for any 0 < γ < 1:

|log q(x;σ)| ≤ Aσ‖x‖22 +Bσ‖x‖2 + Cσ, (14)

where Cq(γ) := inf
{
s :
∫
B(s)

q(u)du ≥ γ
}

, Aσ = 1
2σ2 , Bσ =

Cq(γ)
σ2 , and Cσ =

max
{
C2
q (γ)

2σ2 − log
(
γ 1
(2π)k/2σk

)
, log

(
1

(2π)k/2σk

)}
, where B(s) = {x ∈ Rk : ‖x‖2 ≤ s}.

Remark 2. In the above lemma, for the measure q, we define the quantity Cq(γ) :=

inf
{
s :
∫
B(s)

q(u)du ≥ γ
}

. This quantity Cq(γ) represents the smallest ball centered at the origin

in Rk that captures at least γ mass of the probability measure q.

Now, we are ready to prove the following asymptotic convergence theorem.
Theorem 1 (Proved in Appendix G). Consider a stochastic process {Xt}t≥0 with dynamics deter-
mined by:

dXt =

[
∇ log

q(Xt;σ0)

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+ g(t)dWt, (15)

where X0 ∼ π(x) and σ0, λ0 > 0. Then, the marginal distribution Xt ∼ pt(x) converges almost
everywhere to the target distribution q(x;σ0), i.e.:

lim
t→∞

pt(x) = q(x;σ0) a.e. (16)
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5 RELATED WORK

Our work is inspired by a recent series of studies that relate the training dynamics of GANs and
SDMs to the particle evolution of ordinary or stochastic differential equations (Gao et al., 2019; Song
& Ermon, 2019; Song et al., 2021b; 2020; Karras et al., 2022; Yi et al., 2023) and the references
therein.

The training dynamics of vanilla GANs (Goodfellow et al., 2020) are highly unstable due to the
minimax objective. Several subsequent works attempt to improve the stability of GAN training
by considering particle gradient flow, which avoids the minimax framework (Nowozin et al., 2016;
Arjovsky et al., 2017; Gulrajani et al., 2017; Gao et al., 2019; Yi et al., 2023). The key idea is that the
evolution of particles can be driven by the gradient flow of a distance measure between probability
distributions, such as KL divergence or Wasserstein distance. Consequently, the evolution dynamics
can be described by an ODE, and the driven term of the ODE is determined by the functional
gradient of the distance measure. For instance, in the case of KL divergence, the functional gradient
corresponds to the gradient field of the logistic classifier (Gao et al., 2019; Yi et al., 2023), which
plays the role of the discriminator in vanilla GANs.

The early development of diffusion models primarily focused on learning a series of Markov tran-
sition operators that maximize the ELBO (Sohl-Dickstein et al., 2015; Ho et al., 2020). In parallel,
Song & Ermon (2019; 2020) proposed a set of score-based generative models based on multiple
levels of denoising score matching. In 2020, Song et al. (2021b) demonstrated that diffusion mod-
els are essentially score-based generative models with score matching on multiple noise levels of
corrupted target distributions. Furthermore, Song et al. (2021b) showed that the sampling dynam-
ics of diffusion models can be modeled as stochastic differential equations with the scores of the
noise-corrupted target serving as the drift term. Since then, diffusion models have been referred to
as score-based diffusion models.

Although the training dynamics of both GANs and score-based diffusion models can be modeled by
particle algorithms, whose dynamics are described by respective differential equations, there is cur-
rently no unified differential equation that can capture the dynamics of both. Our main contribution
is to propose an SDE that enables the construction of a continuous spectrum that unifies GANs and
diffusion models.

The contemporaneous work of Franceschi et al. (2023) proposed the Generative Particle Model
(GPM) that unifies GANs and diffusion models. Our work shares the same motivation and idea
with Franceschi et al. (2023) in the sense that both GANs and diffusion models can be viewed as
a particle optimization algorithm. Our work differs from Franceschi et al. (2023) mainly in two
aspects: i) we propose an explicit unified SDE for both GANs and diffusion models while there
is no explicit unified SDE formulation for GPM. Under the GPM framework, GANs and diffusion
models has different specific formulations of SDE or ODE. ii) the GPM paper provides much more
empirical analysis and focus less on theory. Our work can be seen as a good complementary to the
contemporaneous GPM paper.

6 CONCLUSION

We propose a unified SDE framework called “DiffFlow” that integrates the particle dynamics of the
Langevin algorithm, GANs, diffusion SDEs, and diffusion ODEs. Our framework extends beyond
SDMs and GANs, providing a continuous spectrum and enabling the development of new generative
algorithms such as diffusion-GANs and SLCD. We conduct convergence analysis of DiffFlow and
demonstrate that it allows for maximum likelihood estimation in both GANs and SDMs within the
SDE framework.

However, our current framework only encompasses derivations of the density ratio-based GANs
such as KL-GANs and vanilla GANs, and not all GANs (like IPM-based GANs, for example). It
remains an open problem on how to incorporate the IPM-based GANs in to a unified framework.
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A DERIVATION OF VP SDE

We aim to express the score of the forward process ∇ log pt(Xt) in the VP SDE using the score of
the noise-corrupted target distribution. We present the following proposition, which can be derived
through a simple application of stochastic calculus, similar to Song et al. (2021b).
Proposition 2. Assuming X0 ∼ q(x) and the forward process {Xt}t∈[0,T ] in the VP SDE is given
by

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt . (17)

Then the score of pt(x) (note: Xt ∼ pt(x)) can be represented as

∇ log pt(x) = ∇ log q

(
exp

(
1

2

∫ t

0

β(s)ds

)
x; 1− exp

(
−
∫ t

0

β(s)ds

))
. (18)

Now, we can derive the denoising process of the VP SDE as follows:

dXt =

[
β(T − t)∇ log q

(
exp

(
1

2

∫ T−t

0

β(s)ds

)
Xt; 1− exp

(
−
∫ T−t

0

β(s)ds

))

+
1

2
β(T − t)Xt

]
dt+

√
β(T − t)dWt.

Proof. By ito lemma, we have

d

[
exp

(
1

2

∫ t

0

β(s)ds

)
Xt

]
= exp

(
1

2

∫ t

0

β(s)ds

)
dXt +

1

2
β(t) exp

(
1

2

∫ t

0

β(s)ds

)
Xtdt .

Combining with the forward VP SDE, we have

d

[
exp

(
1

2

∫ t

0

β(s)ds

)
Xt

]
= exp

(
1

2

∫ t

0

β(s)ds

)√
β(t)dWt . (19)

Hence,

Xt = exp

(
−1

2

∫ t

0

β(s)ds

)[
X0 +

∫ t

0

exp

(
1

2

∫ u

0

β(s)ds

)√
β(u)dWu

]
. (20)

By the ito isometry and martingale property of brownian motions, we have

E
[∫ t

0

exp

(
1

2

∫ u

0

β(s)ds

)√
β(u)dWu

]
= 0 (21)

and

E
[∫ t

0

exp

(
1

2

∫ u

0

β(s)ds

)√
β(u)dWu

]2
=

∫ t

0

[
exp

(
1

2

∫ u

0

β(s)ds

)√
β(u)

]2
du

=

∫ t

0

exp

(∫ u

0

β(s)ds

)
β(u)du

=

∫ t

0

exp

(∫ u

0

β(s)ds

)
d

[∫ u

0

β(s)du

]
= exp

(∫ t

0

β(s)ds

)
− 1 . (22)

Hence

exp

(
−1

2

∫ t

0

β(s)ds

)∫ t

0

exp

(
1

2

∫ u

0

β(s)ds

)√
β(u)dWu ∼ N

(
0, I − exp

(
−
∫ t

0

β(s)ds

)
I

)
.

(23)
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Then we have

pt(x) = exp

(
1

2

∫ t

0

β(s)ds

)
q

(
exp

(
1

2

∫ t

0

β(s)ds

)
x

)
~N

(
0, I − exp

(
−
∫ t

0

β(s)ds

)
I

)
(24)

where the proof ends by taking logarithm and applying the divergence operator∇ on both sides.

B DIFFODE’S EQUIVALENCE TO GANS

DiffODE naturally yield the following algorithm and we can show this algorithm is equivalent to
GAN by setting the discriminator loss to logistic loss: dθD (x) = 1

1+e
−DθD

(x) .

Algorithm 1 DiffFlow-GANs
INPUT: target data from q(x;σ0): x∗1, . . . , x∗n ∈ Rk; noisy samples x00, . . . , x0n ∈ Rk gener-
ated from noisy distribution π(x); meta-parameter: T ; neural network classifier: DθD (x);
generator: GθG(x).

for t = 1, . . . , T do

Let θt−1D = arg minθD

[
1
n

∑n
i=1 log

(
1 + e−DθD (x∗i )

)
+ 1

n

∑n
i=1 log

(
1 + eDθD (xt−1

i )
)]

Sample z1, . . . , zn from noisy prior π(x).
Update the generator by descending the following loss:

1

2n

n∑
i=1

‖GθG(zi)− (Gθt−1
G

(zi) + ηtβ(zi, t)∇Dθt−1
D

(Gθt−1
G

(zi)))‖22 .

Update the sampled particles: xti = xt−1i + ηtβ(xt−1i , t)∇Dθt−1
D

(xt−1i ) for i = 1, . . . , n

end for
return GθTG(x) and particles {xTi }ni=1 .

For the vanilla GANs (Goodfellow et al., 2020), the update of discriminator is the same as DiffODE-
GANs. Since from dθD (x) = 1

1+e
−DθD

(x) , we have

Ex∼q(x;σ0) log
(

1 + e−DθD (x)
)

+ Ex∼pt(x) log
(

1 + eDθD (x)
)

= Ex∼q(x;σ0) log

(
1 + e

− log
dθD

(x)

1−dθD
(x)

)
+ Ex∼pt(x) log

(
1 + e

log
dθD

(x)

1−dθD
(x)

)
= −Ex∼q(x;σ0) log (dθD (x))− Ex∼pt(x) log (1− dθD (x)) . (25)

It remains to show that the update of the generator is also equivalent. The gradient of the generator
is

∇θG log(1− dθD (GθG(z)))

= −∇θG log(1 + eDθD (GθG (z)))

= − 1

1 + e−DθD (GθG (z))
∇θGDθD (GθG(z))

= −dθD (GθG(z))∇θGDθD (GθG(z))

= −dθD (GθG(z))∇DθD (GθG(z)) · ∇θGGθG(z) . (26)

Hence, at the time step t− 1, we obtain the discriminator with parameter θt−1D and update generator
by the following equation

θtG = θt−1G + λt

[
1

n

n∑
i=1

dθt−1
D

(Gθt−1
G

(zi))∇Dθt−1
D

(GθtG(zi)) · ∇θGGθt−1
G

(z)

]
(27)
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where zi ∼ N (0, I) and λt is the learning rate for mini-batch SGD at time t.

If we instead run a gradient descent step on the MSE loss of the generator in the DiffFlow-GAN, we
obtain

θtG = θt−1G + λt

[
1

n

n∑
i=1

ηtβ(zi, t)∇DθtD
(GθtG(zi)) · ∇θGGθtG(zi)

]
. (28)

Then the equivalence can be shown by setting ηtβ(zi, t) = dθt−1
D

(Gθt−1
G

(zi)) .

In practice, the vanilla GAN faces the problem of gradient vanishing on the generator update. A
common trick applied is to use the “non-saturating loss”, i.e., the generator update is by instead
minimizing −Ez∼π(z)[log(dθD (GθG(z)))]. Hence, the gradient of the generator is

−∇θG log(dθD (GθG(z)))

= ∇θG log(1 + e−DθD (GθG (z)))

= − e−DθD (GθG (z))

1 + e−DθD (GθG (z))
∇θGDθD (GθG(z))

= −(1− dθD (GθG(z)))∇θGDθD (GθG(z))

= −(1− dθD (GθG(z)))∇DθD (GθG(z)) · ∇θGGθG(z) . (29)

Similarly, with the discriminator parameter θt−1D , we can update generator by the following equation

θtG = θt−1G + λt

[
1

n

n∑
i=1

(1− dθt−1
D

(Gθt−1
G

(zi)))∇Dθt−1
D

(GθtG(zi)) · ∇θGGθt−1
G

(zi)

]
(30)

Then the equivalence can be shown by setting ηtβ(zi, t) = 1− dθt−1
D

(Gθt−1
G

(zi)) .

Remark 3. The DiffFlow-GANs formulation provides a more intuitive explanation on why non-
saturating loss can avoid vanishing gradients for a poor-trained generator: if at time t − 1, we
have a poor generator Gθt−1

G
(z), generating poor samples that are far from the real data; then

dθt−1
D

(Gθt−1
G

(zi)) would close to 0, which would lead to zero particle update gradient for original
GANs while the “non-saturating” loss can avoid this problem.

In practice, one can avoid the gradient vanishing for DiffFLow-GANs by two methods: either by
setting β(zi, t) ≡ 1 to maintain the gradient for particle updates; or proposing a noising annealing
strategy for the discriminator: during the early stage of training, the discriminator is weakened by
classifying a noise-corrupted target distribution q(x;σ(t)) from fake data pt(x). The weakening
discriminator trick has been adopted in many real deployed GAN models, and it has been shown
helpful during the early stage of GAN training (Salimans et al., 2016). The noise annealing on dis-
criminator shares some spirits with SDMs. We will discuss this point in details in the next Appendix
C.

C THREE IMPROVEMENTS ON VANILLA GANS

From previous analysis, we show that the DiffFlow framework provides a novel view on GANs and
has potential for several improvements on the vanilla GANs algorithm. The generation dynamics of
vanilla GANs are coarse approximation of DiffODE: the one-step gradient of the generator is deter-
mined by the particle movements driven by DiffODE, and the driven force is exactly the gradient
field of the logistic classifier between the real data and fake data (i.e., discriminator). Furthermore,
for the vanilla GAN, the particle gradient is scaled by the probability of th e particle being real data,
which would be near zero at the early stage of training — this is exactly the source of gradient van-
ishing. From this perspective, we can obtain the following improvements: simplify β(t,Xt) ≡ β(t),
i.e., eliminating the dependence of the particle movement on the scaling factor that determined by
the probability of the particle being real. This would alleviate the gradient vanishing at the early
stage of training.

Furthermore, since the vanilla GAN only approximates the particle movements by one-step gradients
of the least square regression, the is too coarse to simulate the real dynamics of DiffODE. Indeed,
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one could directly composite a generator by the gradient fields of discriminators at each time step t
and this generator could directly simulate the original particle movements in the DiffODE. The idea
can be implemented by borrowing ideas from diffusion models: we adopt a time-indexed neural
network discriminator dθt(x, t) that is trained by classifying real and fake data at time t.

Lastly, since at the early stage of training, the generator could face too much pressure with a “smart”
discriminator, the transition and training dynamics between noise to data could be sharp and unstable
during the early stage of training. To achieve a smooth the transition between noise to data, we bor-
row again ideas from diffusion models: we adopt a the noise annealing strategy σ(t) that weakening
the discriminator. At time t, the discriminator dθt(x, t) learns to classify between noise-corrupted
real data q(x;σ(t)) and fake data pt(x) where the corruption σ(t) is continuously decreasing as time
index increasing with σ(0) = σmax and σ(T ) = σmin. This idea is analogous to diffusion models
such as NCSN (Song & Ermon, 2019) and the only difference is that the diffusion models learn the
score of noise corrupted target distribution q(x;σ(t)) instead of a classifier at the time index t.

With above three improvements inspired from the perspective of ODE approximations and diffusion
models, we propose an improved GAN algorithm. The training and sampling procedure is described
as follows.

Algorithm 2 Improved-DiffFlow-GANs-Training
INPUT: target data from q(x): x∗1, . . . , x

∗
n ∈ Rk; noise annealing strategy {σi}Ti=1; noisy

samples x00, . . . , x0n ∈ Rk generated from noisy distribution π(x); meta-parameter: T ; time-
indexed neural network classifier: Dθt(x, t).

for t = 1, . . . , T do
Sample z1, . . . , zn from N (0, σ2

i I).

Let θ∗t = arg minθD

[
1
n

∑n
i=1 log

(
1 + e−Dθt (x

∗
i+zi,t)

)
+ 1

n

∑n
i=1 log

(
1 + eDθt (x

t−1
i ,t)

)]
Update the sampled particles: xti = xt−1i + ηtβ(t)∇Dθ∗t

(xt−1i , t) for i = 1, . . . , n
end for
return Particles {xTi }ni=1 and {θ∗t }Tt=1.

Algorithm 3 Improved-DiffFlow-GANs-Sampling
INPUT: Noisy distribution π(x); time-indexed discriminator: Dθ∗t

(x, t) for t = 1, . . . , T .

Sample X0 ∼ π(x)

for t = 1, . . . , T do
Update the sampled particles: Xt = Xt−1 + ηtβ(t)∇Dθ∗t

(xt−1, t− 1)
end for
return XT .

Although we adopt the method of training discriminators θ∗t independently across time steps in
the algorithm’s pseudocode, since it avoids the slow convergence that is partly due to conflicting
optimization directions between different time steps (Hang et al., 2023). It worths mentioning that
our framework offers much more flexibility on designing the time-indexed discriminator: we can
either share a universal θ across all time t as done in diffusion models, or train discriminators θ∗t
independently for each t. It remains an open problem on which method is better for such generative
models.

Notice that in a recent work of MonoFlow (Yi et al. (2023)), the authors also discussed the problem
of gradient vanishing in vanilla GANs arises from too small rescaled vector fields of discriminator-
guided particle dynamics and it fixes the gradient vanishing problem by simply adding a constant in
the generator output combined with a monotonic function (section 5.2 of Yi et al. (2023)).

It’s also worth mentioning that the noise-corrupting strategies for Vanilla GANs mentioned in previ-
ous sections are strongly linked to preexisting works leveraging noise to regularize the discriminator,
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e.g. instance noise (Sønderby et al. (2016)) and diffusion GANs (Wang et al. (2022)). The smoothed
KL divergence in the DiffFlow framework is a generalization of the instance noise training objective
of Sønderby et al. (2016)) with varying levels of noise.

The diffusion GAN algorithm from (Wang et al. (2022)) is quite different from the diffusion-GAN
in our framework: in each discriminator-generator optimization cycle, (Wang et al. (2022)) propose
to train and combine a series of discriminators that are trained by corrupting instance with different
levels of noise. Since the noise schedule is aligned with diffusion models, the author name it diffu-
sion GAN. The diffusion GAN in (Wang et al. (2022)) is essentially a GAN-like algorithm. While in
our framework of diffusion GAN, we should jointly train a score network and GAN-flavoured gen-
erator and the generation process is guided by both networks. Hence, it is a real unified combination
of GANs and diffusion models.

There are some more works on designing hybrid algorithms of GANs and diffusion models. For
example, Kim et al. (2022) use discriminators with diffusion models as a refining process. Kim
et al. (2022) has fundamental difference from our current framework: given a fixed pretrained score
network ∇ log pmodel(xt, t) that may deviates from real data distribution, the authors train an addi-
tional time-dependent discriminator d(xt, t) that discriminates between the real data and generated
data at time step t and correct the score network by

∇ log pnew(xt, t) = ∇ log pmodel(xt, t) +∇ log
d(xt, t)

1− d(xt, t)
.

In our framework, the score network and the discriminator network should be trained jointly. Fur-
thermore, the noise in the discriminator should align with the diffusion process. Contrastly in Kim
et al. (2022), there are no noise added on the target distribution q(x) during the training of discrimi-
nator.

D PROOF OF PROPOSITION 1

Proof. By the Kolmogorov Forward Equation (Øksendal & Øksendal, 2003), the marginal distribu-
tion pt(x) follows the following PDE:

∂pt(x)

∂t

= −∇ ·
[
pt(x)

(
f(x, t) + β(t)∇ log

q(u(t)x;σ(t))

pt(x)
+
g2(t)

2
∇ log pt(x)

)]
+
g2(t)− λ2(t)

2
∇ · ∇pt(x)

= −∇ ·
[
pt(x)

(
f(x, t) + β(t)∇ log

q(u(t)x;σ(t))

pt(x)

])
−∇ ·

[
pt(x)

g2(t)

2
∇ log pt(x)

]
+
g2(t)− λ2(t)

2
∇ · ∇pt(x)

= −∇ ·
[
pt(x)

(
f(x, t) + β(t)∇ log

q(u(t)x;σ(t))

pt(x)

])
− λ2(t)

2
∇ · ∇pt(x) . (31)

Hence, the marginal distribution pt(x) is independent of g(·).

E THE VARIATIONAL FORMULATION OF DIFFFLOW

Lemma 2 (The Variational Formulation of DiffFlow). Given stochastic process {Xt}t≥0 and its
dynamics determined by

dXt =

[
∇ log

q(Xt;σ0)

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+ g(t)dWt (32)

withX0 ∼ π(x) and σ0, λ0 > 0. Then the marginal distribution pt(x) ofXt minimizes the following
functional

L(p) = KL(p‖q(x;σ0)) :=

∫
Rk
p(x) log

p(x)

q(x;σ0)
dx . (33)

Furthermore,

∂L(pt)

∂t
= −

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx . (34)
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Proof. By the Kolmogorov Forward Equation, the marginal distribution pt(x) follows the following
PDE:

∂pt(x)

∂t

= −∇ ·
[
pt(x)

(
∇ log

q(x;σ0)

pt(x)
+
g2(t)

2
∇ log pt(x)

)]
+
g2(t)

2
∇ · ∇pt(x)

= −∇ ·
[
pt(x)

(
∇ log

q(x;σ0)

pt(x)
+
g2(t)

2
∇ log pt(x)

)]
+
g2(t)

2
∇ · [pt(x)∇ log pt(x)]

= −∇ ·
[
pt(x)

(
∇ log

q(x;σ0)

pt(x)
+
g2(t)

2
∇ log pt(x)− g2(t)

2
∇ log pt(x)

)]
= −∇ ·

[
pt(x)

(
∇ log

q(x;σ0)

pt(x)

)]
. (35)

Then, we have
∂L(pt)

∂t

=

∫
Rk

[
log

pt(x)

q(x;σ0)
+ 1

]
∂pt(x)

∂t
dx

=

∫
Rk

log
pt(x)

q(x;σ0)

∂pt(x)

∂t
dx

= −
∫
Rk

log
pt(x)

q(x;σ0)
∇ ·
[
pt(x)

(
∇ log

q(x;σ0)

pt(x)

)]
dx

=

∫
Rk

log
pt(x)

q(x;σ0)
∇ ·
[
pt(x)

(
∇ log

pt(x)

q(x;σ0)

)]
dx (36)

Through integral by parts, we have
∂L(pt)

∂t

= −
∫
Rk
pt(x)

(
∇ log

pt(x)

q(x;σ0)

)
·
(
∇ log

pt(x)

q(x;σ0)

)
dx

= −
∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx . (37)

Hence, the KL divergence L(pt) is decreasing along the marginal distribution path {pt(x)}t≥0 de-
termined by DiffFlow.

F PROOF OF LEMMA 1

Proof. Let Gσ(x) be the probability density function of N(0, σ2I), then the resulting smoothed
distribution q(x;σ) is

q(x;σ) =

∫
Rd
q(u)Gσ(x− u)du . (38)

Let B(r) = {u : ‖u‖2 ≤ r}, then

q(x;σ) =

∫
B(r)

q(u)Gσ(x− u)du+

∫
Rk\B(r)

q(u)Gσ(x− u)du

≥
∫
B(r)

q(u)Gσ(x− u)du

≥
∫
B(r)

q(u)Gσ

(
x+ r

x

‖x‖2

)
du

= Gσ

(
x+ r

x

‖x‖2

)∫
B(r)

q(u)du . (39)
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Fix some small constant 0 < γ < 1, if we choose r = Cp(γ) := inf
{
s :
∫
B(s)

p(u)du ≥ γ
}

. This
implies

q(x;σ) ≥ γGσ
(
x+ Cp(γ)

x

‖x‖2

)

= γ
1

(2π)k/2σk
exp

−
∥∥∥x+ Cp(γ) x

‖x‖2

∥∥∥2
2

2σ2

 , (40)

Taking logarithm on both sides of (40), we obtain

log q(x;σ) ≥ log

(
γ

1

(2π)k/2σk

)
−

∥∥∥x+ Cp(γ) x
‖x‖2

∥∥∥2
2

2σ2

= − 1

2σ2
‖x‖22 −

Cp(γ)

σ2
‖x‖2 −

C2
p(γ)

2σ2
+ log

(
γ

1

(2π)k/2σk

)
. (41)

We also have

q(x;σ) =

∫
Rk
q(u)Gσ(x− u)du

≤
∫
Rk
q(u)Gσ(0)du

= Gσ(0)

=
1

(2π)k/2σk
. (42)

Therefore,

log q(x;σ) ≤ log

(
1

(2π)k/2σk

)
. (43)

Let Aσ = 1
2σ2 , Bσ =

Cp(γ)
σ2 and Cσ = max

{
C2
p(γ)

2σ2 − log
(
γ 1
(2π)k/2σk

)
, log

(
1

(2π)k/2σk

)}
, then

|log q(x;σ)| ≤ Aσ‖x‖22 +Bσ‖x‖2 + Cσ . (44)

G PROOF OF THEOREM 1

Proof. By Lemma 2,

∂L(pt)

∂t
= −

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx. (45)

Hence, by the nonnegativity of KL divergence,

lim
t→∞

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx = 0 . (46)

Furthermore, since ∥∥∥∇√f(x)
∥∥∥2
2

=
‖∇f(x)‖22

4f(x)
=
f(x)

4
‖∇ log f(x)‖22 (47)
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we have

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx

= 4

∫
Rk
q(x;σ0)

∥∥∥∥∥∇
√

pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

dx

= 4

∫
Rk

exp (log q(x;σ0))

∥∥∥∥∥∇
√

pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

≥ 4

∫
Rk

exp
(
−Aσ0

‖x‖22 −Bσ0
‖x‖2 − Cσ0

)
) ∥∥∥∥∥∇

√
pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

dx . (48)

Since ‖x‖2 ≤ ‖x‖22 + 1, we have

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx

≥ 4

∫
Rk

exp
(
− (Aσ0

+Bσ0
) ‖x‖22 − Cσ0

− 1
) ∥∥∥∥∥∇

√
pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

dx

= 4 exp (−Cσ0
− 1)

∫
Rk

exp

(
− ‖x‖22

(Aσ0
+Bσ0

)
−1

)∥∥∥∥∥∇
√

pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

dx

= 4

(
π

Aσ0 +Bσ0

)k/2
exp (−Cσ0 − 1)

∫
Rk
N
(
x; 0,

1

2(Aσ0 +Bσ0)
I

)∥∥∥∥∥∇
√

pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

dx

= 4

(
π

Aσ0
+Bσ0

)k/2
exp (−Cσ0 − 1)E

x∼N
(
x;0, 1

2(Aσ0+Bσ0 )
I
)
∥∥∥∥∥∇

√
pt(x)

q(x;σ0)

∥∥∥∥∥
2

2


≥ 8 (Aσ0 +Bσ0)

(
π

Aσ0 +Bσ0

)k/2
exp (−Cσ0 − 1)V ar

x∼N
(
x;0, 1

2(Aσ0+Bσ0 )
I
)
(√

pt(x)

q(x;σ0)

)
.

where the last inequality is due to Gaussian Poincare inequality. Hence, we obtain

lim
t→∞

V ar
x∼N

(
x;0, 1

2(Aσ0
+Bσ0

)
I
)
(√

pt(x)

q(x;σ0)

)
= 0 . (49)

Furthermore, by previous analysis on the lower bound of exp (log q(x;σ0)), we have

exp (log q(x;σ0)) ≥ Dσ0N
(
x; 0,

1

2(Aσ0
+Bσ0

)
I

)
. (50)

where Dσ0
:= 4

(
π

Aσ0+Bσ0

)k/2
exp (−Cσ0

− 1) .
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Then

E
x∼N

(
x;0, 1

2(Aσ0
+Bσ0

)
I
)
(√

pt(x)

q(x;σ0)

)

=

∫
Rk
N
(
x; 0,

1

2(Aσ0
+Bσ0

)
I

)√
pt(x)

q(x;σ0)
dx

≤ 1√
Dσ0

∫
Rk

√
N
(
x; 0,

1

2(Aσ0
+Bσ0

)
I

)√
pt(x)dx

≤ 1√
Dσ0

√∫
Rk
N
(
x; 0,

1

2(Aσ0 +Bσ0)
I

)
dx

∫
Rk
pt(x)dx

=
1√
Dσ0

. (51)

Hence,

lim
t→∞

√
pt(x)

q(x;σ0)
= const. ≤ 1√

Dσ0

<∞ (52)

This implies

lim
t→∞

pt(x) = q(x;σ0) a.e. (53)

H NONASYMPTOTIC CONVERGENCE ANALYSIS VIA LOG-SOBOLEV
INEQUALITY

In the previous section, we have proved the asymptotic optimality of DiffFlow. In order to obtain an
explicit convergence rate to the target distribution, we need stronger functional inequalities, i.e., the
log-Sobolev inequality (Ledoux, 2006; Ma et al., 2019).
Definition 2 (Log-Sobolev Inequality). For a smooth function g : Rk → R, consider the Sobolev
space defined by the weighted L2 norm: ‖g‖L2(q) =

∫
Rk g(x)2q(x)dx. We say q(x) satisfies the log-

Sobolev inequality with constant ρ > 0 if the following inequality holds for any
∫
Rk g(x)q(x) = 1,∫

Rk
g(x) log g(x) · q(x)dx ≤ 2

ρ

∫
Rk

∥∥∥∇√g(x)
∥∥∥2
2
q(x)dx . (54)

Then we can obtain a linear convergence of marginal distribution pt(x) to the smoothed target dis-
tribution q(x;σ0). The analysis is essentially the same as Langevin dynamics as in (Ma et al., 2019),
since their marginal distribution shares the same Fokker-Planck equation.
Theorem 2. Given stochastic process {Xt}t≥0 and its dynamics determined by

dXt =

[
∇ log

q(Xt;σ0)

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+ g(t)dWt (55)

with X0 ∼ π(x) and σ0, λ0 > 0. If the smoothed target distribution q(x;σ0) satisfies the log-
Sobolev inequality with constant ρq > 0. Then the marginal distribution Xt ∼ pt(x) converges
linear to the target distribution q(x;σ0) in KL divergence, i.e.,

KL(pt(x)‖q(x;σ0)) ≤ exp(−2ρqt)KL(π(x)‖q(x;σ0)). (56)

Proof. From Lemma 2, we obtain

∂L(pt)

∂t
=

∂

∂t
KL(pt(x)‖q(x;σ0)) = −

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

dx . (57)
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Since q(x;σ0) satisfies the log-Sobolev inequality with constant ρq > 0, by letting the test function
g(x) = pt(x)/q(x;σ0), we obtain

KL(pt(x)‖q(x;σ0))

≤ 2

ρq

∫
Rk

∥∥∥∥∥∇
√

pt(x)

q(x;σ0)

∥∥∥∥∥
2

2

q(x;σ0)dx . (58)

Since we already know from previous analysis that∥∥∥∇√f(x)
∥∥∥2
2

=
f(x)

4
‖∇ log f(x)‖22

we have

KL(pt(x)‖q(x;σ0))

≤ 1

2ρq

∫
Rk
pt(x)

∥∥∥∥∇ log
pt(x)

q(x;σ0)

∥∥∥∥2
2

q(x)dx

= − 1

2ρq

∂

∂t
KL(pt(x)‖q(x;σ0)) . (59)

Hence by Grönwall’s inequality,

KL(pt(x)‖q(x;σ0)) ≤ exp(−2ρqt)KL(π(x)‖q(x;σ0)). (60)

Different from asymptotic analysis in the previous subsection that holds for general q(x), the
convergence rate is obtained under the assumption that the smoothed target q(x;σ0) satisfies the
log-Sobolev inequalities. This is rather a strong assumption, since we need control the curva-
ture lower bound of smoothed energy function U(x; q;σ0) to satisfy the Lyapunov conditions
for log-Sobolev inequality (Cattiaux et al., 2010). This condition holds for some simple distri-
bution: if q(x) ∼ N (µq, σ

2
qI), then the Hessian of its smoothed energy function U(x; q;σ0) =

−∇2 log q(x;σ0) = (σ2
0 + σ2

q )−1I , then by Bakery-Emery criteria (Bakry & Émery, 2006), we
have ρq = (σ2

0 + σ2
q )−1 . However, for a general target q(x), obtaining the log-Sobolev inequality

is relatively hard. If we still want to obtain an explicit convergence rate, we can seek for an explicit
regularization f(t,Xt) on the DiffFlow dynamics to restrict the path measure in a smaller subset and
then the explicit convergence rate can be obtained by employing uniform log-Sobolev inequalities
along the path measure (Guillin et al., 2022). The detailed derivation of such log-Sobolev inequal-
ities under particular regularization f(t,Xt) on the path measure is beyond the scope of this paper
and we leave it as future work.

I MAXIMAL LIKELIHOOD INFERENCE

Recall that the dynamics of DiffFlow is described by the following SDE on the interval t ∈ [0, T ]
with X0 ∼ π(x) and Xt ∼ pt(x):

dXt =

[
f(Xt, t) + β(t,Xt)∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+
g2(t)

2
∇ log pt(Xt)

]
dt+

√
g2(t)− λ2(t)dWt . (61)

At the end time step T , we obtain pT (x) and we hope this is a “good” approximation to the target
distribution. Previous analysis shows that as T to infinity, pT (x) would converge to the target
distribution q(x;σ0) under simplified dynamics. However, the convergence rate is relatively hard
to obtain for general target distribution with no isoperimetry property. In this section, we define the
goodness of approximation of pT (x) from another perspective: maximizing the likelihood at the end
of time.

There are already many existing works on analyzing the likelihood dynamics of diffusion SDE,
for instance (Huang et al., 2021; Song et al., 2021a; Kingma et al., 2021). These works provide a
continuous version of ELBO for diffusion SDEs by different techniques. In this section, we follow
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the analysis of (Huang et al., 2021) that adopts a Feymann-Kac representation on pT then using the
Girsanov change of measure theorem to obtain a trainable ELBO.

Here we mainly consider when g2(t) ≤ 2β(t), DiffFlow can also be seen as a mixed particle dy-
namics between SDMs and GANs. Recall in this case, DiffFlow can be rewritten as,

dXt =

[
g2(t)

2
∇ log q(u(t)Xt;σ(t))

]
dt+

√
g2(t)− λ2(t)dWt︸ ︷︷ ︸

SDMs

+

[(
β(t)− g2(t)

2

)
∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+ f(Xt, t)

]
︸ ︷︷ ︸

Regularized GANs

dt .

Given a time-indexed discriminator dθtD (x, t) : Rd × [0, T ]→ Rd using logistic regression

dθtD (x, t) ≈ log
q(u(t)Xt;σ(t))

pt(Xt)

and a score network sθtc(x, t) : Rd × [0, T ]→ Rd using score mathcing

sθtc(x, t) ≈ ∇ log q(u(t)Xt;σ(t)) .

Then the approximated process is given by the following neural SDE:

dXt =

[
g2(t)

2
sθtc(Xt, t)

]
dt+

√
g2(t)− λ2(t)dWt +

[(
β(t)− g2(t)

2

)
∇dθtD (Xt, t) + f(Xt, t)

]
dt . (62)

We need to answer the question of how to train the score networks sθtc(x, t) and the time-indexed
discriminator dθtD (x, t) that optimizes the ELBO of the likelihood log pT (x).

Following the analysis of (Huang et al., 2021), in order to obtain a general connection between
maximal likelihood estimation and neural network training, we need to apply the Girsanov formula
to obtain a trainable ELBO for the likelihood of the terminal marginal density. Before we introduce
our main theorem, we need the following two well-known results from stochastic calculus. The first
one is Feymann-Kac Formula, adapted from Theorem 7.6 in (Karatzas et al., 1991).
Lemma 3 (Feymann-Kac Formula). Suppose u(t, x) : [0, T ]×Rd → R is of classC1,2([0, T ]×Rd])
and satisfies the following PDE:

∂u(t, x)

∂t
+ c(x, t)u(t, x) +

σ(t)2

2
∇ · ∇u(t, x) + b(t, x) · ∇u(t, x) = 0 (63)

with terminal condition u(T, x) = uT (x). If u(t, x) satisfies the polynomial growth condition

max
0≤t≤T

|u(t, x)| ≤M(1 + ‖x‖2µ), x ∈ Rd (64)

for some M > 0 and µ ≥ 1. Then u(t, x) admits the following stochastic representation

u(t, x) = E

[
uT (XT ) exp

(∫ T

t

c(Xs, s)ds

)∣∣∣∣∣Xt = x

]
(65)

where {Xs}t≤s≤T solves the following SDE with initial Xt = x,

dXs = b(t,Xs)dt+ σ(t)dWt . (66)

Then we need the well-known Girsanov Theorem to measure the deviation of path measures.
Lemma 4 (Girsanov Formula, Theorem 8.6.3 in (Oksendal, 2013)). Let (Ω,F ,P) be the underlying
probability space for which Ws is a Brownian motion. Let W̃s be an ito process solving

dW̃s = a(ω, s)ds+ dWs (67)

for ω ∈ Ω, 0 ≤ s ≤ T and W̃0 = 0 and a(ω, s) satisfies the Novikov’s condition, i.e.,

E

[
exp

(
1

2

∫ T

0

a2(ω, s)ds

)]
<∞ .

Then W̃s is a Brownian motion w.r.t. Q determined by

log
dP
dQ

(ω) =

∫ T

0

a(ω, s) · dWs +
1

2

∫ T

0

‖a(ω, s)‖2ds . (68)
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With the above two key lemmas, we are able to derive our main theorem.

Theorem 3 (Continuous ELBO of DiffFlow). Let {x̂(t)}t∈[0,T ] be a stochastic processes defined
by (62) with initial distribution x̂(0) ∼ q0(x). The marginal distribution of x̂(t) is denoted by qt(x).
Then the log-likelihood of the terminal marginal distribution has the following lower bound,

log qT (x) ≥ EYT

[
log q0(YT )

∣∣∣∣∣Y0 = x

]
+

1

2

∫ T

0

σ2(T − s)EYs|Y0=x

[
‖∇ log p(Ys|Y0 = x)‖22

]
ds

−1

2

∫ T

0

EYs|Y0=x

[∥∥∥∥c(Ys, T − s; θs)σ(T − s)
− σ(T − s)∇ log p(Ys|Y0 = x)

∥∥∥∥2
2

]
ds . (69)

where

dYs = σ(T − s)dW̃s ,

and

c(x, t; θt) = f(x, t) +
g2(t)

2
sθtc(x, t) +

(
β(t)− g2(t)

2

)
∇dθtD (x, t) ,

and
σ2(t) = g2(t)− λ2(t) .

Proof. By Fokker-Planck equation, we have

∂qt(x)

∂t
+∇ · c(x, t; θt)qt(x) + c(x, t; θt) · ∇qt(x) +

σ2(t)

2
∇ · ∇qt(x) = 0 (70)

where

c(x, t; θt) = f(x, t) +
g2(t)

2
sθtc(x, t) +

(
β(t)− g2(t)

2

)
∇dθtD (x, t) ,

and
σ2(t) = g2(t)− λ2(t) .

Let the time-reversal distribution vt(x) = qT−t(x) for 0 ≤ t ≤ T , then vt(x) satisfies the following
PDE,

∂vt(x)

∂t
−∇ · c(x, T − t; θs)vt(x)− c(x, T − t; θs) · ∇vt(x)− σ2(T − t)

2
∇ · ∇vt(x) = 0 .

By Feymann-Kac formula, we have

qT (x) = v0(x) = E

[
q0(YT ) exp

(
−
∫ T

0

∇ · c(Ys, T − s; θs)ds

)∣∣∣∣∣Y0 = x

]
(71)

where Ys is a diffusion process solving

dYs = −c(Xs, T − s; θs)ds+ σ(T − s)dWs . (72)

By Jensen’s Inequality,

log qT (x) = logEQ

[
dP
dQ

q0(YT ) exp

(
−
∫ T

0

∇ · c(Ys, T − s; θs)ds

)∣∣∣∣∣Y0 = x

]

≥ EQ

[
log

dP
dQ

+ log q0(YT )−
∫ T

0

∇ · c(Ys, T − s; θs)ds

∣∣∣∣∣Y0 = x

]
. (73)

Now, if we choose

dW̃s = a(ω, s)ds+ dWs (74)
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and Q as

log
dP
dQ

(ω)

=

∫ T

0

a(ω, s) · dWs +
1

2

∫ T

0

‖a(ω, s)‖2ds

=

∫ T

0

a(ω, s) · (dW̃s − a(ω, s)ds) +
1

2

∫ T

0

‖a(ω, s)‖2ds

=

∫ T

0

a(ω, s) · dW̃s −
1

2

∫ T

0

‖a(ω, s)‖2ds (75)

Then dW̃s is Brownian motion under Q measure and
log qT (x)

≥ EQ

[∫ T

0

a(ω, s) · dW̃s −
1

2

∫ T

0

‖a(ω, s)‖2ds+ log q0(YT )−
∫ T

0

∇ · c(Ys, T − s; θs)ds

∣∣∣∣∣Y0 = x

]

= EQ

[
−1

2

∫ T

0

‖a(ω, s)‖2ds+ log q0(YT )−
∫ T

0

∇ · c(Ys, T − s; θs)ds

∣∣∣∣∣Y0 = x

]

= EYT

[
log q0(YT )

∣∣∣∣∣Y0 = x

]
− EQ

[
1

2

∫ T

0

[
‖a(ω, s)‖2 +∇ · c(Ys, T − s; θs)

]
ds

∣∣∣∣∣Y0 = x

]
. (76)

Furthermore, we have
dYs = −c(Ys, T − s; θs)ds+ σ(T − s)dWs

= −(c(Ys, T − s; θs) + σ(T − s)a(ω, s))ds+ σ(T − s)dW̃s (77)
By choosing appropriate a(ω, s), we can obtain a trainable ELBO. In particular, we choose

a(ω, s) = −c(Ys, T − s; θs)/σ(T − s) . (78)
Then we have

dYs = σ(T − s)dW̃s . (79)
and

log qT (x)

≥ EYT

[
log q0(YT )

∣∣∣∣∣Y0 = x

]
− 1

2

∫ T

0

EYs

[(
‖c(Ys, T − s; θs)‖2

σ2(T − s)
+∇ · c(Ys, T − s; θs)

) ∣∣∣∣∣Y0 = x

]
ds

= EYT

[
log q0(YT )

∣∣∣∣∣Y0 = x

]
+

1

2

∫ T

0

σ2(T − s)EYs|Y0=x

[
‖∇ log p(Ys|Y0 = x)‖22

]
ds

−1

2

∫ T

0

EYs|Y0=x

[∥∥∥∥c(Ys, T − s; θs)σ(T − s)
− σ(T − s)∇ log p(Ys|Y0 = x)

∥∥∥∥2
2

]
ds . (80)

Then we can obtain the objective of the maximum likelihood inference by jointly training a weighted
composite network c(x, t; θt) = f(x, t) + g2(t)

2 sθtc(x, t) +
(
β(t)− g2(t)

2

)
∇dθtD (x, t) to be some

weighted version of denoising score matching.

J ADDITIONAL DISCUSSIONS

J.0.1 STOCHASTIC LANGEVIN CHURN DYNAMICS (SLCD)

If g(·) to g2(t) > 2β(t), the GAN component would vanish and we would obtain a Langevin-like
algorithm described by the following SDE:

dXt = [f(Xt, t) + β(t)∇ log q(u(t)Xt;σ(t))]︸ ︷︷ ︸
Regularized Score Dynamics

dt+

(
g2(t)

2
− β(t)

)
∇ log pt(Xt)︸ ︷︷ ︸

Denoising

dt+
√
g2(t)− λ2(t)dWt︸ ︷︷ ︸

Diffusion

.
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We name the above SDE dynamics the Stochastic Langevin Churn Dynamics (SLCD) where we
borrow the word “churn” from the section 4 of the EDM paper (Karras et al., 2022), which describes
a general Langevin-like process of adding and removing noise according to diffusion and score
matching respectively. The SDE dynamics described above is to some sense exactly the Langevin-
like churn procedure in the equation (7) of (Karras et al., 2022): the particle is first raised by a
gaussian noise of standard deviation

√
g2(t)− λ2(t) and then admits a deterministic noise decay of

standard deviation of
√
g2(t)− 2β(t). This is where the name Stochastic Langevin Churn Dynam-

ics comes from.

J.0.2 ANALYTIC CONTINUATION OF DIFFFLOW

From previous analysis, we know that the scaling function g(·) controls the proportion of GANs
component and λ(·) controls the stochasticity and aligns the noise level among Langevin algorithms,
diffusion SDEs, and diffusion ODEs. We will show later that the change of g(t) would not affect
the marginal distributions pt(x) and only λ(·) plays a critical role in controlling the stochasticity of
particle evolution. Further more, we could extend to λ2(t) < 0 to enable more stochasticity than
Langevin algorithms: by letting λ̃(t) =

√
−1λ(t), we can obtain the following analytic continuation

of DiffFlow on λ(t):

dXt =

 f(Xt, t)︸ ︷︷ ︸
Regularization

+β(t)∇ log
q(u(t)Xt;σ(t))

pt(Xt)︸ ︷︷ ︸
Discriminator

+
g2(t)

2
∇ log pt(Xt)︸ ︷︷ ︸
Denoising

 dt+

√
g2(t) + λ̃2(t)dWt︸ ︷︷ ︸

Diffusion

.

As shown in Figure 1, the analytic continuation area is marked as grey that enables DiffFlow
achieves arbitrarily level of stochasticity by controlling λ̃(t) wisdomly.

K POTENTIAL DESIGN SPACE AND RELATIONS TO ZHENG ET AL. (2022)

We show that our framework incorporates some recent proposed hybrid algorithms of GAN and
diffusion models, for instance, the TDPM (Zheng et al., 2022) as special case. Notice that when
g2(t) ≤ 2β(t), DiffFlow can also be written as follows: for t ∈ [0, T ]

dXt =

[
g2(t)

2
∇ log q(u(t)Xt;σ(t))

]
dt+

√
g2(t)− λ2(t)dWt︸ ︷︷ ︸

SDMs

+

[(
β(t)− g2(t)

2

)
∇ log

q(u(t)Xt;σ(t))

pt(Xt)
+ f(Xt, t)

]
︸ ︷︷ ︸

Regularized GANs

dt .

Our framework enables both hybrid and multi-stage mixtures of GANs and diffusion models. The
GANs, a coarse approximation of diffFlow-ODEs, can achieve fast sampling but with lower sample
quality; meanwhile, the diffusion models has higher sample quality but need multistep sampling.
Towards this reason, we can design a two stage algorithm of GANs and Diffusions Models to achieve
such trade-off: we separate the time interval [0, T ] = [0, τ ] ∪ [τ, T ] for some 0 < τ < T . Then

• for t ∈ [0, τ ], by setting σ(t) ≡ σtrunc > 0, u(t) ≡ 1, f(x, t) ≡ 0, g(t), λ(t) ≡ 0, and
β(t) ≡ 1, we obtain the ODE for GAN training;

• for t ∈ [τ, T ], by setting u(t) ≡ exp
(

1
2

∫ T−t
0

β(s)ds
)

, f(Xt, t) ≡ 1
2β(T − t)Xt,

β(t,Xt) ≡ β(T − t), λ(t) ≡
√
β(T − t), g(t) ≡

√
2β(T − t) and σ(t) ≡ 1 −

exp
(
−
∫ T−t
0

β(s)ds
)

, we obtain the VP-SDE; if we further descretize the VP-SDE with
the schedule in ancestor sampling, we recover the original DDPM on the discretization of
truncated time interval [τ, T ].
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stage 1 : DiffFlow − GANs

dXt = ∇log q(Xt; σtrunc)
pt(Xt)

0 T
τ

stage 2 : VP SDE

X0 ∼ π(x)

dXt = [ 1
2 β(T − t)Xt + β(T − t)∇log pT−t(Xt)] dt + β(T − t)dWt⋅ ⋅

σ(T − τ) = σtrunc

Figure 2: Two Stage Algorithm of DiffFlow.

Notice that the above two-stage algorithm of DiffFlow shares the same spirits with TDPM, and it
can exactly match the TDPM algorithm for some particular discretization schedule. Therefore, our
framework opens some possibility of design space for generative models to achieve better trade-off
between high sample quality and fast sampling speed.

L NUMERICAL EXPERIMENTS

L.1 NUMERICAL IMPLEMENTATION OF DIFFFLOW SDE

We have conducted several numerical examples to validate the feasibility of DiffFlow-SDE algo-
rithm.

We use 3-layer neural network as our function space to approximate the score, where the hidden size
is 512 and activation function is Tanh. For DiffFlow SDE, we set g(t) ≡ 0, β(t) ≡ 1, σ(t) ≡ 1 ×
10−2. The scaling function f(Xt, t) ≡ c‖Xt‖22 with c ≡ 1× 10−4 acts as weight decay. Finally, we
consider an additional diffusion term with analytic continuation form of variance λ̃2(t) ≡ 1×10−4.
For dataset, we consider (1) Gaussian mixture distribution with 8 centers; (2) two moon dataset,
which are multi-modal distributions. It is clear that SFGO algorithm would not suffer from mode
collapse and is able to regenerate samples from the approximated true distribution.
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Figure 3: Numerical results for DiffFlow algorithm

L.2 ON THE EQUIVALENCE BETWEEN DIFFFLOWODE-GAN AND VANILLA DCGAN

By modifying code of DCGAN according to algorithm DiffFlow-GANs in Appendix B, and further
train it on MNIST dataset, we conclude that these two algorithms are equivalent up to numerical
precision with same random seed.

26



Under review as a conference paper at ICLR 2024

Figure 4: Numerical results for Vanilla DCGAN and DiffFlowODE-GAN on MNIST

L.3 TRADE-OFF BETWEEN HIGH SAMPLE QUALITY AND FAST SAMPLING SPEED

Since our framework incorporate TDPM as special case, this claim can be justified by reproducing
experiments in TDPM (Zheng et al. (2022)).
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