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Abstract

Modern ML applications increasingly rely on complex deep learning models and1

large datasets. There has been an exponential growth in the amount of computa-2

tion needed to train the largest models. Therefore, to scale computation and data,3

these models are inevitably trained in a distributed manner in clusters of nodes,4

and their updates are aggregated before being applied to the model. However, a5

distributed setup is prone to Byzantine failures of individual nodes, components,6

and software. With data augmentation added to these settings, there is a critical7

need for robust and efficient aggregation systems. We define the quality of workers8

as reconstruction ratios ∈ (0, 1], and formulate aggregation as a Maximum Like-9

lihood Estimation procedure using Beta densities. We show that the Regularized10

form of log-likelihood wrt subspace can be approximately solved using iterative11

least squares solver, and provide convergence guarantees using recent Convex12

Optimization landscape results. Our empirical findings demonstrate that our ap-13

proach significantly enhances the robustness of state-of-the-art Byzantine resilient14

aggregators. We evaluate our method in a distributed setup with a parameter server,15

and show simultaneous improvements in communication efficiency and accuracy16

across various tasks.17

1 Introduction18

How to Design Aggregators? We consider the problem of designing aggregation functions that can19

be written as optimization problems of the form,20

A(g1, . . . , gp) ∈ arg min
Y ∈C

Ag1,...,gp(Y ), (1)

where {gi}pi=1 ⊆ Rn are given estimates of an unknown summary statistic used to compute the21

Aggregator Y ∗. If we choose A to be a quadratic function that decomposes over gi’s, and C = Rn,22

then we can see A is simply the standard mean operator. There is a mature literature of studying such23

functions for various scientific computing applications [1]. More recently, from the machine learning24

standpoint there has been a plethora of work [2, 3, 4, 5] on designing provably robust aggregators A25

for mean estimation tasks under various technical assumptions on the distribution or moments of gi.26

Distributed ML Use Cases. Consider training a model with a large dataset such as ImageNet-1K27

[6] or its augmented version which would require data to be distributed over p workers and uses28

back propagation. Indeed, in this case, gi’s are typically the gradients computed by individual29

workers at each iteration. In settings where the training objective is convex, the convergence and30

generalization properties of distributed optimization can be achieved by defining A as a weighted31

combination of gradients facilitated by a simple consensus matrix, even if some gi’s are noisy [7, 8].32

In a distributed setup, as long as the model is convex we can simultaneously minimize the total33

iteration or communication complexity to a significant extent i.e., it is possible to achieve convergence34
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Figure 1: Robust gradient aggregation in our distributed training framework. In our applications, each of
the p workers provides gradients computed using a random sample obtained from given training data, derived
synthetic data from off-the-shelf Diffusion models, and random noise in each iteration. Our Flag Aggregator
(FA) removes high frequency noise components by using few rounds of Singular Value Decomposition of the
concatenated Gradient Matrix G, and provides new update Y ∗.

and robustness under technical assumptions on the moments of (unknown) distribution from which35

gi’s are drawn. However, it is still an open problem to determine the optimality of these procedures36

in terms of either convergence or robustness [9, 10].37

Potential Causes of Noise. When data is distributed among workers, hardware and software failures38

in workers [11, 12, 13] can cause them to send incorrect gradients, which can significantly mislead39

the model [14]. To see this, let’s consider a simple experiment with 15 workers, that f of them40

produce uniformly random gradients. Figure 2 shows that the model accuracy is heavily impacted41

when f > 0 when mean is used to aggregate the gradients.42
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Figure 2: Tolerance to f
Byzantine workers for a non-
robust aggregator (mean).

The failures can occur due to component or software failures and43

their probability increases with the scale of the system [15, 16, 17].44

Reliability theory is used to analyze such failures, see Chapter 945

in [18], but for large-scale training, the distribution of total system46

failures is not independent over workers, making the total noise in47

gradients dependent and a key challenge for large-scale training.48

Moreover, even if there are no issues with the infrastructure, our49

work is motivated by the prevalence of data augmentation, including50

hand-chosen augmentations. Since number of parameters n is often51

greater than number of samples, data augmentation improves the52

generalization capabilities of large-scale models under technical con-53

ditions [19, 20, 21]. In particular, Adversarial training is a common54

technique that finds samples that are close to training samples but55

classified as a different class at the current set of parameters, and56

then use such samples for parameter update purposes [22]. Unfortunately, computing adversarial57

samples is often difficult [23], done using randomized algorithms [24] and so may introduce depen-58

dent (across samples) noise themselves. In other words, using adversarial training paradigm, or the59

so-called inner optimization can lead to noise in gradients, which can cause or simulate dependent60

“Byzantine” failures in the distributed context.61

Available Computational Solutions. Most existing open source implementations of A rely just62

on (functions of) pairwise distances to filter gradients from workers using suitable neighborhood63

based thresholding schemes, based on moment conditions [25, 26, 27]. While these may be a good64

strategy when the noise in samples/gradients is somewhat independent, these methods are suboptimal65

when the noise is dependent or nonlinear, especially when n is large. Moreover, choosing discrete66
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hyperparameters such as number of neighbors is impractical in our use cases since they hamper67

convergence of the overall training procedure. To mitigate the suboptimality of existing aggregation68

schemes, we explicitly estimate a subspace Y spanned by “most” of the gradient workers, and then69

use this subspace to estimate that a sparse linear combination of gi gradients, acheiving robustness.70

We present a new optimization based formulation for generalized gradient aggregation purposes in71

the context of distributed training of deep learning architectures, as shown in Figure 1.72

Summary of our Contributions. From the theoretical perspective, we present a simple Maximum73

Likelihood Based estimation procedure for aggregation purposes, with novel regularization functions.74

Algorithmically, we argue that any procedure used to solve Flag Optimization can be directly used to75

obtain the optimal summary statistic Y ∗ for our aggregation purposes. Experimentally, our results76

show resilience against Byzantine attacks, encompassing physical failures, while effectively managing77

the stochasticity arising from data augmentation schemes. In practice, we achieve a significantly78

(≈ 20%) better accuracy on standard datasets. Our implementation offers substantial advantages in79

reducing communication complexity across diverse noise settings through the utilization of our novel80

aggregation function, making it applicable in numerous scenarios.81

2 Robust Aggregators as Orthogonality Constrained Optimization82

In this section, we first provide the basic intuition of our proposed approach to using subspaces for83

aggregation purposes using linear algebra, along with connections of our approach standard eigende-84

composition based denoising approaches. We then present our overall optimization formulation in85

two steps, and argue that it can be optimized using existing methods.86

2.1 Optimal Subspace Hypothesis for Distributed Descent87

We will use lowercase letters y, g to denote vectors, and uppercase letters Y,G to denote ma-88

trices. We will use boldfont 1 to denote the vector of all ones in appropriate dimensions.89
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Let gi ∈ Rn is the gradient vector from worker i, and Y ∈ Rn×m90

is an orthogonal matrix representation of a subspace that gradients91

could live in such that m ≤ p. Now, we may interpret each column92

of Y as a basis function that act on gi ∈ Rn, i.e., j−th coordinate of93

(Y T g)j for 1 ≤ j ≤ m is the application of j−th basis or column94

of Y on g. Recall that by definition of dot product, we have that95

if Y:,j ⊥ x, then (Y T g)j will be close to zero. Equivalently, if96

g ∈ span(Y ), then (Y T g)TY T g will be bounded away from zero,97

see Chapter 2 in [28]. Assuming that G ∈ Rn×p is the gradient98

matrix of p workers, Y Y TG ∈ Rn×p is the reconstruction of G99

using Y as basis. That is, ith column of Y TG specifies the amount100

of gradient from worker i as a function of Y , and high l2 norm of101

Y T gi implies that there is a basis in Y such that Y ̸⊥ gi. So it is102

easy to see that the average over columns of Y Y TG would give the final gradient for update.103

Explained Variance of worker i. If we denote zi = Y T gi ∈ Rm representing the transformation104

of gradient gi to zi using Y , then, 0 ≤ ∥zi∥22 = zTi zi = (Y T g)TY T g = gTi Y Y T gi is a scalar,105

and so is equal to its trace tr
(
gTi Y Y T gi

)
. Moreover, when Y is orthogonal, we have 0 ≤ ∥zi∥2 =106

∥Y T gi∥2 ≤ ∥Y ∥2∥gi∥2 ≤ ∥gi∥2 since the operator norm (or largest singular value) ∥Y ∥2 of Y is at107

most 1. Our main idea is to use ∥zi∥22, ∥gi∥22 to define the quality of the subspace Y for aggregation,108

as is done in some previous works for Robust Principal Component Estimation [29] – the quantity109

∥zi∥22/∥gi∥22 is called as Explained/Expressed variance of subspace Y wrt i−th worker [30, 31] – we110

refer to ∥zi∥22/∥gi∥22 as the “value” of i−th worker. In Figure 3, we can see from the spike near 1.0111

that if we choose the subspace carefully (blue) as opposed to merely choosing the mean gradient112

(with unit norm) of all workers, then we can increase the value of workers.113

Advantages of Subspace based Aggregation. We can see that using subspace Y , we can easily: 1.114

handle different number of gradients from each worker, 2. compute gradient reconstruction Y Y TG115

efficiently whenever Y is constrained to be orthogonal Y =
∑

i yiy
T
i where yi is the i−th column116

of Y , otherwise have to use eigendecomposition of Y to measure explained variance which can117

be time consuming. In (practical) distributed settings, the quality (or noise level) of gradients in118
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each worker may be different, and/or each worker may use a different batch size. In such cases,119

handcrafted aggregation schemes may be difficult to maintain, and fine-tune. For these purposes with120

an Orthogonal Subspace Y , we can simply reweigh gradients of worker i according to its noise level,121

and/or use gi ∈ Rn×bi where bi is the batch size of i−th worker with tr(zTi zi) instead.122

Why is optimizing over subspaces called “Flag” Optimization? Recent optimization results123

suggest that we can exploit the finer structure available in Flag Manifold to specify Y more precisely124

[32]. For example, Y ∈ Rm×n can be parametrized directly as a subspace of dimension m or125

as a nested sequence of Yk ∈ Rmk×n, k = 1, ...,K where mk < mk+1 ≤ p ≤ n such that126

span(Yk) ⊆ span(Yk+1) with YK ∈ Rm×n. When mk+1 = mk = 1, we have the usual (real)127

Grassmanian Manifold (quotient of orthogonal group) whose coordinates can be used for optimization,128

please see Section 5 in [33] for details. In fact, [34] used this idea to extend median in one-dimensional129

vector spaces to different finite dimensional subspaces using the so-called chordal distance between130

them. In our distributed training context, we use the explained variance of each worker instead. Here,131

workers may specify dimensions along which gradient information is relevant for faster convergence132

– an advantage currently not available in existing aggregation implementations – which may be used133

for smart initialization also. We use “Flag” to emphasize this additional nested structure available in134

our formulation for distributed training purposes.135

2.2 Approximate Maximum Likelihood Estimation of Optimal Subspace136

Now that we can evaluate a subspace Y on individual gradients gi, we now show that finding subspace137

Y can be formulated using standard maximum likelihood estimation principles [35]. Our formulation138

reveals that regularization is critical for aggregation especially in distributed training. In order to139

write down the objective function for finding optimal Y , we proceed in the following two steps:140

Step 1. Assume that each worker provides a single gradient for simplicity. Now, denoting the value of141

information v of worker i by vi =
zT
i zi

gT
i gi

, we have vi ∈ [0, 1]. Now by assuming that vi’s are observed142

from Beta distribution with α = 1 and β = 1
2 (for simplicity), we can see that the likelihood P(vi) is,143

P(vi) :=
(1− vi)

− 1
2

B(1, 1
2 )

=

(
1− zT

i zi
gT
i gi

)− 1
2

B(1, 1
2 )

, (2)

where B(a, b) is the normalization constant. Then, the total log-likelihood of observing gradients gi144

as a function of Y (or vi’s) is given by taking the log of product of P(vi)’s as (ignoring constants),145

log

(
p∏

i=1

P(vi)

)
=

p∑
i=1

log (P(vi)) = −
1

2

p∑
i=1

log(1− vi). (3)

Step 2. Now we use Taylor’s series with constant a > 0 to approximate individual worker log-146

likelihoods log(1− vi) ≈ a(1− vi)
1
a − a as follows: first, we know that exp

(
log(vi)

a

)
= v

1
a
i . On147

the other hand, using Taylor expansion of exp about the origin (so large a > 1 is better), we have that148

exp
(

log(vi)
a

)
≈ 1 + log(vi)

a . Whence, we have that 1 + log(vi)
a ≈ v

1
a
i which immediately implies149

that log(vi) ≈ av
1
a
i − a. So, by substituting the Taylor series approximation of log in Equation 3, we150

obtain the negative log-likelihood approximation to be minimized for robust aggregation purposes as,151

− log

(
p∏

i=1

P(vi)

)
≈ 1

2

p∑
i=1

(
a (1− vi)

1
a − a

)
, (4)

where a > 1 is a sufficiently large constant. In the above mentioned steps, the first step is standard.152

Our key insight is using Taylor expansion in (4) with a sufficiently large a to eliminate log optimization153

which are known to be computationally expensive to solve, and instead solve smooth ℓa, a > 1 norm154

based optimization problems which can be done efficiently by modifying existing procedures [36].155

Extension to general beta distributions, and gradients α > 0, β > 0, gi ∈ Rn×k. Note that our156

derivation in the above two steps can be extended to any beta shape parameters α > 0, β > 0 – there157

will be two terms in the final negative log-likelihood expression in our formulation (4), one for each158

α, β. Similarly, by simply using vi = tr
(
gTi Y Y T gi

)
to define value of worker i in equation (2), and159

then in our estimator in (4), we can easily handle multiple k gradients from a single worker i for Y .160
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Algorithm 1 Distributed SGD with proposed Flag Aggregator (FA) at the Parameter Server
Input: Number of workers p, loss functions l1, l2, ..., lp, per-worker minibatch size B, learning rate

schedule αt, initial parameters w0, number of iterations T
Output: Updated parameters wT from any worker

1 for t = 1 to T do
2 for p = 1 to p in parallel on machine p do
3 Select a minibatch: ip,1,t, ip,2,t,. . . ,ip,B,t gp,t ← 1

B

∑B
b=1∇lip,b,t

(wt−1)

4 Gt ← {g1,t, · · · , gp,t} // Parameter Server receives gradients from p workers

5 Ŷt ← IRLS(Ĝt) with Ĝt = Gt + λ∇R(Y )1T // Do IRLS at the Parameter Server for Ŷ

6 Obtain gradient direction dt: dt = 1
p ŶtŶ

T
t Gt1 // Compute, Send dt to all p machines

7 for p = 1 to p in parallel on machine p do
8 update model: wt ← wt−1 − αt · dt

9 Return wT

2.3 Flag Aggregator for Distributed Optimization161

It is now easy to see that by choosing a = 2, in equation (4), we obtain the negative loglikelihood162

(ignoring constants) as (
∑p

i=1

√
1− gTi Y Y T gi) showing that Flag Median can indeed be seen as163

an Maximum Likelihood Estimator (MLE). In particular, Flag Median can be seen as an MLE of164

Beta Distribution with parameters α = 1 and β = 1
2 . Recent results suggest that in many cases, MLE165

is ill-posed, and regularization is necessary, even when the likelihood distribution is Gaussian [37].166

So, based on the Flag Median estimator for subspaces, we propose an optimization based subspace167

estimator Y ∗ for aggregation purposes. We formulate our Flag Aggregator (FA) objective function168

with respect to Y as a regularized sum of likelihood based (or data) terms in (4) using trace operators169

tr(·) as the solution to the following constrained optimization problem:170

min
Y :Y TY=I

A(Y ) :=

p∑
i=1

√√√√(1− tr
(
Y T gigTi Y

)
∥gi∥22

)
+ λR(Y ) (5)

where λ > 0 is a regularization hyperparameter. In our analysis, and implementation, we provide171

support for two possible choices forR(Y ):172

(1) Mathematical norms: R(Y ) can be a form of norm-based regularization other than ∥Y ∥2Fro since173

it is constant over the feasible set in (5). For example, it could be convex norm with efficient174

subgradient oracle such as, i.e. element-wise:
∑n

i=1

∑m
j=1 ∥Yij∥1 or

∑m
i=1 ∥Yi,i∥1,175

(2) Data-dependent norms: Following our subspace construction in Section 2.1, we may choose176

R(Y ) = 1
p−1

∑p
i,j=1,i̸=j

√(
1− tr(Y T (gi−gj)(gi−gj)

TY )

D2
ij

)
where D2

ij = ∥gi − gj∥22 denotes the177

distance between gradient vectors gi, gj from workers i, j. Intuitively, the pairwise terms in our178

loss function (5) favors subspace Y that also reconstructs the pairwise vectors gi− gj that are close179

to each other. So, by setting λ = Θ(p), that is, the pairwise terms dominate the objective function180

in (5). Hence, λ regularizes optimal solutions Y ∗ of (5) to contain gi’s with low pairwise distance181

in its span – similar in spirit to AggregaThor in [38].182

Convergence of Flag Aggregator (FA) Algorithm 1. With these, we can state our main algorithmic183

result showing that our FA (5) can be solved efficiently using standard convex optimization proof184

techniques. In particular, in supplement, we present a smooth Semi-Definite Programming (SDP)185

relaxation of FA in equation (5) using the Flag structure. This allows us to view the IRLS procedure186

in 1 as solving the low rank parametrization of the smooth SDP relaxation, thus guaranteeing fast187

convergence to second order optimal (local) solutions. Importantly, our SDP based proof works for188

any degree of approximation of the constant a in equation (4) and only relies on smoothness of the189

loss function wrt Y , although speed of convergence is reduced for higher values of a ̸= 2, see [39].190

We leave determining the exact dependence of a on rate of convergence for future work.191

How is FA aggregator different from (Bulyan and Multi-Krum)? Bulyan is a strong Byzantine192

resilient gradient aggregation rule for p ≥ 4f + 3 where p is the total number of workers and f is193
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the number of Byzantine workers. Bulyan is a two-stage algorithm. In the first stage, a gradient194

aggregation rule R like coordinate-wise median [40] or Krum [9] is recursively used to select195

θ = p− 2f gradients. The process uses R to select gradient vector gi which is closest to R’s output196

(e.g. for Krum, this would be the gradient with the top score, and hence the exact output of R). The197

chosen gradient is removed from the received set and added to the selection set S repeatedly until198

|S| = θ. The second stage produces the resulting gradient. If β = θ − 2f , each coordinate would199

be the average of β-nearest to the median coordinate of the θ gradients in S. In matrix terms, if we200

consider S ∈ Rp×m as a matrix with each column having one non-zero entry summing to 1, Bulyan201

would return 1
mReLU(GS)1m, where 1m ∈ Rm is the vector of all ones, while FA would return202

1
pY Y TG1p. Importantly, the gradient matrix is being right-multiplied in Bulyan, but left-multiplied203

in FA, before getting averaged. While this may seem like a discrepancy, in supplement we show that204

by observing the optimality conditions of (5) wrt Y , we show that 1
mY Y TG can be seen as a right205

multiplication by a matrix parametrized by lagrangian multipliers associated with the orthogonality206

constraints in (5). This means it should be possible to combine both approaches for faster aggregation.207

3 Experiments208

In this section, we conduct experiments to test our proposed FA in the context of distributed training209

in two testbeds. First, to test the performance of our FA scheme solved using IRLS (Flag Mean) on210

standard Byzantine benchmarks. Then, to evaluate the ability of existing state-of-the-art gradient211

aggregators we augment data via two techniques that can be implemented with Sci-kit package.212

Implementation Details. We implement FA in Pytorch [41], which is popular but does not support213

Byzantine resilience natively. We adopt the parameter server architecture and employ Pytorch’s214

distributed RPC framework with TensorPipe backend for machine-to-machine communication. We215

extend Garfield’s Pytorch library [42] with FA and limit our IRLS convergence criteria to a small216

error, 10−10, or 5 iterations of flag mean for SVD calculation. We set m = ⌈p+1
2 ⌉.217

3.1 Setup218

Baselines: We compare FA to several existing aggregation rules: (1) coordinate-wise Trimmed219

Mean [40] (2) coordinate-wise Median [40] (3) mean-around-median (MeaMed) [43] (4) Phocas220

[44] (5) Multi-Krum [9] (6) Bulyan [45].221

Accuracy: The fraction of correct predictions among all predictions, using the test dataset (top-1222

cross-accuracy).223

Testbed: We used 4 servers as our experimental platform. Each server has 2 Intel(R) Xeon(R) Gold224

6240 18-core CPU @ 2.60GHz with Hyper-Threading and 384GB of RAM. Servers have a Tesla225

V100 PCIe 32GB GPU and employ a Mellanox ConnectX-5 100Gbps NIC to connect to a switch.226

We use one of the servers as the parameter server and instantiate 15 workers on other servers, each227

hosting 5 worker nodes, unless specified differently in specific experiments. For the experiments228

designed to show scalability, we instantiate 60 workers.229

Dataset and model: We focus on the image classification task since it is a widely used task for230

benchmarking in distributed training [46]. We train ResNet-18 [47] on CIFAR-10 [48] which has231

60,000 32 × 32 color images in 10 classes. For the scalability experiment, we train a CNN with two232

convolutional layers followed by two fully connected layers on MNIST [49] which has 70,000 28 ×233

28 grayscale images in 10 classes. We also run another set of experiments on Tiny ImageNet [50] in234

the supplement. We use SGD as the optimizer, and cross-entropy to measure loss. The batch size235

for each worker is 128 unless otherwise stated. Also, we use a learning decay strategy where we236

decrease the learning rate by a factor of 0.2 every 10 epochs.237

Threat models: We evaluate FA under two classes of Byzantine workers. They can send uniformly238

random gradients that are representative of errors in the physical setting, or use non-linear augmented239

data described as below.240

Evaluating resilience against nonlinear data augmentation: In order to induce Byzantine behavior241

in our workers we utilize ODE solvers to approximately solve 2 non-linear processes, Lotka Volterra242
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Figure 4: Tolerance to the number of Byzantine workers for robust aggregators for batch size 128.

[51] and Arnold’s Cat Map [52], as augmentation methods. Since the augmented samples are243

deterministic, albeit nonlinear functions of training samples, the “noise” is dependent across samples.244

In Lotka Volterra, we use the following linear gradient transformation of 2D pixels:245

(x, y)→ (αx− βxy, δxy − γy),

where α, β, γ and δ are hyperparameters. We choose them to be 2
3 , 4

3 , −1 and −1 respectively.246

Second, we use a nonsmooth transformation called Arnold’s Cat Map as a data augmentation scheme.247

Once again, the map can be specified using a two-dimensional matrix as,248

(x, y)→
(
2x+ y

N
,
x+ y

N

)
mod 1,

where mod represents the modulus operation, x and y are the coordinates or pixels of images and N249

is the height/width of images (assumed to be square). We also used a smooth approximation of the250

Cat Map obtained by approximating the mod function as,251

(x, y)→ 1

n

(
2x+ y

(1 + exp(−m log(α1)
,

x+ y

(1 + exp(−m log(α2)

)
,

where α1 = 2x+y
n , α2 = x+y

n , and m is the degree of approximation, which we choose to be 0.95 in252

our data augmentation experiments.253

How to perform nonlinear data augmentation? In all three cases, we used SciPy’s [53] solve_ivp254

method to solve the differential equations, by using the LSODA solver. In addition to the setup255

described above, we also added a varying level of Gaussian noise to each of the training images. All256

the images in the training set are randomly chosen to be augmented with varying noise levels of the257

above mentioned augmentation schemes. We have provided the code that implements all our data258

augmentation schemes in the supplement zipped folder.259

3.2 Results260

Tolerance to the number of Byzantine workers: In this experiment, we show the effect of Byzantine261

behavior on the convergence of different gradient aggregation rules in comparison to FA. Byzantine262

workers send random gradients and we vary the number of them from 1 to 3. Figure 4 shows that for263

some rules, i.e. Trimmed Mean, the presence of even a single Byzantine worker has a catastrophic264

impact. For other rules, as the number of Byzantine workers increases, filtering out the outliers265

becomes more challenging because the amount of noise increases. Regardless, FA remains more266

robust compared to other approaches.267

Marginal utility of larger batch sizes under a fixed noise level:268

We empirically verified the batch size required to identify our optimal Y ∗ - the FA matrix at each269

iteration. In particular, we fixed the noise level to f = 3 Byzantine workers and varied batch sizes.270

We show the results in Figure 5. Our results indicate that, in cases where a larger batch size is271

a training requirement, FA achieves a significantly better accuracy compared to the existing272

state of the art aggregators. This may be useful in some large scale vision applications, see [54, 55]273

for more details. Empirically, we can already see that our spectral relaxation to identify gradient274

subspace is effective in practice in all our experiments.275
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Figure 5: Marginal utility of larger batch sizes under a fixed noise level f = 3.
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Figure 6: We present results under two different gradient attacks. The attack in (a) corresponds to
simply dropping 10% of gradients from f workers. The attacks in (b)-(d) correspond to generic f
workers sending random gradient vectors, i.e. we simply fix noise level while adding more workers.

Tolerance to communication loss: To analyze the effect of unreliable communication channels276

between the workers and the parameter server on convergence, we design an experiment where the277

physical link between some of the workers and the parameter server randomly drops a percentage of278

packets. Here, we set the loss rate of three links to 10% i.e., there are 3 Byzantine workers in our279

setting. The loss is introduced using the netem queuing discipline in Linux designed to emulate the280

properties of wide area networks [56]. The two main takeaways in Figure 6a are:281

1. FA converges to a significantly higher accuracy than other aggregators, and thus is more
robust to unreliable underlying network transports.
2. Considering time-to-accuracy for comparison, FA reaches a similar accuracy in less total
number of training iterations, and thus is more robust to slow underlying network transports.

Analyzing the marginal utility of additional workers. To see the effect of adding more workers282

to a fixed number of Byzantine workers, we ran experiments where we fixed f , and increased p.283

Our experimental results shown in Figures 6b-6d indicate that our FA algorithm possesses strong284

resilience property for reasonable choices of p.285

The effect of having augmented data during training in Byzantine workers: Figure 7 shows FA286

can handle nonlinear data augmentation in a much more stable fashion. Please see supplement for287

details on the level of noise, and exact solver settings that were used to obtain augmented images.288

The effect of the regularization parameter in FA: The data-dependent regularization parameter λ289

in FA provides flexibility in the loss function to cover aggregators that benefit from pairwise distances290

such as Bulyan and Multi-Krum. To verify whether varying λ can interpolate Bulyan and Multi-Krum,291

we change λ in Figure 8. We can see when FA improves or performs similarly for a range of λ. Here,292

we set p and f to satisfy the strong Byzantine resilience condition of Bulyan, i.e, p ≥ 4f + 3.293

Scaling out to real-world situations with more workers: In distributed ML, p and f are usually294

large. To test high-dimensional settings commonly dealt in Semantic Vision with our FA, we used295

ResNet-18. Now, to specifically test the scalability of FA, we fully utilized our available GPU servers296

and set up to p = 60 workers (up to f = 14 Byzantine) with the MNIST dataset and a simple CNN297

with two convolutional layers followed by two fully connected layers (useful for simple detection).298

Figure 9 shows evidence that FA is feasible for larger setups.299
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Figure 7: Accuracy of us-
ing augmented data in f =
3 workers
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Figure 9: Scaling FA to
larger setups
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Figure 10: Wall clock time comparison

4 Discussion and Limitation300

Is it possible to fully “offload” FA computation to switches? Recent work propose that aggregation301

be performed entirely on network infrastructure to alleviate any communication bottleneck that may302

arise [57, 58]. However, to the best of our knowledge, switches that are in use today only allow303

limited computation to be performed on gradient gi as packets whenever they are transmitted [59, 60].304

That is, programmability is restrictive at the moment— switches used in practice have no floating305

point, or loop support, and are severely memory/state constrained. Fortunately, solutions seem near.306

For instance, [61] have already introduced support for floating point arithmetic in programmable307

switches. We may use quantization approaches for SVD calculation with some accuracy loss [62] to308

approximate floating point arithmetic. Offloading FA to switches has great potential in improving309

its computational complexity because the switch would perform as a high-throughput streaming310

parameter server to synchronize gradients over the network. Considering that FA’s accuracy currently311

outperforms its competition in several experiments, an offloaded FA can reach their accuracy even312

faster or it could reach a higher accuracy in the same amount of time.313

Potential Limitation. Because in every iteration of FA, we perform SVD, the complexity of the314

algorithm would be O(nNδ(
∑p

i=1 ki)
2) with Nδ being the number of iterations for the algorithm.315

Figure 10 show the wall clock time it takes for FA to reach a certain accuracy (10a) or epoch(10b)316

compared to other methods under a fixed amount of random noise f = 3 with p = 15 workers.317

Although the iteration complexity of FA is higher, here each iteration has a higher utility as reflected in318

the time-to-accuracy measures. This makes FA comparable to others in a shorter time span, however,319

if there is more wall clock time to spare, FA converges to a better state as shown in Figure 10c where320

we let the same number of total iterations finish for all methods.321

5 Conclusion322

In this paper we proposed Flag Aggregator (FA) that can be used for robust aggregation of gradients323

in distributed training. FA is an optimization-based subspace estimator that formulates aggregation as324

a Maximum Likelihood Estimation procedure using Beta densities. We perform extensive evaluations325

of FA and show it can be effectively used in providing Byzantine resilience for gradient aggregation.326

Using techniques from convex optimization, we theoretically analyze FA and with tractable relaxations327

show its amenability to be solved by off-the-shelf solvers or first-order reweighing methods.328
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