Under review as a conference paper at ICLR 2025

DIFFUSION MODULATION VIA ENVIRONMENT MECH-
ANISM MODELING FOR PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have shown promising capabilities in trajectory generation for
planning in offline reinforcement learning (RL). However, conventional diffusion-
based planning methods often fail to account for the fact that generating trajecto-
ries in RL requires unique consistency between transitions to ensure coherence
in real environments. This oversight can result in considerable discrepancies be-
tween the generated trajectories and the underlying mechanisms of a real envi-
ronment. To address this problem, we propose a novel diffusion-based planning
method, termed as Diffusion Modulation via Environment Mechanism Modeling
(DMEMM). DMEMM modulates diffusion model training by incorporating key
RL environment mechanisms, particularly transition dynamics and reward func-
tions. Experimental results demonstrate that DMEMM achieves state-of-the-art
performance for planning with offline reinforcement learning.

1 INTRODUCTION

Offline reinforcement learning (RL) has garnered significant attention for its potential to leverage
pre-collected datasets to learn effective policies without requiring further interaction with the envi-
ronment (Levine et al.,2020). One emerging approach within this domain is the use of diffusion
models for trajectory generation (Janner et al., 2022b)). Diffusion models (Sohl-Dickstein et al.,
2015 |Ho et al.; 2020), initially popularized for tasks such as image synthesis, have demonstrated
promising capabilities in generating coherent and diverse trajectories for planning in offline RL
settings (Janner et al.| 2022bj N1 et al., 2023} [L1, 2023 |Goyal & Grand-Clement, [2023)). Neverthe-
less, the essential differences between mechanisms in image synthesis and RL necessitate specific
considerations for the effective application of diffusion models in RL.

In image synthesis (Ho et al., [2020), diffusion models primarily aim to produce visually coherent
outputs consistent in style and structure, while RL tasks demand environment and task oriented
consistency between transitions in the generated trajectories (Janner et al., 2022b) to ensure that
the generated sequences are not only plausible but also effective for policy learning (Kumar et al.,
2020). This consistency is essential for ensuring that the sequence of actions within the generated
trajectories can successfully guide the RL agent from the current state to the target state. However,
conventional diffusion-based planning methods often overlook this need for transition coherence
(Janner et al., 2022b). By simply adopting traditional diffusion models like DDPM, which utilize
a fixed isotropic variance for Gaussian distributions, such diffusion-based planning models may
fail to adequately capture the transition dynamics necessary for effective RL, leading to inaccurate
trajectories and suboptimal learned policies (Wu et al.,2019).

To address this problem, we introduce a novel diffusion-based planning method called Diffusion
Modulation via Environment Mechanism Modeling (DMEMM). This method modulates the diffu-
sion process by integrating RL-specific environment mechanisms, particularly transition dynamics
and reward functions, directly into the diffusion model training process on offline data, thereby en-
hancing the diffusion model to better capture the underlying transition and reward structures of the
offline data. Specifically, we modify the diffusion loss by weighting it with the cumulative reward,
which biases the diffusion model towards high-reward trajectories, and introduce two auxiliary mod-
ulation losses based on empirical transition and reward models to regularize the trajectory diffusion
process, ensuring that the generated trajectories are not only plausible but also reward-optimized.
Additionally, we also utilize the transition and reward models to guide the sampling process dur-

Under review as a conference paper at ICLR 2025

ing planning trajectory generation from the learned diffusion model, further aligning the outputs
with the desired transition dynamics and reward structures. We conducted experiments on multiple
RL environments. Experimental results indicate that our proposed method achieves state-of-the-art
performance compared to previous diffusion-based planning approaches.

This work presents a significant step forward in the application of diffusion models for trajectory
generation in offline RL. The main contributions can be summarized as follows:

* We identify a critical problem in conventional diffusion model training for offline RL plan-
ning, where the use of fixed isotropic variance and the disregard for rewards may lead to
a mismatch between generated trajectories and those desirable for RL. To address this is-
sue, we propose a novel method called Diffusion Modulation via Environment Mechanism
Modeling (DMEMM).

* We incorporate RL-specific environment mechanisms, including transition dynamics and
reward functions, into diffusion model training through loss modulation, enhancing the
quality and consistency of the generated trajectories in a principled manner and providing
a fundamental framework for adapting diffusion models to offline RL tasks.

* Qur experimental results demonstrate that the proposed method achieves state-of-the-art
results in planning with offline RL, validating the effectiveness of our approach.

2 RELATED WORKS

2.1 OFFLINE REINFORCEMENT LEARNING

Offline reinforcement learning (RL) has gained significant traction in recent years, with various
approaches proposed to address the challenges of learning from static datasets without online envi-
ronment interactions. [Fujimoto et al.[(2019) introduced Batch Constrained Q-Learning (BCQ) that
learns a perturbation model to constrain the policy to stay close to the data distribution, mitigating the
distributional shift issue. [Wu et al.| (2019) conducted Behavior Regularized Offline Reinforcement
Learning (BRAC) that incorporates behavior regularization into actor-critic methods to prevent the
policy from deviating too far from the data distribution. Conservative Q-Learning (CQL) by Kumar
et al.| (2020) uses a conservative Q-function to underestimate out-of-distribution actions, preventing
the policy from exploring unseen state-action regions. |[Kostrikov et al.[(2021) conducted Implicit
Q-Learning (IQL) to directly optimize the policy to match the expected Q-values under the data
distribution. |Goyal & Grand-Clement| (2023) introduce Robust MDPs to formulate offline RL as a
robust optimization problem over the uncertainty in the dynamics model. Planning has emerged as a
powerful tool for solving offline RL tasks. MOReL by Kidambi et al.|(2020) was the first to integrate
planning into offline RL, using a learned dynamics model to simulate trajectories and enforce con-
servative constraints to avoid out-of-distribution actions. MOPO by |Yu et al.| (2020) enhances this
with uncertainty-aware planning, penalizing simulated trajectories that deviate from the offline data.
Janner et al.|(2021b) proposed Offline Model Predictive Control (MPC), which uses short-horizon
planning by constructing future trajectories from offline data and selecting actions.

2.2 DIFFUSION MODEL IN REINFORCEMENT LEARNING

Diffusion models have emerged as a powerful tool for RL tasks, particularly in the areas of planning
and policy optimization. Janner et al.|(2022a) first introduced the idea of using diffusion models for
trajectory optimization on planning in offline RL, casting it as a probabilistic model that iteratively
refines trajectories. Subsequent works by |Li| (2023) introduce a Latent Diffuser that generates ac-
tions in the latent space by incorporating a Score-based Diffusion Model (SDM) (Song et al.} 2021}
Nichol & Dhariwal, 2021; Ho & Salimans| [2022) and utilizes energy-based sampling to improve
the overall performance of diffusion-based planning. |Chen et al| (2024) propose a Hierarchical
Diffuser, which achieves hierarchical planning by breaking down planning trajectories into seg-
ments and treating intermediate states as subgoals to ensure more precise planning. More recently,
Ni et al.| (2023) proposed a task-oriented conditioned diffusion planner (MetaDiffuser) for offline
meta-reinforcement learning. MetaDiffuser learns a context-conditioned diffusion model that can
generate task-oriented trajectories for planning across diverse tasks, demonstrating the outstanding

Under review as a conference paper at ICLR 2025

conditional generation ability of diffusion architectures. These works highlight the versatility of
diffusion models in addressing RL challenges.

3 PRELIMINARIES

Reinforcement learning (RL) (Sutton & Barto, 2018) can be modeled as a Markov Decision
Process (MDP) M = (S, A,T,R) in a given environment, where S denotes the state space,
A corresponds to the action space, 7 : & x A — S defines the transition dynamics, and
R : S x A — R represents the reward function. Offline RL aims to train an RL agent from an
offline dataset D, consisting of a collection of trajectories {71, T2, -+ ,7:, - - - }, with each trajectory
7 = (sh,ab,rd, s, al,rt, ... sk, ak, rk) sampled from the underlying MDP in the given environ-
ment. In particular, the task of planning in offline RL aims to generate planning trajectories from an
initial state sg by simulating action sequences ag.r and predicting future states sg.7 based on those
actions. The objective is to learn an optimal plan function such that the cumulative reward can be
maximized when executing the plan under the underlying MDP of the given environment.

3.1 PLANNING WITH DIFFUSION MODEL

Diffusion probabilistic models, commonly known as “diffusion models” (Sohl-Dickstein et al.,
2015} Ho et al.l [2020), are a class of generative models that utilize a unique Markov chain frame-
work. When applied to planning in offline RL, the objective is to generate best planning trajectories
{7} by learning a diffusion model on the offline RL dataset D.

Trajectory Representation In the diffusion model applied to RL planning, it is necessary to pre-
dict both states and actions. Therefore, the trajectory representation in the model is in an image-like
matrix format. In particular, trajectories are represented as two-dimensional arrays (Janner et al.,
2022b)), where each column corresponds to a state-action pair (s;, a;) of the trajectory:

SO S1 . e ST
apg aip -+ ar

T =

Trajectory Diffusion The diffusion model (Ho et al.,[2020) comprises two primary processes: the
forward process and the reverse process. The forward process (diffusion process) is a Markov chain
characterized by q(7%|7%~1) that gradually adds Gaussian noise at each time step k € {1,--- , K},
starting from an initial clean trajectory sample 7° ~ D. The conditional probability is particularly
defined as a Gaussian probability density function, such as:

g |TE) = NN (1= Be) T B D), (1)
with {01, - - , Bk } representing a predefined variance schedule. By introducing oy, := 1 — (and
Qg = Hle o, one can succinctly express the diffused sample at any time step k as:

75 = Varr? + V1 — ane,)
where € ~ A(0,I). The reverse diffusion process is an iterative denosing procedure, and can be

modeled as a parametric Markov chain characterized by pg(7%~1|7*), starting from a Gaussian
noise prior 7 ~ N(0,I), such that:

po(TFHTE) = N (7771 o (78, k), 021, 3)
with pg(T%, k) = \/1047 (’r}“ - %ee(rk, k)) . 4)

Training In the literature, the diffusion model is trained by predicting the additive noise ¢ (Ho
et al., 2020) using the noise network ey (7%, k) = €g(/arT® + /T — aye, k). The training loss is
expressed as the mean squared error between the additive noise € and the predicted noise e (7%, k):

— - 2
Laitr = Brori(1,K0),e~n(0,1),70~D || € — €0 (v’ + V1 — are, k)| &)
where (1, K') denotes a uniform distribution over numbers in [1, 2, - - - , K. With the trained noise

network, the diffusion model can be used to generate RL trajectories for planning through the reverse
diffusion process characterized by Eq.(3).

Under review as a conference paper at ICLR 2025

4 METHOD

In this section, we present our proposed diffusion approach, Diffusion Modulation via Environment
Mechanism Modeling (DMEMM), for planning in offline RL. This method integrates the essential
transition and reward mechanisms of reinforcement learning into an innovative modulation-based
diffusion learning framework, while maintaining isotropic covariance matrices for the diffusion
Gaussian distributions to preserve the benefits of this conventional setup—simplifying model com-
plexity, stabilizing training and enhancing performance. Additionally, the transition and reward
mechanisms are further leveraged to guide the planning phase under the trained diffusion model,
aiming to generate optimal planning trajectories that align with both the underlying MDP of the
environment and the objectives of RL.

4.1 MODULATION OF DIFFUSION TRAINING

In an RL environment, the transition dynamics and reward function are two fundamental components
of the underlying MDP. Directly applying conventional diffusion models to offline RL can lead to
a mismatch between the generated trajectories and those optimal for the underlying MDP in RL.
This is due to the use of isotropic covariance and the disregard for rewards in traditional diffusion
models. To tackle this problem, we propose to modulate the diffusion model training by deploying
a reward-aware diffusion loss and enforcing auxiliary regularizations on the generated trajectories
based on environment transition and reward mechanisms.

Given the offline data D collected from the RL environment, we first learn a probabilistic transition

model 7 (s, a;) and a reward function R (s, a;) from D as regression functions to predict the next
state s;y1 and the corresponding reward r; respectively. These models can serve as estimations of
the underlying MDP mechanisms. In order to regularize diffusion model training for generating
desirable trajectories, using the learned transition model and reward function, we need to express
the output trajectories of the reverse diffusion process in terms of the diffusion model parameters, 6.
To this end, we present the following proposition.

Proposition 1. Given the reverse process encoded by Eq.(3) and Eq.() in the diffusion model,
the output trajectory T° denoised from an intermediate trajectory T at step k has the following
Gaussian distribution:

7 NN(ﬁH(Tkvk)7a2I)v (6)

k
1 1—ay -
where fig(TF k) = —71F — E % eo(T°,19). (7

Conveniently, we can use the mean of the Gaussian distribution above directly as the most likely
output trajectory, denoted as 7° = Jip(7", k). This allows us to express the denoised output trajec-
tory explicitly in terms of the parametric noise network €, and thus the parameters 6 of the diffusion
model. Moreover, by deploying Eq., we can get rid of the latent {7!,--- 7%} and re-express 7°
as the following function of a sampled clean trajectory 7° and some random noise €:

k

~ 1—a 1—o; _ _
7'00(7'07]‘?5,6):7'0—1— _ake—zia_e(;(aiTO—&—\/l—aieJ). ®)

Qg i—1 (]. — o‘zi)ai

Next, we leverage this output trajectory function to modulate diffusion model training by developing
auxiliary modulation losses.

4.1.1 TRANSITION-BASED DIFFUSION MODULATION

As previously discussed, the deployment of a fixed isotropic variance in conventional diffusion
models has the potential drawback of overlooking the underlying transition mechanisms of the RL
environment. As a result, there can be potential mismatches between the transitions of generated
trajectories and the underlying transition dynamics. Consequently, the RL agent may diverge from
the expected states when executing the planning actions generated by the diffusion model, leading to
poor planning performance. To address this problem, the first auxiliary modulation loss is designed

Under review as a conference paper at ICLR 2025

to minimize the discrepancy between the transitions in the generated trajectories from the diffusion
model and those predicted by the learned transition model 7T, which encodes the underlying transi-
tion mechanism. Specifically, for each transition (s, as, s¢+1) in a generated trajectory 7y (7°, k, €),
we minimize the mean squared error between s, and the predicted next state using the transition
model 7. This leads to the following transition-based diffusion modulation loss:

Ly = Egrti(1,K),e~N(0,1),79~D Z | st+1 — e at)||2)

(st,at,5041)€TG (10K €)

Here, the expectation is taken over the uniform sampling of time step & from [1 : K], the random
sampling of noise € from a standard Gaussian distribution, and the random sampling of input tra-
jectories from the offline training data D. Through function 7{, this loss Ly is a function of the
diffusion model parameters 6. By minimizing this transition-based modulation loss, we enforce that
the generated trajectories from the diffusion model are consistent with the transition dynamics ex-
pressed in the offline dataset. This approach enhances the fidelity of the generated trajectories and
improves the overall performance of the diffusion model in offline reinforcement learning tasks.

4.1.2 REWARD-BASED DIFFUSION MODULATION

The goal of planning is to generate trajectories that maximize cumulative rewards when executed
under the underlying MDP of the given environment. Thus, focusing solely on the fit of the planning
trajectories to the transition dynamics is insufficient. It is crucial to guide the diffusion model train-
ing to directly align with the planning objective. Therefore, the second auxiliary modulation loss is
designed to maximize the reward induced in the generated trajectories. As the trajectories generated
from diffusion models do not have reward signals, we predict the reward scores of the state-action
pairs {(s¢, a;)} in each trajectory generated through function 75 (-, -, -) using the learned reward

function ﬁ(, -). Specifically, we formulate the reward-based diffusion modulation loss function as
the following negative expected trajectory-wise cumulative reward from the generated trajectories:

Ly = —Epti(1,K),e~N(0,1),70~D Z 7€(St, at) (10)

(st,at) €T (T0,k,€)

Through function 7, this loss L again is a function of the diffusion model parameters §. By
computing the expected loss over different time steps k € [1 : K], different random noise €, and all
input trajectories from the offline dataset D, we ensure that the modulation is consistently enforced
across all instances of diffusion model training.

By minimizing this reward-based loss, we ensure that the generated trajectories are not only plau-
sible but also reward-optimized to align with the reward structure inherent in the offline data. This
approach improves the quality of the trajectories generated from the diffusion model and enhances
the overall policy learning process in offline reinforcement learning tasks.

4.1.3 REWARD-AWARE DIFFUSION LOSS

In addition to the auxiliary modulation losses, we propose to further align diffusion model training
with the goal of RL planning by devising a novel reward-aware diffusion loss to replace the origi-
nal one. The original diffusion loss (shown in Eq.(5)) minimizes the expected per-trajectory mean
squared error between the true additive noise and the predicted noise, which gives equal weights
to different training trajectories without differentiation. In contrast, we propose to weight each tra-
jectory instance 70 from the offline dataset D using its normalized cumulative reward, so that the
diffusion training can focus more on the more informative trajectory instances with larger cumula-
tive rewards. Specifically, we weight each training trajectory 7° using its normalized cumulative
reward and formulate the following reward-aware diffusion loss:

R(st,a _ - 2
Lyditr = Epnt4(1,K),e~N(0,1),70~D Z # e = eo(varT® + V1 — are, k)|
max max
(1n

(st,ar)eT?

Under review as a conference paper at ICLR 2025

Here, >, 4,)ero R(st,a¢) is the trajectory-wise cumulative reward on the original offline data

instance 79 € D; Tp.x denotes the largest trajectory length and 7. denotes the maximum possible
per-step reward. By using T« - Tmax @s the normalizer, we scale the cumulative reward to a ratio
within (0, 1] to weight the corresponding per-trajectory diffusion loss. This weighting mechanism
biases the diffusion model toward high-reward trajectories, ensuring that those trajectories yielding
higher cumulative rewards are more accurately represented, thus aligning diffusion training with
the planning objectives in offline RL. This approach improves the model’s performance on rare but
valuable trajectories, which are crucial for effective reinforcement learning.

4.1.4 FULL MODULATION FRAMEWORK

The proposed full modulated diffusion model comprises all of the three loss components presented
above: the reward-aware diffusion loss Lygifr, the transition-based auxiliary modulation loss Ly, and
the reward-based auxiliary modulation loss L. By integrating these loss terms together, we have
the following total loss for modulated diffusion training:

Lol = Lwaitt + AeLie + AraLias (12)

where)\ and)4 are trade-off parameters that balance the contributions of the transition-based and
reward-based auxiliary losses, respectively. Standard diffusion training algorithm can be utilized to
train the model # by minimizing this total loss function. By employing this integrated loss function,
we establish a comprehensive modulation framework that incorporates essential domain and task
knowledge into diffusion model training, offering a general capacity of enhancing the adaptation
and broadening the applicability of diffusion models.

4.2 PLANNING WITH DUAL GUIDANCE

Once trained, the diffusion model can be used to generate trajectories for planning during an RL
agent’s online interactions with the environment. The generation procedure starts from an initial
noise trajectory 7% ~ A(0,T), and gradually denoises it by following the reverse diffusion process
TF=1 ~ N (=1, 021) for each time step k € {K, K —1,..., 1}, where pu*~1 is estimated through
Eq. @) In each diffusion time step k, the first state sq of the trajectory T is fixed to the current
state s of the RL agent in the online environment to ensure the plan starts from it. The denoised
trajectory 70 after K diffusion time steps is treated as the plan for the RL agent, which is intended
to maximize the RL agent’s long-term performance without extra interaction with the environment.

To further enhance the objective of planning, some previous work (Janner et al., 2022b)) has utilized
the learned reward function to guide the sampling process of planning. In this work, we propose to
deploy dual guidance for each reverse diffusion step k by exploiting both the reward function R and
the transition model 7 learned from the offline dataset D. Following previous works on conditional
reverse diffusion (Dhariwal & Nichol, [2021)), we incorporate the dual guidance by perturbing the
mean of the Gaussian distribution N'(u*~1, 02T) used for reverse diffusion sampling. Specifically,
we integrate the gradient g of the linear combination of the reward function and transition function
w.r.t the trajectory into %=1, such that 7°~1 ~ N (u*~! + ao?lg, 021) and g is computed as:

T -1
g = Z VisanR(st,at) + A Z Visi,a0) 108 T (st41(8t, ar) (13)
t=0 t=0

where « is a tradeoff parameter that controls the degree of guidance. By incorporating both the
reward and transition guidance, we aim to enhance the planning process to generate high-quality
trajectories that are both reward-optimized and transition-consistent, improving the overall planning
performance. The details of the proposed planning procedure is summarized in Algorithm I}

5 EXPERIMENT

In this section, we present the experimental setup and results for evaluating our proposed method,
DMEMM, across various offline RL tasks. We conduct experiments on the D4RL locomotion suite
and Maze2D environments to assess the performance of DMEMM compared to several state-of-the-
art methods. The experiments are designed to demonstrate the effectiveness of our approach across
different tasks, expert levels, and complex navigation scenarios.

Under review as a conference paper at ICLR 2025

Algorithm 1 Planning with Transition Guided Sampling

Require: Noise network ¢y, tradeoff parameter o, environment ENV, covariances {a,%}.
Initialize environment step ¢ = 0.
while not finished do
Initialize noise trajectory 7/5: 7/ ~ A/(0,1).
for diffusion step k = K,...,1do
Compute the mean ;*~! using Eq. @)
Compute the guidance g using Eq. (13).
Sample next trajectory 7' 7F 1 ~ N (b1 + ao?lg, o71).
Fix the current state s; to the trajectory: Ttk “(so) = s¢.
end for
Execute first action of plan 7 (ao): s;+1 = ENV(s;, 72 (ag))
Increment environment stepby 1: ¢t =¢ 41
end while

Environments We conduct our experiments on D4RL (Fu et al.,[2020) tasks to evaluate the perfor-
mance of planning in offline RL settings. Initially, we focus on the D4RL locomotion suite to assess
the general performance of our planning methods across different tasks and expert levels of demon-
strations. The RL agents are tested on three different tasks: HalfCheetah, Hopper, and Walker2d,
and three different levels of expert demonstrations: Med-Expert, Medium, and Med-Replay. We use
the normalized scores provided in the DARL (Fu et al.,|2020) benchmarks to evaluate performance.
Subsequently, we conduct experiments on Maze2D (Fu et al., |2020) environments to evaluate per-
formance on maze navigation tasks.

Comparison Methods We benchmark our methods against several leading approaches in each
task domain, including model-free BCQ (Fujimoto et al., [2019), BEAR (Kumar et al., |2019), CQL
(Kumar et al.l [2020), IQL (Kostrikov et al.,[2022)), Decision Transformer (DT) (Chen et al.,|[2021),
model-based MoReL (Kidambi et al.l 2020), Trajectory Transformer (TT) (Janner et al.| 2021a),
and Reinforcement Learning via Supervised Learning (RvS) (Emmons et al., 2022). We also com-
pare our methods with the standard diffusion planning method Diffuser (Janner et al., [2022b)) and a
hierarchical improvement of Diffuser, PDFD (Author & Author, [2022).

Implementation Details We adopt the main implementations of the diffusion model and reward
model from (Janner et al., [2022b)), and use an ensemble of Gaussian models as the backend for
the transition model. We use a planning horizon 7" of 100 for all locomotion tasks, 128 for block
stacking, 128 for Maze2D / Multi2D U-Maze, 265 for Maze2D / Multi2D Medium, and 384 for
Maze2D / Multi2D Large. We use N = 100 diffusion steps. Additionally, we employ a guide scale
of a = 0.001. For the tradeoff parameters, we use Ay = 0.05 for reward loss and Ay = 0.1 for
transition loss.

5.1 EXPERIMENTAL RESULTS ON D4RL

The experimental results summarized in Table [T| highlight the performance of various comparison
methods across different Gym tasks, with scores averaged over 5 seeds. Our proposed method,
DMEMM, consistently outperforms other methods across all tasks. Notably, in the HalfCheetah
environments, DMEMM achieves a 2.1-point improvement on the Med-Expert dataset, a 2.5-point
increase on the Medium dataset, and an 8.0-point improvement on the Med-Replay dataset compared
to the previous best results. Additionally, DMEMM shows a 5.9-point increase on the Med-Replay
Hopper task, demonstrating that DMEMM effectively extracts valuable information, particularly
from data that is not purely expert-level.

In most tasks, DMEMM outperforms HD-DA, another variant of a Diffuser based planning method,
by more than 2.0 points on average. Compared to Diffuser, DMEMM shows superior performance
on all tasks, indicating that our method improves the consistency and optimality of diffusion model
training in offline RL planning.

Overall, DMEMM achieves outstanding performance. With an average score of 87.9, DMEMM
leads significantly, representing a substantial improvement over the second-highest average score

Under review as a conference paper at ICLR 2025

Table 1: This table presents the scores on D4RL locomotion suites for various comparison methods.
Results are averaged over 5 seeds.

Gym Tasks BC CQL IQL DT TT MOReL Diffuser HDMI HD-DA DMEMM (Ours)
Med-Expert HalfCheetah 552 91.6 86.7 86.8 95.0 533 88.9+0.3 92.1+14 92.5+03 94.6+1.2
Med-Expert Hopper 525 1054 915 107.6 110.0 108.7 103.3+1.3 113.5£09 115.3+1.1 115.9+1.6
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 106.9+£0.2 107.9£1.2 107.1£0.1 111.6+1.1
Medium HalfCheetah 426 440 474 426 469 42.1 42.840.3 48.0£0.9 46.7£0.2 49.2+0.8
Medium Hopper 529 585 663 676 61.1 95.4 743+£14 764+2.6 99.3+0.3 101.2+1.4
Medium Walker2d 753 725 783 740 79.0 71.8 79.6+£0.6 79.9+1.8 84.0+0.6 86.5£1.5
Med-Replay HalfCheetah 36.6 455 442 36.6 419 40.2 37.7+£0.5 44.9+2.0 38.1+0.7 46.1+1.3
Med-Replay Hopper 18.1 950 947 827 915 93.6 93.6£04 99.6£1.5 94.7+0.7 100.6+0.9
Med-Replay Walker2d 260 772 739 666 82.6 49.8 70.6£1.6 80.7£2.1 84.1£2.2 85.8+2.6
Average 519 776 770 747 789 72.9 71.5 82.6 84.6 87.9

Table 2: This table presents the scores on Maze2D navigation tasks for various comparison methods.
Results are averaged over 5 seeds.

Environment MPPI IQL Diffuser HDMI HD-DA DMEMM (Ours)

Maze2D U-Maze 332 474 113.9£3.1 120.1£2.5 128.443.6 132.4+3.0
Maze2D Medium 10.2 349 121.5£2.7 121.8+1.6 135.64+3.0 138.242.2
Maze2D Large 5.1 58.6 123.0£6.4 128.6+29 155.842.5 153.24+3.3
Multi2D U-Maze 412 24.8 1289+1.8 131.3£1.8 144.1£1.2 145.6£2.6
Multi2D Medium 154 12.1 127.2+£3.4 131.6£1.9 140.2+1.6 140.8+£2.2
Multi2D Large 8.0 139 132.1+5.8 135.4+2.5 165.5+0.6 159.6£3.8

of 84.6 achieved by HD-DA. These results clearly demonstrate the robustness and superiority of
DMEMM in enhancing performance across various Gym tasks.

5.2 EXPERIMENTAL RESULTS ON MAZE2D

We present our experimental results on the Maze2D navigation tasks in Table 2] where the results
are averaged over 5 seeds. The table shows that in both the Maze2D and Multi2D environments,
particularly at the U-Maze and Medium difficulty levels, our proposed DMEMM method signifi-
cantly outperforms other comparison methods. Specifically, on Maze2D tasks, DMEMM achieves a
4.0 point improvement over the state-of-the-art HD-DA method on the U-Maze task, and a 2.6 point
increase on the Medium-sized maze. Compared to Diffuser, DMEMM shows an almost 20-point
improvement. These results indicate that our method performs exceptionally well in generating
planning solutions for navigation tasks.

However, HD-DA shows better performance on the large maze tasks. This is likely due to the hier-
archical structure of HD-DA, which offers an advantage in larger, more complex environments by
breaking long-horizon planning into smaller sub-tasks—an area where our method is not specifi-
cally designed to excel. Nevertheless, DMEMM remains competitive in larger environments, while
demonstrating superior performance in smaller and medium-sized tasks.

5.3 ABLATION STUDY

We conduct an ablation study on our DMEMM method to evaluate the effectiveness of different
components of our approach. We compare our full model with four different ablation variants: (1)
DMEMM-w/o-weighting, which omits the weighting function of the reward-aware diffusion loss;
(2) DMEMM-w/0-)\, which omits the transition-based diffusion modulation loss; (3) DMEMM-
w/0-\g, which omits the reward-based diffusion modulation loss; and (4) DMEMM-w/o-tr-guide,
which omits the transition guidance in the dual-guided sampling. The ablation study is conducted on
the Hopper and Walker2D environments across all three levels of expert demonstration. The results
of the ablation study are presented in Table [3] which shows the scores on D4RL locomotion suites
for all four ablation variants, averaged over 5 seeds.

The ablation study results highlight the importance of each component in the DMEMM method.
Across both the Hopper and Walker2d environments, and at all three difficulty levels, the full

Under review as a conference paper at ICLR 2025

Table 3: This table presents the scores on D4RL locomotion suites for all four ablation variants.
Results are averaged over 5 seeds.

Gym Tasks DMEMM DMEMM-w/o-weighting DMEMM-w/o-),, DMEMM-w/o-),; DMEMM-w/o-tr-guide
Med-Expert Hopper 115.9+1.6 1152404 11442038 115.0£0.4 114.8£0.2
Med-Expert Walker2d 111.6+1.1 110.44+0.8 108.441.2 110.440.6 109.941.0
Medium Hopper 101.2+1.4 100.4+1.2 93.6+1.8 100.1£1.1 99.8+1.6
Medium Walker2d 86.5+1.5 85.6+1.2 82.8+1.4 84.4+0.9 83.0+1.8
Med-Replay Hopper 100.620.9 98.8+1.2 97.0+0.9 98.210.6 96.2+1.2
Med-Replay Walker2d ~ 85.8+2.6 84.642.2 82.2+1.7 83.7+2.5 82.6+3.2

Hopper-Medium-Expert Hopper-Medium-Expert Walker2D-Medium-Expert Walker2D-Medium-Expert

Score
Score
Score

1080

Atr Arg Atr Ard

Figure 1: Hyperparameter sensitivity analysis of the tradeoff parameters for transition-based diffu-
sion modulation loss () and reward-based diffusion modulation loss (\,.4) on Hopper-Medium-
Expert and Walker2D-Medium-Expert environments.

DMEMM model achieves the best performance. Notably, both DMEMM-w/o-\; and DMEMM-
w/o-tr-guide exhibit significant performance drops, emphasizing the crucial role of incorporat-
ing transition dynamics in our method. The introduction of transition dynamics to the diffusion
model greatly enhances the consistency and fidelity of the generated trajectory plans. Further-
more, DMEMM-w/o-)\; and DMEMM-w/o-weighting show comparable performance, with the
DMEMM-w/o-\; variant experiencing a slightly greater performance decrease. This suggests that
our designed reward model plays a crucial role in improving the optimality of the generated trajec-
tory plans.

Overall, the ablation study demonstrates that each component of our DMEMM method contributes
significantly to its performance. Removing any of these components results in a noticeable de-
crease in performance, highlighting the importance of the weighting function, transition-based and
reward-based diffusion modulation loss, and transition guidance in achieving optimal results in of-
fline reinforcement learning tasks.

5.4 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of the tradeoff parameters A, (transition-based diffusion
modulation loss) and A4 (reward-based diffusion modulation loss) to understand their impact on
performance in offline RL tasks. The analysis is conducted on two environments: Hopper-Medium-
Expert and Walker2D-Medium-Expert.

Figures (1] illustrate the performance sensitivity to the tradeoff parameters. For), the perfor-
mance peaks at approximately Ay = 0.1 in both the Walker2D-Medium-Expert and Hopper-
Medium-Expert environments. Beyond this optimal point, performance declines notably, regard-
less of whether A is increased or decreased. Similarly, for A4, the performance also peaks around
Ara = 0.05 in both environments. However, unlike), performance shows little change when Ay
is adjusted within a small range, indicating that A4 is less sensitive than A\y. Overall, the hyper-
parameter sensitivity analysis shows that both Ay and A, have similar effects on performance and
are robust across different tasks. Additionally, it confirms that the selected hyperparameters for our
experiments are optimal.

6 CONCLUSION

In this work, we addressed a critical limitation of conventional diffusion-based planning methods in
offline RL, which often overlook the consistency of transition dynamics in planned trajectories. To
overcome this challenge, we proposed Diffusion Modulation via Environment Mechanism Modeling

Under review as a conference paper at ICLR 2025

(DMEMM), a novel approach that integrates RL-specific environment mechanisms—particularly
transition dynamics and reward functions—into the diffusion model training process. By modulat-
ing the diffusion loss with cumulative rewards and introducing auxiliary losses based on transition
dynamics and reward functions, DMEMM enhances both the coherence and quality of the generated
trajectories, ensuring they are plausible and optimized for policy learning. Our experimental re-
sults across multiple offline RL environments demonstrate the effectiveness of DMEMM, achieving
state-of-the-art performance compared to previous diffusion-based planning methods. The proposed
approach significantly improves the alignment of generated trajectories, addressing the discrepan-
cies between offline data and real-world environments. This provides a promising framework for
further exploration of diffusion models in RL and their potential practical applications.

REFERENCES

First Author and Second Author. Pdfd: Planning with diffusion via flexible dynamics. In Proceed-
ings of the Neural Information Processing Systems, 2022.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. arXiv preprint arXiv:2401.02644, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, and Jason Lee, Pieter Abbeel. Decision transformer:
Reinforcement learning via sequence modeling. Advances in Neural Information Processing Sys-
tems, 34:15084-15097, 2021.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

Scott Emmons, Honglak Lee, and Satinder Singh. Rvs: Reinforcement learning via supervised
learning. In Advances in Neural Information Processing Systems, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets
for deep data-driven reinforcement learning. https://github.com/rail-berkeley/
d4rl, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Vineet Goyal and Julien Grand-Clement. Robust markov decision processes: Beyond rectangularity.
Mathematics of Operations Research, 48(1):203-226, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.
org/abs/2207.12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems, pp. 6840-6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4cSbcfecd5690£f3b1284a8e0c60242a0-Abstract.htmll

Michael Janner, Qiyang Li, Chang Hsieh, Sergey Levine, and Chelsea Finn. Trajectory transformer:
Learning temporal dynamics for model-based planning. In Advances in Neural Information Pro-
cessing Systems, pp. 5792-5804, 2021a.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem, 2021b. URL https://arxiv.org/abs/2106.02039.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022a.

Michael Janner, Qiyang Li, Xuesu Cao, and Chelsea Finn. Diffuser: Planning with diffusion for
flexible behavior synthesis. In Advances in Neural Information Processing Systems, 2022b.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810-21823, 2020.

10

https://arxiv.org/abs/2105.05233
https://github.com/rail-berkeley/d4rl
https://github.com/rail-berkeley/d4rl
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec45690f3b1284a8e0c60242a0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec45690f3b1284a8e0c60242a0-Abstract.html
https://arxiv.org/abs/2106.02039

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014. URL https://arxiv.org/abs/1312.6114.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Ilya Kostrikov, Ofir Nachum, Sergey Levine, and Jonathan Tompson. Offline reinforcement learning
with implicit g-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, pp. 11761—
11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191,
2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Wenhao Li. Efficient planning with latent diffusion. arXiv preprint arXiv:2310.00311, 2023.

Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadif-
fuser: Diffusion model as conditional planner for offline meta-rl. In International Conference on
Machine Learning, pp. 26087-26105. PMLR, 2023.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
https://arxiv.org/abs/2102.09672.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256-2265, Lille, France, 07-09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dicksteinl5.html.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization, 2020. URL https:
//arxiv.org/abs/2005.13239.

A DIFFUSION TRAINING ALGORITHM

The complete training process of the diffusion model is presented in Algorithm [2] Prior to training
the diffusion model, a probabilistic transition model 7 (s, a;) and a reward model R (s, a;) are
learned from the offline dataset D. Afterward, the noise network is initialized and iteratively trained.
During each iteration, an original trajectory 7 is sampled from the offline dataset D, along with a
randomly selected diffusion step k and noise sample e. Gradient descent is then applied to minimize
the total 1oss L.

11

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2102.09672
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2005.13239
https://arxiv.org/abs/2005.13239

Under review as a conference paper at ICLR 2025

Algorithm 2 Diffusion Training

Require: Offline data D = {(s},al, r, s, al,ri, ... sk, ab, ri)}.
Learn transition model 7 (s, a;) and reward function R (s, a;) from offline data D.
Initialize noise network eg (7%, k).
while not converged do
Sample a trajectory from offline data 7° ~ D.
Sample a random diffusion step k ~ U(1, K).
Sample a random noise € ~ N(0,T).
Calculate the gradient Vg Ly, of Eq. @) and take gradient descent step.
end while

B PROOF OF PROPOSITIONII]
In this section, we present the proof of Proposition [I]

Proof. To incorporate key RL mechanisms into the training of the diffusion model, we explore
the denoising process and trace the denoised data through the reverse diffusion process. Let 7°
represent the denoised output trajectory. It can be gradually denoised using the reverse process,
following the chain rule: 70 ~ pg(75) [Tr_, po (75~ 1|7F), where the detailed reverse process is

defined in Eq. and Eq. (E]) Starting from an intermediate trajectory 7% at step k, by combining
these two equations, the trajectory at the next diffusion step, £ — 1, can be directly sampled from the

distribution:) .
L N[—— (F - =2 (R ke 21). 14
(7 (- e ot “

By applying the reparameterization trick (Kingma & Welling|, 2014)), we can derive a closed-form
solution for the above distribution. Let €; represent the noise introduced in the reverse process
po(TF~1|7), and the denoised trajectory can then be formulated as:

1 1—06

~k—1 k k k

TV = — (77— ———=ep(T", k) | + oxe
< /71 — 9()) k€K

1 ok 1— o
iV Olk \/ 1 — Oék
In the following diffusion step k —2, the denoised data 7%~2 is sampled from a similar Gaussian dis-

tribution. By the Central Limit Theorem, 7%~ serves as an unbiased estimate of 751, Therefore,
the denoised data 72 can be expressed as follows:

(15)
7' k) + op€g-

1 1—oap_
TR 2N R " 7'76_1,k:—1),02 I)
(o= (S) .ot

1 k1 1— a1 E—1
= ey k-1 1€k
Qk—1 (T 1 76%_169(7' ’)) ¥onoreia

1 1 1-— 1—
_ (7k Qg k ¢69(Tk71, k— 1) + Uk€k>

T —
Vak—1 \/Oélc V(1 —ag)a V19— g1

+ Ok—1€1—1

1 k 1—0(1€ 1—0[1671

= " — — 69(7k7k) — — GQ(Tk_l, kE—1)
VO -1 (1 - ak)akak_l (1 - ak—l)ak—l
1
+ Ok€k + Ok—1€K—1.
Qf—1
(16)

The introduced noise €51 in diffusion step £k — 1 can be combined with the noise € at diffu-

2
sion step k into a joint noise term, €1, by merging two Gaussian distributions, N (0, a:’i -) and

N(0,0%_,1),into N (0, (5=

as T o?_,)I). Consequently, we obtain the distribution for the denoised

12

Under review as a conference paper at ICLR 2025

data 752 with only directly computable terms, where

~ 1 1-— 1—ag_
Tk_2 = Tk _ Ak EG(T]C k) qf—1

VOEOE—1 (1 — &k.)akozk._l ’ (1 — dk_l)ak_l

02
+ —l—ak 1€k—1
Op—1

1 1— 1— oy
~ N - - co(T" k) — ML e (rh L k- 1),
VOEOK—1 (1 —ag)agak—_1 (1 —ak—1)ak—1

Eg(Tk_l, k — 1)

a7
By repeating the denoising process for k iterations, we can ultimately obtain a closed-form repre-
sentation of the denoised data 7°.

k k
~ 1 . 1—oy)
70— - gk _ E i eo(T",0) + | o + g

; % 1
H§:1 @ i=1 \/(1 —) H;':1 a;j i=2 H] 1 oz]

(18)

k
= —7"— E ————€p(7",0) +
Vv Ok i—1 (1 — 5[7;)0_41' ()

Using the closed-form representation of the reparameterization trick, the final denoised data 7° fol-
lows a Gaussian distribution, expressed as 7° ~ N (fig (7%, k), 5%I). The mean fip(7*, k) captures
the denoising trajectory and is formulated as:

1 . l_az i -
fig(T* k) = ﬁ 2 17%)%69(7,@). (19)

Similarly, the covariance 5% accounts for the accumulation of noise over all diffusion steps and is
written as:
k o2
EDI (20)
:2 -
O

13

	Introduction
	Related Works
	Offline Reinforcement Learning
	Diffusion Model in Reinforcement Learning

	Preliminaries
	Planning with Diffusion Model

	Method
	Modulation of Diffusion Training
	Transition-based Diffusion Modulation
	Reward-based Diffusion Modulation
	Reward-Aware Diffusion Loss
	Full Modulation Framework

	Planning with Dual Guidance

	Experiment
	Experimental Results on D4RL
	Experimental Results on Maze2D
	Ablation Study
	Hyperparameter Sensitivity Analysis

	Conclusion
	Diffusion Training Algorithm
	Proof of Proposition 1

