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Abstract

Chain-of-Thought (CoT) reasoning has sig-
nificantly advanced Large Language Models
(LLMs) in solving complex tasks. How-
ever, its autoregressive paradigm leads to sig-
nificant computational overhead, hindering
its deployment in latency-sensitive applica-
tions. To address this, we propose DART
(Distilling Autoregressive Reasoning to Silent
Thought), a self-distillation framework that en-
ables LLMs to replace autoregressive CoT with
non-autoregressive Silent Thought (ST). Specif-
ically, DART introduces two training pathways:
the CoT pathway for traditional reasoning and
the ST pathway for generating answers directly
from a few ST tokens. The ST pathway utilizes
a lightweight Reasoning Evolvement Module
(REM) to align its hidden states with the CoT
pathway, enabling the ST tokens to evolve into
informative embeddings. During inference,
only the ST pathway is activated, leveraging
evolving ST tokens to deliver the answer di-
rectly. Extensive experimental results demon-
strate that DART achieves comparable reason-
ing performance to existing baselines while of-
fering significant efficiency gains, serving as a
feasible alternative for efficient reasoning.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance (DeepSeek-Al
et al., 2025; OpenAl, 2025) across various rea-
soning tasks by leveraging Chain-of-Thought
(CoT) (Wei et al., 2022), which decomposes com-
plex problems into intermediate reasoning steps.
Despite these successes, the autoregressive nature
of CoT introduces substantial computational cost,
resulting in increased latency and limiting its effec-
tiveness in real-time applications (Sui et al., 2025).

To alleviate this computational burden, implicit
CoT reasoning (Deng et al., 2023, 2024) performs
implicit reasoning in the hidden state rather than
the explicit CoT tokens to avoid extra computation.

Continuous thought methods (Hao et al., 2024;
Cheng and Durme, 2024) compress discrete textual
tokens into compact, continuous representations,
reducing the number of intermediate tokens with-
out obvious degradation in reasoning capability.
However, these existing approaches either suffer
from unsatisfactory performance or remain haunted
by the autoregressive generation paradigm, leading
to suboptimal efficiency.

To this end, we propose DART (Distilling Au-
toregressive Reasoning to Silent Thought), a novel
framework that enables the LLMs to internalize the
autoregressive CoT into non-autoregressive Silent
Thought (ST) with an excellent efficiency-efficacy
trade-off. To be specific, DART employs two path-
ways in the training procedure as shown in Fig-
ure 1, namely: the CoT pathway, which generates
both the answer tokens and the explicit CoT to-
kens; and the ST pathway, which focuses solely
on generating answers, conditioned on the ST to-
kens concatenated after the question. Additionally,
the ST pathway introduces a lightweight Reason-
ing Evolvement Module (REM) to align the hid-
den state of the last word preceding the answer
with that of the CoT pathway. During inference,
initial ST tokens are appended to user input and
processed through the REM-equipped ST pathway.
Analogous to human cognition that progresses from
vague conceptual abstraction to concrete resolution,
these ST tokens evolve into increasingly informa-
tive embeddings as they propagate through the net-
work, ultimately serving as a context-aware bridge
between the instruction and its logically grounded
response. Empirical results demonstrate that DART
achieves significant efficiency gains while main-
taining comparable performance. To summarize,
our contributions are as follows:

* We explore non-autoregressive ST as a promis-
ing alternative to the CoT paradigm, providing
valuable insights for future work;
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Figure 1: Overall Framework of DART. During inference, we employ the ST pathway to respond directly without
step-by-step reasoning in prior work (Wei et al., 2022; Hao et al., 2024). The shared intermediate token represents
the separator token. Feed-forward layer in the decoder layer is omitted for simplicity.

* We introduce DART, a simple but effective
framework that employs REM to align autore-
gressive CoT with non-autoregressive ST in a
dual-pathway architecture;

* We conduct extensive experiments to validate
DART on multiple reasoning benchmarks,
demonstrating its remarkable efficiency along-
side satisfactory accuracy and interpretability.

2 Related Work

Empirical results and theoretical analysis (Feng
et al., 2023; Liu et al., 2024) have demonstrated the
effectiveness of CoT developed from supervised
fine-tuning (Yue et al., 2024; Yu et al., 2024) and
reinforcement learning (Wang et al., 2024; Shao
et al., 2024; DeepSeek-Al et al., 2025). However,
intermediate steps in the CoT reasoning will cause
extra computational cost, resulting in low through-
put. To reduce this computation overhead, Co-
conut (Hao et al., 2024) employs curriculum learn-
ing to fine-tune an LLM capable of autoregressively
generating final-layer hidden states to serve as the
replacement of CoT tokens. These final-layer hid-
den states, dubbed continuous thought, are more
information-dense, thus reducing the intermediate
steps. One contemporaneous work, CODI (Shen
et al., 2025) also exploits the continuous thought
but employs an end-to-end distillation framework
rather than the curriculum learning. Despite the
impressive performance of these methods, their ef-
ficiency is still limited by the autoregressive pattern.
On the other hand, iCoT (Deng et al., 2023, 2024)
manages to embed the CoT reasoning within the
model’s hidden space. However, it lacks scalability
for the larger models (Shen et al., 2025).

3 Method
3.1 Dual-Pathway Architecture

Given a question (, our goal is to fine-tune a causal
decoder-only LLM parameterized by 6 to provide
the proper answer Y = {yl}f‘i - In DART, we
introduce a dual-pathway architecture to allows
two distinct answering ways during training.

Chain-of-Thought Pathway. This pathway ad-
heres to the conventional CoT approach, where the
model first produces a sequence of intermediate
reasoning steps Z = {zl}f\i | before producing the
final answer. During training, the cross-entropy
loss for next token prediction is adopted for opti-
mizing this pathway:

N
1
Lcor = — N Zlog (21 | Q, z1:-1;0)

i=1
1 M

— a7 D log (i | Q. Z, yrii-130) .
=1

Notably, the first ¢ — 1 tokens of Z are indeed CoT
tokens, while the remaining are separator tokens
shared with the ST pathway. In this paper, we fix
zs.N as the answer prompt "Answer:".

Silent Thought Pathway. In contrast, the ST
pathway directly generates the answer conditioned
on the preceding ST sequence S = {si}iczl and
separators z;.y. Here, each s; is a special token
<st>and C is set as 20 in this paper. The objective
function of this pathway can be formulated as

M
1
Lo = i z;log (vi | Q, X, y1:-1:0,0) ,

where X = [S; z;.y] and ¢ is the parameters asso-
ciated with REM to be detailed in Section 3.2.



3.2 REM-based Self-Distillation

Our preliminary experiments show that enabling
the evolution of the ST token requires more fine-
grained supervision from CoT data to capture
deeper intrinsic reasoning patterns. As revealed
by the prior work (Dai et al., 2023), the intermedi-
ate words essentially impose a shift to the hidden
state of the last word before the answer. We can
approximate this effect at the [-th decoder layer as

a ~a +WHH; (WEH; )
B~ bl (WS WS )

where f(-) denotes the feed-forward layer; q' is the
attention query vector of zy in [-th decoder layer;
a' and h! indicate the output of the attention head
and the output hidden state, given the question-only
input; H lzfl represents the input hidden state of
intermediate token sequence Z; and W, W, are
the key and value projection matrices. A detailed
derivation is provided in the Appendix A.

Since the intermediate tokens are autoregres-
sively generated conditioned on the question () and
the model parameters 6, the induced shift can be
viewed as g1 (hg (Q)) where Z = hy(Q) and 01
denotes the parameter of the first [ layers. Given
that flattening the function hgy(-) is non-trivial, we
propose to approximate the process by introducing
a lightweight REM module at each decoder layer,
which also leverages both the parameters 6 and
the in-context information from (). Specifically,
to induce such a shift, REM adapts the standard
attention mechanism as:

~ = = T
a~ WyWy[Hg: Hx] WkWE [Hg; Hx]) " a,
h~ h+ gy g1 ([Q; X]).

where W = %WéWéT + I forJ € {K,V}.
Here, Wél , Wéz € R™ 4 are learnable matrices in-
jected before the key and value projection matrices;
n, d are the hidden state dimension and the REM
projection space dimension; and « is a scaling hy-
perparameter. The superscript for the layer index
is omitted for simplicity. REM offers two key ad-
vantages: (1) It introduces a few additional param-
eters while enabling rich interactions between @)
and 0, effectively capturing contextual and domain-
specific knowledge; (2) It is a simple plug-in mod-
ule compatible with any decoder-only LLM, which
can be seamlessly merged into the original architec-
ture without increasing inference-time parameters.

Based on the analysis, we adopt the following
distillation loss to guide the learning process:

1. 1 -
Lain =7 > —= B =1 ,
distill L < O'(hl) 1

where o (-) denotes the standard deviation within
a batch. By aligning these hidden states, the func-
tion gy 4114 ([Q; X]) is encouraged to approximate
ger: (hg (Q)), thereby distilling the reasoning ca-
pability from the CoT pathway into the ST pathway.
Furthermore, we empirically show in Section 4.3
that the initial meaningless token <st> will evolve
into an informative latent representation as it goes
through the REM-equipped ST pathway, simulat-
ing a blur-to-concrete thinking process. To summa-
rize, the overall objective function of DART is

Lparr = Lcor + LsT + ALdisti
where A = 20 is a trade-off hyperparameter.

4 Experiments

To validate the design of DART, we conduct ex-
tensive experiments and present the key results.
Additional implementation details and extended
findings are provided in Appendices B-D.

4.1 Experimental Settings

Datasets. Following previous work (Deng et al.,
2024; Hao et al., 2024), we fine-tune models on
GSMS8K-Aug (Deng et al., 2023), an augmented
version of GSMS8K (Cobbe et al., 2021), which in-
cludes diverse reasoning traces. To mitigate the
risk of models memorizing the final answer from
CoT sequences, the last step is omitted during train-
ing (Shen et al., 2025). For out-of-distribution eval-
uation, we adopt GSM-HARD (Gao et al., 2023),
SVAMP (Patel et al., 2021), and MultiArith (Roy
and Roth, 2015) as robustness benchmarks.
Baselines. We compare DART against three au-
toregressive methods and three non-autoregressive
methods, namely: (1) CoT, which fine-tunes the
model on CoT data to perform the traditional CoT
reasoning; (2) Coconut (Hao et al., 2024), which
trains the model with CoT data in a mutil-stage
manner and leverages autoregressively generated
continuous thought; (3) CODI, similar to Coconut
but employing a one-stage distillation framework
using both CoT and no-CoT data; (4) No-CoT,
which trains the model on no-CoT data to answer
directly; (5)iCoT (Deng et al., 2024), which trains



In-Distribution

Out-of-Distribution

Methods Is NAR? GSMS8K GSM-HARD SVAMP MultiArith
CoT X 58.8 134 477 59.9 227 972 218
Coconut (Hao et al., 2024) X 50.6 390 112 483 53.1 181 96.5 217
CODI (Shen et al., 2025) X 55.61 1287 153 61.17 141 96.17 132
No-CoT v 32.5 7.1 57 40.6 34 613 33
iCoT (Deng et al., 2024) v/ 19.0f 441t 57 409" 34 39.0f 33
PauseFT (Goyal et al., 2024) v 32.1 7.3 60 40.4 35 59.2 33
DART (Ours) v 42.6 109 60 505 35 848 33

Table 1: Results on GSM8K, GSM-HARD, SVAMP, and MultiArith. Accuracy (%) is on the left and inference time
(ms) on the right for each benchmark. NAR stands for non-autoregressive. T The result is from (Shen et al., 2025).

Methods Accuracy (%)
No-CoT 32.5
DART 42.6

w/o Edistill 33.7

w/o ST 36.8

w/o REM 36.2

w/ LoRA-REM 40.8

Table 2: Ablation studies. LoRA-REM indicates that we
apply LoRA (Hu et al., 2022) as REM.

the model to reason in the hidden space by apply-
ing stepwise internaliztion; (6) and PauseFT (Goyal
et al., 2024), which inserts C special filler tokens
<pause> between the question and answer to allow
extra computations. All methods are fine-tuned on
Llama-3.2-1B (Dubey et al., 2024) for consistency.

4.2 Empirical Results

Comparison between Baselines. Table 1 sum-
marizes the performance across GSM8K, GSM-
HARD, SVAMP, and MultiArith. To ensure a fair
comparison of efficiency, we measure the inference
time of all baselines on a Nvidia A10 GPU, even
for those whose accuracy is sourced from prior
reports. As shown, DART achieves the best per-
formance among all NAR baselines on GSM8K,
delivering a notable 10.1% accuracy gain with neg-
ligible latency overhead (only 1 ms). On all out-
of-distribution datasets, DART consistently outper-
forms other NAR methods, indicating robust gen-
eralization beyond the training distribution. While
AR methods obtain higher accuracy, they suffer
from significantly reduced inference efficiency due
to stepwise generation, despite efforts to compress
reasoning steps. These results demonstrate that
DART achieves a compelling trade-off between ac-

curacy and efficiency by fully leveraging distilled
CoT knowledge in a single-step latent space.

Ablation Study. To validate the contributions of
key DART components, we evaluate the variants
with certain components omitted or replaced. Our
findings in Table 2 are as follows: (1) Omitting
La;istini, wWhich transfers reasoning patterns from
CoT trajectories, leads to a substantial performance
drop; (2) Excluding the ST tokens impairs accuracy,
likely due to the loss of CoT-derived positional pri-
ors; (3) Our proposed REM significantly enhances
reasoning capability compared to using either no
additional module or the vanilla LoRA.

4.3 Interpretability Analysis

We decode the final hidden states of ST tokens into
natural language using the model’s word embed-
dings, finding that 69.9% of the translated tokens
match the words in ground-truth CoT. This ratio
further rises to 80.1% for cases that yield the cor-
rect answer. Additionally, we observe that the ST
tokens also reflect a progressive reasoning process
similar to CoT. For example, the top-1 ST transla-
tionis "192 192 192 192 24 24 24 24 24 24 24
24 24 24 24 24 24 24 24 24", corresponding
to the CoT "«3%64=192» «192/8=24»".

5 Conclusion

We present DART, a fine-tuning framework that
empowers LLMs to perform implicit reasoning in
a non-autoregressive manner. By distilling knowl-
edge from CoT data, the models trained with DART
achieve a remarkable balance between accuracy
and latency using the evolving ST tokens. Exten-
sive experiments confirm DART’s robustness and
the effectiveness of its design.



Limitations

Additional Training Resources. Due to its dual-
pathway architecture, DART requires more compu-
tational resources. In our experiments, the propor-
tion of trainable parameters is 2.86%, compared to
1.79% for LoRA.

Supervision Signal. Currently, DART aligns
only the activation value of the last word before the
answer between the CoT and ST pathways. This
limited supervision may be suboptimal, as it can
overlook some information in intermediate tokens.
Incorporating more comprehensive supervision sig-
nals may help DART achieve better performance.

Demand for CoT data. DART relies on CoT
data for knowledge distillation, which may not al-
ways be available. One potential solution is to use
large LLMs capable of CoT reasoning to generate
synthetic CoT data, though this approach incurs
additional preprocessing costs.
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A Analysis of the Shift Value

For better readability, we first summarize the math-
ematical notations adopted for this paper in Table 3.

Similar to (Dai et al., 2023), we mainly focus on
the effect of the intermediate sequence X on the
hidden state of the last separator token z . Firstly,
we can derive the simplified expression for the acti-
vation &' of z as follows:

W [Ho: Hy]\ "
él:W‘I/[HQ;HZ]softmaX <K[\/%7 Z]> q

T
~ Wi [Ho: Hy) (Wi(Hoi Hzl) d
l l T l l Tl
— Wi Hg (WkHg) +WhHZ(WiHz)
Lal + Wy Hz(WiHz)"d,

where W]lo W‘l/ € R™ ™ are the key and value
projection matrices of the [-th decoder layer, H),
H 7 are the input hidden state of question ) and
intermediate tokens Z, q' is the attention query
vector corresponding to zy, and a! is the activation
when only () is given. The superscript [ —1 for Hy,
H 7 is omitted for simplicity. The approximation in
the second step is obtained by omitting the softmax
operation and scaling factor \/n. Then, by going
through the feed-forward layer f(-), we can get the
hidden state of z in the [-th layer as follows:

bl ~hl + f (W’VHZ(W}{HZ)qu>

where h! = f(a!). Since Z can be viewed as the
output of LLM given (), we further define

gors (ha (Q)) 2 J (W Hz(WicHz)"d ).

Hence, the CoT effectively injects a shift in the
hidden state of zy, which can be parameterized by
the model parameters 6 and input ). Based on this,
we employ REM to construct ggi:t 414 ([Q; X]) and
apply an L1 distance loss to approximate this shift.

B Datasets

Statistics. The statistics of utilized datasets are
provided in Table 4

Examples We provide some examples of the
data used in our experiments.

GSMS8K-Aug

Question = "Andy receives a monthly salary
of $800 but he has to pay a tax of 7%. How
much is his net salary?"

CoT = "«800*7/100=56» «800-56=744»"
Answer = "744"

GSM-HARD

Question = "A robe takes 2287720 bolts of
blue fiber and half that much white fiber.

How many bolts in total does it take?"
Answer = "3431580.0"
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Notation Mathematical Meaning

l The index of the current decoder layer, usually used as a superscript.

n,d The hidden state dimension and the REM projection dimension.

Q The hyperparameter for scaling in REM.

Q The question sequence.

Y ={yi},_y The answer sequence of length M.

Z={z}Y, The intermediate sequence of length N.

S = {si}iczl The ST sequence of length C', with each s; set as a special token <st>.

t The index separating the CoT sequence z1.;—1 and the separators z;.;y in Z.

[ ] The concatenation operation for matrix pairs and sequence pairs.

X = [S; ze.n] The concatenation of the ST sequence and separators.

W;O ‘l/ The key and value projection matrices.

Wi Wi, The REM matrices for key projection matrices when J = K and for value
projection matrices when J = V.

HL. H ZZ, H é( The output hidden state matrices associated with @), Z, and X.
The attention query vector of the last separator z .

al,al,al The output vectors of the attention head corresponding to the last separator
zn 1n the no-CoT, CoT, and ST cases.

h, h', h! The output hidden states of the last separator z corresponding to the no-CoT,
CoT, and ST cases.

0,0 The parameters of LLM and REM.

gl pl The parameters of the first [ layers of LLM and REM.

() The feed-forward function in the decoder layer.

he () The generation function for the model to produce an answer sequence condi-

g@l:l ('), gel:l’¢1:l (')

tioned on the input.
The function for the model to produce a shift value conditioned on the input
and the parameters in the subscript.

Table 3: Frequently used notations along with their mathematical meaning.



Dataset Training Evaluation
GSM8K-Aug 385620 1319
GSM-HARD - 1319
SVAMP - 1000
MultiArith - 600

Table 4: Dataset statistics. GSM-HARD, SVAMP and
MultiArith are only used for evaluation.

SVAMP

Question = "Each pack of dvds costs 76
dollars. If there is a discount of 25 dollars
on each pack. How much do you have to
pay to buy each pack?"

Answer = "51.0"

MultiArith

Question = "Faye had 34 coloring books. If
she gave away 3 of them, but then bought
48 more, how many would she have total?"
Answer = "79"

C Implementation Details

For all experiments, we set d = 128 and a = 32
for REM, consistent with the configuration used
for LoRA (Hu et al., 2022) to fine-tune the CoT
pathway. We employ the AdamW (Loshchilov and
Hutter, 2019) with a cosine annealing learning rate
schedule following a 3% warm-up period. Ad-
ditionally, we enable the bf16 in the trainer and
evaluate the models using bfloat16 precision.

We fine-tune the Llama-3.2-1B, the primary base
model in our experiments, for 10 epochs with the
learning rate initialized as 8e-4.

For Coconut, we adopt their official implemen-
tation and use the same number of training epochs
as in our experiments.

D More Experimental Results.

Sensitivity Analysis on ST Token Number. We
conduct the experiments on GSM8K with vari-
ous values of the ST token number C. As shown
in Figure 2, the accuracy rapidly increases dur-
ing the initial stage as C grows, then stabilizes
once the token number becomes sufficient, demon-
strating both the necessity and robustness of us-
ing ST tokens. Furthermore, thanks to the non-
autoregressive paradigm, DART introduces negli-
gible latency even as C' increases.
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Figure 2: Accuracy and inference time on GSMS8K with
varying C, the number of ST tokens.

Experiments on Various Base Models. To fur-
ther demonstrate the robustness of DART across
different LLMs, we conduct the experiments using
Qwen2.5-1.5B (Team, 2024) and GPT2 (Radford
et al., 2019) as base models. For Qwen2.5-1.5B,
we initialize the learning rate at Se-4 and keep all
other configurations as those used for Llama-3.2-
1B. For GPT2, we set the initial learning rate to
2e-3 and train the model for 40 epochs. As shown
in Table 5, DART consistently boosts the reasoning
capabilities without notable latency.

GPT2 Qwen2.5-1.5B
Methods Acc IT Acc IT
No-CoT 16.2 18 33.3 95
DART 247 19 42.2 95

Table 5: Results on GPT2 and Qwen2.5-1.5B. Acc and
IT indicate the Accuracy (%) and inference time (ms,
on a Nvidia A10 GPU), respectively.

Methods Accuracy

No-CoT 32.5

DART (W/ £distill on ZN) 42.6
W/ Lgistii on y1 315
w/ £dz’still on [ZN; Y} 33.7

Table 6: Accuracy (%) with various tokens used in
Laistill-

Different Choices of Alignment Token. To
empirically demonstrate the rationality of applying
Laistsn on zy, we perform the experiments with
different alignment tokens. As shown in Table 6,
employing other tokens like the answer tokens in
L 4;s¢11 hinders the effectiveness of alignment.
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