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Abstract

Fine-tuning large pre-trained models is a common
practice in machine learning applications, yet its
mathematical analysis remains largely unexplored.
In this paper, we study fine-tuning through the lens
of memorization capacity. Our new measure, the
Fine-Tuning Capacity (FTC), is defined as the max-
imum number of samples a neural network can fine-
tune, or equivalently, as the minimum number of
neurons (m) needed to arbitrarily change N labels
among K samples considered in the fine-tuning
process. In essence, FTC extends the memoriza-
tion capacity concept to the fine-tuning scenario.
We analyze FTC for the additive fine-tuning sce-
nario where the fine-tuned network is defined as
the summation of the frozen pre-trained network f
and a neural network g (with m neurons) designed
for fine-tuning. When g is a ReLU network with ei-
ther 2 or 3 layers, we obtain tight upper and lower
bounds on FTC; we show that N samples can be
fine-tuned with m = Θ(N) neurons for 2-layer
networks, and with m = Θ(

√
N) neurons for 3-

layer networks, no matter how large K is. Our
results recover the known memorization capacity
results when N = K as a special case.

1 INTRODUCTION
As a branch of machine learning theory, the expressive
power of neural networks is investigated for several decades.
By using the concept of universal approximation, it is shown
that neural networks can approximate a large classes of
functions, either in the depth-bounded scenarios [Cybenko,
1989, Funahashi, 1989, Hornik et al., 1989, Barron, 1993]
or width-bounded scenarios [Lu et al., 2017, Hanin and
Sellke, 2017, Kidger and Lyons, 2020, Park et al., 2020].
Another line of research focused on the memorization ca-
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pacity of neural networks [Baum, 1988, Huang and Babri,
1998, Huang, 2003, Yun et al., 2019, Vershynin, 2020, Ra-
jput et al., 2021, Vardi et al., 2021], exploring the capability
of neural networks for memorizing finite samples.

Meanwhile, with the advent of large language mod-
els [Brown et al., 2020, OpenAI, 2023, Ouyang et al., 2022,
Chowdhery et al., 2022, Zhang et al., 2022, Touvron et al.,
2023] and foundation models [Bommasani et al., 2021, Rad-
ford et al., 2021, Ramesh et al., 2022], the paradigm of
pre-training followed by fine-tuning is dominating the ma-
chine learning communities. Various empirical results show
that a gigantic model pre-trained on large amount of data can
be easily fine-tuned to perform well on downstream tasks,
given only a small amount of additional data for the target
task. Compared with the extensive empirical results, math-
ematical analysis on fine-tuning large pre-trained models
remains largely unexplored.

In this paper, we take the first step in understanding the
fine-tunability of pre-trained networks through the lens of
memorization capacity. We focus on the scenario where we
fine-tune a pre-trained neural network f on dataset D =
{(xi, yi)}Ki=1 with K samples; here, xi ∈ Rd and yi ∈ R
for all i ∈ [K] where [K] = {1, 2, · · · ,K}, and we assume
xi ̸= xj for all i ̸= j. Let T := {i ∈ [K] : f(xi) ̸= yi}
be the set of indices of samples that the pre-trained network
f does not fit. The cardinality of this set is denoted by
N := |T | ≤ K. In other words,

f(xi) = yi (1)

holds for all i ∈ [K] \ T , while not guaranteed for i ∈ T .
Our aim is to add a neural network gθ (parameterized by
θ) to the pre-trained network f in a way that the fine-tuned
network f + gθ satisfies

(f + gθ)(xi) = yi, ∀i ∈ [K]. (2)

See Fig. 1 for the visualization of the additive fine-tuning
scenario we focus on. This scenario is motivated by recently
proposed additive fine-tuning methods [Zhang et al., 2020,
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Figure 1: Additive fine-tuning scenario where the pre-
trained network f is fine-tuned to f + gθ, in order to fit the
dataset D = {(xi, yi)}Ki=1. Here, the pre-trained network
already fits N samples {(xi, yi)}i∈[K]\T , where T ⊆ [K]
is the set of indices where yi ̸= f(xi). We use gθ to fill the
gap between f(xi) and yi, for i ∈ T .

Fu et al., 2021, Cao et al., 2022], and especially, the side-
tuning [Zhang et al., 2020] where a side network gθ is
added to the pre-trained network f . Since our model does
not cover other popular fine-tuning methods including LoRA
[Hu et al., 2021], extending our theoretical results to such
popular methods is remained as a future work. Under such
setting, we define the fine-tuning capacity (FTC) of a neural
network gθ as below.

Definition 1.1 (FTC). The fine-tuning capacity of a given
neural network gθ is the maximum number N satisfying the
following property: for all xi ∈ Rd, yi ∈ R, for all T ⊆
[K] satisfying |T | = N , and for any choices of function
f satisfying f(xi) = yi for all i ∈ [K] \ T , there exists
parameter θ such that (f + gθ)(xi) = yi all i ∈ [K].

Under such a setting, we establish the upper/lower bounds
on FTC, when g is 2-layer ReLU network or 3-layer ReLU
network. Our main contributions are summarized below:

• We define a new metric called Fine-Tuning Capacity
(FTC), which measures the maximum number of sam-
ples N⋆ a neural network with m neurons can fine-tune.
Equivalently, we define the minimum number of neu-
rons m⋆ needed to arbitrarily change N labels among
K. FTC can be considered as an extension of memo-
rization capacity, tailored for the fine-tuning scenario.

• For 2-layer ReLU networks, we establish tight upper
and lower bounds on m⋆, in Theorem 4.1. The up-
per bound is obtained by a novel neural network con-
struction for fine-tuning. Our construction requires less
number of neurons than conventional constructions de-
veloped in the memorization capacity literature when
K ≥ 3N+2. By using our bounds on m⋆, we also pro-
vide an equivalent statement in Corollary 4.2, showing
the tight bounds on the fine-tuning capacity N⋆ .

• For 3-layer ReLU networks, we obtain tight upper and
lower bounds on m⋆ in Theorem 5.1. Our results imply
that N samples can be fine-tuned with m = Θ(

√
N)

neurons without any dependence on K.We also provide
an equivalent statement in Corollary 5.2, showing the
tight upper and lower bounds on N⋆ .

2 RELATED WORKS
Fine-Tuning Various methods for efficient fine-tuning are
introduced in recent years [Houlsby et al., 2019, Zhang
et al., 2020, Zaken et al., 2021, He et al., 2021], which
fine-tune only a small part of pre-trained models to adapt it
for target tasks. There are some mathematical analysis on
fine-tuning [Wu et al., 2022, Zeng and Lee, 2023, Giannou
et al., 2023, Englert and Lazic, 2022, Oymak et al., 2023,
Du et al., 2020, Malladi et al., 2023] or more broadly on
transfer learning [Tripuraneni et al., 2020, Maurer et al.,
2016], but none of them analyzed the fine-tunability of large
pre-trained models using the lens of memorization capacity.

Memorization One concept relevant to FTC is memoriza-
tion capacity which measures the ability of memorizing
given feature-label pairs {(xi, yi)}Ki=1. Finding the bounds
on the memorization capacity is considered in recent works
on various networks [Zhang et al., 2016, Yun et al., 2019,
Vershynin, 2020, Rajput et al., 2021, Nguyen and Hein,
2018, Hardt and Ma, 2016, Kim et al., 2023]. The effect of
memorization in large language models is explored in recent
works, both for pre-training [Carlini et al., 2022, Ippolito
et al., 2022] and for fine-tuning [Zeng et al., 2023].

3 FINE-TUNING CAPACITY
Note that a notion of additive FTC given in Definition 1.1
contains the pre-trained network f , but one can confirm
that FTC does not depend on f since f(xi) = yi holds
for all i ∈ [K] \ T , for every pre-trained network f we
are considering. Below we provide an equivalent simpler
definition.

Definition 3.1 (FTC, equivalent form). For a given positive
integer K, the fine-tuning capacity (FTC) of a given neural
network gθ is

N⋆
FTC(g,K) := max

N∈{0,1,··· ,K}
N such that

∀T ⊆ [K] with |T | = N, ∀xi ∈ Rd,∀zi ∈ R,

∃θ satisfying

{
gθ(xi) = zi ∀i ∈ T,

gθ(xi) = 0 ∀i ∈ [K] \ T.
(3)

This definition is a generalization of conventional memoriza-
tion capacity shown below, when the condition is relaxed to
a special case, T = [N ].

Definition 3.2 (Memorization Capacity [Yun et al., 2019]).
The memorization capacity of a neural network gθ is

N⋆
MC(g) := max

N≥0
N such that

∀xi ∈ Rd,∀zi ∈ R,∃θ with gθ(xi) = zi ∀i ∈ [N ] (4)
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Figure 2: Proving Theorem 4.1 for K = 14, N = 4.
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Figure 3: Proving Theorem 4.1 for K = 9, N = 4.

Remark 1. The memorization capacity and the fine-tuning
capacity has a trivial bound: for any neural network g and
for arbitrary K > 0,

N⋆
FTC(g,K) ≤ N⋆

MC(g). (5)

Note that FTC is defined as the maximum number of sam-
ples N we can fine-tune using a given network g. One can
also consider an equivalent definition: the minimum number
of neurons m contained in g to successfully fine-tune N
samples, which is formally stated below.

Definition 3.3 (FTC, equivalent form, in terms of # neuron).
The minimum number of neurons required for fine-tuning
arbitrary N out of K samples, is defined as

m⋆
FTC(N,K) := min

m≥0
m such that

∀T ⊆ [K] with |T | = N, ∀xi ∈ Rd,∀zi ∈ R,
∃ neural network gθ with m neurons satisfying{
gθ(xi) = zi for all i ∈ T,

gθ(xi) = 0 for all i ∈ [K] \ T.

Throughout the paper, we use N⋆ as a short-hand notation
for N⋆

FTC, and use m⋆ as a short-hand notation for m⋆
FTC.

Our theoretical results provide bounds on m⋆ and N⋆, e.g.,
Theorem 4.1 is bounding m⋆, while an equivalent result in
Corollary 4.2 is bounding N⋆.

4 FTC OF 2-LAYER FC RELU
NETWORKS

A 2-layer fully-connected neural network gθ : Rd → R
with ReLU activation can be represented as

gθ(x) = W2σ(W1x+ b1) + b2, (6)

which is parameterized by θ = [W1,W2, b1, b2] where
W1 ∈ Rm×d, W2 ∈ R1×m, b1 ∈ Rm, and b2 ∈ R. Here,
m is the number of hidden neurons, and σ is the ReLU
activation. The below result states the bounds on m for
2-layer FC ReLU networks.

Theorem 4.1. Let K ≥ 3.

1. For all T ⊆ [K], |T | = N , xi ∈ Rd, zi ∈ R, i ∈ [K],
there exists a 2-layer fully-connected ReLU network g
with m neurons satisfying equation 3 and

m ≤ min{3N + 1,K − 1}.

2. For given T ⊆ [K], |T | = N , xi ∈ Rd, zi ∈ R,
i ∈ [K], suppose that equation 3 holds for some 2-
layer fully-connected ReLU network g with m neurons.
Then,

min{3N,K − 2} ≤ m.

Thus,

min{3N,K − 2} ≤ m⋆ ≤ min{3N + 1,K − 1}. (7)

The proof of this theorem is given in Sec. 4.1 and Sec. 4.2.

Remark 2. If N = K (i.e., fine-tuning changes all labels),
then the result of Theorem 4.1 reduces to

m⋆ + 1 ≤ N = K ≤ m⋆ + 2.

The upper bound of N coincides with the upper bound of
memorization capacity studied in the result of [Yun et al.,
2019]. On the other hand, the lower bound is consistent
with the one given in [Zhang et al., 2016].

Below we state the bounds for the fine-tuning capacity of a
2-layer fully-connected ReLU, directly obtained from the
above theorem.

Corollary 4.2 (FTC of 2-layer FC ReLU). Suppose K ≥ 3.
For given m ∈ N, let N⋆ be the fine-tuning capacity of a
2-layer fully-connected ReLU network g given in equation 6
with m neurons.

1. If K ≥ m+ 2, then⌊
m− 1

3

⌋
≤ N⋆ ≤ m

3
. (8)

2. If K ≤ m+ 1, then N⋆ = K.

Proof. Suppose that K ≥ m + 2. By Theorem 4.1.1, for
|T | =

⌊
m−1
3

⌋
, there exists a 2-layer fully-connected ReLU

network g where the number of neurons of g is less than or
equal to

min

{
3

⌊
m− 1

3

⌋
+ 1,K − 1

}
= 3

⌊
m− 1

3

⌋
+ 1 ≤ m.

Here, K ≥ m+ 2 yields the first equality while the second
inequality follows from the definition of the floor function.
This yields the lower bound of equation 8. On the other
hand, due to Theorem 4.1.2 and K ≥ m+ 2, we conclude
the upper bound of equation 8.



Suppose that K ≤ m + 1. Similarly, by Theorem 4.1.1
for |T | = K, there exists a 2-layer fully-connected ReLU
network g where (the number of neurons of g) ≤ K−1 ≤ m.
This yields N ≥ K. As N ≤ K always holds due to our
construction, we conclude N = K.

In other words, for sufficiently large K, the fine-tuning
capacity N does not depend on the size K of the underlying
dataset D but the number of neurons m.

4.1 PROOF OF LOWER BOUND ON m⋆

We first prove the lower bound in Theorem 4.1 when K ≥
3N + 2. Define T = {3, 6, 9, ..., 3N}, and define xi = iu
for all i ∈ [N ] for arbitrary vector u ∈ Rd. Let zi = 2 if
i = 6k for some k ∈ N and zi = −1 if i = 6k − 3 for
some k ∈ N. See Fig. 2 when K = 14 and N = 4. Then,
ḡθ(t) := gθ(tu) is a piecewise affine function with at least
3N +1 pieces. Recall that using Theorem 3.3 of [Yun et al.,
2019] for 2-layer ReLU network, ḡθ(t) is having m + 1
pieces, since ReLU activation is a piecewise linear function
with two pieces. Thus, m ≥ 3N holds. Note that given
K and N , the above proof scheme specifies T, {xi, zi}Ki=1

and counts the number of pieces for the piecewise-linear
function ḡθ(t) = gθ(tu), under the setting of xi = iu.

We use a similar technique for proving the lower bound on
m when N ≤ K < 3N + 2. Consider revising (T, xi, zi)
triplet (defined for K ≥ 3N +2 case), so that K < 3N +2
condition is satisfied. For example, when K = 2N + 1,
the triplet is revised as T = {2, 4, · · · , 2N}, zi = 2 if
i = 4k for some k ∈ N and zi = −1 if i = 4k − 2 for
some k ∈ N, as illustrated in Fig. 3, which has K − 1 = 8
pieces. For general K and N satisfying K < 3N + 2, one
can choose (T, xi, zi) triplet such that the corresponding
ḡθ(t) = gθ(tu) has K − 1 pieces. Thus, the number of
pieces p(K) of ḡθ(t) we constructed can be represented as

p(K) =

{
3N + 1, if K ≥ 3N + 2

K − 1, if N ≤ K < 3N + 2
(9)

This completes the proof.

4.2 PROOF OF UPPER BOUND ON m⋆

We here establish the upper bound in Theorem 4.1. To be
specific, in Theorem 4.4, we establish the upper bound on
m⋆ in terms of the partition of [K] \ T . The key idea is to
remove all points of [K] \ T except for the endpoints of
each block as in Figure 4. More discussion will be provided
below.

Let us introduce some terminology. For a given set I , a
partition P of I is a set of nonempty subsets P of I such
that every element in I is in exactly one of these subsets.
We denote P ∈ P by the block of P .

Definition 4.3. For I ⊂ [K], we say that P(I) is the con-
secutive partition of I if all consecutive integers in I are

aTxT
i

zi

−1
+2

Figure 4: Illustration of the neural network constructed in
Theorem 4.4 with K = 14 and T = {4, 7, 9, 14}. P([K] \
T ) is the partition P(I) given in Example 1. The gray points
are the removed ones.

included in the same block, i.e., for i, j ∈ I , i and j are in
the same block of P(I) if and only if |i− j| = 1.

Example 1. If I = {1, 2, 3, 5, 6, 8, 10, 11, 12, 13}, then the
consecutive partition is defined as

P(I) = {{1, 2, 3}, {5, 6}, {8}, {10, 11, 12, 13}}, (10)

and the blocks of P(I) are {1, 2, 3}, {5, 6}, {8}, and
{10, 11, 12, 13}.

The following theorem shows that the upper bound of m
is given in terms of the size of the blocks in P([K] \ T ).
For proving Theorem 4.1, we find the uniform bound for
general datasets using this bound and Lemma 4.7.

Theorem 4.4. Consider the same setting as in Theorem 4.1,
and suppose that

aTx1 < aTx2 < · · · < aTxK (11)

holds for some a ∈ Rd. Then, there exists an m-neuron
network gθ(x) = W2σ(1maTx+b1)+b2, such that equa-
tion 3 holds, and

m⋆ ≤ K − 1−
∑

P∈P([K]\T )

max{|P | − 2, 0} (12)

Here, W2 ∈ R1×m, b1 ∈ Rm, and b2 ∈ R.

Remark 3. To minimize the width m of the network, a
smaller number of blocks of bigger sizes would be ideal. If
we only have one block in the partition P([K] \ T ), then
Eq. 12 is given as

m⋆ ≤ K − 1− |[K] \ T |+ 2 = N + 1.

This happens when aTxis for i ∈ [K] \ T are segregated
for some a, e.g., when [K] \T = {i, i+1, · · · , j} for some
i < j in [K]. Thus, some appropriate projection yields a
smaller number of neurons required.

Remark 4. The worst scenario is when every block of
P([K] \ T ) has 2 or less elements, as in Figures 2 and
3. Note that if K − N is much larger than N , then this
scenario cannot occur. This is because the number of blocks
cannot be larger than min{K−N,N}+1 from Lemma 4.6.



Proof of Theorem 4.4. First, we consider the case when

|P | ≤ 2 for all P ∈ P([K] \ T ). (13)

In this case, it suffices to prove m ≤ K. As K neurons can
represent K data points, the inequality directly follows from
the standard argument as in Zhang et al. [2016] and also
shown in Lemma 4.5.

Let us consider general cases. The main strategy is to re-
move data points so that equation 13 holds. Specifically,
except for two endpoints of each block P ∈ P([K] \ T ),
we remove i ∈ [K] \ T from [K]. Let us denote this new
subset of [K] by

J = {j1 < j2 < · · · < j|J|} (14)

For example, when K = 14 and T = {4, 7, 9, 14} as in
Fig. 4, the consecutive partition P(I) is given in Eq. 10,
and thus we remove {2, 11, 12} from [K] = {1, 2, · · · , 14},
which gives us J = {1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14}. Note
that the number of data points in J is

|J | := K −
∑

P∈P([K]\T )

max{|P | − 2, 0}. (15)

Applying Lemma 4.5 with A := {(aTxj , zj)}j∈J and
m = |J | − 1, there exist W2 ∈ R1×m, b1 ∈ Rm, and
b2 ∈ R such that

hθ(a
Txj) = W2σ(1maTxj + b1) + b2 = zj

for all j ∈ J . Thanks to hθ(a
Tx) = gθ(x), we conclude

gθ(xj) = zj for all j ∈ J .

Lastly, for i ∈ [K] \ J , there exist two endpoints ji < ji+1

such that [ji, ji+1] ∩ ([K] \ T ) in P([K] \ T ), and ji <
i < ji+1. Note that hθ constructed in Lemma 4.5 is linear
in [aTxji ,a

Txji+1 ]. Since gθ(xji) = gθ(xji+1) = 0, we
conclude that gθ(xi) = 0 as desired.

Lemma 4.5. For m ≥ 1 and A = {(wi, zi)}m+1
i=1 where

w1 < w2 < · · · < wm+1, wi ∈ R and yi ∈ R. There exist
W2 ∈ R1×m, b1 ∈ Rm, and b2 ∈ R such that

hθ(x) =
zi − zi+1

wi − wi+1
(x− wi) + zi (16)

for x ∈ [wi, wi+1], i = 1, 2, · · · ,m − 1 and equation 16
with i = m holds in [wm,∞) where hθ(x) = W2σ(1mx+
b1) + b2.

Proof. We prove this by induction. For m = 1, choose b1 =
−w1 and b1 = z1, then hθ(w1) = z1. Take W2 = z1−z2

w1−w2

and we get equation 16 with i = 1 in [w1,∞).

Suppose that the above result holds for m = k. Then, there
exist W2 ∈ R1×k, b1 ∈ Rk, and b2 ∈ R satisfying equa-
tion 16 in [wi, wi+1] for i = 1, 2, · · · k − 1 and [wk,∞).
Using this, we choose W̃2 = (W2,

zk+1−zk+2

wk+1−wk+2
) and b̃1 =

(b1,−wk+1). Then, h̃θ(x) = W2σ(1mx+b1)+b2 satisfies
equation 16 with i = k + 1 in [wk+1,∞).

Lemma 4.6. For I ⊂ [K] and the consecutive partition,
P(I), it holds that

|P(I)| ≤ min{|I|, |[K] \ I|+ 1}.

Proof. First, |P(I)| ≤ |I| directly follows from the defini-
tion of the partition.

On the other hand, let ai and bi be the end point of each
block in P([K] \ I):

P([K] \ I) = {[ai, bi] ∩ [K] : 1 ≤ i ≤ |[K] \ I|}.

Then,

P(I) = {[bi + 1, ai+1 − 1] ∩ [K] : 1 ≤ i ≤ |[K] \ I| − 1}
∪ {[1, bi − 1] ∩ [K], [a[K]\I + 1,K] ∩ [K]}

and thus we conclude that |P(I)| ≤ |[K] \ I|+ 1.

Lemma 4.7. Under the same setting as in Theorem 4.4, we
have ∑
P∈P([K]\T )

max{|P | − 2, 0} ≥ max{K − 3N − 2, 0}.

In particular, J given in equation 15 satisfies

|J | ≤ min{3N + 2,K}.

Proof. Recall that
∑

P∈P([K]\T ) |P | = |[K]\T | = K−N.
Using this, we have∑
P∈P([K]\T )

max{|P | − 2, 0} ≥
∑

P∈P([K]\T )

(|P | − 2)

≥ K −N − 2|P([K] \ T )|.

By Lemma 4.6, the number of blocks in the partition cannot
be larger than min {K −N,N + 1}.

Proof of upper bound in Theorem 4.1: Since xi ̸= xj

for all i ̸= j, there exists a ∈ Rd satisfying xT
i a ̸= xT

j a
all i ̸= j. Without the loss of generality, we assume that
equation 11 holds. Then, using Theorem 4.4 and choosing
W1 = 1maT , there exists

gθ(x) = W2σ(W1x+ b1) + b2,

satisfying equation 3 and

m ≤ K − 1−
∑

P∈P([K]\T )

max{|P | − 2, 0}.

By Lemma 4.7, we conclude that m ≤ K − 1−max{K −
3N − 2, 0} = min{3N + 1,K − 1}.



5 FTC OF 3-LAYER RELU NETWORK
Now we analyze FTC of 3-layer fully-connected neural
network gθ : Rd → R with ReLU activation. Note that
3-layer network can be represented as

gθ(x) = W3σ(W2σ(W1x+ b1) + b2) + b3. (17)

As before, σ is the ReLU activation and the network is
parameterized by θ = [W1,W2,W3, b1, b2, b3] where v ∈
Rd2 , W1 ∈ Rd1×d, W2 ∈ Rd2×d1 , W3 ∈ R1×d2 , b1 ∈
Rd1 , b2 ∈ Rd2 and b3 ∈ R. Following the setting considered
in the memorization capacity of 3-layer neural network [Yun
et al., 2019], we consider the scenario when zi ∈ [−1,+1]
for all i ∈ [K]. For notational simplicity, we denote zi = 0
for i ∈ [K]\T . Below theorem summarizes the upper/lower
bound on FTC of 3-layer network.

Theorem 5.1 (FTC of 3-layer FC ReLU). Let K ≥ 3,
T ⊆ [K], |T | = N , and g be a 3-layer FC ReLU network
with m neurons.

1. For all xi ∈ Rd, zi ∈ R, i ∈ [K], there exists g with
m neurons satisfying equation 3 where

m ≤ min{2
√
K +min{2

√
K, 3N}, 6

√
3N + 2}.

2. For given xi ∈ Rd, zi ∈ R, i ∈ [K], suppose that
equation 3 holds for some g with m neurons. Then,√

2min{3N,K − 2}+ 1

4
− 1

2
≤ m.

Thus, the minimum number of neurons m⋆ is bounded as√
2min{3N,K − 2}+ 1

4
− 1

2

≤ m⋆ ≤ min{2
√
K +min{2

√
K, 3N}, 6

√
3N + 2}

Remark 5. The upper bound in Theorem 5.1 directly shows
that m⋆ ≤ Θ(

√
N). The lower bound in Theorem 5.1 indi-

cates two facts:

• If 3N ≤ K − 2, then m⋆ ≥ Θ(
√
N),

• If 3N > K − 2, then m⋆ ≥ Θ(
√
K). Combining this

with K ≥ N , we have m⋆ ≥ Θ(
√
N).

All in all, m⋆ = Θ(
√
N).

Corollary 5.2 (FTC of 3-layer FC ReLU). For given m ∈
N, let N⋆ be the fine-tuning capacity of a 3-layer fully-
connected ReLU network g given in equation 17 with m
neurons. Then, N⋆ is bounded as below, for different range
of K:

1. If K ≤
⌊
m2

16

⌋
, then

N⋆ = K. (18)

2. If
⌊
m2

16

⌋
+ 1 ≤ K < m2+m+4

2 , then⌊
m2

108
− 2

3

⌋
≤ N⋆ ≤ K. (19)

3. If K ≥ m2+m+4
2 , then⌊
m2

108
− 2

3

⌋
≤ N⋆ ≤ m2 +m

6
. (20)

Proof. Suppose K ≤
⌊
m2

16

⌋
. By Theorem 5.1.1, for |T | =

K, there exists a 3-layer fully-connected ReLU network g
where the number of neurons of g is less than or equal to

min{4
√
K, 2

√
K + 3K, 6

√
3K + 2} = 4

√
K ≤ m.

This implies that N ≥ K, and since N ≤ K always holds,
we can conclude N⋆ = K.

Suppose K ≥
⌊
m2

16

⌋
+ 1. By Theorem 5.1.1, for |T | =⌊

m2

108 − 2
3

⌋
, there exists a 3-layer fully-connected ReLU

network g where the number of neurons of g is less than or
equal to

min{4
√
K, 6

√
3

⌊
m2

108
− 2

3

⌋
+ 2} (21)

= 6

√
3

⌊
m2

108
− 2

3

⌋
+ 2 ≤ m, (22)

where the inequality is derived from the fact that 4
√
K ≥

m for K ≥
⌊
m2

16

⌋
+ 1, and 6

√
3
⌊
m2

108 − 2
3

⌋
+ 2 ≤

6
√

3
(
m2

108 − 2
3

)
+ 2 = m . Now we can conclude that

N⋆ ≥
⌊
m2

108 − 2
3

⌋
.

Now we derive the upper bound on N⋆. If K ≥ m2+m+4
2 ,

then

m ≥
√
2min{3N,K − 2}+ 1

4
− 1

2

≥
√
min {6N,m2 +m}+ 1

4
− 1

2

= min

{√
6N +

1

4
, m+

1

2

}
− 1

2

= min

{√
6N +

1

4
− 1

2
, m

}
,

where the first inequality is from Theorem 5.1.2, and the
second inequality is from K ≥ m2+m+4

2 . We can simplify

the above inequalities as m ≥
√

6N + 1
4 − 1

2 . Since this
holds for any number of fine-tunable samples N , we have
N⋆ ≤ m2+m

6 .
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Figure 5: Visualization of FTC for 3-layer network in corol-
lary 5.2. In this figure, A =

⌊
m2

108 − 2
3

⌋
and B = m2+m

6 .

If
⌊
m2

16

⌋
+1 ≤ K < m2+m+4

2 , we use a trivial upper bound
N⋆ ≤ K, which completes our proof.

Fig. 5 illustrates the results in Corollary 5.2. For different
ranges of K, we have either a constant N⋆ = K, or up-
per/lower bounds on N⋆.

5.1 PROOF OF LOWER BOUND ON m

We follow the proof technique used in section 4.1. Since the
number of minimum pieces p(K) provided in Eq. 9 is still
valid for 3-layer neural network, we just need to check how
many pieces ḡθ(t) has. As stated in the proof of Theorem
3.3 of [Yun et al., 2019], ḡθ(t) has 2d1d2 + d2 + 1 pieces,
where d1 and d2 are the number of neurons in layer 1 and 2,
respectively. Thus, we have

min{3N,K − 2} ≤ 2d1d2 + d2 ≤ m2

2
+

m

2
,

where the last inequality is from the fact that 2d1d2 + d2 is
having its maximum value when d1 = d2 = m/2. Refor-
mulating the above inequality with respect to m completes
the proof.

5.2 PROOF OF UPPER BOUND ON m

We can prove m ≤ U for an upper bound U by construct-
ing a 3-layer neural network gθ having U neurons, which
satisfies Eq. 3 for given N and K. Below we construct
different types of neural networks satisfying the condi-
tion, where each construction gives different upper bounds
U1 = 4

√
K,U2 = 2

√
K +3N and U3 = 6

√
3N + 2. This

completes the proof of m ≤ min{U1, U2, U3}.
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Figure 6: Construction of 3-layer network that achieves
upper bound U1 = 4

√
K in Sec. 5.2. This construction

is directly from [Yun et al., 2019], and each neuron uses
hard-tanh activation in Eq. 23. This illustration gives an
example when T = {7}, i.e., we change the label for x7,
while maintaining the label for other samples.

Proof of m ≤ 4
√
K: Recall the neural network gθ con-

structed in the proof of Theorem 3.1 of [Yun et al., 2019],
containing

√
K neurons in both 1st layer and 2nd layer. See

Fig. 6 for the illustration of such network, when K = 16 and
N = 1, where the index of fine-tuning sample is T = {7}.
In such case z7 ̸= 0 from the definition of T . Each box
(node) in the figure is a neuron, where the curve inside the
box represents the activation function of the neuron. In this
figure, each neuron uses hard-tanh activation defined as

σH(x) =


−1, t ≤ −1

t, −1 < t < +1

+1, t ≥ +1,

(23)

where [−1, 1] is the non-clipping region of σH , and [−1, 1]c

is the clipping region of σH . Note that the digit i in the
box represents the location where the feature xi for the i-th
sample is mapped to. For example, for the first neuron of
layer 1, we have α1

1(xi) ∈ [−1, 1] for i ∈ {1, 2, 3, 4} and
α1
1(xi) > 1 for i ∈ {5, 6, · · · , 16}, where

αl
j(x) = Wl,jx+ bl,j (24)

is the input value of node j in layer l, when the input for the
network gθ is given as x. Here, the weight matrix and the
bias for layer 1 are denoted by W1 = [W T

1,1; · · · ;W T
1,
√
K
]

and b1 = [b1,1, · · · , b1,√K ], respectively. Given target
{zi}Ki=1, the proof of Theorem 3.1 of [Yun et al., 2019]
specified parameters θ = [W1,W2,W3, b1, b2, b3] satis-
fying gθ(xi) = zi for all i ∈ [K]. Assigning zi = 0 for
i ∈ [K] \ T and reusing these parameters is enough to sat-
isfy the desired condition for fine-tuning in Eq. 3. Note that
this network uses 2

√
K neurons with hard-tanh activations,

which can be converted to a ReLU neural network with
4
√
K neurons, using the fact that one hard-tanh neuron can

be expressed with two ReLU neurons. This directly proves
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Figure 7: Construction of 3-layer network that achieves
upper bound U2 = 2

√
K +3N in Sec. 5.2. This illustration

gives an example when T = {7}.

that 4
√
K ReLU neurons are sufficient for changing the

labels of N ≤ K samples.

Proof of m ≤ 2
√
K + 3N : We construct a 3-layer neural

network with U2 = 2
√
K+3N neurons which successfully

fine-tunes N samples. Fig. 7 illustrates the example of such
construction when K = 16 and N = 1. Here, we assumed
T = {7}, i.e., the label for 7-th sample is fine-tuned, but
similar proof can be applied to arbitrary T with |T | = N =
1. Here, our goal is to construct gθ satisfying gθ(x7) =
z7 ̸= 0 and gθ(xi) = 0 for all i ̸= 7. Our basic idea is, to
follow the construction in Fig. 6, except the activation used
in layer 2. The activation in layer 2 is defined as

σB(t) =


0, t /∈ [z7 − δ, z7 + δ]
z7
δ (t− z7 + δ), t ∈ [z7 − δ, z7)

− z7
δ (t− z7 − δ), t ∈ [z7, z7 + δ)

for arbitrary δ < mini̸=j
|zi−zj |

2 , which is having a small
bump near z7 as in Fig. 7. Among

√
K hard-tanh neurons

in layer 2 in Fig. 6, we only choose the neuron contain-
ing z7 (the non-zero target label) in the non-clipping re-
gion of the activation, e.g., the second neuron of layer 2.
Given that W2 is the weight matrix for 2nd layer in the
construction of Fig. 6, the weight matrix for 2nd layer
in the construction of Fig. 7 is defined as W̃2 := W2,2,
the 2nd row of W2. Then, the overall network looks like
gθ(x) = σB(W2,2σH(W1x + b1) + b2), which satisfies
gθ(x7) = z7 and gθ(xi) = 0 for all i ̸= 7. Note that the
activation σB with 4 pieces can be constructed by 3 ReLU
neurons. Consider constructing gθ by adding new neurons
(with σB activation) in layer 2 for each sample we want to
fine-tune, which allocates total 3N ReLU neurons in layer
2. Since layer 1 (as in Fig. 6) contains 2

√
K ReLU neurons,

one can confirm that our construction contains 2
√
K + 3N

ReLU neurons.

Proof of m ≤ 6
√
3N + 2: It is worth nothing that some

techniques developed for showing m ≤ 4N + 4 (shown in
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Figure 8: The construction of 3-layer network achieving
the upper bound U3 = 6

√
3N + 2 in Sec. 5.2. Here, we

consider the case when K = 16, N = 3 and T = {2, 4, 9}.

Appendix) are used to prove m ≤ 6
√
3N + 2. Thus, we

refer to some equations in Appendix during the proof.

We construct a neural network gθ with 6
√
3N + 2 ReLU

neurons, which fine-tunes N samples. For simplicity, here
we provide an example construction when K = 16, N = 3,
and T = {2, 4, 9}. By using the definition of J in Eq. 14, we
have J = {1, 2, 3, 4, 5, 8, 9, 10, 16}. We will now construct
a 3-layer neural network gθ satisfying

gθ(xi) = zi, i ∈ J, (25)
gθ(xi) = 0, i /∈ J, (26)

which is illustrated in Fig. 8. Note that Eq. 25 can be easily
proved by fitting the network using the samples xi with
i ∈ J . In the rest of the proof, we will show that for such gθ
satisfying Eq. 25, we can prove Eq. 26. As an example, we
will only show gθ(x6) = 0, but a similar proof technique
can be applied to arbitrary xi with i /∈ J .

We construct the first layer by only using samples xi with
i ∈ J . We partition the |J | samples into

√
|J | groups, fol-

lowing the trick used in [Yun et al., 2019] for 3-layer net-
work. Let us denote the first index of j-th group as smin

j and
the last index of j-th group as smax

j . In other words, J is de-
composed into

√
|J | groups as J = {smin

1 , · · · , smax
1 , } ∪

· · · ∪ {smin√
|J|

, · · · , smax√
|J|

}.

Without loss of generality, we can assume that samples are
ordered as vTx1 < vTx2 < · · · < vTxK for some v. Let
ci := vTxi and define c0 = c1 − ϵ, cK+1 = cK + ϵ for
arbitrary ϵ > 0. Then, we choose W1, b1 as in Eq. 28, using
v and ϵ defined above.

Here, we focus on the relationship between the outputs
of layer 1, when the neural network inputs are x5,x6,x8,
respectively. From the definition of ci, we have c6 ∈
(c5, c8). Using Eq. 24 and Eq. 28, we have α1

j (x6) ∈
(α1

j (x5), α
1
j (x8)), meaning that the input α1

j of layer 1 (for
x6) is bounded by α1

j for x5 and α1
j for x8. After passing it



through the ReLU activation, we also have

β1
j (x6) ∈ (β1

j (x5), β
1
j (x8)), (27)

for all j ∈ {1, · · · ,
√
J} using the monotonicity of ReLU.

Kore precisely, we have β1
1(x6) = +1, −1 ≤ β1

2(x6) ≤ +1,
and β1

3(x6) = −1. This is illustrated in the first layer in
Fig. 8. Now we move to the construction of the second layer.
Recall that the main idea of constructing W2, b2 is using the
linear system in Eq. 33. Using Eq.32 and the fact that we can
set all elements of W2 as positive (as shown in [Yun et al.,
2019]), Eq. 27 implies α2

j (x6) ∈ (α2
j (x5), α

2
j (x8)) for all

j ∈ {1, · · · ,
√
J}. Finally, we set the activation function of

layer 2 as

σL(t) =

{
t, if |t| ≤ 1,

0, if |t| ≥ 1

and arbitrarily increase λ such that β2
j (x6) = 0. Then, the

output of the network gθ(x) = σL(W2(σH(W1x+ b1)) +
b2) satisfies gθ(x6) = 0.

Now the question is, what is the upper bound on |J |? Recall
that Lemma 4.7 guarantees that |J | ≤ 3N + 2. Since σH

and σL can be represented by 2 ReLUs and 4 ReLUs, re-
spectively, 2

√
3N + 2 + 4

√
3N + 2 = 6

√
3N + 2 ReLU

neurons are sufficient for our 3-layer network construction.

6 EXTENSION TO OTHER NEURAL
NETWORKS

For deeper neural networks, a lower bound on N can be
obtained in terms of the maximum width d, the number of
layers L, and the number of pre-trained samples K.

Proposition 6.1. For L ≥ 4, K ≥ 3, T ⊆ [K], |T | = N ,
there exists an L-layer ReLU network with maximum width
d satisfying equation 3 and

d ≤ 4min


√√√√ 3N√⌊

L−1
2

⌋ + 5,
√
K

+ 2.

The main challenge for proving Proposition 6.1 lies in con-
structing a suitable neural network, which can be addressed
by utilizing our 3-layer network from Section 5 and the
construction idea provided in Figure 2 of [Yun et al., 2019].
See Appendix B for the proof of Proposition 6.1.

7 EXPERIMENTS

In this section, we provide experimental results on a syn-
thetic dataset, which supports our theoretical results. The
experimental setup is as follows. We first randomly gen-
erate K samples D = {(xi, yi)}Ki=1 where the feature
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Figure 9: Fine-tuning loss ℓFT computed for a network
trained on a synthetic dataset, for various N and m. Here,
the number of data points used for pre-training is set to
K = 1000. As shown in the orange line, the number of
neurons m required in the fine-tuning network to achieve a
small loss ℓFT grows in the order of Θ(

√
N), the square root

of the number of modified samples. This result coincides
with our theoretical result in Theorem 5.1.

and the label of i-th sample have the following distribu-
tions: xi ∼ N(0, Id) and yi ∼ Unif[−1, 1], where the
feature dimension is d = 10. Then, we train a network
ReLU network f that fits the dataset D, i.e., equation 1
holds, thus having zero mean-squared-error (MSE) loss
ℓ = 1

K

∑K
i=1(f(xi) − yi)

2. Considering the fine-tuning
scenario, we construct another dataset D′ = {(xi, y

′
i)}Ki=1

as follows. We first initialize D′ = D. Then, we ran-
domly choose N out of K samples in D′, and re-define
the label of the N samples as y′i ∼ Unif[−1, 1]. Finally,
we implement the fine-tuning process. Following our addi-
tive fine-tuning scenario, we freeze f and train a 3-layer
ReLU network gθ with m neurons, in a way that f + gθ
fits the new dataset D′. We define the fine-tuning loss as
ℓFT = 1

K

∑K
i=1(f(xi) + gθ(xi)− y′i)

2.

Figure 9 shows the fine-tuning loss ℓFT for different m
and N . As expected, for a given N , the fine-tuning loss
decreases as m increases. For each N , the yellow line in the
figure shows the minimum m satisfying ℓFT (m,N) ≤ 0.04.
This yellow line indicates that the required number of neu-
rons to achieve small fine-tuning loss follow the tendency of
Θ(

√
N) shown in the red line in the figure, which coincides

with our theoretical result in Theorem 5.1.

8 CONCLUSION
We introduced Fine-Tuning Capacity (FTC), a generaliza-
tion of memorization capacity concept for fine-tuning appli-
cations. This concept is defined to provide theoretical view
on current paradigm of fine-tuning large pre-trained models.
As an initial step towards analyzing FTC, we focused on
the additive fine-tuning scenario where a side network is
added to the frozen pre-trained network. We obtained up-
per/lower bounds on FTC for shallow ReLU networks. For
2-layer network, we showed that fine-tuning N samples is
possible by using ReLU networks with m = Θ(N) neurons,
irrespective of the size of the pre-trained network and the
number of total samples K used during pre-training. For



3-layer network, the required amount of neurons reduces
to m = Θ(

√
N), for practical scenarios where the number

of samples N we want to change labels is far less than the
number of total samples K used for pre-training.
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A PROOF OF m ≤ 4N + 4 (DEFERRED FROM SEC. 5.2)

We construct a 3-layer neural network gθ with 4N + 4 ReLU neurons which fine-tune N samples. Note that we can find v
such that vTxi ̸= vTxj for all i ̸= j, since we assume xi ̸= xj for all i ̸= j. Without loss of generality, we order samples
such that vTx1 < vTx2 < · · · < vTxK . Let ci := vTxi and define c0 = c1 − ϵ, cK+1 = cK + ϵ for arbitrary ϵ > 0.
Recall that the indices for the samples we want to fine-tune is denoted by T = {T1, · · · , TN}. We define dummy indices
T0 = 1 and TN+1 = K. Consider 2N + 1 groups of disjoint indices,

s1 = {T0, · · · , T1 − 1}, s2 = {T1},
s3 = {T1 + 1, · · · , T2 − 1}, s4 = {T2},

· · · , s2N = {TN},
s2N+1 = {TN + 1, · · · , TN+1},

where group s1 is empty when T1 = 1, and group s2N+1 is empty when TN = K. We denote the maximum/minimum
element of set sj as smax

j and smin
j , respectively, i.e., smax

j = max sj and smin
j = min sj . We place 2N + 1 neurons on

layer 1, and define parameters for layer 1 as

W1,j = (−1)j−1 4

csmax
j

+ csmin
j+1

− csmax
j−1

− csmin
j

vT (28)

b1,j = (−1)j
csmax

j
+ csmin

j+1
+ csmax

j−1
+ csmin

j

csmax
j

+ csmin
j+1

− csmax
j−1

− csmin
j

(29)

for all j = 1, · · · , 2N + 1. Under such setting, it can be easily checked that

α1
j (xi) ∈ [−1, 1] for i ∈ sj

α1
j (xi) /∈ [−1, 1] for i /∈ sj

for all j ∈ [2N + 1], where αl
j(x) defined in Eq. 24 is the input value of node j in layer l, when the input for the network

is x. Fig. 10 shows the example of such construction, when K = 16, N = 2 and T = {4, 7}. In such case, we have
2N + 1 = 5 disjoint groups:

s1 = {1, 2, 3}, s2 = {4}, s3 = {5, 6},
s4 = {7}, s5 = {8, 9, · · · , 16}.

As in Fig. 10, the input of j-th neuron lie in the non-clipping region αj
1(xi) ∈ [−1, 1] when i ∈ sj . For example, the first

neuron (j = 1) in the first layer has α1
1(xi) ∈ [−1, 1] for i ∈ s1 = {1, 2, 3}.

*Equal Contribution
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Figure 10: The construction of 3-layer network achieving upper bound U3 = 4N + 4 in Sec. 5.2. Here, we consider the case
when K = 16, N = 2 and T = {4, 7}.

Now we construct layer 2 as below. Let S = ∪2N+1
j=1 {smin

j } be the index set containing the minimum index of each group sj
for j ∈ [2N +1], which is S = {1, 4, 5, 7, 8} in the above example. Our goal is to construct W2 ∈ R2N+1 and b2 ∈ R such
that a single node in layer 2 locates (1) {xi}i∈S to the desired target zi, and (2) {xi}i/∈S to the clipping region [−1, 1]c. In
other words, our desired conditions are

α2
1(xi) = zi, ∀i ∈ S, (30)

α2
1(xi) ∈ [−1, 1]c, ∀i /∈ S. (31)

Note that the input of the first node in the second layer is represented as

α2
1(xi) =

2N+1∑
j=1

W2,jβ
1
j (xi) + b2 (32)

where W2 = [W2,1; · · · ;W2,2N+1] and

β1
j (xi) = σH(α1

j (xi))

is the output of node j in layer 1, when the input to the network is xi. Thus, the first condition in Eq. 30 can be represented
as a linear system

K

[
W2

b2

]
=

 zi1
...

zi2N+1

 (33)

where ik for k ∈ [2N + 1] is defined the as the elements of S = {i1, · · · , i2N+1} and

K =

 β1
1(xi1) ... β1

2N+1(xi1) 1
...

. . .
...

...
β1
1(xi2N+1

) ... β1
2N+1(xi2N+1

) 1

 . (34)

In our above example, we have

K =


β1
1(x1) +1 −1 +1 −1 1
+1 β1

2(x4) −1 +1 −1 1
+1 −1 β1

3(x5) +1 −1 1
+1 −1 +1 β1

4(x7) −1 1
+1 −1 +1 −1 β1

5(x8) 1





Using a similar technique used in [Yun et al., 2019], this matrix K ∈ R(2N+1)×(2N+2) satisfies two conditions:

(1) rank(K) = 2N + 1,

(2) ∃ν = [ν1, · · · , ν2N+2] ∈ null(K)

such that νi > 0 ∀i ∈ [2N + 1].

Thus, the linear system in Eq. 33 has infinitely many solution in the form of[
W2

b2

]
= µ+ λν (35)

for any scalar λ and a particular solution µ. With the logic used in the proof of Lemma B.1 in [Yun et al., 2019], we can
scale λ sufficiently such that the second condition in Eq. 30 holds. Thus, by using such weight W2 and bias b2, the input of
layer 2 looks like in Fig. 10. Let the neuron in layer 2 has activation function

σT (t) =


t, if t < 1

− 1
δ (t− 1− δ), if 1 ≤ t < 1 + δ

0, if t ≥ 1 + δ

Then, the output of the network

gθ(x) = σT (W2(σH(W1x+ b1)) + b2) = σT (α
2
1(x))

satisfies

gθ(xi) =

{
zi, i ∈ T

0, i ∈ [K] \ T

by using the definition of σT and Eq. 30. Note that the first layer of this construction uses 2N+1 neurons with σH activation,
and the second layer uses 1 neuron with σT activation. Since σH and σT can be converted into 2 ReLU neurons, our
construction use total 4N + 4 neurons, which completes the proof.

B PROOF OF PROPOSITION 6.1

Recall the 3-layer network illustrated in Figure 8. For given T ⊂ [K], let us denote this 3-layer network satisfying equation 3
by gθ,T which has maximum width 4min{

√
3|T |+ 2,

√
K}. In what follows, we construct an L-layer network based on

gθ,T .

We partition T into
⌊
L−1
2

⌋
subsets: T1, T2, · · · , T⌊L−1

2 ⌋ satisfying |Ti| ≤ |T |/
⌊
L−1
2

⌋
+1 for all i. It can be easily seen that

gθ,T1
(x) + gθ,T2

(x) + · · ·+ gθ,T⌊L−1
2 ⌋(x) satisfies equation 3. Using the construction idea provided in Figure 2 of [Yun

et al., 2019], the above function can be represented as an L-layer network, which has a maximum width less than or equal to

max
i

{4min{
√

3|Ti|+ 2,
√
K}+ 2}, (36)

and we conclude.
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