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Abstract
Modern classifiers, especially neural networks,001
excel at leveraging subtle signals competing002
with many other signals in the data. When such003
noisy setups lead to accuracy rates of 90%+,004
as is for instance the case with current high-005
performance neural translationese classifiers,006
it raises concerns about potential spurious cor-007
relations in the data with the target labels – a008
phenomenon often referred to as "Clever Hans".009
Recent research has indeed found evidence that010
high-performance multi-lingual BERT trans-011
lationese classifiers use spurious topic infor-012
mation in the form of location names, rather013
than just translationese signals. In this paper,014
we address two difficult open problems associ-015
ated with confounding signals in translationese016
classification. First, we use probing to pro-017
vide direct evidence that these classifiers learn018
and use spurious topic correlations, some po-019
tentially unknown. Second, we introduce ad-020
versarial training as a strategy to mitigate any021
spurious topic correlation, including those un-022
known apriori. We show the effectiveness of023
our approach on translationese classification024
using three multi-lingual models, two language025
pairs, and four translationese data sets, as well026
as on a non-translationese classification task:027
occupation classification.028

1 Introduction029

"Translationese" describes the systematic linguis-030

tic differences between originally authored, non-031

translated texts in a given language, and texts trans-032

lated into the same language, in the same genre and033

style (Gellerstam, 1986). Translationese effects034

can manifest at all levels of linguistic representa-035

tion including vocabulary, syntax, semantics, and036

discourse. Five factors have been identified in the037

literature as the primary causes of translationese:038

source language interference, over-adherence to039

target language norms, explicitation, implicitation,040

and simplification (Toury, 1980; Baker et al., 1993;041

Teich, 2012; Volansky et al., 2013).042

In this paper, we focus on translationese classi- 043

fication, which refers to classifying text in a given 044

language as Original (O) or Translated (T). Trans- 045

lationese signals can be very subtle, and are often 046

competing with many other signals in the data in- 047

cluding genre, style, topic, author, bias, and so on. 048

Current methods for translationese classification 049

are mostly based on representation learning neural 050

networks and large language models (Sominsky 051

and Wintner, 2019; Pylypenko et al., 2021). These 052

models perform exceedingly well on the task: Py- 053

lypenko et al. (2021) show that mBERT-based ap- 054

proaches (Devlin et al., 2019) perform much better 055

than traditional manual feature engineering-based 056

classification models (e.g. SVMs) by as much as 057

15-20 accuracy points. 058

Using Integrated Gradients (Sundararajan et al., 059

2017), (Amponsah-Kaakyire et al., 2022) found 060

that mBERT uses some spurious topic-based cor- 061

relations as short-cuts for translationese classifica- 062

tion instead of only proper translationese signals, 063

showing evidence of "Clever Hans" (Hernández- 064

Orallo, 2019; Lapuschkin et al., 2019). Using a 065

subset of the MPDE dataset (Amponsah-Kaakyire 066

et al., 2021), containing half German original sen- 067

tences, and half translations from Spanish to Ger- 068

man, (Amponsah-Kaakyire et al., 2022) show that 069

some of the top tokens mBERT uses for O/T classi- 070

fication are geographical location names: German- 071

based location names for O and Spanish-based lo- 072

cation names for T. These are clearly topic and 073

not translationese signals. Recently, (Borah et al., 074

2023) presented an approach to quantify and miti- 075

gate the impact of “Clever Hans” in translationese 076

classification. They focus on quantifying any po- 077

tentially spurious but possibly unknown topic in- 078

formation in the data aligned with O/T target labels 079

and, using unsupervised topic modeling techniques 080

like LDA (Blei et al., 2001) and BERTopic (Groo- 081

tendorst, 2022), and present the topic floor, average 082

weighted alignment of documents in any of the 083
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topics with target classification labels, as a worst-084

case upper bound to which a classifier may exploit085

spurious topic information aligned with O/T target086

labels. The topic floor provides a spurious topic087

information-based baseline for classification mod-088

els. (Borah et al., 2023) were only able to mitigate089

known topic signals in the form of location-named090

entities (NEs) (Amponsah-Kaakyire et al., 2022)091

by masking NEs in the training and test data.092

From a methodological point of view, (Borah093

et al., 2023) provided only indirect evidence that094

mBERT uses topic signals in O/T classification095

by showing that in principle a mBERT classifier096

can learn LDA/BERTopic clusters as target labels097

and that masking known spurious topics such as098

location and other NEs in the data established by099

manual analysis of the output of attribution meth-100

ods reduces O/T classification accuracy. Showing101

that if told to do so, mBERT can learn topics is not102

the same as showing that a mBERT O/T classifier103

is learning and using spurious topics as informa-104

tion in O/T classification all by itself. Furthermore,105

masking NEs in data changes the data (compared106

to the data without masking) and this may be the107

reason for reduced classification accuracy. In sum,108

even though it is likely that it does, evidence that109

mBERT uses Clever Hans in the form of spurious110

topic information in O/T classification provided111

in (Borah et al., 2023) is only indirect and at best112

episodic for location NEs. In addition, (Borah et al.,113

2023) can only address known spurious topic miti-114

gation (geographic location and other NEs), even115

though spurious topics may be manifest in lexical,116

morpho-syntactic, and semantic information, and,117

more importantly, many more of the (unknown)118

topics established by LDA or mBERTtopic (over119

and above geographic location NEs) may carry120

spurious information with respect to the O/T target121

label classification.122

Thus, two important questions regarding "Clever123

Hans" in translationese classification remain unan-124

swered. First, there is no direct evidence that spuri-125

ous topic signals in translationese data are actually126

learned and used by the target label O/T classi-127

fiers all by themselves. It is not clear whether the128

Clever Hans spurious "topic floor" posited by (Bo-129

rah et al., 2023) is real in the sense that it is learned130

and used by the O/T classifiers. How can we ob-131

tain direct evidence for this? Second, how can132

we leverage unsupervised topic information from133

any LDA/BERTopic clusters to mitigate the impact134

of all potentially spurious unknown topic correla-135

tions with the desired target label classification, be- 136

yond the potentially problematic and limited scope 137

masking of specific NEs for known spurious topic 138

information in the data as established by manual 139

analysis? 140

In this paper, we address the two questions us- 141

ing probing for the first and adversarial training 142

for the second. We probe mBERT’s encoder layers 143

to test whether a high-performance mBERT-based 144

O/T classifier can identify any potentially spurious 145

topic correlations with target classifications cap- 146

tured by LDA, crucially unlike (Borah et al., 2023) 147

without training BERT to learn topics. We com- 148

pare three mBERTs - one fine-tuned on the MPDE 149

translationese data with O/T labels as a transla- 150

tionese classifier, another fine-tuned on the same 151

data but without O/T labels as a simple masked lan- 152

guage model (MLM, and not a classifier), and an 153

off-the-shelf mBERT model not fine-tuned on any 154

further data. The logic is that if mBERT O/T classi- 155

fiers learn and use spurious LDA topic correlations 156

with O/T target labels, then probing mBERT O/T 157

classifiers for LDA topics should yield higher accu- 158

racy/F1 than an MLM mBERT and an off-the-shelf 159

mBERT. If this is observed, this constitutes direct 160

evidence that an mBERT O/T classifier learns and 161

uses spurious unknown topic information all by 162

itself and that the "topic floor" proposed by (Borah 163

et al., 2023) is real. For our second research ques- 164

tion of extending Clever Hans mitigation beyond 165

manually established known spurious correlations 166

(such as location NEs), we utilize adversarial train- 167

ing to suppress any LDA-based potentially spuri- 168

ous unknown topic signals (whatever they are) in 169

translationese classification. If this is successful, 170

we should see adversarially-trained O/T classifiers 171

with high O/T prediction accuracy and low LDA 172

topic probing results. Our contributions include: 173

1. We use probing to prove that an mBERT O/T 174

classifier learns and uses spurious topic cor- 175

relations in the data as represented by LDA 176

topics with the classification targets. 177

2. To the best of our knowledge, we are the first 178

to show that domain adversarial training miti- 179

gates unknown Clever Hans signals across the 180

board in the form of LDA topics while ensur- 181

ing strong O/T classification performance. 182

3. We show that our LDA and adversarial train- 183

ing based "Clever Hans" mitigation general- 184

izes to different languages (de-es, de-en and 185
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en-fr), translationese data sets (MPDE, Ted,186

Political Commentary and Literature), models187

(mBERT, XLM-R and mBART) and tasks (transla-188

tionese and occupation classification).189

4. We compare our automatic version of LDA190

and adversarial training based Clever Hans191

mitigation with manual known spurious cor-192

relation mitigation based on attribution ap-193

proaches (Wang et al., 2022) and (Borah et al.,194

2023).195

Our probing and adversarial training based196

methodology to detect and mitigate ‘Clever Hans’197

is depicted in Fig 1. Translationese classification198

is a paradigmatic instance of classification using199

weak signals competing with many other signals in200

the data. Our occupation classification experiment201

indicates that our approach is useful in other classi-202

fication scenarios where the possibility of Clever203

Hans spurious correlations is at stake. 1204

2 Related Work205

2.1 Clever Hans and Translationese206

Classification207

Previous work on identifying Clever Hans in208

machine learning models includes (Lapuschkin209

et al., 2019), who introduced Layer-wise Relevance210

(LRA) to unmask Clever Hans behavior and under-211

stand what machines can learn. (Hernández-Orallo,212

2019) presented limitations of LRA and issues with213

evaluating the performance of explainability meth-214

ods. Unmasking and mitigating Clever Hans is215

an active area of research in XAI (Mohseni et al.,216

2021) but to date rarely addressed in NLP (Heinz-217

erling, 2020; Niven and Kao, 2019; McCoy et al.,218

2019).219

Early efforts in translationese classification fo-220

cused on exploring hand-crafted, linguistically in-221

spired features, manual feature engineering and222

classical supervised machine learning classifiers223

like Support Vector Machines (SVMs) and De-224

cision Trees etc. (Ilisei et al., 2010; Baroni and225

Bernardini, 2005; Volansky et al., 2013; Rubino226

et al., 2016; Avner et al., 2016). (Rabinovich and227

Wintner, 2015) present unsupervised clustering-228

based approaches.229

More recent research uses feature and representa-230

tion learning approaches based on neural networks231

(Sominsky and Wintner, 2019; Pylypenko et al.,232

1Code and data at http://www.anonymized/for/review

2021). (Pylypenko et al., 2021) show that repre- 233

sentation learning-based approaches like mBERT 234

outperform handcrafted and feature engineering ap- 235

proaches and this is due to feature learning rather 236

than the classifiers (Amponsah-Kaakyire et al., 237

2022). Manually inspecting output from Explain- 238

able AI (XAI) approaches like IG (Sundararajan 239

et al., 2017), (Amponsah-Kaakyire et al., 2022) 240

found that mBERT exploits topic signals in the 241

form of location names spuriously correlated with 242

the O/T classification labels. 243

(Borah et al., 2023) use translationese classifi- 244

cation as a setting to measure and mitigate Clever 245

Hans in classification where signals are weak and 246

competing with many other signals. The basic idea 247

is simple: when, as is generally the case, topic 248

signals in the data are unknown, they use unsuper- 249

vised topic clustering, LDA and mBERTtopic, and 250

measure overlap between the documents in a given 251

topic and the target O/T classes, i.e. they count how 252

many of the documents in a topic are O and how 253

many are T. A topic that is perfectly aligned with O 254

and T is either 100% O or 100% T, and a topic that 255

is maximally undecided between O and T is 50% 256

O and 50% T. The "topic floor" of the topics in a 257

data set for classification targets O and T is then 258

simply the weighted average of the alignments of 259

the topics with O and T, defined using an alignment 260

measure. The alignment of a topic topi with O and 261

T is given by 262

alignO,T (topi) =
max(|topi ∩O|, |topi ∩ T |)

|topi|
263

The weighted average over n topics top is: 264

avg_alignO,T (top) =
n∑

i=1

wi × alignO,T (topi) 265

where a weight wi = |topi|/|Data| is just the pro- 266

portion of paragraphs in topic topi divided by the 267

total number of paragraphs in the data. 268

The "topic floor" is proposed as an upper bound 269

of what spurious topic correlations may contribute 270

to target classification results and as a baseline for 271

translationese classifiers. They also show that their 272

alignment measure is the same as cluster purity 273

(Zhao, 2005), although cluster purity was not in- 274

tended to quantify Clever Hans. (Borah et al., 2023) 275

present Clever Hans mitigation, but only for known 276

topic spurious correlations: they mask location NEs 277

in the data as a known spurious topic correlation 278

signal from the work of (Amponsah-Kaakyire et al., 279
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Figure 1: Probing and Adversarial Training Based Method

2022) and similar to (Dutta Chowdhury et al., 2022)280

also experiment with full PoS-based data mask-281

ing. While the research presented in (Borah et al.,282

2023) is thought-provoking and makes an impor-283

tant contribution to an area that is understudied,284

namely quantifying Clever Hans in classification,285

it is lacking in two major respects: first, it only286

shows indirectly that topic-based spurious correla-287

tions are indeed learned and used by O/T classifiers288

by showing that mBERT can be trained (i.e. told) to289

learn LDA (and BERTopic) topics as target classes.290

This, however, is not the same as showing that an291

mBERT O/T classifier on its own accord (all by292

itself) picks up and uses any potentially spurious293

topic information as represented by LDA topics.294

Second, Clever Hans mitigation is only presented295

for manually established known spurious topic cor-296

relations and via data masking. This is both limit-297

ing and unfortunate as masking interferes with the298

data. In this paper, we address both shortcomings.299

Finally, translationese is not just an important300

topic in basic linguistic research: many practical301

cross-lingual and multi-lingual applications are af-302

fected by translationese (Zhang and Toral, 2019;303

Singh et al., 2019; Artetxe et al., 2020; Clark et al.,304

2020b), and translationese is regarded as one of the305

final frontiers of high-resource machine translation306

(Freitag et al., 2019, 2020; Ni et al., 2022). The ef-307

fects of translationese on machine translation (MT)308

training and evaluation were studied in many prior309

works (Kurokawa et al., 2009; Lembersky et al.,310

2012; Toral, 2019; Graham et al., 2019; Freitag311

et al., 2019, 2020). Further, building better transla-312

tionese classifiers may lead to better MT training313

and evaluation and improved flagging of (human314

or machine) translated data while scraping the web315

(Thompson et al., 2024).316

2.2 Probing 317

Early work on probing neural networks focused on 318

extracting properties like gender, tense, and PoS 319

using linear classifiers (Hupkes et al., 2018). Prob- 320

ing into inner layers of deep neural networks in 321

NLP and Computer Vision was introduced by (Et- 322

tinger et al., 2016), (Shi et al., 2016) and (Alain 323

and Bengio, 2018) respectively. In our paper, we 324

use probing to find direct evidence that mBERT 325

learns and uses spurious topic signals as provided 326

by unsupervised topic modeling approaches (LDA) 327

in translationese classification. 328

2.3 Domain-Adversarial Training 329

Domain Adversarial Training was introduced by 330

(Ganin and Lempitsky, 2015) for domain adapta- 331

tion where models learn features helpful for a target 332

task but invariant to changes in the domain. Train- 333

ing is jointly performed with two objectives: one 334

to predict target class labels and one to predict the 335

domain and then regularising the former model to 336

decrease the accuracy of the latter using a gradi- 337

ent reversal layer (GRL). The GRL multiplies the 338

gradient by a certain negative constant during back- 339

propagation, so that the loss of the domain clas- 340

sifier is maximized while training. (Stacey et al., 341

2020) used an ensemble adversarial technique to 342

reduce known hypothesis-only bias in Natural Lan- 343

guage Inference (NLI) due to spurious correlations 344

between natural language utterances and their re- 345

spective entailment classes. In our paper, we train 346

our model adversarially to the topic classifier to 347

reduce the use of any (and not just specific known) 348

potentially spurious topic signals by mBERT in 349

O/T target label classification. To the best of our 350

knowledge, this is the first time adversarial training 351

has been explored in unknown topic-based ‘Clever 352

Hans’ mitigation in translationese classification. 353

We provide a more comprehensive analysis on 354

previous and current work on detecting and miti- 355
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N MODEL ACCURACY F1-SCORE

[mBERT+OTD+CL] 0.531 0.635
2 [mBERT+OTD] 0.515 0.544

[mBERT] 0.521 0.556

[mBERT+OTD+CL] 0.412 0.563
3 [mBERT+OTD] 0.392 0.457

[mBERT] 0.389 0.468

[mBERT+OTD+CL] 0.327 0.483
5 [mBERT+OTD] 0.313 0.414

[mBERT] 0.318 0.424

[mBERT+OTD+CL] 0.242 0.387
10 [mBERT+OTD] 0.224 0.320

[mBERT] 0.229 0.331

[mBERT+OTD+CL] 0.164 0.275
20 [mBERT+OTD] 0.149 0.227

[mBERT] 0.153 0.243

Table 1: Probing results (last encoder layer as features)
for LDA Topics = n topic prediction on the de-es dataset

gating spurious correlations in Appendix E. We re-356

produce (Wang et al., 2022), a recent on mitigating357

spurious correlation (see Appendix F) in sentiment358

and occupation classification across datasets as it359

presents a competitive performance across datasets.360

(Wang et al., 2022) utilize attention scores to find361

top spurious tokens and mitigate them by masking362

the data. We found that, although mitigation using363

Cross Dataset Analysis proposed by (Wang et al.,364

2022) performs well in translationese classification,365

however, it does not effectively mitigate spurious366

topic signals as seen using our IG experiments (Ta-367

ble 22).368

3 Data369

We use the Multilingual Parallel Direct Europarl370

(MPDE) corpus (Amponsah-Kaakyire et al., 2021),371

which is a multilingual corpus with parallel data372

from the Europarl proceedings where the trans-373

lation direction is known and all source data are374

originally authored (i.e. not already the result of375

translations from other languages themselves). We376

utilize two language pairs from the MPDE corpus:377

(1) de-es: a monolingual German dataset consist-378

ing of half German (DE) originals and half transla-379

tions from Spanish (ES) to German and (2) de-en:380

a monolingual German dataset consisting of half381

German (DE) originals and half translations from382

English (EN) to German. Each of these datasets383

consists of 42k paragraphs, half of which are O and384

half are T. The average length (in terms of tokens)385

per training example (paragraph) is 80.386
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Figure 2: mBERT-Adv Acc and F1 on MPDE de-es

4 Unsupervised Clustering 387

We use Latent Dirichlet Allocation (LDA) (Blei 388

et al., 2001) using (Rehurek and Sojka, 2011) as our 389

unsupervised automatic topic modeling approach 390

in our experiments. LDA performs topic model- 391

ing using two assumptions: (1) documents are a 392

mixture of topics, and (2) topics are a mixture of 393

words. Using these assumptions, LDA generates a 394

document-term matrix that consists of documents 395

as rows and terms or words corresponding to each 396

document as columns. The parameters used in LDA 397

are α and β, which determine the per-document 398

topic distribution, and the per-topic word distribu- 399

tion respectively. We need to specify the number of 400

topics n for LDA to generate. In our experiments 401

we explore n = 2, 3, 5, 10, and 20, as these con- 402

sistently show high topic floor scores in the range 403

[0.55, 0.60] (Borah et al., 2023). After performing 404

LDA, we assign each data point in our dataset to 405

the topic to which it belongs with the highest prob- 406

ability. We use the topics as labels for our probing 407

and adversarial training experiments. 408

5 Probing for Topics in O/T Classification 409

5.1 Probing Experiment Design 410

Below, we present our probing-based approach to 411

show whether a high-performance mBERT-based 412
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Figure 3: XLM-R-Adv Acc and F1 on MPDE de-es

translationese classifier learns to use spurious corre-413

lations in the form of LDA-based topics. We probe414

three mBERTs for topic classification:415

1. [mBERT+OTD+CL]: a BERTforSequence-416

Classification fine-tuned on MPDE transla-417

tionese data with original/translated labels for418

O/T classification.419

2. [mBERT+OTD]: a BERTforMaskedLM fine-420

tuned on the same MPDE data for a MLM421

task but without O/T classification.422

3. [mBERT]: a BERTforSequenceClassifica-423

tion off-the-shelf, without any fine-tuning on424

MPDE or O/T classification.425

Each of the mBERT models is pre-trained on426

the same data. The logic behind our experiment427

is: mBERT finetuned on O/T data and trained for428

O/T classification [mBERT+OTD+CL] will learn429

and use spurious topic information only if this in-430

formation is useful to O/T classification. If this is431

the case, then this mBERT should exhibit better432

performance on LDA topic probes compared to a433

mBERT fine-tuned on the same O/T data with the434

regular MLM objective but not trained for O/T clas-435

sification [mBERT+OTD] and better than a simple436

mBERT out of the box [mBERT] not fine-tuned at437

all on the O/T data.438
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Figure 4: mBART-Adv Acc and F1 on MPDE de-es

We perform topic classification probing using 439

mBERT’s last layer activations as features and LDA 440

topics as the target labels of a simple logistic re- 441

gression probe. For topics, we take the clusters 442

found by LDA, and assign each data point the topic 443

it belongs to with the highest probability. We per- 444

form experiments by setting n = 2, 3, 5, 10, and 20. 445

Training and hyperparameter details are provided 446

in Appendix G.1. 447

5.2 Probing Results 448

To account for the stochastic nature of LDA, we 449

perform probing experiments on three different 450

runs of LDA and average the results. We keep 451

the same seed for logistic regression across runs. 452

Table 1 shows the probing results for all numbers 453

of LDA topics n. Compared to [mBERT+OTD] 454

and [mBERT], probing [mBERT+OTD+CL] yields 455

the highest topic scores in terms of accuracy and, 456

even more pronounced, F1 scores. This shows that 457

O/T classification makes mBERT learn spurious 458

topic information and that this does not happen (to 459

the same extent) for mBERT finetuned on the same 460

O/T data with just the MLM objective and without 461

O/T classification and similarly for mBERT out of 462

the box. Table 6 in Appendix A.1 shows the same 463

trend for probing de-en. 464
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MODEL NON-ADVERSARIAL ADVERSARIAL

Original Translated Original Translated

situations entstand ppm italo
. virus uks domino

ria inti andersson ##unta
##lk sagte prosa ##inne
##iet entdeckte monterrey arequipa

mBERT golden gras prvni moliere
sak buts ##ibe brachten
turn nicaragua hang and

##emeb rekord ##tero ##saka
orange bilbao plastik giorgio

Serie inn Visa PAD
: Bali PG definition

happening Nicaragua download uit
DDR mete ! tru
TH Hyper Fro elementar

XLM-R _kat stie _Pea lav
Geschmack Amen istic 2008

igo Paradox Statistika ember
bestellen schrieb straff st##adte

plural Colombia Digital site

_ble Colombia app Tob
_boy _studier so assis
entes _Sanchez inge dad

! cio _SEA Anna
_Schreib GO esse tan

mBART _regenera trop 72 nsic
_back Ecuador dien Inv

_traditionell _Mu _Vis Earth
donner ringe _ros ibi

stop ’ _frustr hw

Table 2: Top 10 tokens for non-adversarial and adver-
sarial (n=2) models trained on de-es MPDE dataset

6 Adversarial Training vs. Clever Hans465

6.1 Adversarial Training Experiment Design466

We employ Adversarial Training to utilize the spu-467

rious topic signals as identified by the unsuper-468

vised automatic topic clustering methods to miti-469

gate "Clever Hans" in translationese.470

We take topic labels as adversarial data, and O/T471

translationese labels as clean data. While training472

the model, we minimize the loss for O/T signals,473

while maximizing the loss for the topic signals.474

Our goal is to improve O/T accuracy while min-475

imizing topic accuracy. As a consequence, this476

should make our model blind to spurious topics and477

reduce "Clever Hans" identified by unsupervised478

topic modeling techniques for translationese classi-479

fication. To show that results generalise to different480

architectures, we experiment with three models:481

multilingual-mBERT (as we used previously for482

probing), XLM-R, and mBART. Training and hyperpa-483

rameter details are provided in Appendix G.2.484

6.2 Adversarial Training Results485

Results are averaged over five different random486

seeds, and displayed in Figs 2, 3 and 4 for mBERT,487

XLM-R, and mBART respectively on the MODE de-es488

dataset.489

The figures show a comparison of O/T and topic 490

accuracies and F1 for the adversarially and non- 491

adversarially trained models. Results show that the 492

accuracies and F1 scores for translationese classifi- 493

cation are maintained at a high level while the topic 494

accuracies and F1 scores are consistently reduced 495

for the adversarial model for all n. This shows that 496

adversarial training is able to mitigate unknown au- 497

tomatically established spurious topic correlations. 498

The accuracy and F1 scores with confidence scores 499

for all models are displayed in Tables 8, 10, and 11 500

in Appendix A.2. 501

Table 9 in Appendix A.2 displays the results for 502

the de-en pair using mBERT and fully shows the 503

expected pattern for both accuracy and F1 scores. 504

Table 15 of Appendix C contains the results of 505

adversarial training for three other translationese 506

corpora. 507

7 Integrated Gradients and Topic Traces 508

7.1 Integrated Gradients Experiment Design 509

We use Integrated Gradients (IG) to compute the 510

tokens that have the highest attribution scores dur- 511

ing translationese classification of the test set, in 512

a similar fashion as (Amponsah-Kaakyire et al., 513

2022; Borah et al., 2023). (Amponsah-Kaakyire 514

et al., 2022) used IG attribution scores to show 515

that mBERT uses some spurious location name 516

topic signals for translationese classification. (Bo- 517

rah et al., 2023) used IG on the mBERT O/T model 518

fine-tuned on NE-masked data to show that the 519

number of location tokens in the top tokens was re- 520

duced, thus resulting in some mitigation of ‘Clever 521

Hans’. In our work, we use IG to compute the 522

top tokens used by the three adversarial models2 to 523

capture known specific Clever hans as in location 524

NEs in translationese classification. 525

7.2 IG Results 526

Table 2 shows the top 10 tokens with the high- 527

est IG attribution scores used by the adversarial 528

and non-adversarial models for the O and T-test 529

sets for the MPDE de-es dataset by the three mod- 530

els. For mBERT, there is only one South American 531

Spanish language location token among the top 532

tokens for the adversarial case - arequipa in the 533

translated class. By contrast, in the non-adversarial 534

case, as presented by (Amponsah-Kaakyire et al., 535

2We use the encoder embeddings to compute IG results for
mBART
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SETTING O/T ACC, CI O/T F1, CI TOPIC ACC, CI TOPIC F1, CI

Non-adversarial 0.975 [0.96,0.96] 0.961 [0.96,0.98] 0.518 [0.50, 0.51] 0.492 [0.49, 0.51]

Adversarial 0.970 [0.96,0.98] 0.954 [0.95,0.96] 0.459 [0.44,0.46] 0.430 [0.42,0.44]

Table 3: Adversarial (n=2) and Non-adversarial results on Occupation Classification Task. We highlight the lower
topic accuracies and F1.

NON-ADVERSARIAL ADVERSARIAL

Non-Surgeon Surgeon Non-Surgeon Surgeon

herself duren concern filed
wiki bateau underwent museum

di ##lande eligible instant
databases tn band soul
##virus his baseball wikipedia

Table 4: Top 5 IG tokens: occupation classification task

2022)3, there are several German location NEs in536

O (e.g. ##wald, stuttgart) and Spanish in T (e.g.,537

Nicaragua, Bilbao, Colombia). We find one loca-538

tion NE in the O for the adversarial model - mon-539

terrey, however, it is not a German-dominated area,540

hence this is not considered as a direct spurious541

correlation with the O set language. Table 2 shows542

similar trends for the other two models: XLM-R543

and mBART. Table 12 in Appendix A.3 provides the544

same trend for the de-en pair by mBERT. Table 13545

provides similar trends by XLM-R and mBART on the546

MPDE de-es dataset. We also provide IG results547

for different translationese corpora in Table 17 of548

Appendix C.549

8 Occupation Classification Task550

To investigate whether our ‘Clever Hans’ mitiga-551

tion approach generalizes to other classification552

tasks that involve subtle signals competing with553

many other signals but are not translationese, we554

run our experiments on another task: occupation555

classification. Using the dataset by (Pruthi et al.,556

2020), the task consists of English biographies of557

surgeons and non-surgeons (physicians) from (De-558

Arteaga et al., 2019). The training data consists559

of 17,629 biographies and the dev set consists of560

2,519 samples. We utilize adversarially and non-561

adversarially trained mBERT on the occupation clas-562

sification data for our experiments. Using IG, we563

then find the top tokens with the highest attribution564

score for occupation classification.565

3We do not provide the full list here, please check Table 7
for the list of top 20 tokens with the highest IG attribution

Results. Table 3 shows that adversarial training 566

on occupation classification reduces topic depen- 567

dency while maintaining O/T classification per- 568

formances. Table 4 shows the top IG tokens for 569

the surgeon and non-surgeon classes. For the non- 570

adversarial setting, we find pronouns like herself 571

and his as top tokens for the non-surgeon and sur- 572

geon classes respectively. This shows a spurious 573

correlation of gendered pronouns with occupations, 574

indicating gender bias. With adversarial training, 575

the top five tokens do not contain any gender- 576

related information, mitigating the use of spuri- 577

ous correlations in occupation classification. We 578

provide full performance (accuracy and F1 scores) 579

and IG results for other n in adversarial and non- 580

adversarial settings in Appendix D. 581

9 Conclusion 582

In this paper, we focused on an under-researched 583

area: "Clever Hans", i.e., spurious correlations in 584

the data with target classification labels, in the 585

form of topic information in classification scenarios 586

where target signals are weak and competing with 587

many other signals in the data. We generalized pre- 588

vious work by (i) providing direct evidence using 589

prompting that feature and representation learning- 590

based neural classifiers learn and use spurious topic 591

correlations in the data; and (ii) by showing that 592

we can mitigate any unknown spurious topic corre- 593

lation using adversarial training with LDA topic la- 594

bels as adversarial targets in the classification. We 595

showed this in translationese classification, a pro- 596

totypical example of a classification setting where 597

target signals are weak and competing with many 598

other signals in the data. We showed that our ap- 599

proach generalises to three language pairs (de-es, 600

de-en, en-es), three models (mBERT, XML-R and 601

mBART) and a non-transationese task: occupation 602

classification. 603

Future research includes zooming in on specific 604

LDA topics that exhibit high alignment with target 605

labels as well as exploring other topic modeling 606

approaches. 607
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10 Limitations608

Our research on unknown spurious topics is based609

on LDA. If a topic is not in LDA, it cannot be610

probed nor mitigated by adversarial training. LDA611

requires us to set the number of topics n. We ex-612

plore n = 2, 3, 5, 10, 20, based on findings by (Bo-613

rah et al., 2023) that show consistently high topic614

floor scores for these settings. That said we should615

explore topic models other than LDA, e.g. BERT-616

topic (Grootendorst, 2022) etc.617

11 Ethical Considerations618

We experiment with three multi-lingual models:619

mBERT, XLM-R, and mBART trained on a variety of620

data, these models may contain harmful social bi-621

ases and use them for translationese classification.622

As we see in the occupation classification task, ex-623

plainability results using IG suggest that language624

models like BERT indeed use gender biases as spu-625

rious correlations.626

Additionally, the translationese corpora may also627

contain biases related to culture and language, and628

historical and social biases.629
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A mBERT Results for MPDE de− es and942

de− en language-pairs943

Here, Table 5 presents the accuracy and F1 scores944

of mBERT fine-tuned on the MPDE translationese945

dataset for two language pairs (de-es (as discussed946

previously in the paper) and de-en). Note that the947

results are for non-adversarial mBERT which is not948

trained to suppress any topic signals.949

A.1 Probing on two language pairs950

In this section, we present the results of probing951

experiments on the de-en set. Table 6 displays952

the probing experiments for different n values. As953

observed in the de-es dataset in Section 5.2, we find954

that Model 1 finetuned on the O/T labels performs955

the best among all the models. The differences are956

more dominant in terms of F1 scores. The results957

are consistent for de-en, with topic label accuracies958

and F1 scores decreasing as we increase n.959

A.2 Adversarial Training on two language960

pairs961

We use the uncased version multilingual mBERT962

(Devlin et al., 2019) for our adversarial model by963

specifying two classification objectives: one for964

O/T classification and the other for topic label clas-965

sification. We use a batch size of 16, a learning rate966

of 4 · 10−6, and an Adam optimizer with epsilon967

1 · 10−5 to train our adversarial mBERT models for968

4 epochs. For our LDA topic labels, we experiment969

with n = 2, 3, 5, 10, and 20.970

Here, we present the results of adversarial train-971

ing on different language pairs: de-es and de-en972

language-pairs. Tables 8 and 9 shows the results of973

adversarial training for different n values. We find974

the O/T accuracies and F1 scores are high whereas975

the topic accuracies and F1 scores are low and de-976

crease with an increase in the value of n for both977

language pairs on MPDE.978

A.3 Integrated Gradients on Two Language979

Pairs980

We first present the top 20 tokens having the high-981

est attribute scores utilized by mBERT for transla-982

tionese classification on the de-es MPDE dataset in983

Table 7. The non-adversarial results are taken from984

(Amponsah-Kaakyire et al., 2022). We find a num-985

ber of NEs in the non-adversarial results, namely986

##wald, ##stuttgart in Original, and nicaragua, 987

bilbao and colombia in Translated. With adver- 988

sarial mitigation, we find that the number of NEs 989

belonging to German or Spanish areas in O/T sets 990

respectively are reduced. 991

Table 12 shows the results of IG given by the 992

adversarial models for the two datasets for differ- 993

ent values of n. The top 5 tokens with the high- 994

est average attribution for the test set data of each 995

dataset are displayed. Although we see some lo- 996

cation tokens, most of these are not related to the 997

location where that language is spoken, i.e. we 998

have Venezuela, Pakistan, and Monterrey in the 999

original set, where German is not predominantly 1000

spoken. 1001

B Adversarial Mitigation for ‘Clever 1002

Hans’ by different models 1003

Apart from mBERT, we perform the same experi- 1004

ments using other multi-lingual language models 1005

like XLM-R(Conneau et al., 2020) and mBART(Liu 1006

et al., 2020). We first perform translationese clas- 1007

sification on the MPDE dataset. Post that, we per- 1008

form domain adversarial training to reduce topic 1009

dependency for translationese classification by the 1010

models. Here we extend the results from Sec- 1011

tion 6.2 in the paper. 1012

Tables 10 and 11 present the results of accuracy, 1013

F1 scores and confidence scores for translationese 1014

classification on MPDE de-es dataset for XLM-R 1015

and mBART respectively. We find that adversarial 1016

training leads to almost similar translationese accu- 1017

racies and F1 scores for mBERT, XLM-R and mBART, 1018

while reducing topic accuracies for all n. We fur- 1019

ther look into the top attribution tokens using IG 1020

to look for topic-related tokens for different n. Ta- 1021

ble 13 show that both XLM-R and mBART contain 1022

topic-related NEs that post adversarial training do 1023

not appear in the top 5 tokens used for transla- 1024

tionese classification. This shows that adversarial 1025

training mitigates spurious topic signals utilized 1026

by different models for translationese classifica- 1027

tion. Our approach shows a robust performance for 1028

different multilingual models. 1029

C Different Translationese Corpora 1030

Here, we present our results on different transla- 1031

tionese corpora, namely, TED talks, political com- 1032

mentary, and Literature corpora by (Rabinovich 1033

et al., 2018a). The corpora details are present in 1034

Table 15. 1035
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LANGUAGE PAIRS O/T ACC, 95% CONFIDENCE SCORE O/T F1, 95% CONFIDENCE SCORE

de-es 0.910, [0.90, 0.91] 0.910, [0.90, 0.92]

de-en 0.863, [0.85, 0.87] 0.872, [0.86, 0.88]

Table 5: mBERT fine-tuned on translationese data for O/T classification for two language-pairs from MPDE

N MODEL ACCURACY F1-SCORE

[mBERT+OTD+CL] 0.564 0.667
2 [mBERT+OTD] 0.556 0.606

[mBERT] 0.561 0.659

[mBERT+OTD+CL] 0.409 0.538
3 [mBERT+OTD] 0.397 0.483

[mBERT] 0.397 0.479

[mBERT+OTD+CL] 0.306 0.434
5 [mBERT+OTD] 0.290 0.379

[mBERT] 0.295 0.381

[mBERT+OTD+CL] 0.254 0.405
10 [mBERT+OTD] 0.252 0.393

[mBERT] 0.253 0.392

[mBERT+OTD+CL] 0.142 0.236
20 [mBERT+OTD] 0.129 0.199

[mBERT] 0.134 0.200

Table 6: Probing results (last encoder layer as features)
on the de-en datasets

We perform our adversarial training experiments1036

on different translationese corpora, namely, TED1037

talks, political commentary, and Literature corpora1038

by (Rabinovich et al., 2018b). The Ted corpora is1039

based on the subtitles of the TED talks delivered1040

in English and translations to English of TEDx1041

talks originally given in French. Therefore, it con-1042

tains half English originals, and half translations1043

from French. The political commentary corpus con-1044

tains articles, commentary, and analysis on world1045

affairs and international relations. These articles1046

were collected from Project Syndicate4. It con-1047

tains half German originals and half translations1048

from English to German. The literature transla-1049

tionese corpus consists of literature classics (orig-1050

inals and translations) originating from the 18th1051

to 20th centuries authored by English or German1052

writers. It contains half German originals and half1053

translations from English to German. We perform1054

these experiments to understand the effectiveness1055

of our spurious correlation mitigation approach us-1056

ing adversarial training. We utilize mBERT for all1057

experiments in this section.1058

In Table 14, we find that mBERT performs well1059

on the Literature corpora for translationese classifi-1060

4http://www.project-syndicate.org

ADVERSARIAL NON-ADVERSARIAL

Original Translated Original Translated

ppm italo situations entstand
uks domino . virus

andersson ##unta ria inti
prosa ##inne ##lk sagte

monterrey arequipa ##iet entdeckte
prvni moliere golden gras
##ibe brachten sak buts
hang and turn nicaragua

##tero ##saka ##emeb rekord
plastik giorgio orange bilbao
domain fut hand verfugte
##istes olan ##wald bol

diri ##rennen 1732 colombia
rasa intra dobe nis

propose uga ##pas och
Stevenson 850 profits vorkommen

versie ##izione stuttgart oecd
eingegliedert boyko soja ;

##ging errichteten r erklarte
siehe besuchte ruth clinton

Table 7: Top 20 tokens with highest attribution scores by
IG for adversarial model (n = 2) and non-adversarial
model fine-tuned on de-es dataset

cation. However, it performs poorly on the Ted and 1061

Politics corpora. The smaller sizes of these corpora 1062

may be attributed to these lower performances. Af- 1063

ter adversarial training (for n=2), we find the O/T 1064

accuracies and F1 do not decrease drastically from 1065

the non-adversarial model, while topic accuracies 1066

and F1 are reduced (as expected). 1067

Table 17 displays the results of IG for non- 1068

adversarial and adversarial mBERT on different 1069

corpora. For Ted dataset, NEs like bowie, robbins, 1070

clayton in O which are some common English 1071

names and richelieu, an industry based in Mon- 1072

treál, where French is predominantly spoken in T; 1073

occur in the top 5 tokens with the highest attribu- 1074

tion scores. However, for the adversarially trained 1075

model, we find one NE token: prada. For politics, 1076

we find NEs like calcutta, barbosa, bogota, tibet 1077

in the top tokens, not necessarily belonging to the 1078

regions the languages are spoken in. However, the 1079

number of NEs in the adversarially trained model 1080

is reduced. Finally, for the Literature dataset, we 1081

find tokens like watt, timothy, westminster, and 1082

lancaster in T, common NEs in England; and also 1083
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ADVERSARIAL NON-ADVERSARIAL

n O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

2 0.910, 0.910 ([0.90, 0.92]) 0.516, 0.501 ([0.49, 0.51]) 0.910, 0.910 ([0.90, 0.92]) 0.589, 0.583 ([0.57, 0.59])

3 0.905, 0.906 ([0.90, 0.91]) 0.299, 0.254 ([0.25, 0.26]) 0.910, 0.910 ([0.90, 0.92]) 0.458, 0.288 ([0.28, 0.29])

5 0.906, 0.906 ([0.90, 0.91]) 0.101, 0.019 ([0.01, 0.02]) 0.910, 0.910 ([0.90, 0.92]) 0.316, 0.153 ([0.15, 0.15])

10 0.905, 0.906 ([0.90, 0.91]) 0.088, 0.018 ([0.01, 0.02]) 0.910, 0.910 ([0.90, 0.92]) 0.067, 0.011 ([0.01, 0.01])

20 0.906, 0.906 ([0.90, 0.91]) 0.050, 0.005, ([0.00, 0.00]) 0.910, 0.910 ([0.90, 0.92]) 0.074, 0.015 ([0.01, 0.02])

Table 8: Adversarial and Non-Adversarial. O/T classification and topic label classification results on MPDE de-es.
Lower topic accuracies and F1 are highlighted. Note the scores for O/T acc and F1 are constant across all n for the
non-adversarial models since it is only fine-tuned for translationese classification and not adversarially "finetuned"

against topic classification.

ADVERSARIAL NON-ADVERSARIAL

n O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

2 0.905, 0.903 ([0.90, 0.91]) 0.489, 0.490 ([0.48. 0.50]) 0.863, 0.872 ([0.86, 0.88]) 0.572, 0.575 ([0.57, 0.59])

3 0.897, 0.897 ([0.89, 0.90]) 0.365, 0.332 ([0.32, 0.34]) 0.863, 0.872 ([0.86, 0.88]) 0.379, 0.344 ([0.34, 0.35])

5 0.901, 0.899 ([0.89, 0.90]) 0.138, 0.082 ([0.08, 0.09]) 0.863, 0.872 ([0.86, 0.88]) 0.159, 0.084 ([0.08, 0.09])

10 0.902, 0.901 ([0.89, 0.91]) 0.054, 0.006 ([0.01, 0.01]) 0.863, 0.872 ([0.86, 0.88]) 0.077, 0.022 ([0.02, 0.02])

20 0.904, 0.903 ([0.90, 0.91]) 0.048, 0.005 ([0.00, 0.00]) 0.863, 0.872 ([0.86, 0.88]) 0.063, 0.015 ([0.01, 0.02])

Table 9: Adversarial and Non-Adversarial O/T classification and topic label classification results on MPDE de-en.
Lower topic accuracies and F1 are highlighted

other NEs: pascal, welch. The adversarially trained1084

has only two NEs: warner and marianne. There-1085

fore, topic-related tokens reduce after adversarial1086

training showing the efficiency of our methodol-1087

ogy on corpora belonging to different domains in1088

translationese.1089

D Results on another task: Occupation1090

Classification1091

Here, we present the results of adversarially and1092

non-adversarially trained mBERT trained for the1093

occupation classification task (extending section 81094

in the paper). In Table 18, we find that topic accu-1095

racies are reduced for different n in the adversarial1096

setting (as expected). Our adversarially trained1097

model is able to mitigate the influence of poten-1098

tially spurious topical information in occupation1099

classification.1100

In Table 16, we find that the named entities in1101

different topics, and also gendered pronouns are1102

very low (not pertaining to previously described1103

gender bias where males were associated with sur-1104

geon class and females with non-surgeon class:1105

sister is present in the ‘surgeon’ class), showing1106

the effectiveness of our ‘Clever Hans’ mitigation1107

approach. 1108

E Comparison to other works in NLP 1109

Here, we present how our work compares to other 1110

work in detecting and mitigating spurious correla- 1111

tions. 1112

Table 19 shows different studies that focus on 1113

spurious correlation detection in NLP. Earlier work 1114

focused on known shortcuts, however, recent work 1115

has been focusing more on unknown shortcuts. 1116

Table 20 shows studies focused on mitigating 1117

spurious correlations. Different approaches have 1118

been proposed, with just one other approach that fo- 1119

cuses on adversarial mitigation (Stacey et al., 2020). 1120

They experimented with NLI, which does not di- 1121

rectly involve subtle signals like translationese. Our 1122

approach applied domain adversarial training for 1123

translationese classification and occupation classi- 1124

fication (which utilizes spurious correlations like 1125

gender bias, as seen before). 1126
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ADVERSARIAL NON-ADVERSARIAL

N O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

2 0.900, 0.900 ([0.90, 0.91]) 0.405, 0.414 ([0.41, 0.42]) 0.903, 0.907 ([0.90, 0.91]) 0.485, 0.499 ([0.49, 0.50])

3 0.898, 0.901 ([0.90, 0.91]) 0.366, 0.382 ([0.37, 0.38]) 0.903, 0.907 ([0.90, 0.91]) 0.403, 0.412 ([0.41, 0.42])

5 0.887, 0.891 ([0.89, 0.91]) 0.086, 0.041 ([0.04, 0.04]) 0.903, 0.907 ([0.90, 0.91]) 0.102, 0.112 ([0.11, 0.12])

10 0.890, 0.894 ([0.89, 0.89]) 0.071, 0.016 ([0.01, 0.02]) 0.903, 0.907 ([0.90, 0.91]) 0.092, 0.082 ([0.08, 0.08])

20 0.883, 0.884 ([0.88, 0.89]) 0.027, 0.005, ([0.00, 0.00]) 0.903, 0.907 ([0.90, 0.91]) 0.054, 0.042 ([0.014, 0.04])

Table 10: Adversarial and Non-Adversarial O/T classification and topic label classification by XLM-R on MPDE
de-es. Lower topic accuracies and F1 are highlighted

ADVERSARIAL NON-ADVERSARIAL

N O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

O/T acc, F1 (95% CI F1) Topic acc, F1 (95% CI
F1)

2 0.922, 0.923 ([0.92, 0.93]) 0.411, 0.418 ([0.41, 0.42]) 0.923, 0.924 ([0.92, 0.93]) 0.485, 0.499 ([0.49, 0.50])

3 0.899, 0.892 ([0.89, 0.90]) 0.383, 0.343 ([0.34, 0.34]) 0.923, 0.924 ([0.92, 0.93]) 0.403, 0.412 ([0.41, 0.41])

5 0.896, 0.896 ([0.89, 0.90]) 0.134, 0.132 ([0.13, 0.13]) 0.923, 0.924 ([0.92, 0.93]) 0.102, 0.112 ([0.11, 0.12])

10 0.899, 0.868 ([0.86, 0.88]) 0.092, 0.099 ([0.09, 0.10]) 0.923, 0.924 ([0.92, 0.93]) 0.092, 0.082 ([0.08, 0.08])

20 0.883, 0.889 ([0.88, 0.89]) 0.031, 0.042 ([0.03, 0.04]) 0.923, 0.924 ([0.92, 0.93]) 0.054, 0.042 ([0.04, 0.04])

Table 11: Adversarial and Non-Adversarial O/T classification and topic label classification by mBART on MPDE
de-es. Lower topic accuracies and F1 are highlighted

N DE-ES DE-EN

Original Translated Original Translated

ppm italo acta osterreichs
uks domino unterstutzte parole

2 andersson ##unta ##oster workshops
prosa ##inne ##ging ungern
moonterrey arequipa asean !

• fue often !
β widmete nordlich thessaloniki

3 stamme kraftwerk ##sstraße ansonsten
tras kirche ##ival willy
fet vendee ##ke alfonso

started gerne nochmals q
heading mochte legales schweizer

5 angegeben colombia revanche mochte
ernannt ##indi ##lasse ##poru
##gemeinde bitter ##hier vieira

mochte veroffentlichte determiner quei
##ohe widmete bible cork

10 tunis berichtet skinner ##shire
altar gelangte physik mosaik
pea ##tierte venezuela barone

venezuela ##rennen thuringen ##mble
pakistan ##list beaten roy

20 ##ids ##verk philippine angels
italia hast ##beni romBERT
oost quebec pohja earl

Table 12: Top 5 tokens for adversarial model trained on
de-es and de-en datasets for different n

N XLM-R MBART

Original Translated Original Translated

Visa PAD app Tob
PG definition so assis

2 download uit inge dad
! tru _SEA Anna
Fro elementar esse tan

_Pea protest Saison _f##u
850 _idyll ) _thema

3 Physik _gemeint latura ables
_ros Joker _lai speciale
Qu ski fil begin

_utopi _kolon xon UR
_glatt _Installation app _Már

5 frustr triumph _Essen _224
bekomme _idyll _Mental _studier
##ofter _esot rre _nostra

objekt quez _ ,
MT _m##ochte mán _Bring

10 _boy _lett MUS dimension
gner Expert une _2001
_m##ochte _m##ochten _IS Amen

cool _Nee kur "
_restaur _01 _alarm iler

20 Adam _friss _push _Trip
_Slo ordina _schicken amour
modi 31 app bha

Table 13: Top 5 tokens for adversarial XLM-R and mBART
trained on de-es dataset for different n
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NON-ADVERSARIAL

CORPORA O/T Acc O/T F1 Topic Acc Topic F1

Ted 0.719 [0.71,0.72] 0.715 [0.71,0.72] 0.529 [0.52,0.53] 0.531 [0.53,0.53]
Politics 0.595 [0.58,0.60] 0.460 [0.46,0.47] 0.463 [0.46,0.47] 0.458 [0.45,0.46]

Literature 0.868 [0.86,0.88] 0.899 [0.88,0.90] 0.587 [0.58,0.59] 0.610 [0.61,0.61]

ADVERSARIAL

Ted 0.684 [0.67,0.69] 0.688 [0.68,0.69] 0.140 [0.13,0.14] 0.121 [0.12,0.14]
Politics 0.548 [0.54,0.55] 0.414 [0.41,0.43] 0.314 [0.30,0.32] 0.303 [0.30,0.32]

Literature 0.827 [0.82,0.84] 0.850 [0.84,0.85] 0.538 [0.52,0.54] 0.560 [0.55,0.56]

Table 14: O/T and topic accuracies and F1 for adversarially (n=2) and non-adversarially trained mBERT for
different corpora

DATASET TRAIN SET DEV SET TEST SET MTL

MPDE (de-es,de-en) 29580 6336 6344 80.16

Ted (en-fr) 5752 1438 1998 17.88

Politics (de-en) 8900 1482 1484 20.67

Literature (de-en) 25211 5000 5888 49.90

Table 15: Corpora Stats (number of examples for each
set) for different Translationese Corpora (MTL: Mean
Token Length). We also include details of the MPDE
corpora for comparison

F Reproducing work from a study on1127

spurious correlation mitigation on1128

translationese classification1129

Apart from (Borah et al., 2023)’s results on the1130

same MPDE corpus, we reproduce results from1131

another work(Wang et al., 2022) for comparison1132

with our mitigation approach. that focuses on miti-1133

gating spurious correlation on two tasks: sentiment1134

classification and occupation classification. We uti-1135

lize this work as they are recent in the domain of1136

spurious correlation mitigation.1137

We utilize their proposed approach for Cross-1138

Data Analysis (CDA) for spurious correlation mit-1139

igation in O/T classification. The work proposes1140

CDA, that is, identify spurious tokens from several1141

corpora in a test and later masking them for miti-1142

gation. Spurious tokens are found by identifying1143

the most important tokens having the highest at-1144

tention scores contributing to [CLS] tokens across1145

different heads. For translationese classification,1146

we consider the three corpora: MPDE, Politics and1147

Literature, having ‘de-en’ data. After finding the1148

most important tokens across these datasets, we1149

mask these tokens in the MPDE dataset and per-1150

form the experiments. This approach is a more1151

manual approach where top tokens are found and1152

then masked in a similar manner as (Borah et al.,1153

2023).1154

N NON-SURGEON SURGEON

hayward collar
dance night

3 ##bring comment
lc hour

kids ##wen

longtime excel
motivation philip

5 afghanistan mike
nbc border

russo nii

facultad olav
##school sister

10 streets ##usa
pubmed fold

conservative ede

wi kolkata
legislative apollo

20 hospital americans
biography fold
minister typically

Table 16: IG results for occupation classification for
different n

DATA NON-ADVERSARIAL ADVERSARIAL

Original Translated Original Translated

jimbo richelieu wow cosmic
bowie 1916 newspapers deti

Ted (en-fr) robbins noticias track alzheimer
##dini 1755 knock 2006
clayton bolivia pendant prada

ncaa rouen jura metropole
calcutta barbosa astronaut astronaut

Politics (de-en) f1 bogota philosophie indes
marines tibet ##ibil yoko

hurricanes associations ##erz ##fio

r watt warner ##tow
pascal ##bari st marianne

Literature (de-en) russe timothy tomba konsul
welch Westminster chim ##familien
##sper lancaster base sokol

Table 17: Top 5 tokens for non-adversarial and adver-
sarial (n=2) mBERT trained for different translationese
corpora
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N SETTING O/T ACC, CI O/T F1, CI TOPIC ACC, CI TOPIC F1, CI

2 Non-adversarial 0.975 [0.96,0.96] 0.961 [0.96,0.98] 0.518 [0.50, 0.51] 0.492 [0.49, 0.51]
Adversarial 0.970 [0.96,0.98] 0.954 [0.95,0.96] 0.459 [0.44,0.46] 0.430 [0.42,0.44]

3 Non-adversarial 0.975 [0.96,0.96] 0.961 [0.96,0.98] 0.450 [0.45, 0.45] 0.422 [0.42, 0.42]
Adversarial 0.968 [0.96,0.97] 0.952 [0.95,0.95] 0.303 [0.30, 0.30] 0.330 [0.33, 0.34]

5 Non-adversarial 0.975 [0.96,0.96] 0.961 [0.96,0.98] 0.209 [0.20, 0.21] 0.213 [0.21, 0.21]
Adversarial 0.967 [0.96,0.98] 0.950 [0.95,0.96] 0.143 [0.14,0.15] 0.150 [0.14,0.15]

10 Non-adversarial 0.970 [0.96,0.98] 0.954 [0.95,0.96] 0.110 [0.11, 0.11] 0.102 [0.10, 0.11]
Adversarial 0.970 [0.96,0.97] 0.954 [0.95,0.97] 0.046 [0.04,0.04] 0.032 [0.03,0.03]

20 Non-adversarial 0.975 [0.96,0.96] 0.961 [0.96,0.98] 0.005 [0.00, 0.01] 0.005 [0.01, 0.01]
Adversarial 0.970 [0.97,0.98] 0.954 [0.95,0.95] 0.001 [0.00,0.00] 0.001 [0.00,0.00]

Table 18: Adversarial and Non-adversarial results (Acc(uracy), F1 score, CI(Confidence Score)) by mBERT on
Occupation Classification Task. Lower topic accuracies and F1 scores are highlighted.

PAPER APPROACH TASK(S)

(He et al., 2019) Known shortcuts - biased model that only uses features
known to relate to dataset bias

NLI

(Clark et al., 2019) Known shortcuts - using features correlated with training
labels and not correlated with test labels

NLI, VQA, and QA

(Clark et al., 2020a) Unknown shortcuts - lower capacity model to capture
shallow correlations

Textual entailment, VQA, Image
recognition task

(Wang et al., 2022) Unknown shortcuts - attention scores (interpretability
technique), cross-dataset stability analysis, knowledge
aware perturbation

Sentiment Classification, Occupa-
tion Classification

(Amponsah-
Kaakyire et al.,
2022)

Unknown shortcuts - Integrated Gradients Translationese Classification

(Borah et al., 2023) Unknown shortcuts - ‘Topic floor’ measure Translationese Classification

Our work Unknown shortcuts - Topic Modeling Approaches, Prob-
ing to uncover Gender Bias

Translationese Classification, Oc-
cupation Classification

Table 19: Comparison to work on Spurious Correlation Detection in NLP

PAPER APPROACH TASK(S)

(He et al., 2019) Biased model using dataset bias features + Debiased
model

NLI

(Clark et al., 2019) Biased model to capture spurious correlations + Robust
model

NLI, QA and VQA

(Clark et al., 2020a) Lower capacity model - trained with higher capacity
model to capture shallow correlations

Textual entailment, Visual ques-
tion answering, Image recognition
tasks

(Stacey et al., 2020) Ensemble Adversarial Mitigation NLI

(Wang et al., 2022) Masking spurious tokens Sentiment Classification, Occupa-
tion Classification

(Borah et al., 2023) Masking spurious tokens Translationese Classification

Our work Domain Adversarial Training Translationese Classification, Oc-
cupation Classification to uncover
Gender Bias

Table 20: Comparison to work on Spurious Correlation Mitigation in NLP
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METHOD O/T ACC, 95% CONFIDENCE SCORE O/T F1, 95% CONFIDENCE SCORE

(Wang et al., 2022) 0.910, [0.91, 0.91] 0.915, [0.91, 0.92]

(Borah et al., 2023) 0.890, [0.88, 0.89] 0.890, [0.88, 0.88]

Domain Adversarial Training (Ours) 0.910, [0.90, 0.91] 0.910, [0.90, 0.92]

Table 21: Results of spurious correlation mitigation in the MPDE de-en translationese dataset

N ORIGINAL TRANSLATED

tunis bilbao
! bale

CDA belarus miranda
(Wang et al., 2022) republika zarangoza

thuringen valencia

besukhte .
entdeckte alpen

(Borah et al., 2023) veroffentlichte apo
gehorten profits

fuhrte ##nova

ppm italo
uks domino

Domain Adversarial andersson ##unta
Training (Ours) prosa ##inne

monterrey arequipa

Table 22: IG results for comparing different studies on
spurious correlation mitigation

Table 21 shows that the CDA method proposed1155

by (Wang et al., 2022) has a similar performance1156

as ours for O/T translationese classification. We1157

further perform IG using the reproduced model and1158

present the results in Table 22. We find that using1159

CDA, there are several location NEs in the top1160

tokens that are associated with the regions where1161

the languages are spoken, for example: thuringen,1162

bilbao, zarangoza, and valenia, even though the1163

O/T classification performance is high. This shows1164

that spurious tokens are utilized by the model with1165

the proposed mitigation approach. Whereas, our1166

approach has just one NE in the top 5 tokens with1167

a more automatic approach.1168

G Implementation Details1169

This section contains training and hyperparameter1170

details for probing and adversarial training experi-1171

ments.1172

G.1 Probing1173

For [mBERT+OTD+CL], we use a multilingual1174

BERTForSequenceClassification (base)model fine-1175

tuned on the O/T data for O/T label classifica-1176

tion. For [mBERT+OTD], we use a BERTFor-1177

MaskedLM model fine-tuned on the O/T data for1178

MLM task. For [mBERT], we use mBERT out-of- 1179

the-box with pre-trained weights from huggingface. 1180

We use mBERT-base-multilingual-uncased for our 1181

experiments which is pre-trained on 104 languages 1182

with the largest Wikipedia on an MLM objective. 1183

For BERT Sequence Classifier [BERT+OTD+CL], 1184

we use a batch size of 16, a learning rate of 4 ·10−5, 1185

and an Adam optimizer with epsilon 1 · 10−8 to 1186

train our mBERT models for 4 epochs. For the 1187

BERTForMaskedLM model - we use - learning 1188

rate: 1 · e−5 and epsilon 1 · 10−8, and trained for 3 1189

epochs. For our LDA topic labels, we experiment 1190

with n = 2, 3, 5, 10, and 20. 1191

For the probing experiments, we use a sim- 1192

ple logistic regression model using the scikit- 1193

learn(Pedregosa et al., 2011) library, with an ’l2’ 1194

penalty. 1195

G.2 Adversarial Training 1196

We use the uncased version of mBERT-base5 (like 1197

our experiments for probing and all other subse- 1198

quently) for our adversarial model by specifying 1199

two classification objectives: one for O/T clas- 1200

sification and the other for topic label classifi- 1201

cation. For XLM-R, we use the multilingual 1202

XLM-Roberta6 from huggingface. For mBART, we 1203

used the mBART-large-507 model from hugging- 1204

face. We use a batch size of 16, a learning rate of 1205

4 · 106, and an Adam optimizer with epsilon 1 · 105 1206

to train our all our adversarial models for 4 epochs. 1207

For our LDA topic labels, we experiment with n = 1208

2, 3, 5, 10, and 20. 1209

G.3 Computational resources 1210

Experiments were run on NVIDIA RTX2080 1211

and NVIDIA-A40 GPUs. mBERT and 1212

XLM-R(adversarial and non-adversarial) were 1213

run on NVIDIA RTX2080 GPUs training exper- 1214

iment takes 1.5 GPU hours. mBART was run on 1215

5https://huggingface.co/google-bert/
bert-base-multilingual-uncased

6https://huggingface.co/docs/transformers/en/
model_doc/xlm-roberta

7https://huggingface.co/docs/transformers/en/
model_doc/mbart
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NVIDIA-A40 and training took around 2 hours.1216

We do not use GPU for our other experiments,1217

like, LDA, probing using logistic regression, and1218

mBERT embedding extraction experiments.1219

H Reproducibility1220

We open-source our codes and datasets, which1221

are both uploaded to the submission system. We1222

include commands with hyperparameters in our1223

codes. This would help future work to reproduce1224

our results.1225

19


	Introduction
	Related Work
	Clever Hans and Translationese Classification
	Probing
	Domain-Adversarial Training

	Data
	Unsupervised Clustering
	Probing for Topics in O/T Classification
	Probing Experiment Design
	Probing Results

	Adversarial Training vs. Clever Hans
	Adversarial Training Experiment Design
	Adversarial Training Results

	Integrated Gradients and Topic Traces
	Integrated Gradients Experiment Design
	IG Results

	Occupation Classification Task
	Conclusion
	Limitations
	Ethical Considerations
	mBERT Results for MPDE de-es and de-en language-pairs
	Probing on two language pairs
	Adversarial Training on two language pairs
	Integrated Gradients on Two Language Pairs

	Adversarial Mitigation for `Clever Hans' by different models
	Different Translationese Corpora
	Results on another task: Occupation Classification
	Comparison to other works in NLP
	Reproducing work from a study on spurious correlation mitigation on translationese classification
	Implementation Details
	Probing
	Adversarial Training
	Computational resources

	Reproducibility

