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Abstract

In this paper, we propose Describe-and-Dissect (DnD), a novel method to describe the roles of
hidden neurons in vision networks. DnD utilizes recent advancements in multimodal deep
learning to produce complex natural language descriptions, without the need for labeled
training data or a predefined set of concepts to choose from. Additionally, DnD is training-free,
meaning we don’t train any new models and can easily leverage more capable general purpose
models in the future. We have conducted extensive qualitative and quantitative analysis
to show that DnD outperforms prior work by providing higher quality neuron descriptions.
Specifically, our method on average provides the highest quality labels and is more than
2× as likely to be selected as the best explanation for a neuron than the best baseline.
Finally, we present a use case providing critical insights into land cover prediction models
for sustainability applications.

1 Introduction

Recent advancements in Deep Neural Networks (DNNs) within machine learning have enabled unparalleled
development in multimodal artificial intelligence. While these models have revolutionized domains across
image recognition and natural language processing, they haven’t seen much use in various safety-critical
applications, such as healthcare or ethical decision-making. This is in part due to their cryptic “black box”
nature, where the internal workings of complex neural networks have remained beyond human comprehension.
This makes it hard to place appropriate trust in the models and additional insight in their workings is needed
to reach wider adoption.

Previous methods have gained a deeper understanding of DNNs by examining the functionality (also known
as concepts) of individual neurons1. This includes works based on manual inspection (Erhan et al., 2009;
Zhou et al., 2015; Olah et al., 2020; Goh et al., 2021), which can provide high quality description at the cost
of being very labor intensive. Alternatively, Network Dissection (Bau et al., 2017) automated this labeling
process by creating the pixelwise labeled dataset, Broden, where fixed concept set labels serve as ground
truth binary masks for corresponding image pixels. The dataset was then used to match neurons to a label
from the concept set based on how similar their activation patterns and the concept maps were. While earlier
works, such as Network Dissection, were restricted to an annotated dataset and a predetermined concept
set, CLIP-Dissect (Oikarinen & Weng, 2023) offered a solution by no longer requiring labeled concept data,
but still requires a predetermined concept set as input. By utilizing OpenAI’s CLIP model, CLIP-Dissect
matches neurons to concepts based on their activations in response to images, allowing for a more flexible
probing dataset and concept set compared to previous works.

However, these methods still share a major limitation: Concepts detected by certain neurons, especially
in intermediate layers, prove to be difficult to encapsulate using the simple, often single-word descriptions
provided in a fixed concept set. MILAN (Hernandez et al., 2022) sought to enhance the quality of these
neuron labels by providing generative descriptions, but their method requires training a new descriptions
model from scratch to match human explanations on a dataset of neurons. This leads to their proposed
method being more brittle and often performs poorly outside its training data.

1We conform to prior works’ notation and use "neuron" to describe a channel in CNNs.
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Figure 1: Neuron descriptions provided by our method (DnD) and baselines CLIP-Dissect (Oikarinen & Weng,
2023), MILAN (Hernandez et al., 2022)), and Network Dissection (Bau et al., 2017) for random neurons from
ResNet-50 trained on ImageNet. We have added the average quality rating from our Amazon Mechanical
Turk experiment described in section 4.3 next to each label and color-coded the neuron descriptions by
whether we believed they were accurate, somewhat correct or vague/imprecise.

To overcome these limitations, we propose Describe-and-Dissect (abbreviated as DnD) in Section 3, a pipeline
to dissect DNN by utilizing an image-to-text model to describe highly activating images for corresponding
neurons. The descriptions are then semantically combined by a large language model, and finally refined with
synthetic images to generate the final concept of a neuron. We conduct extensive qualitative and quantitative
analysis in Section 4 and show that Describe-and-Dissect outperforms prior work by providing high quality
neuron descriptions. Specifically, we show that Describe-and-Dissect provides more complex and higher-quality
descriptions (up to 2-4× better) of intermediate layer neurons than other contemporary methods in a large
scale user study. Example descriptions from our method are displayed in Figure 1. Additionally, we present a
use-case study demonstrating DnD’s ability to interpret and improve upon current sustainability models in
Section 5.

2 Background and related work

2.1 Neuron Interpretability Methods

Network Dissection (Bau et al., 2017) is the first method developed to automatically describe individual
neurons’ functionalities. The authors first defined the densely-annotated dataset Broden, denoted as DBroden,
as a ground-truth concept mask. The dataset is composed of various images xi, each labeled with concepts c
at the pixel-level. This forms a ground truth binary mask Lc(xi) which is used to calculate the intersection
over union (IoU) score between Lc(xi) and the binary mask from the activations of the neuron k over all
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Table 1: Comparison of existing automated neuron labeling methods and our Describe-and-Dissect (DnD).
Green and boldfaced Yes or No indicates the desired property for a column. DnD has all the desired
properties while existing work has some limitations.

Method \ property
Requires
Concept
Annotations

Training
Free

Generative
Natural Language
Descriptions

Uses Spatial
Activation
Information

Can easily
leverage better
future models

Network Dissection (Bau et al., 2017) Yes Yes No Yes No
MILAN (Hernandez et al., 2022) Training only No Yes Yes No
CLIP-Dissect (Oikarinen & Weng, 2023) No Yes No No Yes
FALCON (Kalibhat et al., 2023) No Yes No Yes Yes
DnD (This work) No Yes Yes Yes Yes

images xi ∈ DBroden, denoted Mk(xi): IoUk,c =
∑

xi∈DBroden
Mk(xi)∩Lc(xi)∑

xi∈DBroden
Mk(xi)∪Lc(xi)

. The concept c is assigned to a

neuron k if IoUk,c > η, where the threshold η was set to 0.04. Intuitively, this method finds the labeled
concept whose presence in the image is most closely correlated with the neuron having high activation.
Extensions of Network Dissection were proposed by (Bau et al., 2020) and (Mu & Andreas, 2020).

However, Network Dissection is limited by the need of concept annotation and the concept set is a closed set
that may be hard to expand. To address these limitations, a recent work CLIP-Dissect (Oikarinen & Weng,
2023) utilizes OpenAI’s multimodal CLIP (Radford et al., 2021) model to describe neurons automatically
without requiring annotated concept data. They leverage CLIP to score how similar each image in the probing
dataset Dprobe is to the concepts in a user-specified concept set to generate a concept activation matrix. To
describe a neuron, they compare the activation pattern of said neuron to activations of different concepts
on the probing data, and find the concept that is the closest match using a similarity function, such as
softWPMI. Another very recent work FALCON (Kalibhat et al., 2023) uses a method similar to CLIP-Dissect
but augments it via counterfactual images by finding inputs similar to highly activating images with low
activation for the target neuron, and utilizing spatial information of activations via cropping. However, they
solely rely on cropping the most salient regions within a probing image to filter spurious concepts that are
loosely related to the ground truth functionality labels of neurons. This approach largely restrict their method
to local concepts while overlooking holistic concepts within images, as also noted in (Kalibhat et al., 2023).
Their approach is also limited to single word / set of words description that is unable to reach the complexity
of natural language.

MILAN (Hernandez et al., 2022) is a different approach to describe neurons using natural language descriptions
in a generative fashion. Note that despite the concept sets in CLIP-Dissect and FALCON being flexible
and open, they cannot provide generative natural language descriptions like MILAN. The central idea of
MILAN is to train an images-to-text model from scratch to describe the neuron’s role based on 15 most highly
activating images. Specifically, it was trained on crowdsourced descriptions for 20,000 neurons from selected
networks. MILAN can then generate natural language descriptions to new neurons by outputting descriptions
that maximize the weighted pointwise mutual information (WPMI) between the description and the active
image regions. One major limitation of MILAN is that the method require training a model to imitate human
descriptions of image regions on relatively small training dataset, which may cause inconsistency and poor
explanations further from training data. In contrast, our DnD is training-free, generative, and produces a
higher quality of neuron descriptions as supported by our extensive experiments in Figure 1, Table 3, and
Table 4. A detailed comparison between our method and the baseline methods is shown in Table 1.

2.2 Leveraging Large Pretrained models

In our DnD pipeline, we are able to leverage recent advances in the large pre-trained models to provide
high quality and generative neuron descriptions for DNNs in a training-free manner. Below we briefly
introduce the Image-to-Text Model, Large Language Models and Text-to-Image Model used in our pipeline
implementation. The first model is Bootstrapping Language-Image Pretraining (BLIP) (Li et al., 2022),
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which is an image-to-text model for vision-language tasks that generates synthetic captions and filters noisy
ones, employing bootstrapping for the captions to utilize noisy web data. While our method can use any
image-to-text model, we use BLIP in this paper for our step 2 in the pipeline due to BLIP’s high performance,
speed, and relatively low computational cost. However, we note that our method can be easily adapted to
leverage more advanced models in the future.

The second model is GPT-3.5 Turbo, which is a transformer model developed by OpenAI for understanding
and generating natural language. It provides increased performance from other contemporary models due to
its vast training dataset and immense network size. We utilize GPT-3.5 Turbo for natural language processing
and semantic summarization in the step 2 of our DnD. We use GPT-3.5 Turbo in this work as it’s one of
the SOTAs in LLMs and cheap to use, but our method is compatible with other future and more advanced
LLMs. We provide a quantitative comparison between GPT-3.5 Turbo, GPT-4.0, and LLaMA2 effect on
DnD’s label quality in Appendix A.4.4 as well as evaluation on cost and usage limitations for each model.

The third model is Stable Diffusion (Rombach et al., 2022), which is a text-to-image latent diffusion model
(LDM) trained on a subset from the LAION-5B database (Schuhmann et al., 2022). By performing the
diffusion process over the low dimensional latent space, Stable Diffusion is significantly more computationally
efficient than other diffusion models, such as DALLE (Ramesh et al., 2021). Due to its open availability,
lower computational cost, and high performance, we employ Stable Diffusion for our image generation needs
in the step 3 of DnD.

3 Describe-and-Dissect: Methods

Overview. In this section, we present Describe-and-Dissect (DnD), a comprehensive method to produce
generative neuron descriptions in deep vision networks. Our method is training-free, model-agnostic, and can
be easily adapted to utilize advancements in multimodal deep learning. DnD consists of three steps:

• Step 1. Probing Set Augmentation: Augment the probing dataset with attention cropping to
include both global and local concepts;

• Step 2. Candidate Concept Generation: Generate initial concepts by describing highly activating
images and subsequently summarize them into candidate concepts using GPT;

• Step 3. Best Concept Selection: Generate new images based on candidate concepts and select
the best concept based on neuron activations on these synthetic images with a scoring function.

An overview of Describe-and-Dissect (DnD) and these 3 steps are illustrated in Fig. 2.

3.1 Step 1: Probing Set Augmentations

Probing dataset Dprobe is the set of images we record neuron activations on before generating a description.
As described in Section 2.1, one major limitation of (Kalibhat et al., 2023) is the restriction to local concepts
while overlooking holistic concepts within images, while one limitation of (Oikarinen & Weng, 2023) is not
incorporating the spatial activation information. Motivated by these limitations, DnD resolves these problems
by augmenting the original probing dataset with a set of attention crops of the highest activating images
from the original probing dataset. The attention crops can capture the spatial information of the activations
and we name this set as Dcropped, shown in Fig. 2. We discuss the implementation details of our attention
cropping procedure in Appendix A.1.1 and an perform an ablation study of its effects in Appendix A.4.1.

3.2 Step 2: Candidate Concept Generation

The top K most highly activating images for a neuron n are collected in set I, |I| = K, by selecting K images
xi ∈ Dprobe ∪ Dcropped with the largest g(Ak(xi)). Here g is a summary function (for the purposes of our
experiments we define g as the spatial mean) and Ak(xi) is the activation map of neuron k on input xi. We
then generate a set of candidate concepts for the neuron with the following two part process:

4



Under review as submission to TMLR

Figure 2: Overview of Describe-and-Dissect (DnD) algorithm. Given a Target model, it consists three important
steps to identify the neuron concepts (e.g. ‘Swimming Shark‘ for neuron n).

• Step 2A - Generate descriptions for highly activating images: We utilize BLIP image-to-text
model to generatively produce an image caption for each image in I. For an image Ij∈[K], we feed Ij

into the base BLIP model to obtain an image caption.

• Step 2B - Summarize similarities between image descriptions: Next we utilize OpenAI’s
GPT-3.5 Turbo model to summarize similarities between the K image captions for each neuron being
checked. GPT is prompted to generate N descriptions which identify and summarize the conceptual
similarities between most of the BLIP-generated captions.

The output of Step 2B is a set of N descriptions which we call "candidate concepts". We denote this set
as T = {T1, ..., TN }. For the purposes of our experiments, we generate N = 5 candidate concepts unless
otherwise mentioned. The exact prompt used for GPT summarization is shown in Appendix A.1.2.

3.3 Step 3: Best Concept Selection

The last crucial component of DnD is concept selection, which selects the concept from the set of candidate
concepts T that is most correlated to the activating images of a neuron. We first use the Stable Diffusion
model (Rombach et al., 2022) from Hugging Face to generate images for each concept Tj∈[N ]. Generating
new images is important as it allows us to differentiate between neurons truly detecting a concept or just
spurious correlations in the probing data. The resulting set of images is then fed through the target model
again to record the activations of a target neuron on the new images. Finally, the candidate concepts are
ranked using a concept scoring model, as discussed in section 3.4.

Concept Selection Algorithm The algorithm consists of 4 substeps. For each neuron n, we start by:

1. Generate supplementary images. Generate Q synthetic images using a text-to-image model for each
label Tj∈[N ]. The set of images from each concept is denoted as Dj , |Dj | = Q. The total new dataset
is then Dnew =

⋃N
j=1 Dj = {xnew

1 , ..., xnew
N ·Q}, which represents the full set of generated images. For

the purposes of the experiments in this paper, we set Q = 10.
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2. Feed new dataset Dnew, back into the target model and rank the images based on activation. We
then evaluate the activations of target neuron n on images in Dnew and compute the rank of
each image in terms of target neuron activation. Given neuron activations An(xnew

i ), we define
Gn = {g(An(xnew

1 )), ..., g(An(xnew
N ·Q))} as the set of scalar neuron activations.

3. Gather the ranks of images corresponding to concept Tj. Let Rank(x; G) be a function that returns
the rank of an element x in set G, such that Rank(x′; G) = 1 if x′ is the largest element in G.
For every concept Tj , we record the ranks of images generated from the concept in Hj , where
Hj = {Rank(g(An(x)); Gn) ∀ x ∈ Dj}, and Hj is sorted in increasing order, so Hj1 is the rank of the
lowest ranking element.

4. Assign scores to each concept. The scoring function score(Hj) assigns a score to a concept using
the rankings of the concept’s generated images, and potential additional information. The concept
with the best (highest) score in T is selected as the concept label for the neuron. Concept scoring
functions are discussed below in Section 3.4.

In simpler terms, the intuition behind this algorithm is that if a neuron n encodes for a concept c, then the
images generated to encapsulate that concept c should cause the neuron n to activate highly. While we only
experiment with Best Concept selection within the DnD framework, it can be independently applied with
other methods like (Bau et al., 2017; Hernandez et al., 2022; Oikarinen & Weng, 2023) to select the best
concept out of their top-k best descriptions, which is another benefit of our proposed method. DnD can also
be used without Best Concept selection to reduce computational costs.

3.4 Scoring Function

For a given neuron, we use a scoring function to rate candidate concept accuracy during Best Concept
Selection (step 3). Simple metrics such as mean are heavily prone to outliers that result in skewed predictions
so we propose a scoring function that weights the average rank of top activating images mapping to a
candidate concept.

score(Rj , I, Dt
j) = (N − Rank(Rj)) · E(I, Dt

j)

Here, the average rank of images for candidate concept j, ∀j ∈ {1, ..., N}, is denoted Rj and Rank(Rj) sorts
Rj in increasing order. E(I, Dt

j) computes the average cosine similarity between image embeddings of Dt
j

and I using CLIP-ViT-B/16 (Radford et al., 2021), with Dt
j ⊂ Dj for t highest activating images. In practice,

Rj is computed as the square of the ranks in top β ranking images for better differentiation between scores,
Rj = {(Ri

j)2; i ≤ β}. Sections A.1.3 the details specifics behind the function. In section A.1.4, we compare
between various functions and show our algorithm works robustly with different options.

4 Experiments

In this section, we present extensive qualitative and quantitative analysis to show that DnD outperforms
prior works by providing higher quality neuron descriptions. For fair comparison, we follow the setup in
prior works to run our algorithm on the following two networks: ResNet-50 and ResNet-18 (He et al., 2016)
trained on ImageNet (Russakovsky et al., 2015) and Place365 (Zhou et al., 2016) respectively. In section
4.1, we qualitatively analyze DnD along with other methods on random neurons and show that our method
provides good descriptions on these examples. Next in section 4.2 we quantitatively show that DnD yields
superior results to comparable methods. In section 4.3, we show that our method outperforms existing neuron
description methods in large scale crowdsourced studies. Finally in section 4.4 we study the importance of
critical steps in our pipeline by ablating away Generative Image Captioning (step 2A) and Concept Selection
(step 3). Supplementary results are presented in the appendix, including method details in section A.1,
additional qualitative examples in section A.2, extensive ablation studies on each step of the DnD framework
in section A.4, an additional use case of DnD as an OOD classifier in section A.5, and the capability to
describe polysemantic neurons by producing multiple labels in section A.6.
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4.1 Qualitative evaluation

We qualitatively analyze results of randomly selected neurons from various layers of ResNet-50, ResNet-18,
and ViT-B-16. Sample results are displayed in Figure 1 and Figures 8, 9, 10, 11, 12, 13, and 14 in the
Appendix. We use the union of the ImageNet validation dataset and Broden as Dprobe and compare to
Network Dissection (Bau et al., 2017), MILAN (Hernandez et al., 2022), and CLIP-dissect (Oikarinen &
Weng, 2023) as baselines. Labels for each method are color coded by whether we believe they are accurate,
somewhat correct, or vague/imprecise. Compared to baseline models, we observe that DnD captures higher
level concepts in a more semantically coherent manner. Specifically, methods such as CLIP-dissect and
Network Dissection have limited expressability due to the use of restricted concept sets while MILAN produces
labels confined to lower level concepts. Additionally, we find that DnD can express multiple concepts within
in a single label owing to its generative nature.

4.2 Quantitative evaluation

4.2.1 Final layer evaluation

Here we follow (Oikarinen & Weng, 2023) to quantitatively analyze description quality on the last layer
neurons, which have known ground truth labels (i.e. class name) to allow us to evaluate the quality of neuron
descriptions automatically. In this evaluation, we focus on comparison with MILAN (Hernandez et al., 2022),
as it is the other generative contemporary work in the baselines. Network Dissection (Bau et al., 2017) and
CLIP-Dissect (Oikarinen & Weng, 2023) are not included in this comparison because these methods have
concept sets where the "ground truth" class or other similar concepts can be included, giving them an unfair
advantage to the methods without concept sets like MILAN and DnD. We reported the results for all of
the neurons of ResNet-50’s final fully-connected layer in Table 2. Our results show that DnD outperforms
MILAN, producing labels are significantly closer to the ground truths than MILAN’s.

Table 2: Textual similarity between predicted labels and ground truths on the fully-connected
layer of ResNet-50 trained on ImageNet. We can see DnD outperforms MILAN.

Metric / Methods MILAN DnD (Ours)
CLIP cos 0.7080 0.7598
mpnet cos 0.2788 0.4588

BERTScore 0.8206 0.8286

4.3 Crowdsourced experiment
Table 3: Averaged AMT results across layers in ResNet-50. Our descriptions are consistently rated
the highest and chosen as the best more than twice as often as the best baseline.

Metric / Method NetDissect MILAN CLIP-Dissect DnD (Ours)

Mean Rating 3.14 3.21 3.67 4.15
selected as best 12.71% 13.29% 23.11% 50.89%

Table 4: Averaged AMT results across layers in ResNet-18. We can see DnD outperforms existing
methods on ResNet-18 trained on Places365. Our model was selected the best out of the three methods for
more than 54% of time time, almost 3× as often as the second best method.

Metric / Methods NetDissect MILAN CLIP-Dissect DnD (Ours)
Mean Rating 3.33 3.14 3.52 4.14

selected as best 12.62 13.32% 19.39% 54.67%
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Setup. Our experiment compares the quality of labels produced by DnD against 3 baselines: CLIP-Dissect,
MILAN, and Network Dissection. For MILAN we used their most powerful base model in our experiments.

We dissected both a ResNet-50 network pretrained on Imagenet-1K and ResNet-18 trained on Places365,
using the union of ImageNet validation dataset and Broden (Bau et al., 2017) as our probing dataset. For
both models we evaluated 4 of the intermediate layers (end of each residual block), with 200 randomly chosen
neurons per layer for ResNet50 and 50 per layer for ResNet-18. Each neurons description was evaluated by
3 different workers. In total, 3000 human ratings were conducted, 2400 evaluations on ResNet-50 and 600
evaluations on ResNet-18.

The full task interface and additional experiment details are available in Appendix A.1.5. Workers were
presented with the top 10 highest activating images of a neuron followed by four separate descriptions; each
description corresponds to a label produced by one of the four methods compared. The descriptions are rated
on a 1-5 scale, where a rating of 1 represents that the user "strongly disagrees" with the given description,
and a rating of 5 represents that the user "strongly agrees" with the given description. Additionally, we ask
workers to select the description that best represents the 10 highly activating images presented. For these
highly activating images, we used the images calculated by our method. As our probing dataset is a superset
of the image sets used by prior methods, we believe our model is the most accurate for determining images to
visualize since the probing dataset encapsulates the most concepts.

Results. Table 3 and Table 4 shows the results of a large scale human evaluation study conducted on
Amazon Mechanical Turk (AMT). Looking at "% time selected as best" as the comparison metric, our results
show that DnD performs over 2× better than all baseline methods when dissecting ResNet-50 or ResNet-18,
being selected the best of the four up to 54.67% of the time. In terms of mean rating, our method achieves
an average label rating over 4.1 for both dissected models, whereas the average rating for the second best
method, CLIP-Dissect, is only 3.67 on ResNet-50 and 3.52 on ResNet-18. Our method also significantly
outperforms MILAN’s generative labels, which averaged below 3.3 for both target models. In conclusion we
have shown that our method significantly outperforms existing methods in crowdsourced evaluation, and
does this consistently across different models and layers.

4.3.1 MILANNOTATIONS evaluation

Though evaluation on hidden layers of deep vision networks can prove quite challenging as they lack
"ground truth" labels, one resource to perform such task is the MILANNOTATIONS dataset (Hernandez
et al., 2022), which collects annotated labels to serve as ground truth neuron explanations. We perform
quantitative evaluation by calculating the textual similarity between a method’s label and the corresponding
MILANNOTATIONS. Our analysis in section A.3 found that if every neuron is described with the same
constant concept ‘depictions‘, it will achieve better results than any explanation on the dataset, but this is
not a useful nor meaningful description. We hypothesize this is due to high levels on noise and interannotator
disagreement, leading to low textual similarity between descriptions and generic descriptions scoring highly.
We conclude that this dataset is unreliable to serve as ground truths for comparing different methods.

4.4 Ablation Studies

4.4.1 DnD with fixed concept set

To analyze the importance of using a generative image-to-text model, we explore instead utilizing fixed
concept sets with CLIP (Radford et al., 2021) to generate descriptions for each image instead of BLIP, while
the rest of the pipeline is kept the same (i.e. using GPT to summarize etc). For the experiment, we use
CLIP-ViT-B/16, where we define L(·) and E(·) as text and image encoders respectively. From the initial
concept set S = {t1, t2, ...}, the best concept for image Im is defined as tl, where l = argmaxi(L(ti) · E(Im)⊤).
Following CLIP-dissect (Oikarinen & Weng, 2023), we use S = 20k2(20, 000 most common English words)
and Dprobe = ImageNet ∪ Broden.

2Source: https://github.com/first20hours/google-10000-english/blob/master/20k.txt
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To compare the performance, following (Oikarinen & Weng, 2023), we use our model to describe the final layer
neurons of ResNet-50 (where we know their ground truth role) and compare descriptions similarity to the
class name that neuron is detecting, as discussed in Section 4.2.1. Results in Table 5 show that both methods
perform similarly on the FC layer. In intermediate layers, we notice that single word concept captions from
20k significantly limit the expressiveness of DnD, suggesting having generative image descriptions is important
for our overall performance. Qualitative examples and notable failure cases of CLIP descriptions can be found
under Appendix A.4.2.

Table 5: Mean FC Layer Similarity of CLIP Captioning. Utilizing a fixed concept set to caption
activating images via CLIP (Radford et al., 2021), we compute the mean cosine similarity across fully
connected layers of RN50. We find the performance of DnD w/ CLIP Captioning is slightly worse than BLIP
generative caption.

Metric / Methods DnD (Ours) DnD w/ CLIP Captioning % Decline
CLIP cos 0.7598 0.7583 0.197%
mpnet cos 0.4588 0.4465 2.681%

BERTScore 0.8286 0.8262 0.290%

4.4.2 Effects of Concept Selection

We use 50 randomly chosen neurons from each of the 4 layers of ResNet-50 to conducted an ablation study
on the impact of Best Concept Selection (step 3) on the pipeline. Each neuron was evaluated twice yielding a
total of 400 human ratings. Table 6 shows the effect of Best Concept Selection on the overall accuracy of
DnD. We can see DnD performance is already high without Best Concept Selection, but Concept Selection
further improves the quality of selected labels in Layer 2 through Layer 4, while having the same performance
on Layer 1. One potential explanation is due to Layer 1 detecting more limited lower level concepts – there is
less variance in candidate descriptions identified in Concept Generation (step 2), resulting in similar ratings
across the set of candidate concepts T . We can see some individual examples of the improvement Concept
Selection provides in Figure 3, with the new labels yielding more specific and accurate descriptions of the
neuron. For example Layer 2 Neuron 312 becomes more specific colorful festive settings instead of generic
Visual Elements.

(a) Layer 2 Neuron 312 (b) Layer 3 Neuron 927

Figure 3: Concept Selection (Step 3) supplements Concept Generation (Step 2) accuracy. We
show that concept selection improves Concept Generation by validating candidate concepts.

5 Use Case: Land-Cover Prediction

One important role of interpretability tools is the ability to create real-world impacts. In this section, we
study applications in sustainability and climate change by applying DnD to the task of land cover prediction–a
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Table 6: Human evaluation results for DnD (w/o Best Concept Selection) versus full Describe-and-Dissect. Full
pipeline improves or maintains performance on every layer in ResNet-50.

Method / Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layers

DnD (w/o Best Concept Selection) 3.54 3.77 4.00 4.02 3.84
DnD (full pipeline) 3.54 4.00 4.24 4.13 3.97

critical factor for managing water resources, conserving biodiversity, planning sustainable urban development,
and mitigating climate change effects. DnD’s concept descriptions for neurons not only improve the model
performance, but also identify spurious correlations, suggesting a critical role of interpretability techniques in
ensuring reliability and building trust in AI systems.

Setup. We evaluate our framework on two classification models. Tile2Vec (Jean et al., 2019) utilizes a
modified ResNet-18 backbone trained to minimize triplet loss between anchor, neighbor, and distant land
tiles from the NAIP dataset (Claire Boryan & Craig, 2011). Following (Jean et al., 2019), we train a random
forest classifier on ResNet-18 embeddings to evaluate accuracy on 27 subclasses of Cropland Data Layer
(CDL) labels. We also evaluate a ResNet-50 model trained on labeled EuroSAT images (Helber et al., 2019)
with 10 land cover classes. We experiment on two probing datasets. NAIP is an aerial imagery dataset
updated annually by the USDA. The dataset is composed of crop cover data with annotated ground truth
masks from CDL labels. However, due to the fine-grained nature of the 27 subclasses, we also categorize each
subclass into six broad superclasses to improve our understanding of the results: 1. Planted/Cultivated, 2.
Herbaceous/Shrubland, 3. Urban/Suburban, 4. Barren, 5. Forest, 6. Water/wetlands. We use NAIP for all
experiments on the Tile2Vec ResNet-18 model. On EuroSAT ResNet-50, we use the union of EuroSAT ∪
ImageNet ∪ Broden datasets as the probing dataset.

5.1 Locating Conceptual Groupings

Figure 4: Layer 2 Concept Profile. We cluster neurons with similar concepts and categorize them into 6
NAIP superclasses. Interpretable concepts have more neurons associated with them. Some superclasses do
not appear due to dataset bias or intrinsic similarities between classes.

We identify neuron clusters detecting similar concepts across layer 2 of Tile2Vec ResNet-18. For a pair of
candidate concepts sets for neurons n and m, we define their textual similarity Sn,m as the spatial mean
of L(Tn) · L(Tm)⊤ where L(·) is the CLIP-ViT-B/16 text encoder. A set of neurons is considered similar if
Sn,m ≥ ϕ = 0.8, where ϕ controls the minimum similarity threshold between concepts. For practicality, we
confine each neuron to exactly one group of highly similar neurons. Low-level concepts are then classified by
GPT one-shot classification into the 6 NAIP superclasses.

Fig. 4 presents concepts from layer 2, color-coded by superclass. We find that clusters (each bar in Fig.
4) containing more neurons are frequently associated with more interpretable features, while clusters with
relatively less neurons are related to vague or irrelevant concepts. Based on these insights, we prune neurons
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with uninterpretable concepts in Sec. 5.2. We also note that "Herbaceous/Shrubland" and "Water/wetlands"
are not associated with concepts in layer 2. We hypothesize that this is likely due to the intrinsic similarity
between the classes and bias in the NAIP dataset. Concepts related to "Herbaceous/Shrubland" are closely
related to the "Planted/Cultivated" superclass while "Water/wetlands" images only comprises of ∼0.275% of
the dataset.

5.2 Pruning Uninterpretable Neurons
Table 7: Pruning uninterpretable neurons
in Tile2Vec ResNet18.

Layer % of Neurons Pruned Avg. Acc. (%)
No pruning 0.00 71.63
All pruned 100.00 35.96
Layer 1 23.44 71.07
Layer 2 50.00 71.54
Layer 3 26.95 71.75
Layer 4 58.98 72.04
Layer 5 56.45 71.76

We conduct a study to identify neurons within Tile2Vec ResNet-
18 model that contribute minimally to model accuracy. Based
on Sec. 5.1, we locate a subset of ungrouped neurons which
correlate poorly to other neurons in the network. For our
experiment, we define poorly correlating subsets as concepts
that activate on only a single neuron.

Table 7 shows model accuracy after identifying and pruning
poorly correlating neuron subsets across each layer of the model.
Due to high variance in the NAIP dataset, we evaluate the
baseline accuracy for a fully pruned network. In this case, we
find the prediction is always the "tomatoes" subclass which achieves an accuracy of 35.96% since this subclass
comprises of ∼35.2% of the data. Our results show that a significant proportion of neurons in the model do
not contribute to the overall classification. Particularly in layers 4 and 5, we are able to prune over 50% of
neurons in each layer while achieving a better result than the baseline (no neurons pruned). Across the entire
network, the relative small difference in accuracy after pruning suggests human interpretable neurons account
for more critical roles within image classification networks compared to uninterpretable neurons.

5.3 Characterizing Spurious Correlations

We characterize spurious correlations in the intermediate layers of EuroSAT-trained ResNet-50 by determining
common neuron labels through Term Frequency Analysis and studying their relationship to the task. We
prune these neurons to further understand the class-wise correlation of spurious concepts (Table 8). Though
"fishing" is the most prevalent concept in layer 4 (41.65% of all neurons), pruning them has no impact on
model accuracy. In other words, these fishing neurons are irrelevant to the classification task. "Pink" and
"purple" account for 29.74% of layer 4 neurons and have a much greater impact. These concepts, which are
seemingly unrelated to the task, are spuriously correlated to the Forest, Herbaceous Vegetation, Industrial,
Pasture, Residential, and Sea-Lake classes. However, the Annual Crop, Highway, and River classes have
weaker correlations with these concepts.

Table 8: Pruning concepts from layer 4 of EuroSAT-trained ResNet-50.

Concepts
pruned

% of neurons
pruned

Class-wise Accuracy (%) Avg. Acc. (%)
Ann.-Crop Forest Herb-Veget. Highway Industrial Pasture Perm.-Crop Residential River Sea-Lake

No pruning 0 95.00 98.00 93.67 96.00 96.80 91.50 90.80 98.67 92.80 97.33 95.26
Fishing 41.65 95.00 98.00 93.67 96.00 96.80 91.50 90.80 98.67 92.80 97.33 95.26
Pink/purple 29.74 88.33 0.00 0.00 62.00 0.00 0.00 18.80 0.00 76.00 0.00 24.33

6 Conclusions

In this paper, we presented Describe-and-Dissect (DnD), a novel method for automatically labeling the
functionality of deep vision neurons without the need for labeled training data or a provided concept set.
We accomplish this through three important steps including probing set augmentation, candidate concept
generation through off-the-shelf general purpose models, and best concept selection with carefully designed
scoring functions. Through extensive qualitative, quantitative, and use-case analysis, we show that DnD
outperforms prior work by providing higher-quality neuron descriptions, greater generality and flexibility, and
significant potential for social impact.
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