
Transform Once
Efficient Operator Learning in Frequency Domain

Michael Poli * 1 Stefano Massaroli * 2 Federico Berto * 3

Jinkyoo Park 3 Tri Dao 1 Christopher Ré 1 Stefano Ermon 1

Abstract
Spectrum analysis provides one of the most
effective paradigms for information–preserving
dimensionality reduction in data: often, a sim-
ple description of naturally occurring signals
can be obtained via few terms of periodic ba-
sis functions. Neural operators designed for
frequency domain learning – frequency domain
models (FDMs) – are based on complex–valued
transforms i.e. Fourier Transforms (FT), and
layers that perform computation on the spec-
trum and input data separately. This design in-
troduces considerable computational overhead:
for each layer, a forward and inverse FT. In-
stead, this work introduces a blueprint for fre-
quency domain learning through a single trans-
form: transform once (T1). Our results notice-
ably streamline the design process of FDMs,
pruning redundant transforms, and leading to
speedups of 3 x to 10 x that increase with data
resolution and model size. We perform exten-
sive experiments on learning to solve partial
differential equations, including incompressible
Navier–Stokes, turbulent flows around airfoils
and high-resolution video of smoke dynamics.
T1 models improve on the test performance of
SOTA FDMs while requiring significantly less
computation, with over 20% reduction in pre-
dictive error across tasks.

1. Introduction
Nature uses only the longest threads to weave her patterns, so

that each small piece of her fabric reveals the organization of the
entire tapestry. (Feynman, 2017)

Naturally occurring signals are often sparse when projected

*Equal contribution 1Stanford University 2Mila, Quebec
3KAIST. Correspondence to: Michael Poli <poli@stanford.edu>.

2nd AI4Science Workshop at the 39 th International Conference
on Machine Learning (ICML), 2022. Copyright 2022 by the au-
thor(s).

on periodic basis functions (Strang, 1999). Central to
recently–introduced instances of frequency–domain neural
operators (Li et al., 2020; Tran et al., 2021), which we re-
fer to as frequency–domain models (FDMs), is the idea of
learning to modify specific frequency components of inputs
to obtain a desired output in data space. With a hierarchical
structure that blends learned transformations on frequency
domain coefficients with regular convolutions, FDMs are
able to effectively approximate global, long–range depen-
dencies in higher resolution signals without requiring pro-
hibitively deep architectures. Yet, state–of–the–art variants
of these models suffer from several drawbacks:

1. Poor parameter scaling: FDMs employ complex–
valued transforms, followed by parameter–
inefficient complex–valued layers1.

2. Slow inference: every layer of an FDM performs
a forward and inverse frequency domain transform,
introducing a considerable computational overhead.

3. Suboptimal initialization: parameter initialization
schemes and layers devised to learn directly in data
space can be highly suboptimal when introduced
without modifications to FDMs.

Although some attempts to improve performance (Gupta
et al., 2021) or alleviate the above–mentioned limitations
(Tran et al., 2021), scaling FDMs to larger data resolutions
and model sizes remains fundamentally challenging. In ex-
ample, instantiating a medium–sized FDM (tens of layers
with a non–trivial number of channels) requires a parame-
ter count in the hundred millions.

In this work, we start by posing the question:

To reap the benefits of learning on frequency domain rep-
resentations, is it necessary to construct hierarchical deep
models that perform forward and inverse frequency trans-
forms at each layer?

We provide the answer in Transform Once (T1), a model
that builds representations directly in frequency domain,

1A single complex–valued parameter requires separate real
and imaginary parts.

after a single forward transform. Each aspect of T1 ad-
dresses a specific limitation of existing FDMs:

1. Favourable scaling: T1 employs a single real–
valued transform (Discrete Cosine Transform –
DCT), which reduces parameter scaling overhead
w.r.t complex–valued layers.

2. Fast: by performing a single forward transform
and optimizing directly on DCT coefficients of tar-
get data, T1 iterations are at least 3x to 10x faster.
When scaling to larger models and higher resolu-
tions, the relative speedups increase as the overhead
of each transform grows.

3. Enhanced compatibility: removing redundant
transforms streamlines the design space for T1 ar-
chitectures compared to existing FDMs, allowing
direct introduction of optimized layers developed
for other applications e.g. UNets (Ronneberger
et al., 2015).

In §2.1 we provide a (short) history on frequency domain
approaches in deep learning, followed by background on
FDMs in §2.3. In Section §3, we describe how to train
T1 directly in frequency domain, in §3.1 we motivate the
choice of DCT, in §3.2 we derive a loss decomposition
for reduced–order FDMs and in §3.3 we introduce a sim-
ple variance–preserving weight initialization scheme for all
FDMs. Finally, in §4 we evaluate T1 on a suite of bench-
marks related to learning solution operators for a variety
of dynamics: incompressible Navier–Stokes, flow around
different airfoil geometries, and high–resolution videos of
turbulent smoke plumes (Eckert et al., 2019).

Across tasks, T1 is 3× to 10× faster and reduces predictive
errors by 20% on average. Training T1 models on high res-
olution videos (600 x 1062) of turbulent dynamics is signif-
icantly faster, requiring 5 hours instead of 32 hours (FNOs)
for the same number of iterations.

2. Related Work and Background
2.1. Learning and Frequency Domain: A Short History

Links between frequency–domain signal processing
and neural network architectures have been explored
for decades, starting with the original CNN designs
(Fukushima and Miyake, 1982). (Mathieu et al., 2013;
Rippel et al., 2015) proposed replacing convolutions in
pixel space with element–wise multiplications in Fourier
domain. In the context of learning to solve partial
differential equations (PDEs), Fourier Neural Operators
(FNOs) (Li et al., 2020) popularized the state–of–the–art
FDM layer structure: forward transform → learned layer
→ inverse transform. Similar architectures had been

previously proposed for generic image classification tasks
in (Pratt et al., 2017; Chi et al., 2020). Modifications to
the basic FNO recipe are provided in (Tran et al., 2021;
Guibas et al., 2021; Wen et al., 2022). A frequency domain
representation of convolutional weights has also been
used for model compression (Chen et al., 2016). Fourier
features of input domains and periodic activation functions
play important roles in deep implicit representations
(Sitzmann et al., 2020; Dupont et al., 2021; Poli et al.,
2022) and general–purpose PERCEIVERS (Jaegle et al.,
2021).

2.2. Learning to Solve Differential Equations

A variety of deep learning approaches have been devel-
oped to solve differential equations: neural operators and
physics–informed networks (Long et al., 2018; Raissi et al.,
2019; Lu et al., 2019; Karniadakis et al., 2021), specialized
architectures (Wang et al., 2020; Lienen and Günnemann,
2022), hybrid neural–numerical methods (Poli et al., 2020;
Kochkov et al., 2021; Mathiesen et al., 2022), and FDMs
(Li et al., 2020; Tran et al., 2021), the focus of this work.

2.3. Frequency–Domain Models

Let Dn (n-space) to be the set of real–valued discrete sig-
nals2 of resolution N . Our objective is to develop efficient
neural networks to process discrete signals x ∈ Dn,

x0, x1, . . . , xN−1, xn ∈ R.
We define a layer of FDMs mapping x to an output signal
ŷ ∈ Dn as the structured operator:

X = T (x) Forward Transform

X̂ = fθ(X) Learned Map

x̂ = T −1(X̂) Inverse Transform
ŷ = x̂+ g(x) Residual

x ŷT X
fθ

X̂
T −1

x̂

g

+

(1)

where T is an orthogonal (possibly complex) linear oper-
ator. We denote the T –transformed n-space with Dk (k-
space) so that T : Dn → Dk. Typically, we assume T to
be a Fourier–type transform3 (Oppenheim, 1999, Chapter
8) so that the k-space corresponds to the frequency domain
and its elements form the spectrum of the input signal x.

The learned parametric map fθ : Dk → Dk is the stem
of a FDM layer: it maps the k-space into itself and is typ-

2For clarity of exposition, models and algorithms proposed
in the paper are introduced without loss of generality for one–
dimensional scalar signals (i.e. Dn ≡ Rn).

3e.g. discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), etc.

ically chosen to be rank–deficient in the linear case, e.g.
fθ(X) = S⊤

mA(θ)SmX, A(θ) ∈ Cm×m (m ≤ N). The
matrix Sm ∈ Rn×m selects m desired elements of X , set-
ting the rest to zero. In the case of frequency domain trans-
forms, this allows (1) to preserve or modify only specific
frequencies of the input signal x.

Residual connections or residual convolutions g (Li et al.,
2020; Wen et al., 2022) are optionally added to reintroduce
frequency components filtered by the Sm. An FDM mixes
global transformations applied to coefficients of the chosen
transform to local transformations g i.e. convolutions with
finite kernel sizes. To ensure that such models can approxi-
mate generic nonlinear functions, nonlinear activations are
introduced after each inverse transform.

Fourier Neural Operators Layers of the form (1) appear
in recent FDMs such as Fourier Neural Operators (FNOs)
(Li et al., 2020) and variants (Tran et al., 2021; Guibas
et al., 2021; Wen et al., 2022).

In example, an FNO is recovered from (1) by letting T be
a Discrete Fourier Transform (DFT)

x̂ = T −1 ◦ fθ ◦ T (x) =W ∗S⊤
mA(θ)SmWx

where W ∈ CN×N is the standard N -dimensional DFT
matrix and W ∗ its conjugate transpose. The Discrete
Fourier Transforms (DFTs) is a natural choice of T as it
can be computed in O(N logN) via Fast Fourier Trans-
form (FFT) algorithms (Oppenheim, 1999, Chapter 9.2).

We identify two major limitations of FDMs in the form (1);
each layer performs T and T −1, and DFTs are complex–
valued, requiring parameter–inefficient complex–valued
layers.

With T1, we aim to develop an FDM that does not require
more than a single T , while preserving or improving on
predictive accuracy. Ideally, the transform in T1 should
be (1) real–valued, to avoid introducing parameter scaling
overhead, (2) universal, to allow the representation of tar-
get signals, and (3) approximately sparse or structured, to
allow dimensionality reduction.

ŷ

x

X X̂

x̂

T T −1

fθ

T T −1

g
x x̂

X X̂
S⊤
mA(θ)Sm

W W ∗ W W ∗

Commutative diagrams for FDM layers (1) and lin-
ear FNOs (frequency domain part).

3. Transform Once: The T1 Recipe
With T1, we introduce major modifications to the way
FDMs are designed and optimized. In particular, T1 is de-
fined, inferred and trained directly in the frequency domain
with only a single direct transform required to process data.
Hence follows the name: transform once (T1).

Direct learning in the frequency domain Consider two
signals x ∈ Dn, y ∈ Dn and suppose there exists a function
φ : Dn → Dn mapping x to y, i.e.

y = φ(x).

Then, there must also exist another function ψ : Dk → Dk

that relates the spectra of the two signals, i.e. Y = ψ(X)
being X = T (x) and Y = T (y). In particular,
φ(x) = T −1 ◦ ψ ◦ T (x) ⇔ T ◦ φ(x) = ψ ◦ T (x)

It follows that, from a learning perspective, we can aim
to approximate ψ directly in the k-space rather than φ in
the n-space. To do so, we define a learnable parametric
function fθ : Dk → Dk and train it to minimize the ap-
proximation error Jθ of the output signal spectrum Y in
the k–space. Given a distribution p(x) of input signals, T1
is characterized by the following nonlinear program

min
θ

Ex

[
∥T (y)− Ŷ ∥

]
subject to Ŷ = fθ ◦ T (x)

x ∼ p(x)

y = φ(x)

x

y

X

Y

ŶT

T

fθ Jθ

(2)

If T is a DFT, the above turns out to be a close approxima-
tion (or equivalent, depending on the function class of fθ)
to the minimization of ∥y− ŷ∥ in n-space by the Parseval-
Plancherel identity.

Theorem 3.1 (Parseval-Plancherel Identity (Stein and
Shakarchi, 2011, pp. 223)). Let T be the normalized DFT.
Given a signal v ∈ Dn and its transform V = T (v), it
holds ∥v∥ = ∥V ∥.

This result also applies to any other norm–preserving trans-
form T , e.g. a normalized type–II DCT (Oppenheim,
1999, pp. 679). For the linear transforms considered in
this work, T (x) = Wx, W ∈ CN×N , condition for Th.
3.1 to hold is W to be orthonormal, i.e. W ∗W = I.

Note that T1 retains, in principle, the same universal ap-
proximation properties of FNOs (Kovachki et al., 2021) as
fθ is allowed to operate on the entirety of the input spec-
trum. Given enough capacity, fθ can arbitrarily approxi-
mate ψ, implicitly reconstructing φ via T −1 ◦ fθ ◦ T .

Speedup measurements We provide a concrete exam-
ple of the effect of pruning redundant transforms on com-
putational costs. We measure wall–clock inference time
speedups of depth d T1

T1(x) := fd ◦ · · · ◦ f2 ◦ f1 ◦ T (x)

over an equivalent depth d FNO with layers (1). The only
difference concerns the application of transforms between
layers.

Figure 3.1 provides the speedups on two–dimensional sig-
nals: on the left, we fix model depth d = 6 and investigate
the scaling in signal width (i.e. number of channels) and
signal resolution. On the right, we fix signal width to be
32 and visualize the interaction of model depth and signal
resolution. For common experimental settings e.g. resolu-
tions of 64 or 128, 6 layers and width 32, T1 is at least 10 x
faster than other FDMs. It will later be shown (§4) that T1
also preserves or improves on predictive accuracy of other
FDMs across tasks.

When T1 is not preceded by online preprocessing steps for
inputs x, such as other neural networks or randomized data
augmentations, the transform on T (x) can be done once on
the dataset, amortizing the cost over training epochs, and
increasing the speed of T1 further.

3.1. Choosing the right transform

The transform T in T1 is chosen to be in the class of
Discrete Cosine Transforms (DCTs) (Ahmed et al., 1974;
Strang, 1999), in particular the normalized DCT–II,

Xk = 2

N−1∑
n=0

βkxn cos
(2n+ 1)kπ

2N

βk =

{
1

2
√
N
, k = 0

1√
2N
, k = 1, . . . , N − 1

.

DCT–II transforms can be computed in O(N logN) via an
extended FFT (Makhoul, 1980), are real–valued, and can
be shown to provide effective representations of smooth

4 16 32 48 64
16

64

128

196

256

Signal Width

S
ig
n
al

R
es
ol
u
ti
on

10 20

2 4 6 8
32
64

128

196

256

Model Depth

S
ig
n
al

R
es
ol
u
ti
on

10 20 30

T1 Speedup on Two-Dimensional Data

Figure 3.1. Speedup in a forward pass of T1 over FNOs sharing
the same transform T (DFT) on two–dimensional signals of in-
creasing resolution. The speedup for a given configuration (point
on the plane) is shown as background color gradient. The im-
provement grows with signal width, resolution and model depth.

continuous signals leveraging classical results on function
approximation with Chebyshev polynomials (Trefethen,
2019). Moreover, DCT–II transforms are the backbone of
modern compression codecs for digital images i.e. JPEG,
providing further evidence of approximate sparsity induced
in Dk by this transform.

A real–valued transform allows T1 to at least halve the re-
quired number of parameters by fθ, avoiding the overhead
of complex–valued parameters. Although our initial design
of T1 included training deep fθ in FFT k-spaces, we ob-
serve poor performance and optimization instabilities, also
noted by (Li et al., 2020). Along with parameter ineffi-
ciency, these issues are resolved by letting T be a DCT–II.

3.2. Reduced–Order T1 Model and Irreducible Loss
Bound

We seek to leverage structure induced in Dk by T . To this
end we allow T1, similarly to (1), to modify specific ele-
ments of X and consequently affect only certain frequency
components of x.

The reduced–order T1 model is designed to operate only on
m < N elements (selected by Sm ∈ RN×m) of the input
k-space, i.e. on a reduced k-space Dm ≡ Rm of lower di-
mension. Thus, we can employ a smaller neural network
γθ : Dm → Dm for mapping SmX to the corresponding
m elements SmY of the output k-space. Thus, training in-
volves a truncated objective that compares predictions with
elements in the output signal spectrum also selected by Sm:

γθ

x X SmX Ŷ

y

Y

SmY

Jθ

min
θ

Ex

[
∥Sm ◦ T (y)− Ŷ ∥

]
subject to Ŷ = γθ ◦ Sm ◦ T (x)

x ∼ p(x)

y = φ(x)

(3)

Irreducible losses Without any loss of generality, let us
assume to select with Sm the first m elements of the k-

0.5 1 1.5 2 2.5
σ2

Ours (DFT)

0 0.5 1 1.5
σ2

Variances of x̂
FNO (DFT)

0 2 4 6
σ2

FFNO (DFT)

24 32 64 128

Figure 3.2. Output variance histogram in layer outputs x̂ = W ∗
mS⊤

mA(θ)SmWN , for a finite sample of inputs x and a single sample of
θ. Color indicates signal resolution.

space, i.e.

Sm =

1 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 1 0 · · · 0


m

m N −m

.

The truncated training objective Jθ(X,Y) reads as

Jθ(X,Y) = ∥SmY − Ŷ ∥ =

m−1∑
k=0

|Yk − γθ,k ◦ Sm(X)| ,

However, Jθ does not represent a good metric to measure
the real performance of the reduced–order T1 model. For
that we need to evaluate the complete lossLθ of the approx-
imation task, including the N −m elements of the output
k-space discarded by our model, i.e.
Lθ(X,Y) = ∥Y − S⊤

mŶ ∥

=

m−1∑
k=0

|Yk − γθ,k ◦ Sm(X)|︸ ︷︷ ︸
Jθ(X,Y)

+

N−1∑
k=m

|Yk − 0|︸ ︷︷ ︸
Ro(Y)

.

It follows that the overall loss Lθ is higher than T1’s train-
ing objective Jθ, i.e. Lθ = Jθ + Ro > Jθ, whilst Ro

represents the irreducible residual loss due to truncation of
the predictions Ŷk.

The choice of elements and thus magnitude of irreducible
loss is a strong inductive bias for reduced–order T1.
Nonetheless, given a dataset of input–output signals it is
possible to perform an a priori analysis on Ro to inform
the choice of m and Sm. Often, we empirically observe
the irreducible error Ro for reduced–order T1 to be smaller
than for non–reduced–order FDMs i.e Ro <

∑K−1
k=m ∥Yk −

Tk(ŷ)∥ with layers of type (1)4.

We note further that the reachable component Jθ of the ob-
jective cannot always be minimized to zero regardless of
the approximation power of γθ. For each k < m, Sm dis-
cards N − m frequency components of the input signal
which, if different than zero, likely contain the necessary

4See Fig. 4.1 and Appendix B3 for experimental evidence in
support of this phenomenon.

information to approximate ψk(X) exactly. Specifically,
the irreducible lower bound on Jθ should depend on “how
much” the output’sm frequency components depend on the
discarded N −m input’s elements. A rough quantification
of such bound can be obtained by inspecting the mismatch
between the gradients of ψk −γθ,k ◦Sm with respect to X .
In particular, it holds

N−1∑
j=0

∣∣∣∣∂ψk(X)

∂Xj
− ∂γθ,k(SmX)

∂Xj

∣∣∣∣
=

m−1∑
j=0

∣∣∣∣∂ψk(X)

∂Xj
− ∂γθ,k(SmX)

∂Xj

∣∣∣∣+ N−1∑
j=m

∣∣∣∣∂ψk(X)

∂Xj

∣∣∣∣
Unless ∂Xj

ψk(X) = 0 holds for all j = m, . . . , N − 1
and all k i.e. no dependency of the ground truth map in k-
space on the truncated elements, there will be an irreducible
overall gradient mismatch and thus a nonzero Jθ.

3.3. Weight Initialization for Reduced–Order FDMs

FDMs (Li et al., 2020; Tran et al., 2021; Wen et al., 2022)
opt for a standard Xavier–like (Glorot and Bengio, 2010)
initialization distribution that takes into account the "fan-
in" input dimensions c to a layer i.e. N (0, 1√

c
). How-

ever, well–known variance response properties of Xavier
schemes do not hold for FDM layers truncatingN−m ele-
ments of the k-space. Notably, the standard deviation of the
weight initialization distribution is not scaled based on the
number of elementsm kept after truncation of the spectrum
performed by fθ, leading to the collapse of the outputs to
zero.

To avoid this issue in T1 and other FDMs, we develop a
simple variance–preserving (vp) that introduces a variance
scaling factor based on m and the class of transform.

[Variance Preserving (vp) Initialization] Let x̂ =
W ∗S⊤

mASmWx be a k-space reduced–order layer and W
is a normalized DCT–II transform. If x ∈ RN is a random
vector with

E[x] = 0, V[x] = σ2I.
Then,

Aij ∼ N
(
0,
N

m2

)
⇒ V[x̂] = V[x].

Corollary 3.1 (vp initialization for DFTs). Under the as-

sumptions of Theorem 3.3, if W is a normalized DFT ma-
trix we have Re(Aij), Im(Aij) ∼ N (0, N

2m2) ⇒ V[x̂] =
V[x].

We report informal proofs of the above results in Appendix
A. The collapse phenomenon is empirically shown in Fig-
ure 3.2 for m = 24, comparing a single layer of FNO and
FFNO (with Xavier initialization) with FNO equipped with
the proposed vp scheme. Under the assumptions of Corol-
lary 3.3, we sample A and compute empirical variances of
x̂ = W ∗S⊤

mA(θ)SmWx for several finite batches of input
signals x. We repeat the experiment for signals of differ-
ent lengths N . The vp scheme preserves unitary variances
whereas the other layers concentrate output variances to-
wards zero at a rate that grows with N − m. When the
learned frequency–domain transformation fθ is obtained,
instead of the single low–rank linear layer fθ = A(θ)SmX ,
as the composition of several layers, preserving variances
can be achieved by applying the vp scheme only to the first
layer. For some variants of FDMs e.g. FNO that truncate
the spectrum at each layer, vp initialization should instead
be applied to all.

4. Experiments
We validate T1 on learning to approximate solution opera-
tors of dynamical systems from images.

• In Section 4.1, we apply T1 on the standard task of
learning solution operators for incompressible Navier–
Stokes, comparing against other FDMs. In 4.1 we per-
form a series of ablation experiments on each ingredi-
ent of the T1 recipe, including weight initialization and
architecture. In 4.1 we provide scaling laws.

• Section 4.2 we deal with fluid–solid interaction dynam-
ics in the form of higher resolution images (128). We
consider turbulent flows around varying airfoil geome-
tries, benchmarking against current SOTA (Thuerey
et al., 2020).

• In Section 4.3 we show how the computational effi-
ciency of T1 allows learning on unwieldy data with-
out downsampling or building low–resolution meshes.
We consider learning on high–resolution video (600 ×
1062) capturing the turbulent dynamics of smoke (Eck-
ert et al., 2019).

Configuration and model details are reported in the supple-
mentary material.

4.1. Incompressible Navier–Stokes

We show that T1matches or outperforms SOTA FDMs with
less computation on the standard incompressible Navier–

Stokes benchmark. Losses are reported in n-space (signal
space) for comparison.

Setup We consider two–dimensional Navier–Stokes
equations for incompressible fluid in vorticity form as de-
scribed in (Li et al., 2020). Given a dataset of initial condi-
tions, we train all models to approximate the solution oper-
ator at time 50 seconds for high viscosity (ν = 1e−3) and
at time 15 for lower viscosity (ν = 1e−4). As a metric,
we report normalized mean squared error (N–MSE). Both
initial condition as well as solution are provided as images
of resolution 64.

We include as baseline established FDMs, such as Fourier
Neural Operators (FNOs) (Li et al., 2020) and Factorized
Fourier Neural Operators (FFNOs) (Tran et al., 2021). We
indicate with the suffix vp models that employ the proposed
variance preserving initialization scheme. All models trun-
cate to m = 24, except FFNOs with m = 32.

Results We perform 20 training runs for each model and
report mean and standard deviation in Table 4.1. T1 reduces
solution error w.r.t FNOs by over 20% and FFNOs by over
40%. A single forward pass of T1 models is on average
2x faster than FNO and 10x than FFNOs. We note that
FFNOs are designed to share parameters between layers,
and thus require deeper architectures – and slower, due to
more transforms. In particular, training time (500 epochs)
for T1 is cut to 20 minutes down from 40 of FNOs, match-
ing the model speedup. Finally, we report an improvement
in performance for FNOs with parameters initialized fol-
lowing our proposed scheme (FNOvp). Figure 4.1 pro-
vides sample predictions in n-space (left) to contextualize
the task, in addition to prediction errors in frequency do-
main (right). Despite being a reduced order model with
m = 24, T1+vp produces smaller errors on truncated k-
space elements (k > m) compared to FNOvp and FFNO.

Ablations on weight scheme and architecture We re-
peat the previous experiment and report prediction errors
for four variants of T1: same architecture and weight ini-
tialization scheme as FNOs (T1), T1 with our proposed
vp scheme (T1vp), a reduced–order variant with k-space
model fθ defined as a UNet architecture (T1+), and T1+
with variance preserving scheme (T1+vp). The results in
Table 4.2 provide empirical evidence in support of the vp
scheme and its synergistic effect with the proposed archi-
tecture. In particular, combining vp scheme and UNet
structure in frequency domain reduces error by half com-
pared to the naive T1 approach.

Scaling laws We verify whether the reduction in predic-
tive error of T1 over neural operator baselines is preserved
as the size of training dataset grows. We perform 10 train-

Method Param. (M) Size (MB) Step (ms) high ν low ν

FFNO (Tran et al., 2021) 8.9 35 294 1.002±0.011 1.016±0.010

FNO (Li et al., 2020) 14.2 56 31 0.379±0.006 0.327±0.004

FNOvp 14.2 56 32 0.351±0.007 0.314±0.005

T1+vp 10.2 40 19 0.260±0.011 0.238±0.003

Table 4.1. Benchmarks on incompressible Navier–Stokes. Direct long–range prediction errors (N–MSE) in n-space (signal space) of
different models.

Ground Truth T1+vp FNOvp FFNO

0 2 0 2 0 2 0 1

Ground Truth T1+vp FNOvp FFNO

−5 0

log10(|Y|)

0 5 10

|Ŷ−Y|

0 20

|Ŷ−Y|

0 10 20

|Ŷ−Y|

Figure 4.1. [Left] Direct predictions at T = 50s on high viscosity Navier–Stokes. [Right] Ground–truth spectrum and absolute errors
in k-space (DCT–II). Despite predicting only the first m = 24 elements, reduced–order T1 models produce smaller errors even in other
regions of the k-space.

Method high ν low ν

T1 0.491 0.449
T1vp 0.304 0.280
T1+ 0.295 0.260
T1+vp 0.260 0.238

Table 4.2. Ablation on the effect of the proposed weight initial-
ization scheme and T1 architecture.

210 211 212 213

0.15

0.2

0.25

0.3

Dataset size

T
es
t
N
–M

S
E

Data Scaling Laws

FNO
FNOvp
T1+
T1+vp

Figure 4.2. Scaling laws for N–MSE.

ing runs on the Navier–Stokes ν = 1e−4 experiment, each
time with a larger dataset size, and report the scaling laws
in Figure 4.2. With additional data, the gaps in test errors
narrow slightly, with noticeable improvements obtained by
applying the vp scheme to both FNO and T1+.

4.2. Flow Around Airfoils

We investigate the performance of T1 in predicting steady–
state solutions of flow around airfoils.

Setup We use data introduced in (Thuerey et al., 2020)
in the form of 10000 training pairs of initial conditions,
specifying freestream velocities and the airfoil mask, with
the target steady–state velocity and pressure fields. This
task introduces additional complexity in the form of higher
resolution input images (128) and a full k-space due to the
discontinuity in the field produced by the mask.

We compare a SOTA UNet architecture (DFPNet) intro-
duced by (Thuerey et al., 2020) to FNOs and T1 with vp
initialization schemes. We perform a search on the most
representative hyperparameters (detailed in the Appendix).
Averages for 5 runs are reported in Table 4.3.

Method N–MSE Time (hrs)

DFPNet 0.026 2.1
FNO 0.019 6.8
T1+ 0.020 2.2

Table 4.3. Test N–MSE and total training time on the flow around
airfoil task.

Results All models are able to accurately predict steady–
state solutions for different airfoils. FDMs and T1 offer a
slight improvement over DFPNets (Thuerey et al., 2020),
with FNOs introducing a significant computational over-
head. Training of T1 is as fast as DFPNets and as accu-
rate as FNOs. We note standard deviation of the results
σ = 0.001; differences between FNO are explainable by
natural variation T1 (≤ 1σ) whereas improvements over
DFPNet are ≥ 6σ.

Ground Truth T1+ T1 FNO

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Density

Ground Truth T1+ T1 FNO

−6 −5 −4 −3 −2 −1 0

log10(|Ŷ|)

Figure 4.3. [Left] 10-step rollout predictions on ScalarFlow. FNOs produce non–physical artifacts and accumulate error more rapidly in
time compared to T1 models [Right] Log–absolute values of predictions in k-space (DCT–II). Although T1 is limited to m = 512 and
T1+ to m = 224 k-space elements, the predictions are overall more physically accurate in n-space.

4.3. Turbulent Smoke

We investigate the performance of T1 in predicting iterative
rollouts from high–resolution video of real rising smoke
plumes.

Setup We use the ScalarFlow dataset introduced in (Eck-
ert et al., 2019) consisting of 104 sequences of 150 frames
each collected from video recordings of rising hot smoke
plumes. The dataset consists of raw video data at high–
resolution (600 × 1062) collected at 60 fps. This task scales
up complexity by involving real–world high–definition
data, capturing highly–turbulent dynamics. We perform
rollouts iteratively based on previous predictions: all mod-
els are trained on 3–step rollouts and evaluated over 10–
steps extrapolation to test their generalization in time. We
compare FNOs against T1 and T1+ of similar model sizes,
after performing a search on most representative hyperpa-
rameters (Appendix B).

Method N–MSE Time (hrs)

FNO 0.220 32.4
T1 0.214 8.1
T1+ 0.203 4.7

Table 4.4. Test 10–steps rollout n-space prediction errors (N–
MSE) and total training time on the ScalarFlow dataset.

Results Figure 4.3 provides a sample rollout of differ-
ent model predictions in k-space (DCT–II). T1 accumulates
smaller errors over the rollout and is less prone to gen-
eration of non–physical artifacts by performing prediction
only on a subset of the k-space (Table 4.4). Notably, T1 and
T1+ are 4× to 7× faster, providing a reduction in training
time from 32.4 hours to 4.7. In Appendix B, we include
additional visualization, including prediction errors on k-
space.

5. Conclusion
We present a streamlined class of frequency domain models
(FDM): Transform Once (T1). T1 models are optimized di-
rectly in frequency domain, after a single transform, and
achieve similar or improved predictive performance at a
fraction of the computational cost (3x to 10x speedups
across tasks). Further, a simple truncation–aware weight
initialization scheme is introduced and shown to improve
performance of T1 and existing FDMs.

References
N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine

transform. IEEE transactions on Computers, 100(1):90–
93, 1974.

W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and
Y. Chen. Compressing convolutional neural networks
in the frequency domain. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1475–1484, 2016.

L. Chi, B. Jiang, and Y. Mu. Fast fourier convolution. Ad-
vances in Neural Information Processing Systems, 33:
4479–4488, 2020.

E. Dupont, A. Goliński, M. Alizadeh, Y. W. Teh, and
A. Doucet. Coin: Compression with implicit neural rep-
resentations. arXiv preprint arXiv:2103.03123, 2021.

M.-L. Eckert, K. Um, and N. Thuerey. Scalarflow: a
large-scale volumetric data set of real-world scalar trans-
port flows for computer animation and machine learn-
ing. ACM Transactions on Graphics (TOG), 38(6):1–16,
2019.

W. Falcon et al. Pytorch lightning. GitHub. Note:
https://github. com/PyTorchLightning/pytorch-lightning,
3:6, 2019.

R. Feynman. The Character of Physical Law, with new
foreword. MIT press, 2017.

K. Fukushima and S. Miyake. Neocognitron: A self-
organizing neural network model for a mechanism of vi-
sual pattern recognition. In Competition and cooperation
in neural nets, pages 267–285. Springer, 1982.

X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceed-
ings of the thirteenth international conference on arti-
ficial intelligence and statistics, pages 249–256. JMLR
Workshop and Conference Proceedings, 2010.

J. Guibas, M. Mardani, Z. Li, A. Tao, A. Anandkumar,
and B. Catanzaro. Adaptive fourier neural operators:
Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

G. Gupta, X. Xiao, and P. Bogdan. Multiwavelet-based
operator learning for differential equations. Advances in
Neural Information Processing Systems, 34, 2021.

C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1026–1034,
2015.

D. Hendrycks and K. Gimpel. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch,
C. Ionescu, D. Ding, S. Koppula, D. Zoran, A. Brock,
E. Shelhamer, et al. Perceiver io: A general archi-
tecture for structured inputs & outputs. arXiv preprint
arXiv:2107.14795, 2021.

H. Jasak, A. Jemcov, Z. Tukovic, et al. Openfoam: A
c++ library for complex physics simulations. In In-
ternational workshop on coupled methods in numerical
dynamics, volume 1000, pages 1–20. IUC Dubrovnik
Croatia, 2007.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang. Physics-informed machine learn-
ing. Nature Reviews Physics, 3(6):422–440, 2021.

D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Bren-
ner, and S. Hoyer. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021.

N. Kovachki, S. Lanthaler, and S. Mishra. On universal
approximation and error bounds for fourier neural oper-
ators. Journal of Machine Learning Research, 22:Art–
No, 2021.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhat-
tacharya, A. Stuart, and A. Anandkumar. Fourier neu-
ral operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

M. Lienen and S. Günnemann. Learning the dynamics
of physical systems from sparse observations with finite
element networks. arXiv preprint arXiv:2203.08852,
2022.

Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-net: Learn-
ing PDEs from data. In J. Dy and A. Krause, edi-
tors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3208–3216. PMLR, 10–
15 Jul 2018. URL https://proceedings.mlr.
press/v80/long18a.html.

L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

J. Makhoul. A fast cosine transform in one and two di-
mensions. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 28(1):27–34, 1980.

F. Mathiesen, B. Yang, and J. Hu. Hyperverlet: A sym-
plectic hypersolver for hamiltonian systems. In AAAI,
2022.

M. Mathieu, M. Henaff, and Y. LeCun. Fast training
of convolutional networks through ffts. arXiv preprint
arXiv:1312.5851, 2013.

A. V. Oppenheim. Discrete-time signal processing. Pear-
son Education India, 1999.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W.
Battaglia. Learning mesh-based simulation with graph
networks. arXiv preprint arXiv:2010.03409, 2020.

M. Poli, S. Massaroli, A. Yamashita, H. Asama, and
J. Park. Hypersolvers: Toward fast continuous-depth
models. Advances in Neural Information Processing
Systems, 33:21105–21117, 2020.

M. Poli, W. Xu, S. Massaroli, C. Meng, K. Kim, and
S. Ermon. Self-similarity priors: Neural collages as

https://proceedings.mlr.press/v80/long18a.html
https://proceedings.mlr.press/v80/long18a.html

differentiable fractal representations. arXiv preprint
arXiv:2204.07673, 2022.

H. Pratt, B. Williams, F. Coenen, and Y. Zheng. Fcnn:
Fourier convolutional neural networks. In Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases, pages 786–798. Springer, 2017.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Compu-
tational physics, 378:686–707, 2019.

O. Rippel, J. Snoek, and R. P. Adams. Spectral represen-
tations for convolutional neural networks. Advances in
neural information processing systems, 28, 2015.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation.
In International Conference on Medical image comput-
ing and computer-assisted intervention, pages 234–241.
Springer, 2015.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and
G. Wetzstein. Implicit neural representations with pe-
riodic activation functions. Advances in Neural Infor-
mation Processing Systems, 33:7462–7473, 2020.

E. M. Stein and R. Shakarchi. Fourier analysis: an intro-
duction, volume 1. Princeton University Press, 2011.

G. Strang. The discrete cosine transform. SIAM review, 41
(1):135–147, 1999.

S. H. Strogatz. Nonlinear dynamics and chaos: with appli-
cations to physics, biology, chemistry, and engineering.
CRC press, 2018.

N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. Deep
learning methods for reynolds-averaged navier–stokes
simulations of airfoil flows. AIAA Journal, 58(1):25–36,
2020.

A. Tran, A. Mathews, L. Xie, and C. S. Ong. Fac-
torized fourier neural operators. arXiv preprint
arXiv:2111.13802, 2021.

L. N. Trefethen. Approximation Theory and Approximation
Practice, Extended Edition. SIAM, 2019.

L. Verlet. Computer" experiments" on classical fluids. i.
thermodynamical properties of lennard-jones molecules.
Physical review, 159(1):98, 1967.

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and
R. Yu. Towards physics-informed deep learning for tur-
bulent flow prediction. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1457–1466, 2020.

G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar,
and S. M. Benson. U-fno–an enhanced fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, page 104180, 2022.

Transform Once
Supplementary Material

A. Weight Initialization
Let us assume the input sequence x to be real and distributed according to an unknown distribution p, i.e. x ∼ p(x). We
seek a principled initialization scheme for A that allows the first central moments of pX be preserved by a reduced order
FDM layer.

Moments under a DFT:
Let x be a real–valued input distributed according to

pRe(x) = N (0, σ2I) pIm(x) = δ(0).

Consider a single element of X

Xk =

N−1∑
n=0

vn

with
vn =

1√
N
e

2πjnk
N xn =

1√
N

cos
2πnk

N
xn + j

1√
N

sin
2πnk

N
xn.

For clarity, we will treat the real part Re(Xk) first.

Re(vn) =
1√
N

cos
2πnk

N
Re(xn)

and
E[vn] =

1

N
cos2

2πnk

N
E[xn] = 0

V[vn] =
1

N
cos2

2πnk

N
V[xn] =

σ2

N
cos2

2πnk

N
where we have used the fact that

Im(wnk) Im(xn) = 0.
Thus,

E[Re(Xk)] = 0

V[Re(Xk)] =

N−1∑
n=0

σ2

N
cos2

2πnk

N

We observe that (a) the first central moment is preserved and (b) while the variance term can be simplified as

V[Re(Xk)] =

N−1∑
n=0

σ2

N
cos2

2πnk

N

=
σ2

N

N−1∑
n=0

cos2
2πnk

N

=
σ2

N

N

2

=
σ2

2

We follow a similar procedure for Im(Xk), arriving at
E[Im(Xk)] = 0

V[Im(Xk)] =

N−1∑
n=0

σ2

N
sin2

2πnk

N

where the variance again simplifies to
N−1∑
n=0

σ2

N
sin2

2πnk

N
=
σ2

2

Since Xk = Re(Xk) + j Im(Xk), its statistics are given by
E[Xk] = E[Re(Xk)] + jE[Im(Xk)] = 0 + j0

V[Xk] = V[Re(Xk)] + V[Im(Xk)] = σ2

A similar argument can be developed using basic properties of circular–symmetry of complex Normals.

It is critical that the normalization factor 1√
N

be included in W in order to preserve the variance of V[X].

Indeed, normalization factors used in different conventions lead to different results

forward factor
1

N
=⇒ V[Xk] =

σ2

N

backward factor 1 =⇒ V[Xk] = Nσ2

As N can easily be in the order of hundreds or thousands for generic signals, explosion of variance can be an issue if the
orthogonalization factor 1

N is not applied to W .

A.1. Variance response of transformations in spectral layers

Having determined the preservation of probability under Fourier Transforms, we now analyze of the first two central
moments of the distribution of a spectral layer output x̂ are affected by a learned transformation on X .

Gaussian Initialization with Dense Linear Layer Case:
Once again, we consider a single element X̂k of X̂

X̂k =

N−1∑
i=0

AkiSm,kiXi

=

m∑
i=0

AkiXi

(4)

In this case, pX̂k
is a sum of product distributions involving independent random variables Aki and Xt.

The first central moment is readily obtained

E[X̂k] =

m−1∑
i=0

E[Aki]E[Xi] = 0

if at least one of the conditions
∀n : E[xn] = 0 =⇒ ∀k : E[Xk] = 0

or ∀ k, i : E[Aki] = 0 holds.
The variance

V[X̂k] =

m−1∑
i=0

(
V[Aki] + E[Aki]

2)(V[Xi] + E[Xi]
2)− E[Aki]

2E[Xi]
2
)

=

m−1∑
i=0

V[Aki]V[Xi]

=

m−1∑
i=0

σ2V[Aki]

=

m−1∑
i=0

σ2(V[Re(Aki)] + V[Im(Aki)])

V[X̂k] = 2mσ2σ2
A

Since

V[x̂n] =
1

N

m−1∑
k=0

V[X̂k] ∀ k, n

=
2m2

N
σ2σ2

A

Solving for σA, we arrive at a sufficient condition for variance preservation i.e.

σ2
A =

N

2m2
σ2 =⇒ ∀n : V[x̂n] = V[xn]

The result for DCT can be derived by following the same steps. Since the k–space for DCTs is real, the variance sums to

V[X̂k] =

m∑
i=0

(
V[Ak,i] + E[Ak,i]

2)(V[Xi] + E[Xi]
2)− E[Ak,i]

2E[Xi]
2
)

=

m−1∑
i=0

V[Ak,i]V[Xi]

=

m−1∑
i=0

σ2V[Ak,i]

= mσ2σ2
A

.

B. Additional Details
Broader impact FDMs are widely used in the context of learning to predict the evolution of dynamical systems. The
model class presented in this work, T1, provides an accessible way to train and evaluate large–scale FDMs, reducing mem-
ory overhead and overall training times. When predicting the solution of e.g. a partial differential equation (PDE), care
should be taken especially when the prediction is used to inform downstream decision making, as many systems are opti-
mally predictable only for a certain time scale (Strogatz, 2018, pp. 366). We anticipate a potential positive environmental
impact from the adoption of T1 as a replacement for the largest FDMs currently in use.

Experimental setup Experiments have been performed on an NVIDIA© DGX workstation equipped with a 128 threads
AMD© EPYC 7742 CPU, 512GB of RAM and four NVIDIA© A100 GPUs. The main software implementation has
been done within the PyTorch (Paszke et al., 2017) ecosystem building upon the pytorch-lightning (Falcon et al.,
2019) framework.

Common experimental settings

B.1. Incompressible Navier–Stokes

Dataset We use data generated in (Li et al., 2020) in the form of pairs of initial conditions and solutions of the in-
compressible Navier–Stokes equations in vorticity form solved with a pseudospectral method. The dataset 5 is comprised
rollouts of solutions as images of resolution 64.

Models and training The training configuration is shared by all models:

1 datamodule:
2 ntrain: 1000
3 ntest: 200
4 batch_size: 64
5 history_size: 1
6 train:
7 optimizer:
8 type: AdamW
9 learning_rate: 1e-3

10 weight_decay: 1e-4
11 scheduler:
12 type: Step
13 step_size: 100
14 gamma: 0.5
15 scheduler_interval: epoch
16 loss_fn: RelativeL2Loss

For the high viscosity (1e−3) setting, the models are trained to predict the solution at time T = 50 seconds directly, without
producing rollouts and supervising the model with solutions at times between 0 and 50. Crucially, this ensures that the
task is much more challenging than that of (Li et al., 2020), where for a single training sample the entire rollout is used as
supervision. For the low viscosity setting (1e−4), target times are T = 15 seconds.

Model configurations are given below:

FNO 3

1 modes: 24
2 nlayers: 6
3 width: 32

T1 3

1 modes: 24
2 nlayers: 6
3 width: 48

FFNO 3

1 modes: 32
2 nlayers: 10
3 width: 82

where each layer in a model shares the same structure. In FNOs and FFNOs, we employ a regular FDM layer following
(Li et al., 2020; Tran et al., 2021) with k–space convolutions and residual connections given by n–space layers (pointwise
convolutions for FNOs, dense for FFNOs). T1 uses a similar layer without n–space residual paths. The differences in
number of layers and width have been introduced to keep parameter counts comparable. At a given channel width, FNOs
require the largest number of parameters due to k–space convolutions on complex numbers given by the DFT coefficients.
Although FFNOs (Tran et al., 2021) are most parameter efficient due to parameter sharing, we found them unable to tackle
the task and produce high–quality predictions.

T1+ employs a UNet on the patch constructed by the elements of the k–space kept, and shares its structure with T1

otherwise. The vp parameter initialization scheme in T1 is applied only to the first layer performing the truncation in
k–space, not to the following layers which use standard Kaiming initialization (He et al., 2015). In FNOvp the scheme is
applied to all layers.

Hyperparameter tuning We start with the basic model structure of FNOs as detailed (Li et al., 2020) and perform a
basic hyperparameter search on a small slice of the training set, with the goal of ensuring proper convergence of a model.
We did not find the number of layers to have a significant impact on convergence. Width plays an important role and is
best kept above 24.

5Data can be downloaded here: Google Drive link. High viscosity: NavierStokes_V1e-3_N5000_T50, Low viscosity:
NavierStokes_V1e-4_N10000_T30.

https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-

0 16 32 48 64
DCT modes kept

10−3

10−1

M
A

E

0 16 32 48 64
DCT modes kept

20

40

60

80

100

PS
N

R

Figure B.1. Incompressible Navier–Stokes: metrics vs number of DCT modes (i.e. m elements) kept (i.e. not pruned).

In
it

ia
lV

or
ti

ci
ty

Ta
rg

et
T
1
+
v
p

FN
O

vp
FF

N
O

Figure B.2. Initial conditions, ground truth solutions at time T = 50 seconds, and models predictions for incompressible Navier-Stokes
in vorticity form (high viscosity of 1e−3). T1 reduces solution error w.r.t FNOs by over 20% and FFNOs by over 40%. A single forward
pass of T1 models is on average 2× faster than FNO and 10× than FFNOs.

Scaling laws We use the same settings as the main experiment, repeating separate training runs for the low viscosity
setting. In particular, we increase the dataset size for each set of runs by a factor of 2: 1024, 2048, 4096, 8192. The total
number of epochs is kept fixed, so that more iterations are performed for larger datasets. The same test set of size 200 is
used in all cases.

Further comments Additional predictions are provided in Figure B.2. Figure B.1 shows the approximation error on the
Navier-Stokes solutions due to truncation at different number of k–space elements m.

B.2. Flow Around Airfoils

Dataset We use a slice of the dataset introduced by (Thuerey et al., 2020) in the form of 11000 training pairs of initial
conditions and solutions. The solutions are obtained via OpenFOAM (Jasak et al., 2007) SIMPLE, a steady–state solver
for incompressible and turbulent flows. In particular, the initial conditions are specified as freestream velocities over

the domain (two–directional components), in addition to a specification of the airfoil in point cloud format. Delaunay
triangulation is used for mesh generation.

After simulation, data is provided as initial condition and steady–state solution pairs. The initial condition is a three
channel 128 × 128 image: two channels for freestream velocities and one for the airfoil mask. The solution is a three
channel 128× 128 image: a velocity field and a scalar pressure field. All data is normalized using training set statistics.

Models and training Training configuration is given as

1 datamodule:
2 ntrain: 8000
3 nval: 2000
4 ntest: 1000
5 batch_size: 64
6 train:
7 optimizer:
8 type: AdamW
9 learning_rate: 1e-3

10 weight_decay: 1e-4
11 scheduler:
12 type: Step
13 step_size: 100
14 gamma: 0.6
15 scheduler_interval: epoch
16 loss_fn: RelativeL2Loss

The baseline UNet matches the architecture of (Thuerey et al., 2020) (DFPNet). The FNO architecture is comprised of a
standard stack of FDM layer as discussed in B.1. The k–space UNet in T1+ has the same structure as a DFPNet.

FNO 3

1 modes: 24
2 nlayers: 6
3 width: 48

DFPNET 3

1 channel_exponent: 6

T1+ 3

1 modes: 100
2 channel_exponent: 5

Hyperparameter tuning This is an example of a dataset where the k–space is full due to discontinuity in the solution
given by the airfoil mask.

We use the training and validation sets to inspect the k–space and setm to 100 for the irreducible loss term to be sufficiently
small as shown in Figure B.5. We swept overm for FNOs and found larger than 24 to perform worse, likely due to k–space
convolution being sufficient to capture higher frequency components. We observe DFPNets with larger channel exponents
perform worse due to overfitting.

Further comments A sample of predictions is given in Fig. B.3. Figure B.4 shows the n–space and corresponding DCT
k–space of a data point. As can be observed, the k–space is structured but full due to the discontinuity caused by the airfoil
mask. Figure B.5 shows the approximation error on solution fields due to truncation in k–space at different m. In this task,
the DCT is more efficient, given a budget of modes to keep, as it yields lower errors. This error provides a theoretical lower
bound for the predictive error achievable by a T1 model with a given budget, reachable only if the T1 predicts the first m
modes perfectly.

The vertical line indicates the budget used for the main text T1 experiments (m = 100), and the horizontal one the test N–
MSE achieved. Various segments of the vertical line indicate reducible and irreducible components of the loss as discussed
in Section 3.2. The theoretical limit at m = 100 is well below what has been empirically achieved by T1 and other models.
Indeed, the irreducible loss is an order of magnitude smaller than what the best model (including non–reduced–order
variants) achieves on the task.

Ta
rg

et
T
1
v
p

FN
O

vp
D

FP
N

et

Figure B.3. Ground truth solutions and predictions with different airfoil designs and angles of attack of the flow. The background color
is the scalar pressure value while the vector field represents the velocity field: arrow colors indicate its "strength" i.e. 2–norm.

n-
sp

ac
e

Mask p v1 v2

k-
sp

ac
e

”Flow around airfoils” n-space and k-space

Figure B.4. Flow around airfoils: example of n-space: input mask, output pressure p and velocity field v1, v2. Below, the corresponding
DCT k–space in abs–log i.e. log (|T (x)|) to highlight its structure.

0 5000 10000 15000
normalized modes

10−5

10−4

10−3

10−2

N
-M

S
E

p

DCT

RFFT

Reducible

Irreducible

Test Loss

0 5000 10000 15000
normalized modes

10−5

10−4

10−3

10−2

v1

DCT

RFFT

Reducible

Irreducible

Test Loss

0 5000 10000 15000
normalized modes

10−5

10−4

10−3

10−2

v2

DCT

RFFT

Reducible

Irreducible

Test Loss

N-space approximation error vs k-space modes kept

Figure B.5. Average approximation error (N–MSE) due to truncation in k–space at different number of elements m for the flow around
airfoils dataset. In blue, the real FFT k–space, in orange the regular DCT k–space. On the x–axis, the normalized cost for a number
of modes m: for DCTs, since the k–space is real, truncation at m modes requires m2 floats, for real FFTs with complex k–space and
conjugacy the cost in floats is 4m2. The vertical line indicates the budget used for T1 used in this task (m = 100), while the horizontal
line is the test N–MSE achieved.

B.3. Turbulent Smoke

Dataset We employ for this experiment the ScalarFlow dataset introduced in (Eckert et al., 2019) which is available on-
line under the Creative Commons license CC-BY-NC-SA 4.06. (Eckert et al., 2019) created an environment for controlling
the release of smoke plumes: a fog machine generated fog inside of a container; the fog was then heated up by a heating
cable and a valve controlled its release. Data was captured via multiple calibrated cameras in high resolution at 60 fps
(frames per second) for 150 frames.

0 250 500
DCT modes kept

0.00

0.01

0.02

0.03

M
A

E

0 250 500
DCT modes kept

Figure B.6. ScalarFlow dataset: reconstruction error versus number of kept DCT modes.

The dataset contains 3D reconstructions of the smoke plumes and 2D input and rendered images: input images are used by
(Eckert et al., 2019) to solve an optimization problem in which the goal is to generate a 3D reconstruction that minimizes
the difference between input and rendered images. 2D input images are obtained directly from raw data on which only
post–processing is applied by (Eckert et al., 2019) in the form of gray scaling and denoising: these are saved in compressed
numpy (Harris et al., 2020) arrays named imgsTarget_000xxx.npz. Each resulting frame comprises 5 different camera
views 600 × 1062 in size. Since we want to use T1 on high–resolution experimental data, we directly utilize the central
camera view of these input images in our learning task without any further downsampling or data processing. Similarly to
(Lienen and Günnemann, 2022), we divide the 104 recordings into the first 64 for training and use the remaining 20 for
validation and 20 for testing.

Data is normalized to the [0, 1] range based on training dataset statistics.

6ScalarFlow dataset download: https://ge.in.tum.de/publications/2019-scalarflow-eckert/

https://ge.in.tum.de/publications/2019-scalarflow-eckert/

Hyperparameter selection and tuning We performed a search on the most representative hyperparameters. One of the
most important hyperparameters to choose from is the number of DCT modes to keep, i.e. first m elements in k–space.
We note that for simplicity as well as for compatibility with the UNet inside of T1+, we consider a square mode pruning,
i.e. we keep the same number of frequencies on both height and width of the image and refer to the modes kept in both
dimensions as m. Figure B.7 and Figure B.6 show trends of DCT modes in terms of errors and visual quality: while
the first modes m contribute the most to the quality of the representation in n–space, the last elements contribute only to
high–frequency details whose effect is minor on the overall reconstruction. Thus, we set T1+ tom = 224 and consequently
T1 to m = 512 to have comparable model sizes. We set m = 48 for FNO due to memory and model size limitations,
noting that its residual connections effectively enlarge the training spectrum to all possible frequencies as shown in Figure
4.3. Similarly to other experiments (B2), we observe raising m in FNO to not significantly improve predictive error, even
when the additional k–space elements would include a larger portion of the dataset.

Ground Truth Modes: 12 Modes: 24 Modes: 48 Modes: 128 Modes: 224 Modes: 512

−0.25 0.00 0.25

y− T −1(SmY)

−0.25 0.00 0.25

y− T −1(SmY)

−0.2 0.0 0.2

y− T −1(SmY)

−0.1 0.0 0.1

y− T −1(SmY)

−0.1 0.0 0.1

y− T −1(SmY)

−0.05 0.00 0.05

y− T −1(SmY)

Figure B.7. [Top] Visual comparison of ScalarFlow frames with changing number of DCT modes kept (i.e. first m elements) . [Bottom]
Error between the ground truth frame y and its inverse transformation after mode pruning from k–space back to n–space. As expected,
the first few k–space elements are crucial to minimizing reconstruction errors, with higher frequency components contributing minimally.

We also experiment with different iterative rollout update strategies as in (Pfaff et al., 2020). We consider the time step ∆t
to be unitary, i.e. ∆t = 1, given that the training frames are sampled consistently at 60 fps. We call 0–order integration
an update of the type: xt+1 = hθ(xt;xt−1, . . . , xt−H) in which hθ denotes a learned model which takes as inputs the
current state xt and optionally a history of sizeH of past states xt−1, . . . , xt−H and directly predicts the next state xt+1. A
1–order integrator performs the following update: xt+1 = xt + hθ(xt; ·), in which the model predicts the state update, i.e.
the velocity, similarly to an Euler step. A 2–order integrator, also known as basic Störmer—Verlet (Verlet, 1967) can be
written as following: xt+1 = 2xt−xt−1+hθ(xt; ·); the model hθ predicts the acceleration of the system. We empirically
found the zero–order integration to be more prone to generating artifacts with slower convergence, which may be because
the model has to directly predict the next step with no "help" from the current step information. We found models trained
with first–order integrators to have lower predictive errors than those trained with second–order ones, and we thus use it in
all the experiments. As for the history size, we selected H = 1 since it provided noticeable benefits compared to H = 0,
in which the model has no way of knowing previous states and thus inferring velocities. Larger history sizes did not seem
to provide any improvements and only made the models larger as also noted in (Pfaff et al., 2020).

Models and training All models share the following configuration for training:

1 datamodule:
2 ntrain: 64
3 nval: 20
4 ntest: 20
5 batch_size: 1
6 history_size: 1
7 target_steps_train: 3
8 target_steps_val_test: 10
9 train:

10 optimizer:
11 type: AdamW
12 learning_rate: 1e-3
13 weight_decay: 1e-4
14 scheduler:
15 type: CosineAnnealingWarmRestarts
16 T_0: 32
17 step_size: 1
18 scheduler_interval: step
19 loss_fn: RelativeL2Loss

Where we used the implementation in PyTorch of the cosine annealing schedule with warm restarts7. The FNO architec-
ture comprises a standard stack of FDM layers as discussed in B.1. The k–space UNet in T1+ has the same structure as a
DFPNet.

FNO 3

1 modes: 48
2 nlayers: 4
3 width: 48

T1 3

1 modes: 512
2 nlayers: 4
3 width: 8

T1+ 3

1 modes: 224
2 nlayers: 1
3 width: 4
4 channel_exponent: 7

where we note that all models employ GeLU (Hendrycks and Gimpel, 2016) activation functions between inner layers.

T1+ T1 FNO

0 2

log10(|Ŷ−Y|)

0 2

log10(|Ŷ−Y|)

0.0 2.5

log10(|Ŷ−Y|)

Figure B.8. Mean log–absolute values of predictions in k-space (DCT–II) of a 20–elements batch in the test dataset. Although T1 is
limited to m = 512 and T1+ to m = 224 k-space elements (visible as square "shadows" in the error plots), its predictions are overall
more physically accurate in n-space.

Analysis of results Table B.1 provides a larger version of the table in the main text, including 1–step mean absolute
errors (MAE). We note that while FNO produces smaller errors in one–step predictions, it quickly accumulates larger

7We used the scheduler torch.optim.lr_scheduler.CosineAnnealingWarmRestarts with the number of iterations for the first
restart T_0 = 32/. All other hyperparameters are the same as in the reference implementation.

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html

errors in extrapolation. Figure B.8 shows mean errors in k–space of FNO vs T1 and T1+. T1 demonstrate smaller overall
errors and lower maxima compared to the FNO.

Table B.1. Full benchmark on the ScalarFlow dataset. N-MSE refers to 10-step test rollouts. T1 models generate more stable rollouts.

Method Param (M) Size (MB) Time (hrs) N-MSE
MAE 1 step

(×10−3)
MAE 10 steps

(×10−2)

FNO 84.9 339 32.4 0.220 2.15 1.20
T1 83.9 335 8.1 0.214 2.89 1.12
T1+ 67.8 271 4.7 0.203 2.29 1.11

