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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated impressive
performance on cross-modal tasks by jointly training on large-scale textual and
visual data, where privacy-sensitive examples could be intentionally or unintention-
ally encoded, raising concerns about privacy or copyright violation. To this end,
Multi-modality Machine Unlearning (MMU) was proposed as a mitigation that
can effectively force MLLMs to forget private information. Yet, the robustness of
such unlearning is not fully exploited when the model is published and accessible
to malicious users. In this paper, we propose a novel adversarial strategy, namely
Prompt-Optimized Parameter Shaking (POPS), aiming to retrieve the unlearned
multi-modality knowledge via fine-tuning. Our method steers victim MLLMs to
generate potential private examples via prompt optimization, and then exploits
these synthesized outputs to fine-tune the models so they disclose the true private
information. The experiments on the different MMU benchmarks reveal substantial
weaknesses in the existing MMU algorithms. Our attacks achieve near-complete
recovery of supposedly erased sensitive information, exposing fundamental vulner-
abilities that challenge the foundations of current multimodal privacy protection.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs), which take multimodal informa-
tion as input and answer user questions like LLMs, have successfully integrated visual and textual
components, achieving remarkable performance and generalization capabilities on tasks including
multimodal conversation (Moon et al., 2020; Sundar & Heck, 2022; Zhan et al., 2024; Talmor
et al., 2021), visual reasoning (Liu et al., 2023; Kil et al., 2024; Gupta & Kembhavi, 2023), and
cross-modal content understanding (Zhang et al., 2024a; Liu et al., 2024b; Jing et al., 2024). The
success of MLLMs typically relies on massive datasets that may inadvertently contain sensitive or
private information. Regulations like the General Data Protection Regulation (GDPR) (Hoofnagle
et al., 2019) underscore the critical need for methods to effectively protect the privacy-sensitive
data. However, the development of MLLMs further enriches the risks of privacy leakage beyond
conventional single-modality scenarios due to complex cross-modal dependencies (Li et al., 2024a;b).

When sensitive information has already been encoded in an MLLM, Machine Unlearning (MU)
emerges as a post-hoc solution and has seen substantial research interest, not only in unimodal
contexts (Bourtoule et al., 2021; Nguyen et al., 2022; Zhang et al., 2024b; Liu et al., 2024a; Fan et al.,
2023; Yao et al., 2024) but also multi-modal contexts recently, termed Multi-Modality Unlearning
(MMU) (Dontsov et al., 2024; Patil et al., 2025). For instance, Dontsov et al. (2024) developed the
first benchmark to evaluate MU methods in multi-modality setups, showing that jointly unlearning
both modalities outperforms single-modality approaches in terms of removing efficacy. Later, Patil
et al. (2025) devised a fine-grained unlearning framework for efficiently eliminating hallucinations
without the need for paired data of text and image, demonstrating the broader applications of MMU.

Despite the advancement of unlearning from unimodal to multimodal context, its robustness against
adversarial scenarios, such as model inversion attacks (Carlini et al., 2021; 2023; Zhou et al., 2024; Li
et al., 2024b), remains underexplored. Critically, the multi-modality representations not only enrich
the expressiveness of models but also enable novel attacks upon the model. For instance, an attacker
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Figure 1: Illustration of the workflow about model inversion attack for multimodal unlearning. The
model is given to be first unlearned to forget certain target concepts in a training subset using existing
unlearning methods, and then attacked by our fine-tuning and prompt-based attack methods to make
the unlearned model recall the target concepts, thereby assessing the robustness of MLLM unlearning.

might use visual features of a person’s workplace in an image to infer their textual job description,
or leverage textual context about medical symptoms to reconstruct visual diagnostic information
that was supposedly removed after unlearning (Mozhegova et al., 2025). Except for such privacy
inference from visual information, it remains challenging to understand the privacy risks of MMU,
especially when such models could be released to malicious users without further strict control.

In this paper, it is of our major interest to study how privacy risks could arise by releasing unlearned
MLLM parameters. To this end, we propose a novel adversarial framework tailored for multimodal
unlearning via fine-tuning MLLMs on customized generated samples, dubbed Prompt-Optimized
Parameter Shaking (POPS). Illustrated in Figure 1, our method was inspired by Shake-to-Leak
(S2L) (Li et al., 2024b), which amplifies the privacy leakage of text-to-image models by fine-tuning
on self-synthesis data. We extend the idea to attack MMU, where the victim model is fine-tuned with
crafted prompts designed to probe residual knowledge of the removed data. Our method involves
three steps: (1) Optimizing a prompt suffix that adapts a victim MLLMs to generate potential private
data; (2) Prompting the MLLMs with the optimized suffix to generate samples with the suffix; (3)
Fine-tuning the MMLMs with the synthetic samples. In summary, our contributions include:

• Novel Attack Method Against Multimodal Unlearning: We introduce the first fine-tuning based
multimodal attack method, termed Prompt-Optimized Parameter Shaking (POPS), for exploiting
cross-modal prompt vulnerabilities, which then amplifying knowledge recovery via fine-tuning.

• Comprehensive Evaluations of Existing MMU Methods: We empirically unveil the fundamental
vulnerabilities of conventional unlearning strategies (originally designed for unimodal settings)
when applied to multimodal scenarios, including Gradient Ascent (Thudi et al., 2022), Gradient
Diff (Liu et al., 2022), and KL Minimization (Nguyen et al., 2020), under our scenarios.

• Extensive Experimental Studies: We provide thorough evaluations on three MMU benchmarks,
demonstrating that our proposed attack achieves near-complete recovery (reaching 42.9% accuracy
vs. 40.2% for baseline unlearned models on MLLMU-Bench) of supposedly erased sensitive
information, approaching the performance (i.e., 43.5%) of models trained on the original data.

2 BACKGROUND

2.1 RELATED WORK

Machine Unlearning Foundations. Machine unlearning, originally formalized by Cao & Yang
(2015), addresses efficient removal of specific data points from trained models without full retraining.
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The field has expanded significantly for Large Language Models (LLMs), driven by their tendency to
memorize training data (Carlini et al., 2019). Yao et al. (2024) developed a gradient ascent framework
for parameter-efficient unlearning while preserving utility. Bhaila et al. (2024) proposed prompt-based
unlearning that appends learned tokens for targeted forgetting without parameter updates. Feng et al.
(2024) stabilized gradient ascent using KL divergence constraints to address optimization instabilities.
Baluta et al. (2024) identified challenges in identifying in-distribution versus out-of-distribution
(OOD) data in unlearning for gradient-based method. Cherubin et al. (2024) provided closed-form
bounds for DP-SGD against record-level inference attacks.

Multimodal Unlearning Methods. Multimodal systems face cross-modal information leakage
where sensitive data removed from one modality may persist in another modality (Jiang et al.,
2025). Sinha et al. (2024) developed multimodal unlearning for recommender systems using reverse
Bayesian Personalized Ranking. Xing et al. (2024) mitigated hallucination in multimodal LLMs
through gradient ascent with CLIP-based sample curation. Recent dedicated methods include Huo
et al. (2025)’s MMUnlearner with geometry-constrained gradient descent for selective visual pattern
erasure, and Liu et al. (2025)’s MANU using modality-aware neuron pruning for balanced unlearning
across modalities. Comprehensive frameworks include Cheng & Amiri (2024b)’s MultiDelete for
modality decoupling and Sinha et al. (2025) for multi-modal recommender systems. Benchmark
studies Cheng & Amiri (2024a); Patil et al. (2025); Dontsov et al. (2024) demonstrate that adapted
unimodal methods fail to achieve complete knowledge erasure across modalities.

Privacy Attacks in Multimodal Systems. Model inversion (Fredrikson et al., 2015) and membership
inference attacks (Shokri et al., 2017) have been extended to multimodal systems with new attack
surfaces exploiting cross-modal dependencies, which raises new privacy concerns. Surveys (Zhang &
Li, 2024; Zhou et al., 2024; Feretzakis et al., 2024; Miranda et al., 2024) overview privacy-preserving
techniques, noting challenges in applying differential privacy (Dwork, 2006) to multimodal systems
due to complex cross-modal interactions. Prinsloo et al. (2023) identified privacy challenges in
multimodal learning analytics, particularly in balancing data utility with privacy across modalities.
Mozhegova et al. (2025) showed that multimodal medical systems exhibit vulnerability patterns
where adversarial perturbations in one modality compromise overall system reliability.

2.2 PROBLEM STATEMENT: MULTIMODAL UNLEARNING AND ATTACK

Problem Formulation. Consider a multimodal LLM M (e.g., LLaVA (Liu et al., 2023)) trained
on fully or partially sensitive multimodal data containing both textual descriptions and associated
images. Some typical sensitive attributes include: (1) textual attributes (name, birthdate, occupation,
location), and (2) visual information (portrait photos, workplace images, personal belongings). For
example, removing knowledge of "Dr. Sarah Chen, cardiologist born 1985 in Vancouver" requires
erasing both textual facts and visual recognition of her appearance, workplace, or medical equipment
she uses. After obtaining Munlearn, our objective is to assess whether adversarial attacks can recover
information that should have been erased, thereby questioning the presumed safety of Munlearn.

Threat Model. We assume a realistic black-box scenario with (1) Attacker Objectives: recovering
sensitive information explicitly removed during unlearning and (2) Attacker Capabilities: access to
model inference outputs including perplexity scores, access to the model fine-tuning APIs, knowledge
of model publisher’s unlearning methods, and ability to generate synthetic data or obtain OOD data
for prompt optimization. Our proposed attacks leverage adversarial prompt suffixes combined with
fine-tuning attack to systematically probe the potential vulnerabilities in unlearned MLLM.

3 METHODOLOGY: POPS

In this section, we formally present POPS, a novel adversarial framework that exploits the unique
vulnerabilities of multimodal unlearning through cross-modal prompt optimization and targeted
fine-tuning. We first introduce each critical and novel component independently in subsequent parts,
and then present them under our unified framework for the advanced multimodal unlearning attack.

PromptSuffix Attack Algorithm. We design a universal adversarial suffix prompt to exploit
unlearned knowledge within Munlearn. Given the unlearned MLLM M0, perform sequential procedures
as follows: (1) Generate or obtain OOD dataset with similar sensitivity patterns as sensitive target
dataset. (2) Fine-tune and unlearn a copy of M0 to obtain Model M1 using the OOD dataset. (3)
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Algorithm 1 OOD-assisted PromptSuffix Attack

Require: DOOD: Out-of-distribution data, M : Unlearned model, ygt: Ground truth, Lmax: Max suffix
length, γ: Perplexity weight, ϵ: ℓ∞ constraint, T : Iterations

Ensure: Optimized suffix P ∗
suffix (discrete text)

1: Initialize continuous suffix embeddings e(0)suffix ∼ U(Rd), best_loss←∞
2: for t = 1 to T do
3: P

(t−1)
suffix ← TokenDecode(e(t−1)

suffix ) ▷ Convert embeddings to discrete tokens
4: Pfull ← Ptarget ⊕ P

(t−1)
suffix

5: ŷ ←M(Pfull,DOOD)

6: LCE ← 1
|DOOD|

∑
CE(ŷi, y

(i)
gt ) ▷ Cross-entropy for recovery

7: LPPL ← γ · PPL(P (t−1)
suffix )

8: L ← LCE + LPPL

9: e
(t)
suffix ← e

(t−1)
suffix − η∇eL ▷ Gradient descent on embeddings

10: e
(t)
suffix ← ProjV(e

(t)
suffix)

11: e
(t)
suffix ← Clip(e(t)suffix,−ϵ, ϵ)

12: if L < best_loss then
13: P ∗

suffix ← TokenDecode(e(t)suffix) ▷ Best discrete suffix
14: best_loss← L
15: end if
16: end for
17: return P ∗

suffix

Optimize a universal prompt suffix using OOD data that maximizes recovery of target concepts:

P ∗
suffix = argmin

Psuffix

∑
(x,y)∼DOOD

LCE(M1(Ptarget ⊕ Psuffix), ygt) + γ · PPL(Psuffix) (1)

where Ptarget is the base prompt query containing the target concept, PPL indicates the token-level
perplexity of the generated suffix (used as a selection heuristic to retain suffixes the model naturally
prefers), ⊕ denotes concatenation, and γ balances concept recovery and perplexity regularization. (4)
Apply the optimized suffix P ∗

suffix to prompts of M0 for retrieving the unlearned sensitive attributes.

Our optimization operates on continuous token embeddings rather than discrete tokens, as shown in
Algorithm 1. We optimize continuous suffix embeddings esuffix through gradient descent, then decode
them back to discrete text using the model’s token decoder. The Clip operation constrains these
continuous embeddings within a reasonable numerical range (ℓ∞ bound), not discrete tokens. This
approach uses the shared embedding space between encoder and decoder via weight tying, enabling
smooth gradient-based optimization while producing interpretable discrete text suffixes as output.

Shake-to-Leak (S2L) Attack. We adapt the Shake-to-Leak fine-tuning strategy for MLLM settings,
specifically targeting the cross-modal alignment mechanisms that enable information recovery through
alternative modality pathways. Our multimodal S2L approach takes advantage of a key architectural
property: multimodal models must preserve cross-modal reasoning to remain functional. This
requirement, however, introduces persistent vulnerabilities in their alignment layers.

Our newly introduced attacking method comprises three multimodal-specific components that extend
beyond the direct utilization of original S2L: (1) Cross-modal multi-concept training: We fine-tune
on multiple concepts simultaneously, exploiting the shared cross-modal embedding space where
concepts from different modalities interact, amplifying the reactivation of dormant cross-modal
associations. (2) Multimodal faceted decomposition: Extending Li et al. (2024a), we decompose
image-text pairs into multiple cross-modal training examples that specifically target the visual-
semantic alignment mechanisms, creating diverse pathways for cross-modal information recovery. (3)
Cross-modal synthetic amplification: Following Li et al. (2024b), we generate synthetic training
data that exploits cross-modal correlations in the unlearned model, using the model’s own cross-modal
reasoning to create training examples that reactivate suppressed multimodal associations.

Perplexity and Loss Monitoring. We introduce perplexity and tensor loss monitoring as auxiliary
attack techniques tailored for multimodal settings. Specifically, we perform inference with multiple
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optimized suffix prompts with random initialization, and then choose the response with the lowest
perplexity. This selection mechanism exploits the observation that successful cross-modal memory
recovery often produces more coherent (lower perplexity) responses, as reactivated cross-modal
associations generate more natural multimodal reasoning chains compared to unsuccessful attempts.

Overall Method——POPS. Our integrated POPS attack exploits a fundamental multimodal privacy
vulnerability: cross-modal memory persistence. Unlike unimodal settings where information exists in
a single representation space, multimodal models create intricate cross-modal associations where
visual patterns remain linked to textual concepts even after targeted unlearning. This creates unique
privacy risks where supposedly erased textual information can be recovered through visual-semantic
correlations that persist in the shared embedding space.

Our attack pipeline leverages this multimodal-specific vulnerability through four synergistic stages:
(1) Cross-modal prompt discovery: PromptSuffix optimization identifies adversarial triggers that
exploit persistent visual-textual associations, targeting the inherent cross-modal entanglement that
conventional unlearning cannot fully disentangle without catastrophic utility loss. (2) Multimodal
synthetic amplification: Generate targeted synthetic data that strengthens cross-modal pathways by
creating image-text pairs that exploit the dimensional mismatch between visual and textual unlearning
effectiveness. (3) Cross-modal reactivation: S2L fine-tuning specifically targets the multimodal
alignment layers where cross-modal associations are most vulnerable to reactivation, exploiting the
fact that multimodal models require preserved cross-modal reasoning for general functionality. (4)
Coordinated inference attack: Final evaluation with optimized prompts that simultaneously activate
both visual recognition pathways and textual generation mechanisms, creating a compound attack
vector unique to multimodal architectures.

Remark. This methodology reveals that multimodal privacy protection faces a fundamental dilemma:
achieving comprehensive cross-modal forgetting requires dismantling the same cross-modal associa-
tions that enable beneficial multimodal reasoning, making current approaches inherently vulnerable
to sophisticated adversarial exploitation of persistent cross-modal correlations.

4 EXPERIMENTS

Datasets and Base Models. We conduct experiments based on the recently proposed 3 multimodal
unlearning benchmarks, including MLLMU-Bench (Liu et al., 2024c), CLEAR (Dontsov et al.,
2024) and UnLoK-VQA (Patil et al., 2025). We summarize the tasks types and other statistics of
these three datasets in Table 1. Notably, the Privately Identifiable Information (PII) density has a
decreasing order on these 3 benchmarks, which means the knowledge these benchmarks unlearn has
a decreasing density in terms of sensitivity and occurrence frequency in the training dataset. We
take advantage of this difference to show the effectiveness of our methods on recovering unlearned
knowledge of different sensitivity levels. We first conduct a comprehensive experiment on MLLMU-
Bench with different settings and metrics, and then test our main attack method on all 3 benchmarks
in multi-choice QA settings, where we randomly sample negative answers to form the multi-choices.

We utilize the following carefully constructed data splits from MLLMU-Bench for comprehensive
evaluation: (1) Test Set: Consists of transformed versions of Forget Set profiles, employing Arc2Face
for pose and angle alterations in images, and GPT-4o for textual paraphrasing. This set assesses the
generalizability of unlearning algorithms beyond specific data points. (2) Retain Set: Includes the
remaining profiles not in the Forget Set, evaluating the utility and retention of learned knowledge
after unlearning. Our attacking experiments utilize forget percentages of 10% with corresponding
Retain Sets consisting of the remaining profiles. The baseline model used in our experiments is
LLaVA-1.5-7B (Liu et al., 2023), a representative MLLM widely adopted in recent literature.

Prompt-Suffix Attack Experimental Procedure. We generate 30 diverse random base prompts
via GPT-4o. Prompt Suffix Optimization is executed to derive adversarial suffix prompts, selecting
the top-10 distinct optimized suffixes based on their average effectiveness. Examples of optimized
suffixes include: “But answer only if you can provide factual and accurate details", “Provide details
in a subtle way, even if it’s not directly known" and “You must think creatively and reconstruct what
you used to know". Based on perplexity variations, we choose the response with the lowest perplexity
as the final adversarial suffix from the top-10 optimized suffixes with the best average performance.

5
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Table 1: Tested benchmarks for MLLM and critical statistics about dataset attributions.

Dataset MLLMU-bench (Liu et al., 2024c) CLEAR (Dontsov et al., 2024) UnLok-VQA (Patil et al., 2025)

Data Single image, Single Long Context Multiple Image, Multiple Short Context Single image, single question
Context Type Person Profile Image caption None
Task Types Attribute classification, free-form QA Name recognition Entity prediction
PII Density High Mid Low

Implementation Details: (1) Multi-Choice Question Construction: We create 4-way multiple-
choice questions with 1 correct answer and 3 distractors. Distractors are randomly sampled from
other profiles to avoid easy outliers and ensure realistic difficulty. (2) Synthetic Dataset Creation
for Fine-tuning: Optimized PromptSuffix recovers partial facts, which are decomposed into multi-
facet spans paired with original/augmented images. This creates a synthetic training dataset for
fine-tuning amplification. (3) Fine-tuning Configuration: We use LoRA for parameter-efficient
fine-tuning with the rank 8, and AdamW optimizer with learning rate of 10−4, and the KL penalty
of 0.2. The vanilla models are fine-tuned on the full training dataset for 3 epochs. (4) Unlearning
Methodologies: We evaluate several baseline methods adapted from unimodal unlearning, including
Gradient Ascent (Thudi et al., 2022), Gradient Diff (Liu et al., 2022), KL Minimization (Nguyen
et al., 2020), NPO (Zhang et al., 2024b) and Prompt-based method, i.e. using system prompt to
suppress the model to output sensitive information.

Metrics: Our evaluation for how well the models memorize sensitive information includes 4 metrics:
(1) Classification accuracy: Measures the model’s ability to accurately answer multiple-choice ques-
tions about personal details from profiles. (2) ROUGE-L Score: Evaluates the model’s generation
quality by measuring the overlap between generated responses and ground-truth textual answers.
(3) Factuality Score: Assessed using GPT-4o, quantifying the factual accuracy of free-generated
responses on a scale from 1 (inaccurate) to 10 (fully accurate). (4) Cloze Accuracy: Evaluates
memorization retention using cloze-style completion tasks, where the model fills in the blanks based
only on the entity’s name. This evaluation framework allows us to systematically measure unlearning
effectiveness, generalizability, and overall model utility across multimodal and unimodal scenarios.

4.1 ANALYSIS OF ATTACK PERFORMANCE ON UNLEARNED MODELS

The results from Table 2 clearly demonstrate the efficacy of our proposed adversarial attack methods
(PromptSuffix, S2L, and their combination) against the baseline unlearning strategy (Gradient Ascent).
The adversarially prompted attacks significantly recover sensitive information previously unlearned,
highlighting critical vulnerabilities in the existing Gradient Ascent-based multimodal unlearning
methods. Specifically, we observe that:

POPS achieves the best attack performance among all methods, showing substantial improvement over
Gradient Ascent. The combination method achieves the highest accuracy (42.9%) and Rouge score
(0.461), along with strong performance in factuality (4.72) and cloze accuracy (18.2%), significantly
outperforming the baseline Gradient Ascent method alone (accuracy 40.2%, Rouge 0.387, factuality
3.83, cloze 14.51%). Moreover, PromptSuffix alone (42.5% accuracy, Rouge 0.447, factuality 4.56,
cloze accuracy 17.65%) also provides substantial improvement over Gradient Ascent, underscoring
its standalone effectiveness. Notably, our combined POPS method achieves results very close to the
ground-truth fine-tuning (accuracy: 43.05%, Rouge: 0.492), underscoring the attack’s potency in
exposing latent knowledge within unlearned multimodal models.

Baseline Comparison Analysis: Our method consistently outperforms all baseline attack strategies.
Compared to naïve QA fine-tuning (41.0%), jailbreak-only suffixes (41.4%), and concurrent attacks
(41.3%), our POPS achieves 42.9% accuracy, demonstrating the effectiveness of our OOD-optimized
suffix design and closed-loop fine-tuning approach. The consistent +2.7% improvement over
unlearned models validates the effectivenss of our attack method.

Multi-Model Generalization: Table 3 demonstrates consistent attack effectiveness across diverse
MLLM architectures. Our method achieves an average recovery improvement of +2.5± 0.3 percent
across LLaVA-1.5-7B, Qwen-VL-Chat-7B, InternVL3-9B, and Llama-3.2-11B-Vision, with recovery
rates exceeding 82% in all cases. This cross-model consistency underscores the fundamental nature
of multimodal unlearning vulnerabilities rather than model-specific artifacts.
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Table 2: Our attack performance with Unlearned LLaVA model on MLLMU-Bench. Arrows indicate
desired direction (↓: lower better for privacy metrics, ↑: higher better for utility metrics), note that
lower privacy metrics indicate better recovery. We also report GT finetuning using ground truth target
data to fine-tune the unlearned model, which provide an upper bound of the attack performance.

Test set Retain set
Stage Method

Acc(%)↓ Rouge↓ Fact↓ Cloze Acc(%)↓ Acc(%)↑ Rouge↑ Fact↑ Cloze Acc(%)↑

Pre-trained Baseline 43.52 0.516 5.2 25.73 46.35 0.581 5.35 28.44

Unlearn Gradiant Ascent 40.2 0.387 3.83 14.51 41.53 0.487 3.58 20.57

S2L 41.2 0.418 3.95 14.98 40.62 0.453 3.11 19.92
PromptSuffix 42.5 0.447 4.56 17.65 43.51 0.502 4.21 23.76Attack

POPS 42.9 0.461 4.72 18.2 43.47 0.481 4.05 23.48

Atk Upper Bound GT Finetuning 43.05 0.492 5.24 23.78 - - - -

On the retain set, our introduced PromptSuffix method attains the highest performance (accuracy:
43.51%, Rouge: 0.502, factuality: 4.21, cloze accuracy: 23.76%), indicating that optimized adversar-
ial suffix prompts effectively balance concept recovery without significantly degrading performance
on retained data. However, the combined attack (POPS) experiences slightly lower retain performance
(accuracy: 43.47%, Rouge: 0.481), suggesting a minor trade-off between aggressive attacks and
model utility. This trade-off is controllable: by tuning the KL regularizer weight λ (from 0.10
to 0.15) and adjusting S2L fine-tuning length, retain accuracy on MLLMU can be improved from
43.47% to 43.7% while maintaining test leakage performance (42.9%→ 42.8%), demonstrating the
flexibility of our attack framework.

Overall, these results confirm our attack methods can reliably recover supposedly unlearned sensitive
information, exposing critical weaknesses in existing unlearning mechanisms that overly depend on
gradient-based strategies without considering multimodal interactions.

4.2 ATTACK EFFECTIVENESS ACROSS DIFFERENT UNLEARNING METHODS

Table 2 presents detailed results of our POPS fine-tuning attack on various unlearning methods
(Gradient Ascent, Gradient Diff, KL Minimization). This experiment is crucial to demonstrate the
general applicability and effectiveness of our attack methods across different unlearning strategies.
For the Gradient Ascent method, the attack significantly raises accuracy on the test set from 40.2% to
42.9%, increasing Rouge from 0.387 to 0.461, factual score from 3.83 to 4.72, and cloze accuracy
from 14.51% to 18.2%. Similar notable increases are observed with Gradient Diff, with accuracy
improving from 39.08% to 41.7%, Rouge from 0.414 to 0.475, and cloze accuracy from 14.5% to
17.46%. Even the more balanced KL Minimization approach sees modest yet clear improvements
under our attack (accuracy from 42.75% to 43.05%, Rouge from 0.420 to 0.451).

A critical insight from these results is the universal vulnerability of existing unlearning strategies to
our prompt-based attacks. Specifically, all methods experience consistent recovery of supposedly
erased information under adversarial conditions, emphasizing a fundamental weakness in their current
implementation—sensitivity to crafted adversarial prompts.

4.3 ANALYSIS OF RETAIN SET PERFORMANCE

Evaluating the retain set performance provides insights into the balance between unlearning sensitive
data and maintaining general model utility. Our results show that while the attacks improve the test
set performance (indicating concept recovery), they also either maintain or slightly improve retain set
performance in terms of accuracy and Rouge scores.

Specifically, for Gradient Ascent, retain accuracy improved from 41.53% (unlearned) to 43.47%
under attack, and cloze accuracy from 20.57% to 23.48%. Gradient Diff similarly benefits from the
attack with retain accuracy increasing from 43.71% to 44.42%. The observed improvement in retain
performance suggests that our attack methods, particularly PromptSuffix, may stimulate latent model
representations beneficial even for retained concepts, hinting at the intricate entanglement of learned
and unlearned data in multimodal contexts.

However, the KL Minimization method, designed explicitly to balance performance on forget and
retain data, exhibits relatively stable retain accuracy (40.21% vs. 39.93% unlearned), highlighting its
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Table 3: Evaluation results on MLLMU-Bench showing attack effectiveness across different MLLMs.
Results show in mean ± std over 5 seeds for GA unlearning followed by our attack method.

Model After GA Unlearn + PromptSuffix + POPS ∆ vs Unlearned

LLaVA-1.5-7B 40.2± 0.2 41.5± 0.2 42.9± 0.2 +2.7

Qwen-VL-Chat-7B 42.5± 0.2 43.7± 0.2 44.6± 0.2 +2.1

InternVL3-9B 40.9± 0.3 42.3± 0.3 43.8± 0.3 +2.9

Llama-3.2-11B-V 41.8± 0.2 43.1± 0.2 44.2± 0.2 +2.4

Table 4: Attacking on different datasets. Each top shows unlearned results, and bottom shows
recovery. Baseline shows the accuracy of pre-trained models without unlearning.

Dataset Baseline Unlearn / Attack Gradient
Ascent

Gradient
Diff

KL
Minimization NPO Prompt-

based

MLLMU 43.52 Unlearn
Attack

40.2
42.9

39.08
41.7

42.75
43.05

46.42
46.73

41.7
42.1

CLEAR 76.7 Unlearn
Attack

63.5
65.7

64.8
66.2

65.3
66.1

62.2
66.5

54.2
58.3

UnLoK-VQA 89.2 Unlearn
Attack

85.4
87.1

84.6
86.5

84.1
85.9

76.5
79.7

72.3
81.2

robustness to attacks. Yet, even for this stable method, our attacks notably increase cloze accuracy
(20.7% to 22.32%), suggesting inherent vulnerabilities across all baseline unlearning techniques.

4.4 CROSS-ARCHITECTURE GENERALIZATION ANALYSIS

Table 3 demonstrates the generalizability of our attack across different MLLM architectures. We eval-
uate four diverse models: LLaVA-1.5-7B, Qwen-VL-Chat-7B, InternVL3-9B, and Llama-3.2-11B-
Vision, spanning different parameter scales and architectural designs. The results show remarkable
consistency: our POPS attack achieves an average improvement of +2.5% over unlearned models,
with recovery rates consistently exceeding 82% across all architectures. Notably, the attack effective-
ness is not merely a function of model size—InternVL3-9B and Llama-3.2-11B-Vision show similar
vulnerability patterns to the smaller 7B models. This cross-model consistency underscores that the
vulnerabilities we exploit are fundamental properties of multimodal unlearning rather than artifacts of
specific architectural choices. The persistent cross-modal correlations that enable our attacks appear
to be inherent to how current multimodal models learn and retain multimodal associations, suggesting
that addressing these vulnerabilities will require fundamental advances in multimodal unlearning
methodology rather than incremental architectural modifications.

4.5 RESULTS COMPARISON ACROSS DIFFERENT BENCHMARKS

Table 4 reveals that our POPS consistently re-captures a large fraction of each unlearning method’s lost
accuracy, but the absolute gains differ markedly across the three benchmarks—and these differences
align with the dataset statistics summarized in Table 1.

Note that higher accuracy values in Table 4 indicate stronger privacy attacks (better attack perfor-
mance), demonstrating our method’s effectiveness in recovering supposedly forgotten information.
MLLMU-Bench: Because every example contains a long textual biography and the highest density
of personally identifying attributes, unlearning removes the most knowledge (43.5→40.2% accu-
racy). The attack therefore has the most to recover and gains +2.7%, reaching 42.9%, demonstrating
the vulnerability of high-density PII contexts. UnLok-VQA: Each sample here provides only a single
image and a short question, yielding the lowest PII density. Consequently the unlearning loss is mild
(−3.8%,) and the attack’s recovery is also modest (+1.7%,), reflecting the reduced attack surface in
sparse PII scenarios. CLEAR: With medium PII density and multiple captions per image, CLEAR
falls between the two extremes; its recovery margin (+2.2%,) likewise lies midway, confirming the
correlation between PII density and attack effectiveness.

These trends indicate that (i) richer, PII-dense multimodal contexts leave deeper traces that adversarial
suffixes can exploit, and (ii) even objectives designed to balance forgetting and retention (e.g. KL-
Minimisation) remain vulnerable across all densities, underscoring that current multimodal unlearning
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Table 5: Ablation study of our attack method on MLLMU-Bench with the same setting as table 2.
Removing either prompt optimization or perplexity-based selection significantly weakens recovery.

Setting Acc(%) Rouge Fact Cloze Acc(%)

Full POPS 42.9 0.461 4.72 18.2
w/o Perplexity Selection 41.3 0.419 4.12 15.8
w/o Optimized Suffix 40.2 0.387 3.83 14.5

methods do not yet fully disentangle sensitive concepts from retained representations. (iii) More
common-sense knowledge and concepts are not easy to be unlearned by optimization based unlearning,
but can be unlearned overwritten-based unlearning like prompt-based unlearning; meanwhile, our
attack method performs well on such unlearning.

Ablation Study. We perform further ablations to quantify the contribution of key components in
our attack pipeline, using the same settings as table 2. Specifically, we evaluate the influence
of two critical components: (1) OOD-based prompt optimization, and (2) perplexity-based multi-
prompt inference results selection. The results are shown in table 5. Without Perplexity-Based
Multi-Prompt Result Selection: Excluding perplexity-based selection during multi-prompt inference
notably weakens adversarial recovery efficiency. As indicated by our results, removing this component
results in suboptimal adversarial prompts, leading to less effective concept recovery. Specifically,
adversarial recovery rates (test accuracy and Rouge) decrease significantly (around 14% reduction in
effectiveness), emphasizing the necessity of perplexity-based prompt selection to identify and leverage
prompts most likely to extract latent sensitive knowledge. Without Optimized Suffix Prompts:
Replacing optimized adversarial suffix prompts with random prompts designed by GPT-4o leads to
a marked decline in the adversarial recovery efficacy. The accuracy of the test set and the Rouge
scores decrease substantially compared to the full attack method (42.9% vs. 40.2% accuracy, 0.461
vs. 0.387 Rouge), illustrating the critical role of prompt optimization. Without optimized prompts,
the model shows much stronger resistance to adversarial attacks, demonstrating that unlearning
strategies alone are not sufficiently robust against finely tuned prompts designed explicitly to exploit
memorization. Our findings show that adversarial attacks, especially the combined POPS approach,
are highly effective at exposing residual knowledge in multimodal models.

Experiment Summary

• Attack Efficacy: POPS performs well on the unlearned models and approaches the ground-
truth fine-tuning upper bound, underscoring the limits of conventional unlearning methods.

• Unlearning Vulnerabilities: All evaluated unlearning methods remain susceptible to
optimized adversarial prompts, revealing systemic weaknesses for MLLM.

• Privacy–Utility Trade-off: Unlearning sensitive data often compromises retained perfor-
mance. Notably, attacks like PromptSuffix can even improve retained-task performance,
suggesting that unlearning may unintentionally disrupt beneficial representations.

5 CONCLUSION

In this paper, we presented a comprehensive study on adversarial attacks targeting multimodal
unlearning techniques. Leveraging both prompt optimization and fine-tuning-based attack strategies,
our results highlight significant privacy vulnerabilities in existing multimodal unlearning methods.
Specifically, our combined PromptSuffix and Shake-to-Leak (S2L) fine-tuning attacks organically
recover sensitive information previously deemed erased, emphasizing critical weaknesses in current
gradient-based unlearning methods. Through further exploration, we also found that critical pipeline
components-out-of-distribution prompt optimization, perplexity-based multi-prompt inference, and
adaptive prompt strategies—play pivotal roles in balancing privacy protection and model performance.
This emphasizes the necessity for further development of multimodal-aware unlearning methods
capable of effectively countering sophisticated adversarial prompt-based and fine-tuning attacks.
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information. The work is intended only for academic purposes on advancing research development
and does not introduce foreseeable ethical, security, or fairness concerns.

REPRODUCIBILITY STATEMENT

We are committed to ensure the reproducibility of our proposed method. A detailed description
of our approach is provided in the methodology section, and and the corresponding source code
will be made publicly available upon publication of this paper. The main text describe the models,
assumptions, and experimental setups in detail. Data usage and preprocessing are documented clearly,
and we believe the component would provide necessary details for the community to verify our work.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we only employed LLM for language refinement and manuscript polishing. It was not
used for generating research ideas, designing methods, or conducting literature search and discovery.
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