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DAGE: DAGQuery Answering via Relational Combinator with
Logical Constraints

Abstract
Predicting answers to queries over knowledge graphs is called a

complex reasoning task because answering a query requires subdi-

viding it into subqueries. Existing query embedding methods use

this decomposition to compute the embedding of a query as the

combination of the embedding of the subqueries. This requirement

limits the answerable queries to queries having a single free vari-

able and being decomposable, which are called tree-form queries

and correspond to the SROI−
description logic. In this paper,

we define a more general set of queries, called DAG queries and

formulated in the ALCOIR description logic, propose a query

embedding method for them, called DAGE, and a new benchmark

to evaluate query embeddings on them. Given the computational

graph of a DAG query, DAGE combines the possibly multiple paths

between two nodes into a single path with a trainable operator that

represents the intersection of relations and learns DAG-DL from

tautologies. We show that it is possible to implement DAGE on top

of existing query embedding methods, and we empirically measure

the improvement of our method over the results of vanilla methods

evaluated in tree-form queries that approximate the DAG queries

of our proposed benchmark.
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ACM Reference Format:
. 2024. DAGE: DAG Query Answering via Relational Combinator with

Logical Constraints. In . ACM, New York, NY, USA, 16 pages. https://doi.

org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
A challenging aspect of machine learning, called complex reasoning,
is to solve tasks that can be subdivided into subtasks. A prominent

complex reasoning problem is predicting answers to queries in

knowledge graphs. This problem, called complex query answering,
involves solving queries by decomposing them into subqueries.

To address this problem, several query embedding (QE) methods

[1–4] encode queries with low-dimensional vectors, and utilize

neural logical operators to define the embedding of a query as the

combination of the embedding of its subqueries. However, these

methods are only capable of processing a restricted set of first-order

logic queries that have a single unquantified variable (called target),
correspond to SROI−

description logic queries [5] and are called
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tree-form queries because, considering only the nodes represent-

ing variables, their computation graphs are trees [6]. In this work,

we consider a more expressive set of queries, DAG queries, which
extends tree-form queries by allowing for quantified variables to

appear multiple times in the first component of atoms. In doing so,

DAG queries can include multiple paths from a quantified variable

𝑥 to a target variable 𝑦, whereas in tree-form queries it is at most

one path from 𝑥 to 𝑦.

Consider the following first-order query 𝜙 (𝑥), asking for works

edited by an Oscar winner and produced by an Oscar winner.

𝜙 (𝑦) F ∃𝑥1∃𝑥2 : wonBy(Oscar, 𝑥1) ∧
edited(𝑥1, 𝑦) ∧
wonBy(Oscar, 𝑥2) ∧
produced(𝑥2, 𝑦) .

(1)

The computation graph of query 𝜙 (𝑦) is the following:

Oscar
𝑥1

𝑥2

𝑦

wonBy

wonBy

edited

produced

(2)

Query 𝜙 (𝑦) is tree-form because there exists at most one path from

𝑥1 to𝑦 and at most one path from 𝑥2 to𝑦. Since it is tree-form, it can

be expressed as a conjunction 𝜙1 (𝑦) ∧ 𝜙2 (𝑦), where the subqueries
𝜙1 (𝑦) and 𝜙2 (𝑦) are also tree-form:

𝜙1 (𝑦) F ∃𝑥1 : wonBy(Oscar, 𝑥1) ∧ edited(𝑥1, 𝑦), (3)

𝜙2 (𝑦) F ∃𝑥2 : wonBy(Oscar, 𝑥2) ∧ produced(𝑥2, 𝑦) . (4)

In SROI−
, query 𝜙 is expressed as 𝐶 = 𝐶1 ⊓𝐶2, where the sub-

queries 𝐶1 and 𝐶2 are:

𝐶1 F ∃edited− .(∃wonBy− .{Oscar}), 𝜙2 (𝑦) (5)

𝐶2 F ∃produced− .(∃wonBy− .{Oscar}) . (6)

Complex query answering methods use the embeddings of the

subqueries 𝜙1 and 𝜙2 to compute the embedding of query 𝜙 . To this

end, these methods define a neural logical operator that represents

the logical operation∧. Hence, the ability to decompose queries into

subqueries and express the logical connectives with neural logical

operators is critical for the existing complex reasoning methods.

Let us now show a query where this decomposition of queries

does no longer hold. Consider the query asking for works edited and

produced by an Oscar winner (i.e., an Oscar winner that has both

roles, editor and producer). Compared with the previous query, this

new query enforces 𝑥1 = 𝑥2, which can be encoded by renaming

both variables 𝑥1 and 𝑥2 as 𝑥 :

𝜓 (𝑦) = ∃𝑥 : wonBy(Oscar, 𝑥) ∧
edited(𝑥,𝑦) ∧
produced(𝑥,𝑦) .

(7)

1
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If we observe the computation graph of query𝜓 (𝑦), depicted in (8),

we can see that𝜓 (𝑦) is no longer a tree-form query because there

are two paths from variable 𝑥 to variable 𝑦. We call Directed Graph

Queries (DAG) to the queries in the set resulting from relaxing the

maximum of one path restriction of tree-form queries.

Oscar 𝑥 𝑦
wonBy

edited

produced

(8)

Query𝜓 (𝑦) cannot be decomposed into two tree-form queries be-

cause the conjunction between the query atoms edited(𝑥,𝑦) and
produced(𝑥,𝑦) requires considering two target variables in the

complex reasoning subtask. Similarly, query𝜓 (𝑦) is not expressible
inSROI−

becauseSROI−
allows for conjunctions in concept de-

scriptions but not role descriptions, which are required to indicate

that 𝑥 “produced and edited” 𝑦. A description logic that allows for

conjunctions in role descriptions, called ALCOIR1
, can express

the query𝜓 (𝑦) as the following concept description 𝐷2
:

𝐷 F ∃(edited ⊓ produced)− .(∃wonBy− .{Oscar}) . (9)

Unlike existing methods, to compute the embedding of query 𝐷 ,

we do not decompose 𝐷 into two subqueries, but we compute the

embedding of the relation description edited ⊓ produced with an

additional neural operator, called relational combinator, to represent
the intersection between relations. With this extension to existing

methods [1–3], we can represent the aforementioned query 𝐷 with

the following computation graph.

Oscar 𝑥 𝑦
wonBy edited ⊓ produced

(10)

Like the computation graphs of tree-form queries, the computation

graph of query 𝐷 has a single path from variable 𝑥 to variable 𝑦.

Hence, we can reuse existing query embedding methods [1–3] to

recursively define the embedding of a DAG query.

Without our extension, the vanilla methods cannot be applied to

DAG queries. Instead, can apply them by relaxing DAG queries to

tree-form queries. However, one can expect that this workaround

solution produce less accurate results because the solutions to the

relaxed query 𝜙 (𝑦) in (1) are not enforced to satisfy 𝑥1 = 𝑥2 like

the solutions to query𝜓 (𝑦) in (7).

To define the relational combinator for role conjunctions, we

encourage the models to satisfy a set of well-known ALCOIR
tautologies involving role conjunctions.

In summary, this paper makes the following contributions:

(1) In Section 3, we propose a description logic, named DAG,

that extends SROI−
to encode conjunction of relations,

and we present four tautologies involving this extension.

(2) In Section 4, we propose an integrable relational combinator

that can be integrated into existing query embedding meth-

ods and generally enhance their expressiveness to DAG

1ALCOIR is a description logic in the family of Attributive Languages (AL). The

letters C, O, I, and R stand for the extensions to the AL description logic with

complement, nominals, inverse predicates, and conjunction of role descriptions [7].

2
In this paper we use the terms concept description and query as synonyms because a

concept description defines the answers to the query.

queries, and that follows three tautologies involving the

intersection of relations (i.e., commutativity, distributivity,
and monotonicity).

(3) In Section 5.1, we introduce six novel types of DAG queries,

and their corresponding relaxed tree-form queries, and de-

velop new datasets with different test difficulty levels.

(4) In Section 5.3, we assess the performance of existing meth-

ods on the created new datasets, comparing them with our

integrated module. The results show that DAGE brings con-

sistent and significant improvement to the baseline models

on DAG queries.

(5) In Section 5.6, we create new data splits on the bench-

mark datasets to analyze DAGE’s effectiveness in improving

query embedding models for DAG queries in greater detail.

2 Preliminaries
This section presents queries as ALCOIR concepts. We follow

the notations and semantics described in [7]. For the following

definitions, we assume three pairwise disjoint sets C, R, and E,
whose elements are respectively called concept names, role names
and individual names.

Definition 2.1 (Syntax of ALCOIR Concept and Role Descrip-
tions). ALCOIR concept descriptions 𝐶 and role descriptions 𝑅 are

defined by the following grammar

𝐶 F ⊤ | 𝐴 | {𝑎} | ¬𝐶 | 𝐶 ⊓𝐶 | ∃𝑅.𝐶
𝑅 F 𝑟 | 𝑅− | 𝑅 ◦ 𝑅 | 𝑅 ⊓ 𝑅 | 𝑅+

where the symbol ⊤ is a special concept description, and symbols

𝐴, 𝑎 and 𝑟 stand for concept names, individual names, and role

names, respectively. Concept descriptions {𝑎} are called nominals.
We write ⊥,𝐶 ⊔𝐷 , ∀𝑅.𝐶 as abbreviations for ¬⊤, ¬(¬𝐶 ⊓¬𝐷) and
¬∃𝑅.¬𝐶 , respectively.

Definition 2.2 (Syntax of ALCOIR Knowledge Bases). Given
twoALCOIR concept descriptions𝐶 and 𝐷 and two role descrip-

tions 𝑅 and 𝑆 , the expressions 𝐶 ⊑ 𝐷 and 𝑅 ⊑ 𝑆 are respectively

concept inclusion and a role inclusion. We write𝐶 ≡ 𝐷 as an abbrevi-

ation for two concept inclusions𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 , and likewise for

𝑅 ≡ 𝑆 . Given two individual names 𝑎 and 𝑏, a concept description

𝐶 and a relation description 𝑅, the expression 𝐶 (𝑎) is a concept as-
sertion and the expression 𝑅(𝑎, 𝑏) is a role assertion. An ALCOIR
knowledge base is a triple K = (R,T ,A) where R is a set of role

inclusions, T is a set of concept inclusion, andA is a set of concept

and role assertions.

Definition 2.3 (Interpretations). An interpretation I is a tuple

(ΔI , ·I ) where ΔI
is a set and ·I is a function with domain E ∪

C ∪R, called the interpretation function, that maps every individual

name 𝑎 ∈ E to an element 𝑎I ∈ ΔI
, every concept name𝐴 ∈ C to a

set𝐴I ⊆ ΔI
, and every role name 𝑟 ∈ R to a relation 𝑟I ⊆ ΔI×ΔI

.

The interpretation function is recursively extended to ALCOIR
concept descriptions and role descriptions by defining the semantics

of each connective (see [7] and Appendix B).

Definition 2.4 (Semantics of𝐴𝐿𝐶𝑂𝐼𝑅 Knowledge Bases). Given an

interpretation I, we say that I is a model of

• a role axiom 𝑅 ⊑ 𝑆 if and only if 𝑅I ⊆ 𝑆I ,
2
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• a concept axiom 𝐶 ⊑ 𝐷 if and only if 𝐶I ⊆ 𝐷I
,

• a concept assertion 𝐶 (𝑎) if and only if 𝑎I ∈ 𝐶I
,

• a role assertion 𝑅(𝑎, 𝑏) if and only if (𝑎I , 𝑏I ) ∈ 𝑅I
,

• an ALCOIR knowledge base K = (R,T ,A) if and only

if I is a model of every element in R ∪ T ∪ A.

Definition 2.5 (Entailment). Given two knowledge bases K1 and

K2 we say that K1 entails K2, denoted K1 |= K2, if for every

interpretation I, if I modelsK1 then I modelsK2. This definition

is extended to axioms and assertions (e.g., K |= 𝐶 (𝑎) if all models

or K are also models of 𝐶 (𝑎)).

Definition 2.6 (Knowledge Graph [5]). A knowledge graph𝐺 is

a ALCOIR knowledge base whose RBox is empty, its TBox con-

tains a unique concept inclussion ⊤ ⊑ {𝑎1} ⊔ · · · ⊔ {𝑎𝑛}, called
domain-closure assumption, where {𝑎1, . . . , 𝑎𝑛} is the set of all indi-
viduals names occurring in the ABox, and its ABox contains only

role assertions.

Definition 2.7 (Knowledge Graphs Query Answers). Given a knowl-
edge graph𝐺 , the answers to an ALCOIR concept description𝐶

are the individual names 𝑎 ∈ E such that 𝐺 |= 𝐶 (𝑎).

3 Tree-Form and the DAG Queries
As was proposed by He et al. [5], tree-form queries can be expressed

as SROI−
concepts descriptions. The computation graphs of the

first-order formulas corresponding to these concepts descriptions

have at most one path for every quantified variable to the target

variable. As we already show, this is not hold if the relational inter-

section ⊓ is added. In this section, we define tree-form and DAG

queries as subsets of the ALCOIR description logic, we describe

their computation graph, and the relaxation of non-tree form DAG

queries as tree-form queries.

3.1 Syntax of Queries
Definition 3.1 (Tree-Form and DAG queries). DAG queries are

the subset of ALCOIR concept descriptions 𝐶 defined by the

following grammar

𝐶 F {𝑎} | ¬𝐶 | 𝐶 ⊓𝐶 | ∃𝑅.𝐶
𝑅 F 𝑟 | 𝑅− | 𝑅 ◦ 𝑅 | 𝑅 ⊓ 𝑅

A DAG query is said tree-form if it does not include the operator ⊓
in role descriptions.

Unlike ALCOIR concept descriptions, DAG queries do not

include concept names, the ⊤ concept, nor the transitive closure

or relations. We exclude these constructors because they are not

present in queries supported by existing query embeddings.

Proposition 3.2. Given two role descriptions 𝑅 and 𝑆 , and an
individual name 𝑎, the following equivalences hold:

commutativity: 𝑅 ⊓ 𝑆 ≡ 𝑆 ⊓ 𝑅,
monotonicity: 𝑅 ⊓ 𝑆 ⊑ 𝑅,
restricted conjunction preserving: ∃(𝑅 ⊓ 𝑆) .{𝑎} ≡ ∃𝑅.{𝑎} ⊓ ∃𝑆.{𝑎}.

Proof. The tautologies follow directly from the semantics of

ALCOIR concept and role descriptions. □

3.2 Computation Graphs
He et al. [5] illustrated the computation graphs for tree-form queries

encoded as SROI−
concepts, but did not formalize them. We next

provide such a formalization for a graph representation of DAG

queries (and thus for tree-form queries).

Definition 3.3 (Computation Graph). A computation graph is a

labelled directed graph Γ = (𝑁, 𝐸, 𝜆, 𝜏) such that 𝑁 is a set whose

elements are called nodes, 𝐸 ⊆ 𝑁 × 𝑁 is a set whose elements are

called edges, 𝜆 is a function that maps each node in 𝑁 to a label,
and 𝜏 is a distinguished node in 𝑁 , called target.

Example 3.4. The computation graph Γ = (𝑁, 𝐸, 𝜆, 𝜏) with 𝑁 =

{𝑢1, 𝑢1}, 𝐸 = {(𝑢1, 𝑢2)}, 𝜆 = {𝑢1 ↦→ {Oscar}, 𝑢2 ↦→ ∃wonBy−},
and 𝜏 = 𝑢2 is depicted in (11).

𝑢2 : ∃wonBy−𝑢1 : {Oscar}
(11)

Intuitively, the node𝑢1 computes the concept {Oscar} and the node
𝑢2 computes the concept ∃wonBy− .{Oscar}, which corresponds to

answers to the query asking who is an Oscar’s winner.

To define the computation graphs of DAG queries, we need to

introduce the composition of a computation graph Γ with a role

description 𝑅, denoted Γ [𝑅]. Intuitively, the composition is the

concatenation of Γ with the graph representing the role description,

as Example 3.5 illustrates. A definition for this operation and the

computation graph of DAG queries is suplemented in Appendix C.

Example 3.5. Consider the computation graph Γ depicted in (11).

The computation graph Γ [edited−] and Γ [(edited ⊓ produced)−]
are depicted in (12) and (13), respectively.

𝑢3 : ∃edited−𝑢2 : ∃wonBy−𝑢1 : {Oscar}
(12)

𝑢5 : ⊓
𝑢3 : ∃edited−

𝑢4 : ∃produced−
𝑢2 : ∃wonBy−𝑢1 : {Oscar}

(13)

Example 3.6. Consider the tree-form query 𝐶 = 𝐶1 ⊓𝐶2 defined

by equations (5) and (6). The computation graph of𝐶 is depicted in

the following diagram:

𝑢4 : ⊓
𝑢3 : ∃edited−𝑢2 : ∃wonBy−𝑢1 : {Oscar}

𝑢7 : ∃produced−𝑢6 : ∃wonBy−𝑢5 : {Oscar}
(14)

Similarly, the computation graph for the DAG query in equation

(9) is depicted by the figure in (13).

Notice that, in (14), different nodes can have the same label and

represent the same concept (e.g., nodes 𝑢2 and 𝑢6 represent the

concept ∃wonBy− .{Oscar}). Intuitively, the duplication of labels

means that an answer can be a work edited by an Oscar’s winner

and produced by another Oscar’s winner. On the other hand, since

there is a single node for this concept in the computation graph in,

(13), namely node 𝑢2, the work must be produced and edited by the

same Oscar’s winner.

3.3 Relaxing Non Tree-Form DAG queries
The restricted conjunction preserving (see Proposition 3.2), does no

longer follow if we replace the nominal {𝑎} with a general concept

description 𝐶 . Indeed, the example discussed in the introduction is

3
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a counterexample for the generalized version of the conjunction

preserving. The fact that conjunction is not preserved in general

is the cause of the need of new neural operator for the role con-

junction, different from the one used for the concept conjunction.

Alternatively, if the neural operator is not used, we can relax con-

cept description with a relaxed version of this tautology.

Proposition 3.7. Given two role descriptions 𝑅 and 𝑆 , and a con-
cept description 𝐶 , the following concept inclusion hols:

∃(𝑅 ⊓ 𝑆).𝐶 ⊑ ∃𝑅.𝐶 ⊓ 𝑆.𝐶 (15)

Proof. By monotonicity, concept ∃(𝑅 ⊓ 𝑆).𝐶 is included in the

concepts ∃𝑅.𝐶 and ∃𝑆.𝐶 . Then, concept ∃(𝑅 ⊓ 𝑆) .𝐶 is included in

the concept ∃𝑅.𝐶 ⊓ ∃𝑆.𝐶 . □

Intuitively, the role conjunction relaxation consists of not as-

suming that the instances of the concept 𝐶 must be equal on the

concept defined on the right side. An example of this was discussed

in the introduction, when the editor and producer of a work are

not required to be the same Oscar’s winner. Thus, the three-form

query with the computation graph in (14) relaxes the non tree-form

with the computation graph in (13).

Definition 3.8 (Tree-form approximation). The approximated tree-
form query of a DAG query 𝑄 , denoted tree(𝑄), is the tree-form
query resulting from removing every conjunction of role descrip-

tions using the inclusion in (15).

It is not difficult to see that for every DAG query 𝑄 with no

complement constructor (i.e., without ¬), it holds that 𝑄 ⊓ tree(𝑄),
that is, query tree(𝑄) relaxes query 𝑄 . This is not necessary for

queries including complement because they are not necessarily

monotonic. Hence, query embeddings that use tree-form queries

to predict answers to DAG queries are expected to incur in both,

more false positives and more false negatives.

4 DAG Query Answering with Relational
Combinator

In this section, we first introduce a generalized query embedding

model subsuming various previous query embedding approaches

[1–3]. Then, we introduce a relational combinator that extends

existing query embeddings to support DAG query type. Finally, we

discuss how to introduce additional logical constraints to further

improve the results.

4.1 Base Query Embedding Methods Interface
Many query embedding methods [1–3] predict query answers by

comparing the embedding of individuals with the embedding of

the query, so the individuals that are closer to the query in the

embedding space are more likely to be answers. These query em-

beddings are learnable parameterized objects and are computed via

neural operations that correspond to the logic connectives in the

queries. In this subsection we present the interface required for the

embedding methods to be used as a base for our proposed query

embedding method, DAG-E. Query embedding methods such as

Query2Box, BetaE, and ConE satisfy this interface.

We assume three vector spaces E𝑑 , R𝑑 , and Q𝑑
, where E, R, and

Q are fields (which depend on the query embedding method) and 𝑑

is the dimension of the vectors. We assume that every individual

𝑎 is embedded in a vector Emb𝑎 ∈ E𝑑 , every role name 𝑟 and its

inverse 𝑟− are embedded in vector Emb𝑟 , Emb𝑟 − ∈ R𝑑 , and every

tree-form query 𝑄 is embedded in a vector Emb𝑄 ∈ Q𝑑
. Whereas

the embedding function Emb· is defined for individuals and role

names and the inverse of role names, because they are directly

defined by the parameters to be learn, function Emb· is not directly
defined for compound role and concept descriptions.

4.1.1 Role Embeddings. The embedding of a role description 𝑅 is

recursively computed from the embedding of role names and its

inverses as with a neural operators with signature RComposition :

R𝑑 × R𝑑 → R𝑑 as follows:

Emb𝑅◦𝑆 F RComposition(Emb𝑅, Emb𝑆 ), (16)

Emb𝑅−− F Emb𝑅, (17)

Emb(𝑅◦𝑆 )− F Emb𝑆−◦𝑅− . (18)

4.1.2 Concept Embeddings. The embedding of a query is computed

from the embedding of individual names and role names using neu-

ral operators that represent the logical connectives in queries. The

signatures of these neural operators are the following: Nominal :

E𝑑 → Q𝑑
, RelT : Q𝐷 × R𝐸 → Q𝐸

, Intersect : Q𝑑 × . . .Q𝑑 → Q𝑑
,

and Complement : Q𝑑 → Q𝑑
. These neural operators define query

embedding of tree-form queries as follows:

Emb{𝑎} F Nominal(Emb𝑎), (19)

Emb∃𝑟 .𝐶 F RelT𝑟 (Emb𝐶 ), (20)

Emb𝐶1⊓𝐶2 ...⊓𝐶𝑛
F Intersect(Emb𝐶1

, Emb𝐶2
, · · · , Emb𝐶𝑛

), (21)

Emb¬𝐶 F Complement(Emb𝐶 ) . (22)

4.1.3 Insideness. Given a query 𝑄 and a knowledge graph 𝐺 , the

goal of query embedding approaches is to maximize the predictions

of positive answers to query𝑄 (i.e., individuals𝑎 such that𝐺 |= 𝑄 (𝑎))
and minimize the prediction of negative answers to query 𝑄 (i.e.,

individuals 𝑏 such that 𝐺 |= ¬𝑄 (𝑏)). Because of the open-world
semantics of𝐺 (see Definition 2.6) we cannot know which answers

are negative. However, the learning of query embedding needs

negative answers. Therefore, for each positive answer 𝑎, query

embedding methods assume a random individual 𝑏, different from

𝑎, to be a negative answer.

In the representation space, the evaluation of how likely an

individual is an answer to a query is computed with a function with

signature Insideness : Q𝑑 × Q𝑑 → R, that returns higher numbers

for individuals that are answers to the query than for individuals

that are not answers to the query. That is, given a query 𝑄 with

a positive answer 𝑎 and its corresponding randomly generated

negative answer 𝑎′ distinct from 𝑎, the goal of query embedding

approaches is to minimize the following loss:

L𝑖 (𝑄) F
∑︁
𝑎∈E

©­­­­«
− log𝜎

(
𝛾 − Insideness(Emb𝑄 , Emb{𝑎} )

)
+

𝑘∑︁
𝑗

1

𝑘
log𝜎

(
𝛾 − Insideness(Emb𝑄 , Emb{𝑎′ } )

)ª®®®®¬
.

(23)

where {𝑎′} us the negative sample, 𝛾 is a margin hyperparameter

and 𝑘 is the number of random negative samples for each positive

query answer pair.
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4.2 The Relational Combinator
So far, we have described an interface consisting of neural oper-

ators that are implemented by existing query embeddings. These

neural operators allow the computation of tree-form query embed-

dings, but not not DAG queries including the conjunction of roles.

To enhance the capability of these methods for DAG queries, we

introduce a relational combination operator with signature

RCombiner𝑘 : (R𝑑 )𝑘 → R𝑑 , (24)

where 𝑘 is a positive natural number. The embedding of a role

description 𝑅1 ⊓ · · · ⊓ 𝑅𝑘 (with 𝑘 > 0) is:

Emb𝑅1⊓···⊓𝑅𝑘 F RCombiner𝑘 (Emb𝑅1
, . . . , Emb𝑅𝑘 ), (25)

where RCombiner is a commutative neural network. We used the

neural operator DeepSet [8] to implement RCombiner.

RCombiner𝑘 (Emb𝑅1
, . . . , Emb𝑅𝑘 ) =

∑︁
1≤𝑖≤𝑘

𝛼𝑖 ·MLP(Emb𝑅𝑖 )) (26)

where the weights 𝛼1, · · · , 𝛼𝑘 sum 1. Specifically,

𝛼𝑖 =
exp(MLP(Emb𝑅𝑖 ))∑

1≤ 𝑗≤𝑘 exp(MLP(Emb𝑅 𝑗
)) .

Proposition 4.1. Given two role descriptions 𝑅 and 𝑆 ,

RCombiner2 (Emb𝑅, Emb𝑆 ) = RCombiner2 (Emb𝑆 , Emb𝑅) . (27)

Proof. It follows from the commutativity of the DeepSet. □

Proposition 4.1 guarantees that the embedding of role description

satisfies some of the ALCOIR tautologies described in Proposi-

tion 3.2, namely commutativity and idempotence.

4.3 Encouraging Tautologies
So far, we have shown (see Proposition 4.1) that the proposed rela-

tional combinator satisfies two of the ALCOIR tautologies pre-

sented in Proposition 3.2, namely commutative and idempotence,

but not the monotonicity and the restricted conjunction preserving.

We hypothesize that by encouraging the query embeddings such

that the inference of embeddings follow these tautologies, we can

improve the embedding generalization capacity.

4.3.1 Monotonicity. We encourage the query embeddings of a DAG

query 𝑄 = ∃(𝑅 ⊓ 𝑆) .𝐶 to be subsumed by the query embedding of

query 𝑄 ′ = ∃𝑅.𝐶 by introducing the following loss:

L𝑚 (𝑄) =
∑︁

𝑟 ∈R,𝑠∈R
Insideness(Emb𝑄 , Emb𝑄 ′ ), (28)

Intuitively, Insideness measures the likelihood of Emb𝑄 ′ being in-

side Emb𝑄 .3

3
More details about the Insideness function for individual methods can be found in

Appendix A.
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2s 3s sp

is us ins
: anchor node/constant
: quantified variable
: target variable: negation

: relational projection
: disjunction

Figure 1: Query structures considered in the experiments,
where anchor entities and relations are to be specified to
instantiate logical queries. Naming for each query structure
is provided under each subfigure, where "s", "p", "i", "u" and
"n" stand for "split", "projection", "intersection", "union", and
"negation" respectively. For example, "2s" stands for 2 split-
ting edges in the query structure.

4.3.2 Restricted conjunction preserving. We encourage the tautol-

ogy ∃(𝑟 ⊓ 𝑠).{𝑒} ≡ ∃𝑟 .{𝑒} ⊓ ∃𝑠 .{𝑒} (see Proposition 3.2) with the

following loss:

L𝑟 F Diff (Emb∃(𝑟⊓𝑠 ) .{𝑒 } , Intersect(Emb𝑟 .{𝑒 } , Emb𝑠.{𝑒 } )), (29)

where Diff measures the distance between two query embeddings.

We supplement the details on Diff of each individual query embed-

ding method in Appendix A.

By imposing these loss terms, the tautologies are encoded into

geometric constraints, which are soft constraints over the embed-

ding space. Hence, our loss terms can also be viewed as regulation

terms that reduce the embedding search space. Given a query an-

swering training dataset D, our final optimization objective is:

L(𝐷) F
|D |∑︁
𝑖=1

L𝑖 (𝑄) + 𝜆1L𝑚 + 𝜆2L𝑟 , (30)

whereL𝑞 is the query embedding loss, and 𝜆1 and 𝜆2 are theweights

of regularization terms.

5 Experiments
In this section, we answer the following research questions with

experimental statistics and corresponding case analyses.RQ1:How
effectively does DAGE enhance the existing baselines in discovering

answers to DAG queries that cannot be found by simply traversing

the incomplete KG? RQ2: How well does the existing baselines

with DAGE perform on tree-form queries?RQ3:How do the logical

constraints influence the performance of DAGE? All experiments

and the data generation codes are available via https://anonymous.

4open.science/r/DAG_RC-9B18/README.md.

5.1 DAG Query Generation
Existing datasets, e.g. NELL-QA, FB15k237-QA, WN18RR-QA, do

not contain DAG queries. We propose six new DAG query types,

i.e., 2s, 3s, sp, us, is, and ins, as shown in Figure 1. Following these

new query structures, we generate new DAG query benchmark

datasets, NELL-DAG, FB15k-237-DAG, and FB15k-DAG.

5
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Figure 2: Proportion of overlap between DAG query answers
and the corresponding Tree-Form query answers from NELL-
DAG Easy test dataset.

Given that the answers to DAG queries represent a subset of

those derived from the relaxed tree-form queries, evaluating the

model’s ability to handle DAG queries becomes challenging when

there exists a high proportion of overlap between the answer sets

of both queries. Specifically, a query embedding method can relax

a DAG query into tree-form query by replacing all ∃𝑟 ⊓ 𝑡 .𝐶 with

∃𝑟 .𝐶 ⊓ ∃𝑡 .𝐶 .4 This method could still achieve good performance

if the answer set of this DAG query overlaps highly with that of

the tree-form query. To validate this hypothesis in our datasets,

we analyze the randomly generated DAG queries from NELL [9].

Figure 2 illustrates that around 50% of these DAG queries have

answer sets that highly overlap (over 90%) with the answer sets of

tree-form queries. Same analyses on the randomly generated DAG

queries from FB15k and FB15k-237 can be found in Appendix E.

To solve this problem, we propose test datasets of two difficulty

levels for each benchmark DAG-QA dataset in Table 6, test-easy
and test-hard, such that

• Test-easy datasets are randomly generated, and the answer

sets of some queries are probably highly similar to those of

the corresponding tree queries.

• Test-hard datasets are selected out of the random queries

such that the overlapping ratio between the answer sets

of these queries and their corresponding tree queries is

less than 0.5. For example, if the answer set of a DAG

query is {𝑎, 𝑏, 𝑐} and that of its corresponding tree query is

{𝑎, 𝑏, 𝑐, 𝑑} then this DAG query should be dismissed because

the overlap ratio is 3/4.

5.2 Experimental Setup
Evaluation Metrics. We use Mean Reciprocal Rank (MRR) as the

evaluation metric. Given a query Q, MRR represents the average of

the reciprocal ranks of results, MRR = 1

|𝑄 |
∑ |𝑄 |
𝑖=1

1

rank𝑖
.

Hyperparameters and Computational Resources. All of our
experiments are implemented in Pytorch [10] framework and run

on four Nvidia A100 GPU cards. For hyperparameters search, we

4
We supplement the relaxed tree-form query types corresponding to proposed DAG

types in Appendix D.

performed a grid search of learning rates, the batch size, the negative

sample sizes, the regularization weights𝜔 and the margin𝛾 . Further

experimental details and the best hyperparameters are shown in

Table 7 in Appendix F.

5.3 RQ1: How effective is DAGE for enhancing
baseline models on DAG queries?

To assess the performance of DAGE in extending tree-form query

embedding methods to DAG queries, we conducted the follow-

ing analysis. Firstly, we retrained and tested the baseline mod-

els, Query2Box[1], BetaE[3] and ConE[2], on the new benchmark

datasets by decomposing the DAG queries into the conjunction of

tree-form queries. More details about the implementation of base-

lines are elaborated in Appendix A. Then, we implement DAGE on

top of these methods and evaluate them on the new benchmark

datasests again under both easy and hard test modes.

Main Results: Tables 1 and 2 summarize the performance of

the baseline methods, both with and without DAGE, under the easy

and hard test modes. Based on these results, we draw the following

conclusions. Firstly, the baseline methods show a significant perfor-

mance drop from the easy to hard datasets due to the exclusion of

"easy" DAG queries, as described in Section 5.1. This highlights the

importance of developing datasets that effectively assess a model’s

ability to handle DAG queries, rather than just tree-form queries.

Secondly, DAGE consistently delivers significant improvements to

all baseline methods across all query types and datasets, in both

easy and hard test modes. Specifically, DAGE significantly improves

performance on the NELL-DAG dataset, with the average accuracy

of baseline models nearly doubling when combined with DAGE

compared to their standalone performance. Beyond these baseline

models, we also implement other query embedding models, e.g.,

CQD[11] and BiQE[4], that are theoretically believed to be capa-

ble of handling DAG queries, on our new datasets. We perform

comparison between the enhanced baselines and these methods in

Appendix H. It demonstrates that DAGE can easily extend existing

tree-form query embedding models to outperform these methods

on DAG query datasets, further reinforcing its effectiveness.

5.4 RQ2: How well does DAGE perform on the
existing benchmarks with tree-form
queries?

An effective method for extending existing query embedding tech-

niques to handle DAG queries should also ensure strong perfor-

mance on the tree-form queries these methods were originally de-

signed to process. Table 3 presents the performance of the baseline

models, as well as their performance when integrated with DAGE,

on tree-form queries from NELL-QA [3]. The complete results on

other two datasets are supplemented in Appendix G. DAGE enables

these models to handle DAG queries while preserving their orig-

inal performance on tree-form queries. More importantly, DAGE

shows significant improvement only on DAG queries, with little

effect on tree-form queries, supporting our assumption that DAGE

effectively enhances baseline performance for the new DAG query

types.
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Table 1: The MRR performance of baseline models and our proposed version DAGE on easy benchmark datasets.

Dataset Model 2s 3s sp is us Avg𝑛𝑛 ins Avg
Query2Box 20.53 34.03 0.10 23.31 28.2 21.23 - -

Query2Box (DAGE) 37.61 ↑ 49.42 ↑ 41.71 ↑ 40.57 ↑ 42.75 ↑ 42.41 ↑ - -

BetaE 15.30 28.78 13.10 17.72 16.69 18.32 27.30 19.82

NELL-DAG BetaE (DAGE) 36.87 ↑ 57.14 ↑ 34.95 ↑ 39.90 ↑ 37.80 ↑ 41.33 ↑ 34.68 ↑ 40.22 ↑
ConE 23.55 39.38 19.48 25.28 25.01 26.54 27.71 26.73

ConE (DAGE) 33.50 ↑ 57.35 ↑ 38.43 ↑ 37.93 ↑ 33.74 ↑ 40.19 ↑ 33.94 ↑ 39.15 ↑
Query2Box 6.84 11.61 9.26 6.48 4.61 7.76 - -

Query2Box (DAGE) 7.41 ↑ 12.64 ↑ 10.07 ↑ 7.32 ↑ 5.03 ↑ 8.49 ↑ - -

BetaE 4.81 8.17 7.52 5.0 2.71 5.64 4.49 5.45

FB15k-237-DAG BetaE (DAGE) 6.27 ↑ 12.11 ↑ 9.64 ↑ 6.66 ↑ 4.09 ↑ 7.75 ↑ 6.58 ↑ 7.56 ↑
ConE 4.90 9.21 8.88 5.52 3.08 6.32 4.80 6.06

ConE (DAGE) 6.87 ↑ 11.66 ↑ 12.36 ↑ 6.90 ↑ 4.80 ↑ 9.54 ↑ 6.08 ↑ 8.12 ↑
Query2Box 32.62 35.52 20.90 27.79 23.94 28.15 - -

Query2Box (DAGE) 37.74 ↑ 42.93 ↑ 24.30 ↑ 29.37 ↑ 25.97 ↑ 31.46 ↑ - -

BetaE 25.91 33.13 28.20 22.21 23.31 26.55 19.02 25.29

FB15k-DAG BetaE (DAGE) 32.65 ↑ 46.17 ↑ 32.48 ↑ 28.15 ↑ 28.10 ↑ 33.50 ↑ 25.39 ↑ 32.15 ↑
ConE 32.10 37.42 32.37 27.14 27.85 31.37 23.48 30.06

ConE (DAGE) 41.67 ↑ 56.70 ↑ 33.36 ↑ 36.54 ↑ 32.36 ↑ 40.12 ↑ 30.86 ↑ 38.58 ↑

Table 2: The MRR performance of baseline models and our proposed version DAGE on hard benchmark datasets.

Dataset Model 2s 3s sp is us Avg𝑛𝑛 ins Avg
Query2Box 7.47 5.19 0.11 8.54 12.28 6.72 - -

Query2Box (DAGE) 25.38 ↑ 20.13 ↑ 21.25 ↑ 24.85 ↑ 29.24 ↑ 24.17 ↑ - -

BetaE 14.38 16.23 7.99 13.32 13.03 12.99 28.17 15.52

NELL-DAG BetaE (DAGE) 27.68 ↑ 32.25 ↑ 16.36 ↑ 26.14 ↑ 29.19 ↑ 26.32 ↑ 33.64 ↑ 27.54 ↑
ConE 20.31 18.88 12.02 19.59 22.31 18.62 29.45 20.43

ConE (DAGE) 30.71 ↑ 38.41 ↑ 24.76 ↑ 28.44 ↑ 31.06 ↑ 30.67 ↑ 34.07 31.24 ↑
Query2Box 4.25 2.64 7.21 4.56 3.63 4.45 - -

Query2Box (DAGE) 4.81 ↑ 2.81 ↑ 7.87 ↑ 5.26 ↑ 4.38 ↑ 6.95 ↑ - -

BetaE 3.62 1.62 6.44 3.85 2.42 3.20 4.31 3.38

FB15k-237-DAG BetaE (DAGE) 4.89 ↑ 1.66 ↑ 8.28 ↑ 4.75 ↑ 3.50 ↑ 4.61 ↑ 6.06 ↑ 4.85↑
ConE 3.48 2.28 7.36 4.23 2.92 4.05 4.65 4.15

ConE (DAGE) 4.78 ↑ 2.09 9.72 ↑ 4.84 ↑ 4.16 ↑ 5.12 ↑ 5.25 ↑ 5.14 ↑
Query2Box 31.86 33.32 18.46 25.59 22.59 26.36 - -

Query2Box (DAGE) 33.78 ↑ 39.67 ↑ 19.61 ↑ 26.91 ↑ 24.76 ↑ 28.95 ↑ - -

BetaE 24.02 31.82 26.12 20.17 21.93 24.81 18.60 23.77

FB15k-DAG BetaE (DAGE) 30.57 ↑ 44.30 ↑ 29.35 ↑ 25.72 ↑ 26.63 ↑ 31.31 ↑ 25.18 ↑ 30.29 ↑
ConE 30.42 36.29 30.46 25.67 27.14 29.99 22.66 28.77

ConE (DAGE) 40.14 ↑ 57.06 ↑ 29.23 34.63 ↑ 31.45 ↑ 38.50 ↑ 30.74 ↑ 37.21 ↑

Table 3: The MRR performance of the retrained baseline models with DAGE method on tree-form query benchmark datasets

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up Avg
Query2Box 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 23.6

Query2Box (DAGE) 42.1 23.4 21.3 28.6 41.1 20.0 12.3 27.5 15.9 28.3

BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 24.6

NELL-QA BetaE (DAGE) 53.4 12.9 10.8 37.6 47.1 23.8 13.8 12.3 8.3 24.4

ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2

ConE (DAGE) 53.2 15.7 13.7 39.9 50.7 26.0 17.0 14.8 10.9 26.8

5.5 RQ3: How do the logical constraints
influence the performance of DAGE?

Table 4 summarizes the performances of baseline models enhanced

by DAGE with additional logical constraints, i.e., monoticity and

restricted conjunction preservation in proposition 3.2. First, we find

that both monoticity and restricted conjunction preservation bring

some improvements in general. The improvements of the monotic-

ity regularization is bigger than that of the restricted conjunction

preservation. Next, we find that the combination of both logical

constraints consistently enhances DAGE’s performance on DAG

7
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Table 4: The MRR performance of baseline models with DAGE on NELL-DAG hard benchmark dataset, along with their
performance when integrated with additional logical constraints.

Model 2s 3s sp is us Avg𝑛𝑛 ins Avg
Query2Box (DAGE) 25.38 20.13 21.25 24.85 29.24 24.17 - -

Query2Box (DAGE+Distr) 25.93 21.50 20.85 24.73 29.71 24.54 - -

Query2Box (DAGE+Mono) 25.90 21.74 21.87 25.41 30.17 25.02 - -

Query2Box (DAGE+Distr+Mono) 25.87 22.01 22.34 24.96 30.02 25.04 - -

BetaE (DAGE) 27.68 32.25 16.36 26.14 29.19 26.32 33.64 27.54

BetaE (DAGE+Distr) 27.91 32.87 17.12 27.02 30.13 27.01 34.28 28.22

BetaE (DAGE+Mono) 28.01 33.56 16.89 26.93 29.47 26.97 34.17 28.17

BetaE (DAGE+Distr+Mono) 28.11 33.48 17.67 26.83 29.36 27.09 34.49 28.32
ConE (DAGE) 30.71 38.41 24.76 28.44 31.06 30.67 34.07 31.24

ConE (DAGE+Distr) 31.23 39.37 25.08 28.73 31.92 31.27 36.34 32.11

ConE (DAGE+Mono) 31.47 39.82 25.17 28.57 31.24 31.25 35.84 32.02

ConE (DAGE+Distr+Mono) 31.88 39.89 25.28 28.64 31.57 31.45 35.93 32.20
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Figure 3: Average percentage of improvement from baseline
model to baseline (DAGE) for different overlap ratios
query answering tasks, highlighting the importance of incorporat-

ing constraints in complex query answering.

5.6 Ablation study
To more effectively examine the specific impact of DAGE on base-

line models to DAG queries, a detailed analysis was conducted

on them based on the NELL-DAG query answering dataset. We

divide the easy test dataset into four groups, 0 − 30%, 30 − 60%,

60 − 90%, and 90 − 100%, based on the overlap ratio between DAG

query answers and their corresponding tree-form query answers.

The specific number of queries in each category can be found in

Figure 2. Figure 3 shows the average performance improvement,

in percentage, of the baseline models when enhanced with DAGE

across the subgroups of test queries. It is observed that most of

DAGE’s improvements occur in queries with lower answer overlap

ratios. For queries with higher overlap ratios, which are easier for

the baseline models, DAGE bring less improvement. This shows

that DAGE significantly improves baseline models, particularly on

challenging tasks they previously couldn’t handle on their own.

6 Related Work
Query Embedding Methods. Path-based [12, 13], neural [2–4, 14,

15], and neural-symbolic [11, 16, 17] methods have been developed

to answer (subsets of) queries. Among these methods, geometric

and probabilistic query embedding approaches [2, 3, 14, 15] provide

an effective way to answer tree-form queries over incomplete and

noisy KGs. These methods achieve this by representing sets of

entities as geometric shapes or probability distributions, such as

boxes [15], cones [2], or Beta distributions [3], and applying neural

logic operations directly on these representations. The Graph Query

Embedding (GQE) method [14] was one of the earliest approaches,

designed to handle only conjunctive queries by representing the

query 𝑞 as a single vector using neural translational operations.

However, representing a query as a single vector limits its ability to

effectively capture multiple entities. Query2Box [15] addresses this

limitation by representing entities as points within boxes, enabling

it to model the intersection of entity sets as the intersection of

boxes in vector space. ConE [2] introduced the first geometry-

based query embedding approach capable of handling negation by

embedding entity sets (or query embeddings) as cones in Euclidean

space. However, these established theories and methods are limited

to tree-form queries. There is a lack of techniques that can extend

their application to DAG queries.

7 Conclusion
In this paper, we define a more general set of queries, called DAG

queries and discuss its connection to ALCOIR description logic.

We propose DAGE, a plug-and-play module that extends existing

tree-form query embedding approaches to handle DAG queries,

whose computation graphs contain more than one paths between

two nodes. DAGE handle this issue by merging the possible multi-

ple paths through a relational combinator, which corresponds to

the conjunction operator of relations in ALCOIR). We propose

proper regularization terms to encourage the inference of query

embeddings to satisfy desired tautologies including monotonicity

and restricted conjunction preserving. We create novel benchmarks

consisting of DAG queries for evaluating DAG query embedding

approaches. We implementDAGE upon three existing query em-

bedding approaches, and the results show that DAGE significantly

outperforms its corresponding counterpart on DAG queries while

maintaining competitive performance on tree-form queries.

One limitation of DAGE is that it does not enforce hard con-

straints over tautologies, as in practice the regularization loss can-

not be zero. In future work, we will explore embedding approaches

that directly respect these tautologies without regularization terms.
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A Specific details of computations of baseline
models with DAGE

In this section, we supplement the specific details of the compu-

tations, i.e., relational transformation, intersection operator and

complement operator, of the query embedding models involved in

our experiments. Note that we do not introduce the union oper-

ator because queries involving with union can be translated into

disjunctive normal form (DNF), more details can be checked in [15].

A.1 Query2Box
Query2Box models concepts in the vector space using boxes (i.e.,

axis-aligned hyper-rectangles) and defines a box in R𝑑 by p =

(Cen(p),Off (p)) ∈ R2𝑑 as

Boxp ≡
{
v ∈ R𝑑 : Cen(p) − Off (p) ⪯ v ⪯ Cen(p) + Off (p)

}
(31)

where ⪯ is element-wise inequality, Cen(p) ∈ R𝑑 is the center of

the box, andOff (p) ∈ R𝑑≥0 is the positive offset of the box, modeling

the size of the box.

The operations of concepts can be defined by

• Relational Transformation maps from one box to an-

other box using a box-to-box translation. This is achieved

by translating the center and getting a larger offset. This is

modeled by p + r, where each relation r is associated with

a relation embedding r = (Cen(r),Off(r)) ∈ R2𝑑 .
• Intersection Operator models the intersection of a set

of box embedding {p1, · · · , p𝑛} as p𝑖𝑛𝑡𝑒𝑟 = (Cen (p𝑖𝑛𝑡𝑒𝑟 ),
Off(p𝑖𝑛𝑡𝑒𝑟 )), such that

Cen(pinter) =
∑︁
𝑖

w𝑖 ⊙ Cen(pi), (32)

where

w𝑖 =
exp(MLP(pi))∑
𝑗 exp(MLP(pj))

,

Off (pinter) = Min({Off (p1), . . . ,Off (pn)})
⊙𝜎 (DeepSets({p1, . . . , pn})),

(33)

where ⊙ is the dimension-wise product, MLP(·) : R2𝑑 →
R𝑑 is the Multi-Layer Perceptron, 𝜎 (·) is the sigmoid func-

tion, DeepSets(·) is the permutation-invariant deep archi-

tecture [8], and both Min(·) and exp(·) are applied in a

dimension-wise manner.

• Distance function Given a query box p ∈ R2𝑑 and an

entity vector a ∈ R𝑑 , their distance is define as

dist
box

(a; p) = dist
outside

(a; p) + 𝛼 · dist
inside

(a; p), (34)

where qmax = Cen(p) + Off (p) ∈ R𝑑 , pmin = Cen(p) −
Off (p) ∈ R𝑑 and 0 < 𝛼 < 1 is a fixed scalar, and

dist
outside

(a; p) = ∥Max(a − qmax, 0) +Max(qmin − a, 0)∥1, (35)

dist
inside

(a; p) = ∥ Cen(p) −Min(qmax,Max(qmin, a))∥1 . (36)

• Insideness function Given query box embeddings p1 and
p2, the Query2Box insideness function measures if p1 is

inside p2 by returning the overlap ratio between their inter-

section and p1. A higher ratio indicates a greater likelihood

that p1 is inside p2. In this case, the insideness function is

defined as below:

Insideness(p1, p2) =
BoxVolume(Intersect(p1, p2))

BoxVolume(p1)
(37)

where BoxVolume(p) measures the volume of the box em-

bedding via a softplus function, such that

BoxVolume = Π
𝑖

1

𝛽
𝑙𝑜𝑔(1 + exp(𝛽 · Off(p)𝑖 )),

Off(p)𝑖 ∈ Off(p)
• Difference function Given two boxes, p1 and p2, their

difference is modeled as

Diff(p1, p2) =
∑︁
𝑖

| Cen(p1,𝑖 ) − Cen(p2,𝑖 ) | +

| Off(p1,𝑖 ) − Off(p2,𝑖 ) | (38)

A.2 BetaE
BetaE represents concepts by the Cartesian product of multiple

Beta distributions: Emb𝐶 = [(𝛼1, 𝛽1) , . . . , (𝛼𝑛, 𝛽𝑛)] where each

component is a Beta distribution Beta (𝛼, 𝛽) controlled with two

shape parameters 𝛼 and 𝛽 .

• Relational Transformation maps from one Beta embed-

ding S to another Beta embedding S′ given the relation type

𝑟 . This is modeled by a transformation neural network for

each relation type 𝑟 using a multi-layer perceptron (MLP):

RelT𝑟 (Emb𝐶 ) = MLP𝑟 (Emb𝐶 ) (39)

• Intersection Operator is modeled by taking the weighted

product of the PDFs of the input Beta embeddings

Intersect(Emb𝐶1
, · · · , Emb𝐶𝑛

) = 1

𝑍

∏
𝑝
𝑤1

Emb𝐶
· · · 𝑝𝑤𝑛

Emb𝐶
(40)

where 𝑍 is a normalization constant and 𝑤1, · · · ,𝑤𝑛 are

the weights with their sum equal to 1.

• Complement Operator is modeled by taking the recipro-

cal of the shape parameters.

Complement(Emb𝐶 ) =
[(

1

𝛼1
,
1

𝛽1

)
, . . . ,

(
1

𝛼𝑛
,
1

𝛽𝑛

)]
(41)

• Distance function Given an answer entity embedding

a with parameters

[(
𝛼𝑎
1
, 𝛽𝑎

1

)
, . . . ,

(
𝛼𝑎𝑛 , 𝛽

𝑎
𝑛

) ]
, and a query

embedding q with parameters

[(
𝛼
𝑞

1
, 𝛽

𝑞

1

)
, . . . ,

(
𝛼
𝑞
𝑛 , 𝛽

𝑞
𝑛

)]
, we

define the distance between this entity 𝑎 and the query 𝑞 as

the sum of KL divergence between the two Beta embeddings

along each dimension:

dist
beta

(𝑎;𝑞) =
𝑛∑︁
𝑖=1

KL

(
𝑝a,i;𝑝q,i

)
(42)

• Difference function Given two beta query embeddings,

Emb𝐶1
= [(𝛼11, 𝛽11) , . . . , (𝛼1n, 𝛽1n)] and

10
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Emb𝐶2
= [(𝛼21, 𝛽21) , . . . , (𝛼2n, 𝛽2n)], their difference is

modeled as

Diff𝑏𝑒𝑡𝑎 (Emb𝐶1
, Emb𝐶2

) =
∑︁

𝑖∈{1,· · · ,𝑛}
| 𝛼1i − 𝛼2i | +

| 𝛽1i − 𝛽2i | (43)

• insideness function Given query beta embeddings q1 and
q2, the BetaE insideness function meansures if q1 is inside
q2 by returning the difference between their intersection

and q1. Their intersection is expected to match q1 if q1 is
fully inside q2. Thus, the beta insideness function can be

defined as

Insideness𝑏𝑒𝑡𝑎 = Diff𝑏𝑒𝑡𝑎 (Intersect𝑏𝑒𝑡𝑎 (q1, q2), q1) (44)

A.3 ConE
ConEmodel concepts by a Cartesian product of sector-cones. Specif-

ically, ConE uses the parameter 𝜃𝑖
ax

to represent the semantic cen-

ter, and the parameter 𝜃𝑖
ap

to determine the boundary of the query.

Given a 𝑑-ary Cartesian product, the embedding of concept is de-

fined as

Emb𝐶 = MultiCone

(
𝜽 ax, 𝜽 ap

)
(45)

where 𝜽 ax ∈ [−𝜋, 𝜋)𝑑 are axes and 𝜽 ap ∈ [0, 2𝜋]𝑑 are apertures.

• Nominal is defined as a cone with apertures 0.

Nominal(Emb𝑎) = MultiCone(𝜽 ax, 0) (46)

• Relational Transformation maps a cone embedding to

another cone embedding. This is implemented by a relation

specific transformation.

RelT(𝑟
(
MultiCone(𝜽 ax, 𝜽 ap)

)
= 𝑔

(
MLP

( [
𝜽 ax + 𝜽 ax,𝑟 ;𝜽 ap + 𝜽 ap,𝑟

] ) )
(47)

• Intersection Operator Suppose that Emb𝐶 =
(
𝜽 ax, 𝜽 ap

)
and Emb𝐶𝑖

=
(
𝜽 𝑖,ax, 𝜽 𝑖,ap

)
are cone embeddings for 𝐶 and

𝐶𝑖 , respectively. We define the intersection operator as fol-

lows:

𝜽 ax = SemanticAverage

(
V𝑐𝑞1 , . . . ,V

𝑐
𝑞𝑛

)
𝜽 ap = CardMin

(
V𝑐𝑞1 , . . . ,V

𝑐
𝑞𝑛

) (48)

where SemanticAverage (·) and CardMin( · ) generates se-
mantic centers and apertures, respectively.

• Complement Operator Suppose that Emb𝐶 = MultiCone(
𝜽 ax, 𝜽 ap

)
and Emb¬𝐶 = MultiCone

(
𝜽 ′
ax
, 𝜽 ′

ap

)
. We define

the complement operator as:

[
𝜽 ′
ax

]
𝑖
=

{
[𝜽 ax]𝑖 − 𝜋, if [𝜽 ax]𝑖 ≥ 0

[𝜽 ax]𝑖 + 𝜋, if [𝜽 ax]𝑖 < 0[
𝜽 ′
ap

]
𝑖
= 2𝜋 −

[
𝜽 ap

]
𝑖
.

(49)

• Distance function. Suppose that the entity embedding

is v = (𝜽 𝑣
ax
, 0), and the query cone embedding is V𝑐

𝑞 =

(𝜽 ax, 𝜽 ap), 𝜽𝐿 = 𝜽 ax − 𝜽 ap/2 and 𝜽𝑈 = 𝜽 ax + 𝜽 ap/2. The
distance between the query and the entity is defined as

𝑑𝑐𝑜𝑛 (v;V𝑐𝑞) = 𝑑𝑜 (v;V𝑐𝑞) + 𝜆𝑑𝑖 (v;V𝑐𝑞) . (50)

The outside distance and the inside distance are

𝑑𝑜 =



min

{��
sin

(
𝜽 𝑣
ax

− 𝜽𝐿
)
/2
�� , ��sin (

𝜽 𝑣
ax

− 𝜽𝑈
)
/2
��}



1
,

𝑑𝑖 =



min

{��
sin

(
𝜽 𝑣
ax

− 𝜽 ax
)
/2
�� , ��sin (

𝜽 ap
)
/2
��}



1
,

where ∥ · ∥1is the 𝐿1 norm, sin(·) and min(·) are element-

wise sine and minimization functions.

• Difference functionGiven two cone embeddings,Emb𝐶1 =
MultiCone

(
𝜽 ax,1, 𝜽 ap,1

)
andEmb𝐶2 = MultiCone

(
𝜽 ax,2, 𝜽 ap,2

)
,

their difference is modeled as

Diff𝑐𝑜𝑛𝑒 (Emb𝐶1
, Emb𝐶2

) =
∑︁

𝑖∈{1,· · · ,𝑛}
| 𝜃

ax,1i − 𝜃
ax,2i | +

| 𝜃
arg,1i − 𝜃

arg,2i | (51)

• insideness functionGiven query cone embeddings q1 and
q2, the ConE insideness function meansures if q1 is inside
q2 by returning the difference between their intersection

and q1. Their intersection is expected to match q1 if q1 is
fully inside q2. Thus, the ConE insideness function can be

defined as

Insideness𝑐𝑜𝑛𝑒 = Diff𝑐𝑜𝑛𝑒 (Intersect(q1, q2), q1) (52)

B Interpretation of ALCOIR Descriptions
Table 5 presents how ALCOIR concept and role descriptions are

interpreted. Given an interpretation I, for each description 𝑋 the

interpretation of the description 𝑋 I
is recursively defined.

Table 5: Interpretation ofALCOIR Descriptions. On the left
are concept or role descriptions 𝑋 , and on the right are the
interpretations 𝑋 I .

𝑋 𝑋 I

⊤ ΔI

{𝑎} {𝑎I }
𝐶 ⊓ 𝐷 𝐶I ∩ 𝐷I

¬𝐶 ΔI \𝐶I

∃𝑅.𝐶 {𝑢 | (𝑢, 𝑣) ∈ 𝑅I
and 𝑣 ∈ 𝐶I }

𝑅− {(𝑢, 𝑣) | (𝑣,𝑢) ∈ 𝑅I }
𝑅 ◦ 𝑆 {(𝑢, 𝑣) | exists𝑤, (𝑢,𝑤) ∈ 𝑅I

and (𝑤, 𝑣) ∈ 𝑆I }
𝑅 ⊓ 𝑆 {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝑅I

and (𝑢, 𝑣) ∈ 𝑆I }
𝑅+

⋃
𝑖≥1 (𝑅I )𝑖 , i.e., 𝑅+ is the transitive closure of 𝑅𝐼

C Computation Graphs of DAG queries
In this appendix, we define a graph representation for DAG queries.

Definition C.1 (Computation Graph Role Composition). The role
composition of a computation graph Γ = (𝑁, 𝐸, 𝜆, 𝜏) with a role de-

scription 𝑅, denoted Γ [𝐸], is the computation graph (𝑁 ′, 𝐸′, 𝜆′, 𝜏 ′)
defined recursively as follows:
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(1) If the role description 𝑅 is a role name 𝑟 ∈ R or the inverse

𝑟− of a role name 𝑟 then:

(a) 𝑁 ′ = 𝑁 ∪ {𝑢} where 𝑢 ∉ 𝑁 ;

(b) 𝐸′ = 𝐸 ∪ {(𝜏,𝑢)};
(c) 𝜆′ = 𝜆 ∪ {𝑢 ↦→ ∃𝑅}; and
(d) 𝜏 ′ = 𝑢.

(2) Γ [𝑅 ◦ 𝑆] = Γ [𝑅] [𝑆].
(3) Γ [𝑅−−] = Γ [𝑅].
(4) Γ [(𝑅 ◦ 𝑆)−] = Γ [𝑆− ◦ 𝑅−].
(5) Γ [(𝑅 ⊓ 𝑆)−] = Γ [𝑅− ⊓ 𝑆−].
(6) Let𝑅1 and𝑅2 be two role descriptions, Γ [𝑅1] be (𝑁1, 𝐸1, 𝜆1, 𝜏1)

and Γ [𝑅2] be (𝑁2, 𝐸2, 𝜆2, 𝜏2). If 𝑅 is 𝑅1 ⊓ 𝑅2 then:

(a) 𝑁 ′ = 𝑁1∪𝑁2∪{𝑢}where𝑁1∩𝑁2 = 𝑁 and𝑢 ∉ 𝑁1∪𝑁2;

(b) 𝐸′ = 𝐸1 ∪ 𝐸2 ∪ {(𝜏1, 𝑢), (𝜏2, 𝑢)};
(c) 𝜆′ = 𝜆1 ∪ 𝜆2 ∪ {𝑢 ↦→ ⊓};
(d) 𝜏 ′ = 𝑢.

Definition C.2 (DAG computation graph). The computation graph
of a DAG query 𝑄 is the smallest computation graph Γ(𝐶) =

(𝑁 (𝑄), 𝐸 (𝑄), 𝜆(𝑄), 𝜏 (𝑄)) defined recursively as follows:

(1) If 𝑄 is {𝑎} then:
(a) 𝑁 (𝑄) = {𝑢};
(b) 𝐸 (𝑄) = ∅;
(c) 𝜆(𝑄) = {𝑢 ↦→ {𝑎}}; and
(d) 𝜏 (𝑄) = 𝑢.

(2) If 𝑄 is 𝐶 ⊓ 𝐷 then:

(a) 𝑁 (𝑄) = 𝑁 (𝐶)∪𝐸 (𝐷)∪{𝑢}where the sets𝑁 (𝐶), 𝐸 (𝐷),
and {𝑢} are pairwise disjoint.

(b) 𝐸 (𝑄) = 𝐸 (𝐶) ∪ 𝐸 (𝐷) ∪ {(𝜏 (𝐶), 𝑢), (𝜏 (𝐷), 𝑢)}
(c) 𝜆(𝑄) = 𝜆(𝐶) ∪ 𝜆(𝐷) ∪ {𝑢 ↦→ ⊓}.
(d) 𝜏 (𝑄) = 𝑢.

(3) If 𝑄 is ¬𝐶 then:

(a) 𝑁 (𝑄) = 𝑁 (𝐶) ∪ {𝑢} where 𝑁 (𝐶) ∩ {𝑢} = ∅.
(b) 𝐸 (𝑄) = 𝐸 (𝐶) ∪ {(𝜏 (𝐶), 𝑢)}.
(c) 𝜆(𝑄) = 𝜆(𝐶) ∪ {𝑢 ↦→ ¬}.
(d) 𝜏 (𝑄) = 𝑢.

(4) If 𝑄 is ∃𝑅.𝐶 then Γ(𝑄) = Γ(𝐶) [𝑅].

D Relaxed tree-form query types
Figure 4 illustrates the query graphs of the new DAG query types

and their corresponding relaxed tree-form query types.
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Figure 4: Transformation from DAG query to relaxed tree-
form query

Each of these queries are expressed as ALCOIR concepts as

follows:

2𝑠 F ∃(𝑟1 ◦ (𝑟2 ⊓ 𝑟3))− .{𝑒1}, (53)

tree(2𝑠) F ∃(𝑟1 ◦ 𝑟2)− .{𝑒1} ⊓
∃(𝑟1 ◦ 𝑟3)− .{𝑒1},

(54)

3𝑠 F ∃(𝑟1 ◦ (𝑟2 ⊓ 𝑟3 ⊓ 𝑟4))− .{𝑒1}, (55)

tree(3𝑠) F ∃(𝑟1 ◦ 𝑟2)− .{𝑒1} ⊓
∃(𝑟1 ◦ 𝑟3)− .{𝑒1} ⊓
∃(𝑟1 ◦ 𝑟4)− .{𝑒1},

(56)

𝑠𝑝 F ∃(𝑟1 ◦ (𝑟2 ⊓ 𝑟3) ◦ 𝑟4)− .{𝑒1}, (57)

tree(𝑠𝑝) F ∃(𝑟1 ◦ 𝑟2 ◦ 𝑟4)− .{𝑒1} ⊓
∃(𝑟1 ◦ 𝑟3 ◦ 𝑟4)− .{𝑒1},

(58)

𝑖𝑠 F ∃(𝑟3 ⊓ 𝑟4)− .(∃𝑟1{𝑒1} ⊓ ∃𝑟2{𝑒2}), (59)

tree(𝑖𝑠) F ∃𝑟−
3
.(∃𝑟1 .{𝑒1} ⊓ ∃𝑟2{𝑒2}) ⊓

∃𝑟−
4
.(∃𝑟1{𝑒1} ⊓ ∃𝑟2{𝑒2}),

(60)

𝑢𝑠 F ∃(𝑟3 ⊓ 𝑟4)− .(∃𝑟1{𝑒1} ⊔ ∃𝑟2{𝑒2}), (61)

tree(𝑢𝑠) F ∃𝑟−
3
.(∃𝑟1 .{𝑒1} ⊔ ∃𝑟2{𝑒2}) ⊓

∃𝑟−
4
.(∃𝑟1{𝑒1} ⊔ ∃𝑟2{𝑒2}),

(62)

𝑖𝑛𝑠 F ∃(𝑟3 ⊓ 𝑟4)− .(∃𝑟1{𝑒1} ⊓ ¬∃𝑟2{𝑒2}), (63)

tree(𝑖𝑛𝑠) F ∃𝑟−
3
.(∃𝑟1 .{𝑒1} ⊓ ¬∃𝑟2{𝑒2}) ⊓

∃𝑟−
4
.(∃𝑟1{𝑒1} ⊓ ¬∃𝑟2{𝑒2}) .

(64)
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Table 6: Number of train/valid/test queries generated for
individual DAG query structure in easy and hard modes.

Dataset Train Valid Test-Easy Test-Hard

NELL-DAG 10,000 1000 1000 1500

FB15k-237-DAG 50,000 1000 5000 4700

FB15k-DAG 80,000 8000 8000 7500

E Additional analyses on FB15k-237-DAG-QA
and FB15k-DAG-QA datasets

Figures 5 and 6 provide additional analysis on the answer sets of

the randomly generated DAG queries from FB15k and FB15k-237.
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Figure 5: Proportion of overlap between DAG query answers
and the correspondingTree-Formquery answers fromFB15k-
DAG-QA Easy test dataset.
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Figure 6: Proportion of overlap between DAG query answers
and the correspondingTree-Formquery answers fromFB15k-
237-DAG-QA Easy test dataset.

F Further experimental details
F.1 Hyperparameters and Computational

Resource
All of our experiments are implemented in Pytorch [10] frame-

work and run on four Nvidia A100 GPU cards. For hyperparame-

ters search, we performed a grid search of learning rates in {5 ×
10

−5, 10−4, 5 × 10
−4}, the batch size in {256, 512, 1024}, the nega-

tive sample sizes in {128, 64}, the regularization coefficient 𝜔 in

{0.02, 0.05, 0.08, 0.1} and the margin 𝛾 in {10, 16, 24, 30, 40, 60, 80}.
The best hyperparameters are shown in Table 7.

Dataset Model d b n 𝛾 𝑙 𝜔

Query2Box (DAGE) 400 512 128 24 1e-4 -

NELL-DAG BetaE (DAGE) 400 512 128 60 1e-4 -

ConE (DAGE) 800 512 128 20 1e-4 0.02

Query2Box (DAGE) 400 512 128 16 1e-4 -

FB15k-237-DAG BetaE (DAGE) 400 512 128 60 1e-4 -

ConE (DAGE) 800 512 128 30 5e-5 0.02

Query2Box (DAGE) 400 512 128 16 1e-4 -

FB15k-DAG BetaE (DAGE) 400 512 128 60 1e-4 -

ConE (DAGE) 800 512 128 40 5e-5 0.02

Table 7: Hyperparameters found by grid search. d is the em-
bedding dimension, b is the batch size, n is the negative sam-
pling size, 𝛾 is the margin in loss, l is the learning rate, 𝜔 is
the regularization parameter in the distance function.

F.2 Further implementation details of DAGE
with additional constraints

For the regularization of the restricted conjunction preserving tau-

tology, we encourage the tautology ∃(𝑟 ⊓ 𝑠) .{𝑒} ≡ ∃𝑟 .{𝑒} ⊓ ∃𝑠 .{𝑒}
(see Proposition 3.2) with the following loss:

L𝑟 F Diff (Emb∃(𝑟⊓𝑠 ) .{𝑒 } , Intersect(Emb𝑟 .{𝑒 } , Emb𝑠.{𝑒 } )), (65)

To enforce the minimization of such loss in our learning objec-

tive, we further mine two types of queries from the existing train

queries, 2rs and 3rs, that can be expressed as ALCOIR concepts

as follows:

2𝑟𝑠 F ∃((𝑟1 ⊓ 𝑟2))− .{𝑒1}, (66)

tree(2𝑟𝑠) F ∃(𝑟1)− .{𝑒1} ⊓
∃(𝑟2)− .{𝑒1},

(67)

3𝑟𝑠 F ∃((𝑟1 ⊓ 𝑟2 ⊓ 𝑟3)− .{𝑒1}, (68)

tree(3𝑟𝑠) F ∃(𝑟1)− .{𝑒1} ⊓
∃(𝑟2)− .{𝑒1} ⊓
∃(𝑟3)− .{𝑒1}.

(69)

F.3 Computational costs of DAGE
To evaluate the training speed, for each model with DAGE, we

calculated the average running time (RT) per 100 training steps on

dataset NELL-DAG. For fair comparison with baseline models, we

ran all models with the same number of embedding parameters.

Integrating DAGE generally increases the computational cost for

existing models. However, models like Query2Box can be enhanced
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to outperform baseline models like BetaE, while still maintaining

lower computational costs of 22s per 100 steps.

Table 8: Computational costs of DAGE and the baselines.

Model AVG MRR RT per 100 steps

Q2B[15] 21.23 15s

Q2B+DAGE 42.41 22s

BetaE[3] 18.32 24s

BetaE+DAGE 41.33 37s

ConE[2] 26.54 18s

ConE+DAGE 40.19 50s

G Performance of DAGE on Tree-form queries
Table 9 summarizes the performances of query embedding mod-

els with DAGE on existing tree-form query answering benchmark

datasets, NELL-QA, FB15k-237-QA and FB15k-QA [3]. Firstly, DAGE

enhances these models by enabling them to handle DAG queries

while preserving their original performance on tree-form queries.

Secondly, DAGE shows significant improvement only on DAG

queries, with little effect on tree-form queries, supporting our as-

sumption that DAGE effectively enhances baseline performance for

these new query types.

H Comparison with other query embedding
methods

To further assess the effectiveness of DAGE, we compare the base-

line models enhanced by DAGE with two prominent query embed-

ding models, CQD [11] and BiQE [4]. Both models are theoretically

believed to be capable of handling DAG queries based on their de-

sign. Table 10 and 11 summarize the performances of these models

on our proposed DAG queries benchmark datasets. These meth-

ods enhanced with DAGE consistently outperform CQD and BiQE

across all types of DAG queries and datasets. Although some base-

line methods perform significantly worse than BiQE and CQD in

tree-form query answering tasks (according to the reported results

from BiQE and CQD), their integration with DAGE allows them to

improve and surpass those models on the new DAG query bench-

mark datasets. This further supports our argument regarding the

effectiveness of DAGE.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up AVG

Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 23.6

Q2B (DAGE) 42.09 23.39 21.28 28.64 41.09 20.0 12.30 27.51 15.86 28.3

BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 24.6

NELL-QA BetaE (DAGE) 53.4 12.9 10.8 37.6 47.1 23.8 13.8 12.3 8.3 24.4

ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2

ConE (DAGE) 53.2 15.7 13.7 39.9 50.7 26.0 17.0 14.8 10.9 26.8

Q2B 41.3 9.9 7.2 31.1 45.4 21.9 13.3 11.9 8.1 21.1

Q2B (DAGE) 42.6 11.4 9.3 30.2 42.8 22.4 12.1 12.1 9.2 21.4

BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 20.9

FB15k-237-QA BetaE (DAGE) 38.9 10.87 9.94 29.1 42.7 22.0 11.0 12.1 9.6 20.7

ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4

ConE (DAGE) 42.13 12.8 10.8 32.6 47.0 25.4 13.2 14.3 10.5 23.2

Q2B 70.5 23.0 15.1 61.2 71.8 41.8 28.7 37.7 19.0 40.1

Q2B (DAGE) 67.9 24.5 21.3 53.4 64.82 40.3 23.5 35.2 21.7 39.2

BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 41.6

FB15k-QA BetaE (DAGE) 64.5 24.6 23.6 55.6 66.5 42.8 22.5 40.2 23.8 40.5

ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 49.8

ConE (DAGE) 74.3 31.9 27.4 63.9 73.5 50.1 29.8 53.6 29.4 48.2

Table 9: MRR performance of the retrained baseline models with DAGE method on tree-form query benchmark datasets

Dataset Model 2s 3s sp is us Avg𝑛𝑛 ins Avg

Query2Box (DAGE) 37.61 49.42 41.71 40.57 42.75 42.41 - -

BetaE (DAGE) 36.87 57.14 34.95 39.90 37.80 41.33 34.68 40.22
NELL-DAG ConE (DAGE) 33.50 57.35 38.43 37.93 33.74 40.19 33.94 39.15

CQD-Beam 22.60 44.84 17.51 24.88 1.60 22.29 - -

BiQE 20.74 45.38 20.76 28.37 - 28.81 - -

Query2Box (DAGE) 7.41 12.64 10.07 7.32 5.03 8.49 - -

BetaE (DAGE) 6.27 12.11 9.64 6.66 4.09 7.75 6.58 7.56

FB15k-237-DAG ConE (DAGE) 6.87 11.66 12.36 6.90 4.80 9.54 6.08 8.12
CQD-Beam 4.31 8.65 5.56 3.71 0.13 4.47 - -

BiQE 2.11 2.74 4.08 5.73 - 3.67 - -

Query2Box (DAGE) 37.74 42.93 24.30 29.37 25.97 31.46 - -

BetaE (DAGE) 32.65 46.17 32.48 28.15 28.10 33.50 25.39 32.15

FB15k-DAG ConE (DAGE) 41.67 56.70 33.36 36.54 32.36 40.12 30.86 38.58
CQD-Beam 22.21 36.77 23.44 15.18 1.64 19.85 - -

BiQE 26.31 35.12. 20.37 20.08 - 22.25 - -

Table 10: The table presents the MRR performance of baseline models integrated with DAGE on easy benchmark datasets, in
comparison with CQD[11] and BiQE[4].
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Dataset Model 2s 3s sp is us Avg𝑛𝑛 ins Avg

Query2Box (DAGE) 25.38 20.13 21.25 24.85 29.24 24.17 - -

BetaE (DAGE) 27.68 32.25 16.36 26.14 29.19 26.32 33.64 27.54

NELL-DAG ConE (DAGE) 30.71 38.41 24.76 28.44 31.06 30.67 34.07 31.24
CQD-Beam 12.25 21.73 10.78 12.73 2.17 11.93 - -

BiQE 13.57 19.46 12.03 15.38 - 15.11 - -

Query2Box (DAGE) 4.81 2.81 7.87 5.26 4.38 6.95 - -

BetaE (DAGE) 4.89 1.66 8.28 4.75 3.50 4.61 6.06 4.85

FB15k-237-DAG ConE (DAGE) 4.78 2.09 9.72 4.84 4.16 5.12 5.25 5.14
CQD-Beam 2.74 1.63 4.63 2.38 0.10 2.29 - -

BiQE 3.13 2.01 3.37 1.89 - 2.60 - -

Query2Box (DAGE) 33.78 39.67 19.61 26.91 24.76 28.95 - -

BetaE (DAGE) 30.57 44.30 29.35 25.72 26.63 31.31 25.18 30.29

FB15k-DAG ConE (DAGE) 40.14 57.06 29.23 34.63 31.45 38.50 30.74 37.21
CQD-Beam 19.90 33.88 22.43 12.66 1.60 18.09 - -

BiQE 17.36 30.37 25.38 15.89 - 22.25 - -

Table 11: The table presents the MRR performance of baseline models integrated with DAGE on hard benchmark datasets, in
comparison with CQD[11] and BiQE[4].
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