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ABSTRACT

In this work, we focus on the alignment problem of diffusion models with a contin-
uous reward function, which represents specific objectives for downstream tasks,
such as increasing darkness or improving the aesthetics of images. The central
goal of the alignment problem is to adjust the distribution learned by diffusion
models such that the generated samples maximize the target reward function. We
propose a novel alignment approach, named Direct Noise Optimization (DNO),
that optimizes the injected noise during the sampling process of diffusion models.
By design, DNO operates at inference-time, and thus is tuning-free and prompt-
agnostic, with the alignment occurring in an online fashion during generation.
We rigorously study the theoretical properties of DNO and also propose variants
to deal with non-differentiable reward functions. Furthermore, we identify that
naive implementation of DNO occasionally suffers from the out-of-distribution
reward hacking problem, where optimized samples have high rewards but are
no longer in the support of the pretrained distribution. To remedy this issue, we
leverage classical high-dimensional statistics theory to an effective probability
regularization technique. We conduct extensive experiments on several important
reward functions and demonstrate that the proposed DNO approach can achieve
state-of-the-art reward scores within a reasonable time budget for generation.

1 INTRODUCTION

Diffusion models work by learning to reverse the process of diffusing the data distribution p(x) into
noise, which can be described by a stochastic differential equation (SDE) (Song et al., 2020b; Karras
et al., 2022): dxt = f(t)xtdt + g(t)dwt, where dwt is the standard Wiener process, and f(t) and
g(t) are the drift and diffusion coefficients, respectively. The reverse process relies on the score
function ϵ(xt, t)

def.
= ∇x log pt(x) where pt denotes the p.d.f of noisy data xt, and its closed-form can

be expressed either as an ODE or as an SDE: (Song et al., 2020b):

ODE: dxt =

(
f(t)xt −

1

2
g2(t)ϵ(xt, t)

)
dt, (1)

SDE: dxt =
(
f(t)xt − g2(t)ϵ(xt, t)

)
dt+ g(t)dwt. (2)

With the capability to evaluate ϵ(xt, t), it becomes possible to generate samples from noise by
numerically solving either the ODE equation 1 or the SDE equation 2. The training process,
therefore, involves learning a parameterized surrogate ϵθ(xt, t) to approximate ϵ(xt, t), following a
denoising score matching framework as described in (Song et al., 2020b; Karras et al., 2022). Despite
the effectiveness of diffusion models in modeling continuous distributions, when deploying these
generative models for specific tasks, it is not suitable to sample from the original learned distribution
directly, because this distribution has not been aligned with the task-specific objective. For instance,
in image generation, users may wish to produce images that are aesthetically pleasing rather than
mediocre, or generate images with enhanced brightness, darkness, or compressibility. Recently, the
alignment problem has drawn considerable interest in the context of diffusion models, as evidenced
by a series of studies such as (Yuan et al., 2024; Song et al., 2023a; Dong et al., 2023; Prabhudesai
et al., 2023; Black et al., 2023; Fan et al., 2023).
Alignment Problem for Diffusion Models. Given a diffusion model characterized by parameters θ
and its associated distribution pθ(x), as well as a reward function r(x) that can assign real-valued
scores to generated samples, the central goal of the alignment problem is to adjust the distribution
pθ(x) such that the generated samples maximize the reward from r(x). In this work, we consider the
reward functions to be continuous but possibly non-differentiable. In the following sections, we will
provide a comprehensive review of some well-established methods for aligning diffusion models.
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1.1 METHODS FOR ALIGNING DIFFUSION MODELS

1.1.1 ONLINE/OFFLINE REINFORCEMENT LEARNING FOR FINE-TUNING DIFFUSION MODELS

A common mathematical formulation in RL-based methods is to maximize the expected reward
while ensuring the resulting distribution does not deviate excessively from the original distribution.
This can be expressed as the following KL-regularized optimization problem: maxp Ex∼p(x)[r(x)]−
λKL(p||pθ). Current RL-based methods can be categorized into online and offline methods based
on the data used. In the online method, the algorithm has the capacity to query the reward function
throughout the entire optimization process. Two notable online RL methods are DDPO (Black et al.,
2023) and DPOK (Fan et al., 2023), which have been shown to improve downstream objectives
such as aesthetics and compressibility. Alternatively, research has also delved into the offline RL
optimization setting, where an explicit reward function is not accessible and only a fixed preference
dataset is utilized. Noteworthy works in this category include Diffusion-DPO (Wallace et al., 2023a)
and SPIN-Diffusion (Yuan et al., 2024).

1.1.2 DIRECT FINE-TUNING OF DIFFUSION MODELS WITH DIFFERENTIABLE REWARDS

Before delving into the formal description of this method, it is useful to revisit the sampling process
of diffusion models, which also serves as the foundation for the rest of this work. Solving the ODE
equation 1 or the SDE equation 2 typically involves discretizing the time steps into T steps. By
starting with the initial noise xT ∼ N (0, I), the solution process for the ODE equation 1 can be
viewed as a mapping that transforms the initial noise xT into less noisy data through the following
process: xt−1 = ODE_solver(xt), for t = T, ..., 1. After T steps, the output will be the generated
sample x0. Similarly, solving the SDE equation 2 can be seen as a mapping that gradually converts
both the initial noise xT and the entire extra random noise vectors zT , ..., z1 into the generated sample
x0, e.g., through the following process: xt−1 = SDE_solver(xt, zt), for t = T, ..., 1, where zt is
also drawn from standard Gaussian distribution.
Remark 1. Throughout this work, for simplicity, we adopt only the DDIM sampling algorithm (Song
et al., 2020a) for our experiments, as it remains one of the most popular choices for diffusion sampling
and, more importantly, supports both ODE-style and SDE-style sampling. To be self-contained, we
summarize the notations and procedure of the DDIM sampling method in Appendix A.
Diffusion Sampling as a Noise-to-Sample Mapping. From the diffusion sampling process described
above, we observe that the sampling process can be conceptualized as an end-to-end mapping Mθ(z),
which translates noise vectors z, sampled from the standard Gaussian distribution, into generated
samples. Here, the noise vectors z serve as a unified abstraction for both the xT in the ODE-based
sampling process and the (xT , {z1, ..., zT }) in the SDE-based sampling process. As we can see, the
noise vector z uniquely determines the generated sample from the diffusion models.
Two recent studies, AlignProp (Prabhudesai et al., 2023) and DRaFT (Clark et al., 2023), have
proposed to directly fine-tune diffusion models using differentiable rewards. Specifically, their opti-
mization objective is formulated as: maxθ Ez∼N (0,I)[r(Mθ(z))]. Both the AlignProp (Prabhudesai
et al., 2023) and DRaFT (Clark et al., 2023) methods utilize the ODE-type DDIM solver for the
sampling process, specifically employing Algorithm 1 with η = 0.

1.1.3 LOSS-GUIDED DIFFUSION
A recent work focusing on loss-guided diffusion models (LGD) (Song et al., 2023a) also examines
the concept of aligning diffusion models with differentiable rewards. Unlike the methods mentioned
previously, LGD is an Inference-Time alignment method, meaning it does not necessitate modifica-
tions to the pretrained model θ and only works by modifying the inference process. In essence, the
core idea of LGD is that, during the sampling process for the ODE equation 1, it considers a modified
version of the ODE by introducing a new term that guides the generation toward areas of higher
reward. Specifically, the new ODE is: dxt =

(
f(t)xt − 1

2g
2(t)ϵ(xt, t) +∇xt

r(x0(xt))
)
dt, where

x0(xt) denotes the solution of this ODE starting from xt. However, the gradient term ∇xtr(x0(xt))
is not readily available during generation. To address this, the authors suggest utilizing Monte Carlo
estimation to approximate the gradient. Nevertheless, this estimation tends to be noisy and imprecise,
leading to suboptimal performance, particularly with complex reward functions.

1.2 COMPARING EXISTING METHODS

Existing works can be generally categorized based on two criteria: whether it requires fine-tuning
and whether the reward function needs to be differentiable.
Inference-Time or Tuning-based Methods. All RL-based methods and the direct fine-tuning
method are tuning-based, meaning they necessitate adjustments to the network models θ. There
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are two main disadvantages associated with tuning-based methods. The first is that they require
fine-tuning for new reward functions, a process that can consume considerable resources, especially
when faced with extensive choices for reward functions. The second drawback is that the fine-tuning
process typically relies on a limited set of input prompts, which challenges the model to generalize
to new and unseen prompts. In contrast, methods such as LGD (Song et al., 2023a) belong to the
inference-time category. The main advantage of the inference-time approach is its elimination of
the need for fine-tuning, as well as its ability to avoid the prompt generalization issues associated
with tuning-based methods. This makes it prompt-agnostic, as the inference-time method optimizes
the sample specifically for the given prompt during the inference process. Further, inference-time
methods require significantly fewer computing resources than tuning-based methods. However, the
major drawback of inference-time methods is the substantial increase in the time required for the
generation process.
Differentiable or Non-Differentiable Rewards. Current RL-based methods can work by utilizing
solely the value or preference information of the reward functions, therefore they can still work even
when the reward function is non-differentiable. In contrast, the existing direct fine-tuning methods
and LGD require the reward function to be differentiable. In practice, working with non-differentiable
reward functions is important due to their prevalence. This non-differentiable property can arise from
the simulation-based procedures used to compute the reward, or the reward function itself may be a
black box.
For additional discussion on existing literature, please refer to Appendix G.

1.3 OUR CONTRIBUTIONS

In this work, we focus on inference-time alignment of diffusion models, as we believe that flexibility
with the choices of the reward functions, generalization on unseen prompts, and low computing
requirements are critical for a broad range of real-world applications. Our primary goal is to design
an inference-time alignment method that can match the performance of tuning-based methods by
incurring a reasonable additional time cost, and is capable of handling both differentiable and non-
differentiable objective functions. To this end, we focus on an under-explored technique for achieving
inference-time alignment of diffusion models—Direct Noise Optimization (DNO). Specifically, we
make the following contributions:

• We conduct a self-contained and comprehensive study for DNO, and demonstrate that noise
optimization can be theoretically interpreted as sampling from an improved distribution.

• We identify out-of-distribution reward-hacking as a critical issue in DNO. To address this
issue, we introduce a novel probability-regularized noise optimization method designed to
ensure the generated samples remain within the support of pretrained distribution.

• By developing a novel and highly efficient hybrid gradient approximation strategy, we
extend the DNO approach to handle non-differentiable reward functions effectively.

• Through the experiments on several important image reward functions, we demonstrate that
our proposed method can achieve state-of-the-art scores in comparison to existing alignment
methods, without any fine-tuning on the parameters of diffusion models.

2 DIRECT NOISE OPTIMIZATION FOR ALIGNING DIFFUSION MODELS

Given the noise-to-sample mapping Mθ described in Section 1.1.2, DNO can be mathematically
formulated as follows:

max
z

r(Mθ(z)), (3)

with z ∼ N (0, I) as the initial solution. As we will discuss in Section 3, the Gaussian distribution
N (0, I) serves as an important prior on the optimization variables z. By solving this optimization
problem, we can obtain the optimized noise vectors, which are then used to generate high-reward
samples. When the reward function r(·) is differentiable, gradient-based optimization methods can
be applied to solve the problem efficiently. That is, the following step can be performed iteratively
until convergence: znew = optimizer_step(zold,∇zr (Mθ(zold))), where the optimizer can be either
vanilla gradient ascent or adaptive optimization algorithms like Adam (Kingma & Ba, 2014). When
the gradient of reward function r(·) is not available, we can leverage techniques from zeroth order
optimization (Nesterov & Spokoiny, 2017; Tang et al., 2024a) to estimate the ground-truth gradient
∇zr (Mθ(zold)), denoted as ĝ(zold), and then apply similarly znew = optimizer_step(zold, ĝ(zold)). In
Section 4, we provide a dedicated discussion on how to obtain a better estimator for ĝ(zold) when the
reward function is non-differentiable.
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Several recent studies have explored similar formulations to equation 3 across different applications.
(Wallace et al., 2023b) investigates the optimization of latent vectors obtained through DDIM-
inversion (Song et al., 2020a), aiming to enhance the CLIP score (Radford et al., 2021) and Aesthetic
Score (Schuhmann et al., 2022b) of given images. (Ben-Hamu et al., 2024) discusses optimizing the
initial noise xT for the ODE process to address inverse problems, leveraging the diffusion model as
a prior. (Novack et al., 2024) and (Karunratanakul et al., 2023) consider the optimization of initial
noise xT for the ODE with the objective of improving downstream objectives in robotics and audio.

While similar methods of DNO has appeared in previous works, many of its technical details remain
insufficiently explored. On one hand, there is a lack of a comprehensive framework concerning the
design choices, theoretical understanding, and practical challenges associated with DNO for aligning
diffusion models. On the other hand, the field has yet to systematically investigate whether DNO, as a
inference-time method for aligning diffusion models, can achieve competitive performance compared
to tuning-based methods. In this work, we aim to conduct a thorough study on DNO. In the following
two sections, we dive deep to understand the theoretical foundation of DNO and discuss a critical
design choice ignored in previous works.

2.1 UNDERSTANDING DIRECT NOISE OPTIMIZATION

In Appendix B.1, we present a simple example to visualize the process of DNO, where we observed
that the distribution of the generated samples shifts toward a distribution on the local maxima of
the reward function. Inspired by this example, we propose to view DNO as sampling from an
improved distribution. To rigorously describe this evolving process, we define an operator function
g to represent a single gradient step, i.e., g(z) def

= z + ℓ · ∇zr ◦Mθ(z), where ◦ denotes the function
composition operator and ℓ denotes the step size for gradient ascent. Additionally, we define the
operator gt, which denotes applying the gradient ascent step for t steps, i.e., gt(z) = g(gt−1(z)) with
g0 being the identity mapping. With these notations, we can now express the distribution after t
gradient steps as pt(x), which is the distribution of Mθ(gt(z)) with z ∼ N (0, I). In the following
theorem, we demonstrate that there is a rigorous improvement after every single gradient step, i.e.,
the distribution pt+1(x) is provably better than pt(x) in terms of expected reward.
Theorem 1. Assuming that r ◦Mθ is L-smooth, namely, ∥∇r ◦Mθ(z)−∇r ◦Mθ(z

′)∥ ≤ L∥z− z′∥
for any z ̸= z′, it holds true that

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x) +

(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
. (4)

In Theorem 1, we rely on the smoothness assumption of the composite mapping r ◦Mθ. We note
that this is a reasonable assumption in practice, as the noise-to-sample mapping in diffusion models
has been observed to be smooth. For instance, see Figure 4 in (Tang et al., 2024a). We also provide
a justification for the smoothness of reward function in Appendix H. As described in equation 4,
provided that the step size ℓ is less than 2

L , the distribution pt+1(x) is strictly better than the previous
distribution pt(x) in terms of expected reward, as long as the second term is non-zero. Based on this
result, it is natural to ask: When does the distribution stop improving? Namely, when does the second
term in equation 4 become zero. We provide a detailed discussion to answer this question and also
the proof for Theorem 1 in Appendix C.

2.2 OPTIMIZING ODE VS. OPTIMIZING SDE
As previously introduced, there are two primary methods for sampling from pretrained diffusion
models: one based on solving the ODE equation 1 and the other on solving the SDE equation 2. A
critical difference lies in the fact that ODE sampling depends exclusively on the initial noise xT ,
whereas SDE sampling is additionally influenced by the noise zt added at every step of the generation
process. It has been noted that existing works on noise optimization (Ben-Hamu et al., 2024; Novack
et al., 2024; Karunratanakul et al., 2023) have mainly concentrated on optimizing the initial noise xT

for the ODE sampler.

Figure 1: ODE vs. SDE for optimization

Different from preceding studies, we explore the utiliza-
tion of the SDE sampler for noise optimization. Specif-
ically, we employ the DDIM with η = 1 (Song et al.,
2020a) as the SDE sampler and propose to optimize both
the added noise zt at every timestep and the initial noise
xT . In this context, the dimensionality of the optimized
noise significantly surpasses that of ODE sampler, typi-
cally T · d v.s. d, where d is the dimension for the learned
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distribution and T is the number of discretization steps in the sampling process. With this higher
dimension for optimization, we have empirically observed that optimizing the SDE-based generation
process can be significantly better than its ODE-based counterpart. This is illustrated in Figure 1,
where we juxtapose the optimization speeds between the ODE (DDIM with η = 0) and SDE samplers
using both the simple depicted in Figure 5 (Left) and optimizing for stable diffusion in alignment
with the aesthetic reward (Right), a major experiment detailed in the subsequent section 5.2.

Understanding the Advantage of DNO with SDE-Based Sampling. Intuitively, the better per-
formance in optimization can be attributed to the finer-grained control over the generation process
afforded by the SDE sampler compared to the ODE sampler. To formally state this intuition, we revisit
the DDIM sampling algorithm in Algorithm 1. We consider the procedure of SDE-based sampling
algorithm, DDIM with η = 1, as defining the noise-to-sample mapping Mθ(xT , z1, . . . , zT ). An
important observation is that the ODE sampling algorithm, DDIM with η = 0, can also be expressed
using the same Mθ(xT , z1, . . . , zT ), with the distinction that the noise z1, . . . , zT becomes determin-
istic and dependent on xT , rather than sampled from a Gaussian distribution. Specifically, if we define

the deterministic noise vectors as: zODE
t

def.
=

√
1−αt−1−

√
1−αt−1−σ2

t

σt
ϵθ(xt, t), for t = 1, . . . , T,

where σt =
√
(1− αt−1/(1− αt)

√
1− αt/αt−1, then the sampling process of DDIM with η = 0

can be expressed as Mθ(xT , z
ODE
1 , . . . , zODE

T ). In this context, the advantage of SDE-based sampling
becomes evident:

max
xT ,z1,...,zT

r (Mθ(xT , z1, . . . , zT ))︸ ︷︷ ︸
DNO with SDE

≥ max
xT

r
(
Mθ(xT , z

ODE
1 , . . . , zODE

T )
)

︸ ︷︷ ︸
DNO with ODE

, (5)

meaning that running DNO with SDE will yield better results, or at least as good as DNO with
ODE for aligning diffusion models. Based on this conclusion, our work will focus on optimizing the
SDE-based sampling (DDIM with η = 1) for the remainder of the study. Additionally, we fix the
number of generation steps T to 50 throughout this work for simplicity.

3 OUT-OF-DISTRIBUTION REWARD-HACKING IN NOISE OPTIMIZATION

It has been observed that when aligning generative models (e.g., including autoregressive language
models or diffusion models) with reward functions, one can experience the so-called reward-hacking,
i.e., the optimized samples yield high rewards but do not possess the desirable properties (Miao
et al., 2024; Chen et al., 2024a). Generally, there are two different types of reward-hacking. In the
first type, the reward function admits some shortcuts, so the optimized samples score high rewards
but remain barely distinguishable from the samples of the pretrained distribution. The second type
is related to the generative model used – the optimized samples no longer fall within the support
of the pretrained distribution after optimization. We denote this second type of reward-hacking as
Out-Of-Distribution (OOD) Reward-Hacking. In this work, we will focus on this second type
and reveal that OOD reward-hacking is a common issue in DNO. In Appendix B.2, we provide
two visualized examples of the phenomenon of OOD Reward-Hacking using both a 2-dimensional
diffusion model and an image diffusion model.

One of our key contributions in this work is to identify one critical cause of OOD reward-hacking in
noise optimization. That is, the optimized noise vectors stray towards the low-probability regions
of the high-dimensional standard Gaussian distribution; in other words, there is an extremely low
chance of such noise vectors being sampled from the Gaussian distribution. As diffusion models are
originally trained with Gaussian noise, when the noise vectors originate from these low-probability
areas—such as vectors comprised entirely of zeros—the neural network within the diffusion models
may incur significant approximation errors for these particular inputs. This error, in turn, leads to the
generation of out-of-distribution samples. In the subsequent section, we introduce a novel method to
measure the extent to which noise is part of the low-probability region by leveraging the classical
concentration inequalities for high-dimensional Gaussian distributions.

3.1 QUANTIFYING LOW-PROBABILITY REGION VIA CONCENTRATION INEQUALITIES

High-dimensional Gaussian distributions possess several unique properties. For instance, it is known
that the all-zero vector is the most probable in terms of the probability density function (p.d.f) of
the standard Gaussian distribution. However, in practice, it is nearly impossible to obtain samples
near the all-zero vector from a Gaussian distribution, as it resides within a low-probability region.

5
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In high-dimensional statistics, concentration inequalities are usually employed to describe these
distinctive properties and delineate the low-probability regions of high-dimensional distributions. In
the following lemma, we present two classical inequalities for the standard Gaussian distribution.
Lemma 1 ((Wainwright, 2019)). Consider that z1, ..., zm follow a k-dimensional standard Gaussian
distribution. We have the following concentration inequalities for the mean and covariance:

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

zi

∥∥∥∥∥ > M

]
< p1(M)

def.
= max

{
2e−

mM2

2k , 1
}
, (6)

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

ziz
⊤
i − Ik

∥∥∥∥∥ > M

]
< p2(M)

def.
= max

{
2e−

m(max{√
1+M−1−

√
k/m,0})2

2 , 1

}
. (7)

In practice, to determine if an n-dimensional vector z lies within a low-probability region, we can
factorize n as n = m · k, and divide z into m subvectors: z = [z11 , ..., z

k
m], where n = m · k

and zi = [z1i , ..., z
k
i ] ∼ N (0, Ik)). Then, we compute M1(z) =

∥∥ 1
m

∑m
i=1 zi

∥∥ and M2(z) =∥∥ 1
m

∑m
i=1 ziz

⊤
i − Ik

∥∥. Finally, we can determine that z lies in a low-probability region if both
p1(M1(z)) and p2(M2(z)) are low.
Remark 2. According to (Wainwright, 2019), the two inequalities equation 6 and equation 7 are
tight when m/k is large. On the other hand, k = 1 is not advisable, as it examines only the mean
and variance of the noise vector, but not the covariance of different subvectors. In this work, we
empirically found that k = 2 serves as a good default choice. In Appendix F, we provide a more
detailed analysis for choosing an appropriate k.

An important point to note is that the standard Gaussian distribution is invariant to permutation, i.e.,
for any permutation matrix Π, if z follows a standard Gaussian distribution, the permuted vector
Πz will have the same probability behavior. With this insight, to increase the robustness of the
probability measure p1 and p2, a natural idea is to examine the probability of many permuted vectors.
Specifically, given q permutation matrices Π1, ...,Πq , we define the following indicator metric,

P (z)
def.
= min

{
min

i∈{1,...,q}
p1 (M1(Πiz)) , min

i∈{1,...,q}
p2 (M2(Πiz))

}
. (8)

Interpretation of P (z). If the probability P (z) is low, it implies that there exists a permutation
matrix Πi such that the noise vector Πiz is in the low-probability region of the standard Gaussian
distribution. Therefore, due to the permutation-invariant property, the noise vector z is also less likely
to be sampled from the standard Gaussian distribution. In practice, we utilize randomly generated
permutation matrices and have found that setting q = 100 results in empirically good performance.
In Appendix D, we provide some visualized empirical evidence to show that P (z) serves as a good
indicator for determining if the generated samples are OOD.

3.2 PROBABILITY-REGULARIZED NOISE OPTIMIZATION

With the insights discussed above, a natural idea for preventing OOD reward hacking is to regularize
noise vectors to remain within the high-probability region of the Gaussian distribution. To achieve
this, we propose the following Probability-Regularized Noise Optimization problem:

max
z

r(Mθ(z)) + γEΠ [log p1(M1(Πz)) + log p2(M2(Πz))] , (9)

where γ is the coefficient used to control the regularization effect. In particular, for the regularization
term, we use the expectation of the log probabilities over the permutation matrices, rather than the
minimum probability P (z). This is because the expectation is smoother for optimization purposes.

4 TACKLING NON-DIFFERENTIABLE REWARD FUNCTIONS

In the previous section, DNO method has been applied to optimize differentiable reward functions.
However, in many applications the ground-truth gradient of the reward function is unavailable. Such
non-differentiable properties can arise from various scenarios; here we present two representative
cases. Firstly, the reward may be computed through simulation-based procedures, such as the JPEG-
compressibility employed in DDPO (Black et al., 2023), which calculates the size of an image
in bits after running a JPEG compression algorithm. Additionally, the reward function itself may
be a black box provided through online API providers, as in the setting considered in (Sun et al.,
2022). This scenario is common when the reward function is a large neural network model, like
those in (Wang et al., 2024a; Lin et al., 2024), making it impossible to directly obtain the gradient
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for optimization. To address these scenarios, we explore adapting the noise optimization approach
to handle the optimization of non-differentiable reward functions by estimating the gradient with
function values. Specifically, we explore three methods under this setting.

Method 1. Concerning optimization with only function value, a major family of optimization
approaches is zeroth-order optimization algorithms, including ZO-SGD (Nesterov & Spokoiny, 2017).
This method treats the entire mapping r ◦Mθ(·) as a black-box function and seeks to estimate the
gradient of r ◦Mθ(·) via function value queries.

Method 2. It is worth noting that for the mapping r ◦ Mθ(·), only the gradient of the reward
function r(x) is not available, and we are still able to compute the gradient of Mθ(z). Therefore, a
straightforward idea is to adopt a hybrid gradient approach—only to estimate the gradient of r, while
using the ground truth gradient for Mθ(z). Specifically, we denote that the initial noise is z, and the
generated sample is x = Mθ(z). Firstly, we can estimate the gradient of ∇r(x) in a similar fashion
with the ZO-SGD (Nesterov & Spokoiny, 2017):

H1(x) = Eξ∼N (0,I) [(r(x+ µξ)− r(x)) ξ] ≈ C1∇r(x), (10)

where µ is the coefficient for perturbation, and C1 is some constant. With the estimated gradient H1(x)
for the reward function r(x), we can use the following estimated gradient G1(z) for optimization:

G1(z)
def.
= H1(x) · ∇zMθ(z) ≈ C1∇zr ◦Mθ(z), (11)

where the main idea is to replace the ground truth ∇r(x) in the chain-rule of differentiating r(Mθ(z)).
We refer this method as Hybrid-1 in the following sections.
Remark 3. As one can observe, the computation of equation 11 involves the Jacobian ∇zMθ(z).
However, it is important to note that when we only require the vector-Jacobian product H1(x) ·
∇zMθ(z), it is unnecessary to compute the full Jacobian ∇zMθ(z). In Appendix E, we describe an
elegant and efficient way to implement equation 11 using an auto-differentiation technique.

Method 3. There is a crucial drawback in the gradient estimator equation 10, that one needs to query
the reward function r(·) with noisy input x+ µξ. When the reward function is only defined on some
manifold M, e.g., defined on the image manifold, rather than the whole space Rn, this can lead to
severe problems, because, for some x ∈ M, the noisy sample x+ µξ may no longer stay within M.
To remedy this issue, we propose to perturb the sample through the latent noise, rather than directly
in the sample space. Specifically, our proposed new gradient estimator for ∇r(x) is

H2(x) = Eξ∼N (0,I) [(r(Mθ(z + µξ))− r(x)) (Mθ(z + µξ)− x)] . (12)

Following a similar proof in (Nesterov & Spokoiny, 2017), we can also show that H2(x) ≈ C2∇r(x)
for some constants C2. As we can see, when computing the gradient equation 12, we ensure that
we query the reward function r(·) with only samples that are within the manifold of the pretrained
distribution. Similar to Hybrid-1, we can adopt a gradient estimator G2(z) with H2(x):

G2(z)
def.
= H2(x) · ∇zMθ(z). (13)

We refer this method equation 13 as Hybrid-2. As we will see in Section 5.3, this Hybrid-2 method
is significantly faster than the other two in terms of optimization speed.

5 EXPERIMENTS

In this section, we aim to demonstrate the effectiveness of the method proposed above. For all
subsequent experiments, we utilize Stable Diffusion v1.5 (Rombach et al., 2022) as the base model
for noise optimization. For each figure, we perform the optimization using 1,000 different random
seeds and report the average value along with the standard deviation (std) of the results. For
comprehensive details regarding the implementation of our proposed methods, as well as information
on hyperparameters, we refer readers to Appendices E and F. Additionally, we provide examples to
visualize the optimization process in Appendix B. For all the following experiments, unless explicitly
stated otherwise, a single run of DNO is performed on a single A800 GPU.

5.1 EXPERIMENTS ON IMAGE BRIGHTNESS AND DARKNESS REWARD FUNCTIONS

Experiment Design. In this section, we design an experiment to demonstrate the effectiveness of
DNO as described in Section 2, and the probability regularization proposed in Section 3.2. We
consider two settings: The first involves optimizing the brightness reward, which is the average
value of all pixels—the higher this value, the brighter the image becomes—with the prompt "black
<animal>", where the token <animal> is randomly selected from a list of animals. The second
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setting involves optimizing the darkness reward, defined as the negative of the brightness reward,
with the prompt "white <animal>". The primary rationale behind designing such experiments is the
inherent contradiction between the prompt and the reward, which makes it easier to trigger the OOD
reward-hacking phenomenon. Moreover, it is straightforward to verify whether the generated samples
are out-of-distribution by simply examining the color of the generated animals. In these experiments,
we compare the noise optimization process with and without probability regularization to assess the
capability of probability regularization in preventing the OOD reward-hacking phenomenon.

Importance of the Brightness and Darkness Reward Functions. While the primary purpose of
using these two reward functions is to better examine the effectiveness of probability regularization, it
is also important to highlight their practical utility. There is often a genuine need to generate images
with extremely dark or bright backgrounds, which cannot be achieved by the base models through
prompting alone, as reported in the notable research by (CrossLabs, 2023).

Figure 2: Comparison of DNO with and without probability regularization. Upper row: Optimizing
for the brightness reward, i.e., the average value of all pixels in the images. Lower row: Optimizing
for the darkness reward, i.e., the negative of the brightness reward. The x-axis refers to the number of
gradient ascent steps during optimization.

Measuring the Degree of OOD. As observed in this experiment, the reward function contradicts the
input prompt, leading to an inconsistency between the generated samples and the prompt. Therefore,
we utilize the CLIP Score (CS) (Radford et al., 2021), a commonly used metric for measuring
the semantic similarity between images and text descriptions, to gauge the degree of OOD for the
generated samples. A higher CS indicates that the sample is less likely to be out-of-distribution
(OOD). In addition to the CS, we also use an MLLM-based score to measure the degree of OOD,
specifically employing the Image-Text Matching (ITM) score from (Wang et al., 2024a) as the metric.

Results. In Figure 2, we first observe that adding the regularization term leads to a mildly slower
optimization process. However, the generated samples are much more consistent with the prompt
throughout the entire optimization process, as reflected by the CS and ITM curves. The trajectory
of P (z) further corroborates that it is a good indicator of the OOD phenomenon, as it is positively
associated with CS and ITM. We also provide visualized examples in Appendix B.3, which also con-
firm that the probability regularization proposed in Section 3.2 can effectively prevent the generated
samples from becoming OOD. We also examined the performance of other inference-time methods,
LGD and Best-of-N (BoN) under this setting, see Appendix E.2.

Generating Images with Purely Bright/Dark Backgrounds. From the images in Figure 7 of
Appendix B.3, we observe that DNO with regularization can lead to images with purely dark or
bright backgrounds. It is worth noting that this is a remarkable result, as DNO requires no fine-tuning.
Notably, as discussed in (CrossLabs, 2023), such an effect can only be achieved by fine-tuning the
diffusion models using a technique called Offset-Noise.

5.2 BENCHMARKING ON THREE HUMAN-ALIGNED REWARD FUNCTIONS

Setting. In this section, we investigate the performance of the proposed method using three common
reward functions trained from human feedback data, specifically Aesthetic Score (Schuhmann et al.,
2022b), HPS-v2 score (Wu et al., 2023), and PickScore (Kirstain et al., 2023), respectively. In
this experiment, we also compare noise optimization with and without probability regularization.
However, compared to the reward function used in the previous section, using these reward functions
presents a lesser chance for the optimized image to be OOD. In this case, to measure the benefit of
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Method SD v1.5 LGD SPIN DDPO AlignProp DNO (This work) BoN
2s n=10 n=100 ∼ 20h ∼ 56h ∼ 12h 1 min 3 min 5 min 10 min

Aesthetic ↑ 5.367 5.340 5.224 6.248 7.180 8.940 5.754 7.202 8.587 6.531
HPS ↑ 0.278 0.276 0.271 0.276 0.287 0.330 0.285 0.303 0.324 0.298

PickScore ↑ 21.11 21.01 21.09 22.00 / / 21.25 23.17 25.13 22.09

Table 1: Performance comparison. For SD v1.5 and DNO, we annotate the generation time below the
name. For LGD, we annotate the number of samples used for Monte Carlo approximation. For SPIN,
DDPO, and AlignProp, we annotate the estimated time for fine-tuning. All time costs in the table
are measured with respect to the GPU time on a single A800 GPU. Baselines: LGD (Song et al.,
2023a), SPIN (Yuan et al., 2024), DDPO (Black et al., 2023), AlignProp (Prabhudesai et al., 2023),
Best-of-N (BoN).

probability regularization in maintaining the quality of the generated sample, we consider using the
other two reward functions as test metrics when optimizing one of them.
Results. Firstly, we observe that the effect of probability regularization is less pronounced than that
in Section 5.1. This observation is also reflected by our proposed indicator P (z); if no regularization
is applied, the value of P (z) in Figure 3 decreases much slower than that in Figure 2. Nonetheless, by
adding the regularization term to noise optimization, we can stabilize the value of P (z) throughout the
optimization process and also improve the test metrics. For instance, when optimizing the aesthetic
reward, the regularization has no significant effect on the optimization speed, while it prevents the
test metrics, i.e., the HPS score and Pick Score, from decreasing throughout the process.

Figure 3: Comparison of running DNO with three human-like reward functions, with and without
regularization. When optimizing one reward function, the other two are used as test metrics. A, H,
P are short for Aesthetic Score, HPS Score, and Pick Score, respectively. The name for each line
comprises the used reward function and whether the regularization is used. For example, A + w/ reg
means optimizing aesthetic score with regularization.
Comparison to Existing Alignment Methods. We summarize the performance of DNO with
probability regularization from Figure 3 into Table 1 and compare it to the major existing alignment
methods discussed in the introduction. As shown, the performance of DNO matches that of state-of-
the-art tuning-based alignment methods without any fine-tuning on the network models, all within
a reasonable time budget for generation. More importantly, we demonstrate that DNO provides an
worthwhile trade-off between inference time and the reward of the generated samples. On one hand,
another inference-time method, LGD (Song et al., 2023a), performs poorly with these complex reward
functions, as it is impossible to estimate the gradient of the reward functions without a complete
generation process. On the other hand, we also examined the most fundamental inference-time
alignment algorithm, Best-of-N (BoN) Sampling, which generates N samples and selects the one
with the highest reward. In this experiment, we fix the time budget for BoN to 10 minutes, and
we observe that DNO outperforms it by a large margin, demonstrating that DNO presents a highly
advantageous trade-off between inference time and reward. As a complement to Table 1, we also
provide the numerical results for the test metrics of our DNO and the tuning-based method AlignProp
in Appendix E.2, analyzing their performance on the OOD reward-hacking issue.

T 10 15 20 25 50

Aesthetic ↑ 6.992 7.496 6.773 6.381 5.754
HPS ↑ 0.342 0.341 0.306 0.293 0.285

PickScore ↑ 23.98 24.82 23.69 23.02 21.25

Table 2: Running DNO with different numbers of diffusion
steps T , while fixing the time budget to 1 minute.

Using Fewer Steps to Reduce Infer-
ence Time. In Figure 3, we show that
our proposed DNO can achieve high
reward values within approximately
3–5 minutes. While this already rep-
resents a highly advantageous perfor-
mance, 3–5 minutes of optimization
may still be prohibitively long in prac-
tice. However, we note that reducing the number of diffusion steps can significantly decrease
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optimization time. In Table 1, we fix the diffusion steps to 50, as this is the setting used by all other
algorithms to ensure a fair comparison. In practice, 50 diffusion steps is a fairly long choice, and
using 15–25 steps can still result in sufficiently good samples. Therefore, in Table 2, we present the
performance of DNO with different numbers of denoising steps, fixing the time budget to 1 minute,
as well as other hyperparameters like learning rate and reguralization coefficient. As Table 2 shows,
with 15 diffusion steps, DNO can achieve high reward values within 1 minute.

Finally, we would like to highlight that this alignment process can run with memory usage of less than
15GB, and thus can easily fit into just one consumer-level GPU. In contrast, current tuning-based
methods require significantly more computing resources, typically 4-8 advanced GPUs like A100
(Black et al., 2023; Prabhudesai et al., 2023).

5.3 OPTIMIZATION FOR NON-DIFFERENTIABLE REWARD FUNCTIONS

Setting. In this section, we aim to explore the three extensions proposed in Section 4 for handling
non-differentiable reward functions. For Method 1, we use ZO-SGD (Nesterov & Spokoiny, 2017),
and compare it with our proposed Hybrid-1 and Hybrid-2. We consider using two reward functions:
The Jpeg Compressibility score, which is the file size of the image after compressing it using the
JPEG algorithm. This reward function was also used in (Black et al., 2023) and is intrinsically
non-differentiable. The second reward function is the Aesthetic Score used in the previous section.
Unlike previous experiments, in this section we treat the Aesthetic Score as a non-differentiable
reward function for optimization. The goal is to simulate a scenario where the neural network model
of the Aesthetic Score can only be queried via an API provider that returns the score rather than its
gradient. We compare the three methods in terms of optimization steps and the final score of the
reward function. For ease of demonstration, we do not add the probability regularization term to the
optimization process. Moreover, it is important to note that in these three methods, the major time
expenditure comes from estimating the gradient with finite samples. For a fair comparison among
these methods, we set the number of samples for estimating the gradient separately so that the total
time spent estimating the gradient is the same for all three methods.

Figure 4: Comparing three methods on two reward
functions. For better visualization purposes, when
plotting the line for ZO-SGD, we compute and
plot the current best reward instead of the current
reward due to the extremely high variance.

Results. The main results are visualized in Fig-
ure 4. Initially, we observe that the Hybrid-2
method is significantly faster than the other two
methods, and the final score is also higher for
both reward functions used in this experiment.
Furthermore, in both scenarios, the ZO-SGD
method exhibits the slowest optimization speed.
Another interesting finding is the poor perfor-
mance of Hybrid-1 in optimizing the Aesthetic
Reward. This mainly occurs because the aes-
thetic reward function can only work with im-
age inputs, which validates our initiative to pro-
pose the Hybrid-2 method in Section 4. Finally,
when comparing the optimization of the aes-
thetic score in Figures 3 and 4, we can also note that using the true gradient results in substantially
fewer steps than using the estimated gradient.

6 CONCLUSIONS

In this work, we present a comprehensive study on Direct Noise Optimization (DNO) for align-
ing diffusion generative models at inference-time. We introduce variants of DNO designed to
efficiently address challenges such as out-of-distribution reward-hacking and the optimization of
non-differentiable reward functions. More significantly, we demonstrate the exceptional efficacy of
DNO, underscoring its capacity to rival tuning-based methods. The primary limitation of DNO lies
in its integration with the sampling process of diffusion models, leading to a substantial increase in
processing time compared to direct sampling. Nonetheless, we argue that the additional time cost,
being within a reasonable and acceptable range, is a worthwhile trade-off for attaining high-reward
generated samples in a wide range of real-world applications. We anticipate DNO gaining greater
attention in future research and applications due to its flexibility to accommodate any reward func-
tion—or even a combination of different reward functions—while demanding only modest computing
resources, which positions it as an accessible tool for many practitioners.
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APPENDIX

A DDIM SAMPLING ALGORITHM

In Algorithm 1 described below, we summarize the sampling algorithm for diffusion models, DDIM
(Song et al., 2020a), which is essentially the Euler method for solving ODEs/SDEs. The diffusion
coefficients α1, . . . , αT in Algorithm 1 are computed using the coefficient functions f(t) and g(t),
with the detailed computation found in (Song et al., 2020b; Karras et al., 2022). The coefficient η in
DDIM determines whether we are solving the ODE or the SDE, with η = 0 corresponding to ODE
and η > 0 corresponding to SDE.
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Algorithm 1 DDIM Sampling Algorithm
Require: Discretization timesteps T , diffusion coefficient α1, ..., αt, initial noise xT ∼ N (0, I), noise vectors

z1, ..., zT ∼ N (0, I), coefficient η ∈ [0, 1] for balancing ODE and SDE, learned score network ϵθ(·, ·).
1: for t = T to 1 do
2: Compute σt = η

√
(1− αt−1/(1− αt)

√
1− αt/αt−1.

3: xt−1 =
√

αt−1/αt · xt −
(√

αt−1(1− αt)/αt −
√

1− αt−1 − σ2
t

)
ϵθ(xt, t) + σtzt

4: end for
5: return x0

B VISUALIZATION

To assist the reader in understanding the optimization process of DNO and also to provide a qualitative
evaluation, we offer several visualizations in this section.

B.1 A SIMPLE EXAMPLE

In this section, we present a simple example to visualize the process of noise optimization. Specifically,
we trained a toy diffusion model for generating uniform distribution on a ring with a radius between
0.8 and 1.2, and the initial distribution is visualized in Figure 5a, where each red point denotes a
single sample drawn from the trained diffusion model. We then solve the noise optimization problem
equation 3 with the reward function r(x) = sin(4πx[1]) + sin(4πx[2])−

(
(x[1]− 1)2 − x[2]2

)
/5,

a highly nonconvex function with many local maxima. To perform this optimization, we solve the
DNO problem equation 3 using gradient ascent with the learning rate set to 0.01. In Figures 5b, 5c,
and 5d, we visualize the optimized samples after 10, 50, and 100 gradient steps, respectively. We can
observe that the distribution of the samples shifts toward a distribution on the local maxima of the
reward function.

(a) Initial (b) 10 steps (c) 50 steps (d) 100 steps

Figure 5: Example 1: Evolution of the sample distribution of a toy diffusion model while running
DNO to maximize a non-convex reward function.

B.2 SIMPLE EXAMPLES FOR OOD REWARD-HACKING

In this section, we present two examples using both a simple diffusion model from the Example 1
described above and the open-source image diffusion model SD v1.5 (Rombach et al., 2022). For
the first example, we revisit the pretrained distribution displayed in Figure 5, modifying the reward
function to r(x) = −(x[1] − 1.4)2 − (x[2] − 1.4)2. Figure 6a exhibits the pretrained distribution
of the diffusion models, where we note that every sample stays within the support. However, as
illustrated in Figure 6b, after 1000 gradient steps of optimization for the reward function, all the
generated samples become out-of-distribution. In our second example, we examine optimization for
the "brightness" reward—specifically, the average value of all pixels in an image—using SD v1.5 as
the image diffusion model. We start with the prompt "black duck", with the initial image depicted in
Figure 6c. After 50 gradient steps of optimization for the brightness reward, it becomes apparent that
the generated samples diverge from the original prompt "black duck" and transform into a "white
duck", as evidenced in Figure 6d. Ideally, in the absence of reward-hacking, the generated samples
should always adhere to the "black duck" prompt while incorporating the overall brightness in the
images.
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(a) Initial (b) 1000 steps (c) Black Duck (d) 50 steps

Figure 6: Examples of OOD Reward-Hacking

B.3 COMPARING WITH AND WITHOUT REGULARIZATION

In this section, our objective is to demonstrate the impact of the probability regularization term on the
optimization process through visual examples. Specifically, we present examples from three settings.
The first two examples are derived from the experiments in Section 5.1, while the last example is
from the experiment on optimizing the aesthetic score in Section 5.2.

The examples can be seen in Figure 7. As observed across all examples, the optimization process that
integrates the regularization term consistently prevents the generated samples from falling into the
category of being Out-Of-Distribution (OOD).

B.4 QUALITATIVE EXAMPLES

In this section, we aim to provide additional visualized examples for our proposed method.

Firstly, in Figure 8, we present examples from the optimization of all three popular human-level
reward functions discussed in Section 5.2. As can be observed, the optimization process indeed
results in an increase in human preference throughout.

Furthermore, we also include examples from the experiments in Section 5.3, that is, optimizing
JPEG Compressibility Score and Aesthetic Score using the Hybrid-2 method for non-differentiable
optimization. These examples in Figure 9 effectively showcase the efficiency of Hybrid-2 in both
estimating the gradient and optimizing.

We also present some non-cherry-picked examples of aligning Stable Diffusion XL (Podell et al.,
2024) with DNO across four reward functions and four popular prompts from Reddit, see Figure 10.
Note that this effect is achieved without fine-tuning the diffusion models. The experiment was
conducted on a single A800 GPU. , and also the setting for Figure 10. In these examples, we only use
the base model of SDXL (Podell et al., 2024) as the image diffusion model. We adopt the DDIM
sampler with 50 steps and η = 1 for generation, and optimize all the injected noise in the generation
process, the same as most experiments in this work. The classifier-free guidance is set to 5.0. For
each reward function, we adopt the same hyperparameters for the optimizer and regularization terms
as the experiments in Section 5.1 and 5.2. From top to bottom in Figure 10, the used prompts are
listed as follows:

1. dark alley, night, moon Cinematic light, intricate detail, high detail, sharp focus, smooth,
aesthetic, extremely detailed

2. 1970s baseball player, hyperdetailed, soft light, sharp, best quality, masterpiece, realistic,
Canon EOS R3, 20 megapixels.

3. a rabbit, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k,
national geographic, award - winning photograph by nick nichols.

4. A beef steak, depth of field, bokeh, soft light, by Yasmin Albatoul, Harry Fayt, centered,
extremely detailed, Nikon D850, award winning photography
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(a) Optimizing brightness reward with and without probability regularization. Prompt: "black duck".

(b) Optimizing darkness reward with and without probability regularization. Prompt: "white duck".

(c) Optimizing Aesthetic Score with and without probability regularization. Prompt: "yellow squirrel"

Figure 7: Examples of optimized samples with and without regularization
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(a) Optimizing Aesthetic Score with prompt "gray lion"

(b) Optimizing HPS v2 Score with prompt "black deer"

(c) Optimizing PickScore with prompt "black lizard"

Figure 8: Representative examples of optimizing reward functions trained on human feedback data.

B.5 VISUALIZATION OF DNO

We provide a visual illustration in Figure 11 to describe the main procedure for DNO using the DDIM
sampling procedure detailed in Algorithm 1. As shown, DNO, similar to LGD (Song et al., 2023a),
operates at inference-time and does not require tuning the network parameter θ. However, it requires
more time for generation compared to direct sampling, as the optimization is integrated with the
sampling process, meaning the optimization is performed for each new sample generated. Despite
this, as we will demonstrate in Section 5, the extra time needed for the DNO approach is a worthwhile
trade-off for obtaining high-reward samples.

C THEORETICAL RESULTS

Proof for Theorem 1. To leverage the L-smoothness assumption, we need to state a classical lemma
for smooth optimization.

Lemma 2 (Descent Lemma (Bertsekas, 1997)). For any z1 and z2, we have

r ◦Mθ(z2) ≥ r ◦Mθ(z1) +∇r ◦Mθ(z1) · (z2 − z1)−
L

2
∥z2 − z1∥22. (14)

Now for any z and steps t ≥ 1, with the descent lemma, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +∇r ◦Mθ(gt(z)) · (gt+1(z)− gt(z))−
L

2
∥gt+1(z)− gt(z)∥22.

Notice that by the definition of gt· we have
gt+1(z)− gt(z) = gt(z) + ℓ∇r ◦Mθ(gt(z))− gt(z)

= ℓ∇r ◦Mθ(gt(z)).

Therefore, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +

(
ℓ− ℓ2L

2

)
∥∇r ◦Mθ(gt(z))∥22.
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(a) Optimizing Jpeg Compressiblity with Hybrid-2 gradient approximation. Upper: prompt "blue pig".
Lower: prompt "yellow rabbit".

(b) Optimizing Aesthetic Score with Hybrid-2 gradient approximation. Upper: prompt "silver butterfly".
Lower: prompt "yellow hedgehog".

Figure 9: Representative examples for non-differentiable optimization
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Figure 10: Running DNO with SDXL
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Figure 11: Overview of the DNO procedure with the DDIM sampling algorithm: DNO seeks to
optimize only those Gaussian noise vectors {xT , z1, z2..., zT } to maximize the reward value of a
single generated sample x0. To facilitate the gradient backpropagation from x0 to {xT , z1, z2..., zT },
we leverage the technique of gradient checkpointing. It is worth noting that when using η = 0 for
DDIM sampling, there is no need to compute the gradient for z1, ..., zT , as the generated sample
x0 depends exclusively on xT . When computing the gradient from r(x0) to x0, we can use either
ground-truth gradient ∇r or an estimated gradient ∇̂r, depending on whether the reward function
r(·) is differentiable.

Taking the expectation over z ∼ N (0, I) we have

Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ≥ Ez∼N (0,I) [r ◦Mθ(gt(z))] +(
ℓ− ℓ2L

2

)
Ez∼N (0,I)

[
∥∇r ◦Mθ(gt(z))∥22

]
.

By using the change of variable formula for distribution, we can easily see that

Ex∼pt+1(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ,

and

Ex∼pt(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt(z))] ,

Therefore, we conclude with

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x) +

(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2

(15)

≥ Ex∼pt(x)r(x).

When Does the Distribution Stop Improving? As observed, the distribution ceases to improve
when the second term in Equation equation 15 becomes zero. Initially, we note that the optimized
distribution stops improving when Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
= 0. In statistical terms,

this implies that ∇zr ◦Mθ(z)|z=gt(z0) is a zero vector with probability one.

To discern the circumstances under which this zero vector occurs, let us assume that z0 is some fixed
noise vector and consider the scenario where

∇xr(x)|x=Mθ(gt(z0)) · ∇zMθ(z)|z=gt(z0) = 0⃗, (16)
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Here, we denote G1(z0) = ∇xr(x)|x=Mθ(gt(z0)) as the gradient of the reward functions on the
generated sample, and G2(z0) = ∇zMθ(z)|z=gt(z0) representing the Jacobian matrix of the noise-to-
sample mapping. We categorize the situation in Equation equation 16 into three cases:

Type-I: ∥G1(z0)∥ = 0 and ∥G2(z0)∥ > 0. Here, the gradient of the reward function on the generated
sample is zero, indicating that the generated sample has reached a stationary point (or local solution)
of the reward function.

Type-II: ∥G2(z0)∥ = 0 and ∥G1(z0)∥ > 0. This indicates that the Jacobian matrix of the noise-to-
sample mapping is zero, which often suggests that the generated sample is at the boundary of the
support of the distribution, as a zero Jacobian means that changes in the noise will not affect the
generated sample.

Type-III: ∥G1(z0)∥ > 0 and ∥G2(z0)∥ > 0, but ∥G1(z0) · G2(z0)| = 0. In this scenario, the
gradient of the reward function on the generated sample is orthogonal to the Jacobian matrix of the
noise-to-sample mapping.

In summary, the distribution will halt its improvement after the t-th step if it almost surely holds that
z0 corresponds to a Type-I, Type-II, or Type-III noise vector.

We provide examples for the three scenarios, respectively, in the following figures. First, in Figure 12a,
we display examples of Type-I and Type-II by reutilizing the experiment from Figure 5. To determine
the type of the noise vector, we empirically compute ∥G1(z0)∥, ∥G2(z0)∥, and ∥G1(z0) ·G2(z0)∥
for each noise vector.

(a) Example 1 (b) Example 2

Figure 12: Examples of generated samples with Type-I, Type-II and Type-III noise vectors in the toy
examples.

To showcase an example of Type-III noise vectors, we introduce a new toy example illustrated in
Figure 12b. Specifically, the ground-truth distribution learned by diffusion models is uniform across
a horizontal line spanning from (−1, 0) to (1, 0). The reward function is defined as r(x, y) = y.
It can be readily confirmed that, for every point on this line, the gradient of the reward function is
orthogonal to the Jacobian matrix of the noise-to-sample mapping. Consequently, all points along the
line segment [(−1, 0), (1, 0)] qualify as Type-III noise vectors.

D EMPIRICAL INVESTIGATION OF P (z)

In this section, we provide several empirical evidence to demonstrate that P (z) acts as an effective
indicator for the out-of-distribution phenomenon.

Firstly, in Figure 13a, we revisit the examples from Figures 6a and 6b, coloring each sample based
on the value of P (z). As depicted in Figure 13a, P (z) proves to be an efficient metric to separate
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(a) Toy Example (b) P (z) = 0.36 (c) P (z) = 0.00 (d) P (z) = 0.02

Figure 13: Examples of generated samples with corresponding values of P (z).

Figure 14: Trajectory of P (z) on optimizing brightness reward.

Figure 15: Trajectory of P (z) on optimizing Aesthetic Score.
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in-distribution samples from out-of-distribution samples; those in-distribution have high values for
P (z), whereas those out-of-distribution exhibit values of P (z) near zero.

Secondly, we manually construct several noise vectors that reside in the low-probability region of
the standard Gaussian distribution. To establish a baseline comparison, we first draw one sample
from the standard Gaussian distribution and use it to generate an image with Stable Diffusion v1.5
and the prompt "black duck". As can be seen, this leads to a normal image with P (z) also within a
reasonably large value. We then construct the low-probability vectors in two ways. The first one is to
use all-zero vectors, which obviously reside in the low-probability zone of high-dimensional Gaussian
distributions. The generated images with all-zero vectors are visualized in Figure 13c, showcasing
that there is nothing discernible in the image while P (z) approximates zero. The second method is to
repeat parts of the noise vectors, such that the noise vectors exhibit high covariance in the elements.
Specifically, we construct the repeated vectors by first generating an n/4 dimensional z0 from the
standard Gaussian distribution, and then constructing the noise vectors as z = [z0, z0, z0, z0], making
z an n dimensional vector. The figure corresponding to these repeated vectors, shown in Figure 13d,
once again results in a poor image, with P (z) illustrating that the noise vectors also come from a
low-probability region.

We further visualize the entire optimization trajectory for the examples in Figures 6c and 6d, i.e.,
optimizing the brightness reward for Stable Diffusion v1.5 with the prompt "black duck" in Figure 14.
Specifically, from Figure 14 we can clearly see that the value of P (z) gradually decreases, and the
generated image also gradually diverges from the distribution associated with a black duck. Notably,
at around 20 steps, the value of P (z) becomes near-zero, and at the same time, the generated image
more closely resembles a blue duck rather than the specified black duck.

Similarly, we visualize the optimization trajectory for optimizing the Aesthetic Score for SD v1.5
with the prompt "black duck". The results are in Figure 15. A clear conclusion is that in this case, it
is less likely for the optimized samples to be out-of-distribution. This is mainly because the Aesthetic
Score itself penalizes those OOD samples. It is noteworthy to observe that this insight is also captured
by our proposed indicator P (z), because when comparing the trend of P (z) in Figure 14 and Figure
15, we can see that optimizing the Aesthetic Score leads to a much less significant decrease in the
P (z) value.

E IMPLEMENTATION DETAILS

In this section, we discuss some implementation details of our proposed method, as well as clarify
some omissions in the experimental section.

E.1 ALGORITHM IMPLEMENTATION

It is clear that to solve the direct noise optimization problem stated in Problem 3, differentiation of
the noise-to-sample mapping Mθ is required. It is worth noting that this differentiation cannot be
handled by standard auto-differentiation in PyTorch (Paszke et al., 2019), as it can lead to a memory
explosion. A common technique to resolve this issue is gradient checkpointing, which has also been
adopted by other related works on noise optimization (Wallace et al., 2023b; Novack et al., 2024;
Karunratanakul et al., 2023).

Here, we describe an efficient method to implement our proposed hybrid gradient estimators detailed
in Section 4, along with the optimization process, by utilizing the built-in auto-differentiation in
PyTorch (Paszke et al., 2019). Specifically, suppose we wish to use q samples to estimate the gradient
in Equation equation 12; that is, we draw q noise vectors for perturbation: ξ1, ..., ξq . We then generate
the corresponding samples xi = Mθ(z + µξi) for i = 1, ..., q. At this point, we should compute the
estimated gradient of the reward functions in a non-differentiable mode as follows:

Ĥ2(x) =
1

q

q∑
i=1

(r(Mθ(xi))− r(x))(xi − x). (17)

Finally, we can execute gradient backpropagation with the loss function,

loss(z) = ⟨Ĥ2(x),Mθ(z)⟩,
which produces the exact gradient estimator for z.
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Method LGD BoN DNO
n=10 n=100 n=1000 n=10 n=100 n=1000 5 min

Darkness ↑ 158 165 169 153 155 156 241
CS ↑ 26.1 26.0 26.0 26.4 26.2 26.2 25.6

ITM ↑ 98 98 97 98 100 96 94

Table 3: Performance comparison for optimizing darkness. The experimental setting uses the average
performance over 100 random prompts and seeds.

Method LGD BoN DNO
n=10 n=100 n=1000 n=10 n=100 n=1000 5 min

Brightness↑ 167 173 172 161 169 169 246
CS ↑ 25.9 26.0 25.7 26.1 26.2 26.1 25.7

ITM ↑ 94 98 96 98 99 96 95

Table 4: Performance comparison for optimizing brightness. The experimental setting uses the
average performance over 100 random prompts and seeds.

E.2 EXPERIMENT DETAILS

In this section, our goal is to provide the experimental details that were omitted from Sections 5.1,
5.2, 5.3.

Details for Section 5.1. In this experiment, to solve the probability-regularized noise optimization
problem as formulated in Equation equation 9, we employ the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 0.01. For optimization with regularization, we set the regularization
coefficient γ to 1. To compute the minibatch stochastic gradient for the regularization term in
Equation equation 9, we set the batch size b—the number of random permutations drawn at each
step—to 100. For each optimization run, we utilize a single A800 GPU, with the total memory
consumption being approximately 15 GB.

We provided the performance of LGD and BoN on the brightness and darkness tasks and compare
them to our DNO with regularization, as shown in the following Table 3 and Table 4. The experimental
setting is similar to that in Section 5.1, but we use the average performance over 100 random prompts
and seeds instead of 1000 to enable faster simulation. From the results, it is evident that LGD and
BoN fail to optimize brightness and darkness to a high level, while, as expected, they also do not
encounter the problem of reward hacking even without any regularization technique.

Details for Section 5.2. In this second set of experiments, we continue using the Adam optimizer with
a learning rate of 0.01. For optimization with regularization, though, we reduce the regularization
coefficient to γ = 0.1 because optimizing these human-like reward functions is less susceptible
to the OOD reward-hacking issue, while maintaining the batch size for the permutation matrix b
at 100. Each optimization run also uses a single A800 GPU, but the total memory consumption
is around 20 GB. For the experiment in Section 5.2, we use a prompt set similar to those in prior
works such as DDPO and AlignProp. The prompts take the form of "<color> <animal>", where
"<color>" is randomly selected from a color list and "<animal>" is randomly selected from an animal
list. For example, a sample prompt could be "purple duck." Regarding the baselines in Table 1, we
implemented LGD (Song et al., 2023a) ourselves, following the algorithm from their paper on these
reward functions. In the experimental setting of Table 1, n = 100 is a fairly time-consuming setting
for LGD, as it requires backpropagation through the neural network 100 times for each diffusion
step, which takes approximately 7 minutes to complete. For other baselines, we reuse the statistics
presented in their corresponding papers.

To analyze the performance of our DNO algorithm and the best tuning-based algorithm, AlignProp
on the performance on the OOD reward-hacking issue. We used test metrics in Figure 3 to measure
the level of OOD, similar to what we did for DNO. As shown in the Table 5 and 6, AlignProp does
exhibit a certain degree of reward hacking at higher OOD levels, but the effect remains within an
acceptable range.
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Method SD v1.5 AlignProp DNO
(1 min) (3 min) (5 min)

Aesthetic ↑ 5.367 8.940 5.754 7.202 8.587
HPS ↑ 0.278 0.266 0.276 0.272 0.271

Table 5: Table for optimizing Aesthetic Score, with HPS Score as test metric

Method SD v1.5 AlignProp DNO
(1 min) (3 min) (5 min)

HPS ↑ 0.278 0.330 0.285 0.303 0.324
Aesthetic ↑ 5.367 5.060 5.253 5.519 5.311

Table 6: Table for optimizing HPS Score, with Aesthetic Score as test metric

Here we provide additional quantitative experiments using DNO with SD v1.5 to investigate whether
DNO performs well with complex prompts. We tested 100 prompts from the Pick-a-Pic test dataset,
similar to the setting used in SPIN (Yuan et al., 2024). Table 7 compares the performance of SPIN
(quoted from Table 3 in (Yuan et al., 2024)) with the average performance of our DNO. As shown,
DNO performs well on complex prompts. This result is not surprising, as DNO is designed to
optimize noise vectors specific to each prompt, ensuring robust performance across diverse scenarios.

Details for Section 5.3. In this section, the primary hyperparameters for the three tested algorithms
are the perturbation coefficient µ and the number of samples q used to approximate the gradient (as
formulated in Equation equation 17). Clearly, q plays a crucial role in determining the running time
of each algorithm. For an equitable comparison, we tune q separately for each algorithm to achieve
roughly the same time cost per gradient step. Specifically, we set q values for ZO-SGD, Hybrid-1,
and Hybrid-2 to 16, 8, and 4 respectively. For µ, we also adjust them individually for each algorithm,
as they have varying sensitivity to µ. Through trial and error, we select µ values of 0.01 for ZO-SGD
and Hybrid-1, and 0.02 for Hybrid-2. Finally, for optimizing JPEG Compressibility, we use the Adam
optimizer with a learning rate of 0.01, but for the Aesthetic Score experiment, we reduce the learning
rate to 0.001, as we found that 0.01 can lead to divergence during optimization for the Aesthetic
Score. Each optimization run continues to use a single A800 GPU.

We also provide a discussion on the time cost of non-differentiable methods as follows:

For ZO-SGD, the time per gradient step is roughly the same as generation time, which is 2s, but it
does not work effectively in practice. For Hybrid-1 and Hybrid-2, since these methods also require
differentiating through , the time per gradient step is comparable to DNO in the differentiable setting
from Section 5.2—approximately 7 seconds per gradient step. From Figure 4, we observe the
following: For Hybrid-2, it can optimize JPEG Compressibility to a reasonably high level (-30 to -20)
within 5 minutes. For Aesthetic Score, it takes around 20 minutes to reach a reasonably high score
(>7), which is significantly slower than using gradient information. However, this experiment was
included primarily as a showcase to demonstrate that Hybrid-2 can still optimize effectively without
gradient information.

F HYPERPARAMETERS ANALYSIS

In this section, we conduct a thorough analysis of the hyperparameters for the proposed method. Our
objective is to offer a concise guideline for selecting the hyperparameters in the proposed method.

Method SPIN DNO
(1 min) (3 min) (5 min)

Aesthetic ↑ 6.248 6.013 6.993 8.305
HPS ↑ 0.276 0.279 0.291 0.326

PickScore ↑ 22.00 21.85 23.61 24.89

Table 7: Running DNO with SD v1.5 and Prompts from Pick-a-Pic Test dataset
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As discussed in Section 3.1, the concentration inequalities involve a hyperparameter k, which
represents the dimension of subvectors from the noise vectors z that we aim to assess probabilistically.
As noted in Remark 2, the dimension k should be neither too large nor too small. Additionally,
another critical hyperparameter is the number of permutation matrices b employed to compute the
stochastic gradient for the probability regularization in Equation equation 9. Furthermore, we aim to
explore the impact of the regularization coefficient γ in the probability regularization term.

To examine the effects of k, b, and γ on mitigating the OOD (Out-Of-Distribution) reward-hacking
problem, we revisit the experiment of optimizing darkness reward with the prompt "white <animals>"
from Section 5.1. In Figure 16, we illustrate how these three hyperparameters influence both the
reward and the consistency score (CS), across four different values.

Firstly, Figure 16a supports the notion that k should be carefully chosen—not too large, yet not overly
small. We observe that k = 1 underperforms compared to k = 2 and k = 10, as selecting k = 1 fails
to account for the covariance among noise vectors. Conversely, k = 100 proves to be a poor choice
because it entails a smaller m, potentially rendering the concentration inequalities detailed in Lemma
1 less precise.

Secondly, as demonstrated in Figure 16b, the number of permutation matrices b seems to have a minor
impact on the optimization process, provided b is sufficiently large. Based on empirical evidence,
b = 100 emerges as an optimal selection for the proposed method.

Lastly, the effects of γ are depicted in Figure 16c. Adjusting the value of γ clearly presents a
trade-off between convergence speed and the propensity for OOD reward-hacking problems. Given
this observation, we recommend empirically tuning the value of γ for different reward functions and
prompts using a limited number of samples and a few optimization steps.

G LITERATURE REVIEWS

First of all, we will briefly review several recent and important references that are related to this work.
(Uehara et al., 2024a) is a survey paper which provide a more unified framework for the RL-based
methods (Black et al., 2023) and (Fan et al., 2023). (Barceló et al., 2024) investigates the mode
collapse problem, which is another important challenge for aligning the diffusion model aside of
the OOD reward-hacking problem studied in this work. (Rector-Brooks et al., 2024) is a concurrent
work that inference-time optimization for discrete diffusion models, different from the continuous
diffusion models that are explored in this work. (Li et al., 2024) is another concurrent work, which
addresses inference-time optimization for both discrete and continuous diffusion models. (Li et al.,
2024) is conceptually similar to (Song et al., 2023a) and includes comparisons with BoN and DPS.
AlignProp (Prabhudesai et al., 2023) and DRAFT (Clark et al., 2023) are two concurrent works
proposing essentially the same algorithm, that is directly fine-tuning the diffusion models with the
gradient of differentiable reward functions.

H SMOOTHNESS JUSTIFICATION FOR PIXEL-BASED REWARD FUNCTION

Conceptually, it is quite straightforward to argue that the reward function is smooth with respect to
pixel changes. Small changes to the image pixels would not result in large differences in the reward
function’s score. In practice, most reward functions exhibit this property, including metrics such as
darkness, brightness, compressibility, and even human-preference-based reward functions. Minor
pixel changes generally do not cause significant differences in the reward evaluation process.

To provide a more concrete answer, we conducted a quantitative analysis. Here is the setup we
adopted: We first sampled a noise vector x1 ∼ N (0, I) and then generated a second noise vector x2

in the neighborhood of x1, i.e., x2 ∼ N (
√
0.9x1,

√
0.1I). Using the Aesthetic Score as the reward

function r(·), we computed the following quantities:

A = Ex1,x2

|r(Mθ(x1))− r(Mθ(x2))|
||x1 − x2||

and

B = Ex1,x2

||∇r(Mθ(x1))−∇r(Mθ(x2))||
||x1 − x2||

.
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Using 100 samples with random prompts from Section 5.1, we estimated these values to be A = 0.19
and B = 6.93, respectively. These results rigorously demonstrate that the composite mapping r ◦Mθ

is indeed smooth. We will include this justification in a more formal way in the revised manuscript.

It is worth noting that for any function f , as long as its gradient norm is bounded by a constant L/2,
the function is L-smooth. In practice, assuming a bounded gradient norm is not restrictive for reward
functions, especially those based on neural networks, given the presence of many normalization
layers.

(a) The effect of k.

(b) The effect of b.

(c) The effect of γ.

Figure 16: Hyperparamet Analysis
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