
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INFERENCE-TIME ALIGNMENT OF DIFFUSION MODELS
WITH DIRECT NOISE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we focus on the alignment problem of diffusion models with a contin-
uous reward function, which represents specific objectives for downstream tasks,
such as increasing darkness or improving the aesthetics of images. The central
goal of the alignment problem is to adjust the distribution learned by diffusion
models such that the generated samples maximize the target reward function. We
propose a novel alignment approach, named Direct Noise Optimization (DNO),
that optimizes the injected noise during the sampling process of diffusion models.
By design, DNO operates at inference-time, and thus is tuning-free and prompt-
agnostic, with the alignment occurring in an online fashion during generation.
We rigorously study the theoretical properties of DNO and also propose variants
to deal with non-differentiable reward functions. Furthermore, we identify that
naive implementation of DNO occasionally suffers from the out-of-distribution
reward hacking problem, where optimized samples have high rewards but are
no longer in the support of the pretrained distribution. To remedy this issue, we
leverage classical high-dimensional statistics theory to an effective probability
regularization technique. We conduct extensive experiments on several important
reward functions and demonstrate that the proposed DNO approach can achieve
state-of-the-art reward scores within a reasonable time budget for generation.

1 INTRODUCTION

Diffusion models work by learning to reverse the process of diffusing the data distribution p(x) into
noise, which can be described by a stochastic differential equation (SDE) (Song et al., 2020b; Karras
et al., 2022): dxt = f(t)xtdt + g(t)dwt, where dwt is the standard Wiener process, and f(t) and
g(t) are the drift and diffusion coefficients, respectively. The reverse process relies on the score
function ϵ(xt, t)

def.
= ∇x log pt(x) where pt denotes the p.d.f of noisy data xt, and its closed-form can

be expressed either as an ODE or as an SDE: (Song et al., 2020b):

ODE: dxt =

(
f(t)xt −

1

2
g2(t)ϵ(xt, t)

)
dt, (1)

SDE: dxt =
(
f(t)xt − g2(t)ϵ(xt, t)

)
dt+ g(t)dwt. (2)

With the capability to evaluate ϵ(xt, t), it becomes possible to generate samples from noise by
numerically solving either the ODE equation 1 or the SDE equation 2. The training process,
therefore, involves learning a parameterized surrogate ϵθ(xt, t) to approximate ϵ(xt, t), following a
denoising score matching framework as described in (Song et al., 2020b; Karras et al., 2022). Despite
the effectiveness of diffusion models in modeling continuous distributions, when deploying these
generative models for specific tasks, it is not suitable to sample from the original learned distribution
directly, because this distribution has not been aligned with the task-specific objective. For instance,
in image generation, users may wish to produce images that are aesthetically pleasing rather than
mediocre, or generate images with enhanced brightness, darkness, or compressibility. Recently, the
alignment problem has drawn considerable interest in the context of diffusion models, as evidenced
by a series of studies such as (Yuan et al., 2024; Song et al., 2023a; Dong et al., 2023; Prabhudesai
et al., 2023; Black et al., 2023; Fan et al., 2023).
Alignment Problem for Diffusion Models. Given a diffusion model characterized by parameters θ
and its associated distribution pθ(x), as well as a reward function r(x) that can assign real-valued
scores to generated samples, the central goal of the alignment problem is to adjust the distribution
pθ(x) such that the generated samples maximize the reward from r(x). In this work, we consider the
reward functions to be continuous but possibly non-differentiable. In the following sections, we will
provide a comprehensive review of some well-established methods for aligning diffusion models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.1 METHODS FOR ALIGNING DIFFUSION MODELS

1.1.1 ONLINE/OFFLINE REINFORCEMENT LEARNING FOR FINE-TUNING DIFFUSION MODELS

A common mathematical formulation in RL-based methods is to maximize the expected reward
while ensuring the resulting distribution does not deviate excessively from the original distribution.
This can be expressed as the following KL-regularized optimization problem: maxp Ex∼p(x)[r(x)]−
λKL(p||pθ). Current RL-based methods can be categorized into online and offline methods based
on the data used. In the online method, the algorithm has the capacity to query the reward function
throughout the entire optimization process. Two notable online RL methods are DDPO (Black et al.,
2023) and DPOK (Fan et al., 2023), which have been shown to improve downstream objectives
such as aesthetics and compressibility. Alternatively, research has also delved into the offline RL
optimization setting, where an explicit reward function is not accessible and only a fixed preference
dataset is utilized. Noteworthy works in this category include Diffusion-DPO (Wallace et al., 2023a)
and SPIN-Diffusion (Yuan et al., 2024).

1.1.2 DIRECT FINE-TUNING OF DIFFUSION MODELS WITH DIFFERENTIABLE REWARDS

Before delving into the formal description of this method, it is useful to revisit the sampling process
of diffusion models, which also serves as the foundation for the rest of this work. Solving the ODE
equation 1 or the SDE equation 2 typically involves discretizing the time steps into T steps. By
starting with the initial noise xT ∼ N (0, I), the solution process for the ODE equation 1 can be
viewed as a mapping that transforms the initial noise xT into less noisy data through the following
process: xt−1 = ODE_solver(xt), for t = T, ..., 1. After T steps, the output will be the generated
sample x0. Similarly, solving the SDE equation 2 can be seen as a mapping that gradually converts
both the initial noise xT and the entire extra random noise vectors zT , ..., z1 into the generated sample
x0, e.g., through the following process: xt−1 = SDE_solver(xt, zt), for t = T, ..., 1, where zt is
also drawn from standard Gaussian distribution.
Remark 1. Throughout this work, for simplicity, we adopt only the DDIM sampling algorithm (Song
et al., 2020a) for our experiments, as it remains one of the most popular choices for diffusion sampling
and, more importantly, supports both ODE-style and SDE-style sampling. To be self-contained, we
summarize the notations and procedure of the DDIM sampling method in Appendix A.
Diffusion Sampling as a Noise-to-Sample Mapping. From the diffusion sampling process described
above, we observe that the sampling process can be conceptualized as an end-to-end mapping Mθ(z),
which translates noise vectors z, sampled from the standard Gaussian distribution, into generated
samples. Here, the noise vectors z serve as a unified abstraction for both the xT in the ODE-based
sampling process and the (xT , {z1, ..., zT }) in the SDE-based sampling process. As we can see, the
noise vector z uniquely determines the generated sample from the diffusion models.
Two recent studies, AlignProp (Prabhudesai et al., 2023) and DRaFT (Clark et al., 2023), have
proposed to directly fine-tune diffusion models using differentiable rewards. Specifically, their opti-
mization objective is formulated as: maxθ Ez∼N (0,I)[r(Mθ(z))]. Both the AlignProp (Prabhudesai
et al., 2023) and DRaFT (Clark et al., 2023) methods utilize the ODE-type DDIM solver for the
sampling process, specifically employing Algorithm 1 with η = 0.

1.1.3 LOSS-GUIDED DIFFUSION
A recent work focusing on loss-guided diffusion models (LGD) (Song et al., 2023a) also examines
the concept of aligning diffusion models with differentiable rewards. Unlike the methods mentioned
previously, LGD is an Inference-Time alignment method, meaning it does not necessitate modifica-
tions to the pretrained model θ and only works by modifying the inference process. In essence, the
core idea of LGD is that, during the sampling process for the ODE equation 1, it considers a modified
version of the ODE by introducing a new term that guides the generation toward areas of higher
reward. Specifically, the new ODE is: dxt =

(
f(t)xt − 1

2g
2(t)ϵ(xt, t) +∇xt

r(x0(xt))
)
dt, where

x0(xt) denotes the solution of this ODE starting from xt. However, the gradient term ∇xtr(x0(xt))
is not readily available during generation. To address this, the authors suggest utilizing Monte Carlo
estimation to approximate the gradient. Nevertheless, this estimation tends to be noisy and imprecise,
leading to suboptimal performance, particularly with complex reward functions.

1.2 COMPARING EXISTING METHODS

Existing works can be generally categorized based on two criteria: whether it requires fine-tuning
and whether the reward function needs to be differentiable.
Inference-Time or Tuning-based Methods. All RL-based methods and the direct fine-tuning
method are tuning-based, meaning they necessitate adjustments to the network models θ. There

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

are two main disadvantages associated with tuning-based methods. The first is that they require
fine-tuning for new reward functions, a process that can consume considerable resources, especially
when faced with extensive choices for reward functions. The second drawback is that the fine-tuning
process typically relies on a limited set of input prompts, which challenges the model to generalize
to new and unseen prompts. In contrast, methods such as LGD (Song et al., 2023a) belong to the
inference-time category. The main advantage of the inference-time approach is its elimination of
the need for fine-tuning, as well as its ability to avoid the prompt generalization issues associated
with tuning-based methods. This makes it prompt-agnostic, as the inference-time method optimizes
the sample specifically for the given prompt during the inference process. Further, inference-time
methods require significantly fewer computing resources than tuning-based methods. However, the
major drawback of inference-time methods is the substantial increase in the time required for the
generation process.
Differentiable or Non-Differentiable Rewards. Current RL-based methods can work by utilizing
solely the value or preference information of the reward functions, therefore they can still work even
when the reward function is non-differentiable. In contrast, the existing direct fine-tuning methods
and LGD require the reward function to be differentiable. In practice, working with non-differentiable
reward functions is important due to their prevalence. This non-differentiable property can arise from
the simulation-based procedures used to compute the reward, or the reward function itself may be a
black box.
For additional discussion on existing literature, please refer to Appendix G.

1.3 OUR CONTRIBUTIONS

In this work, we focus on inference-time alignment of diffusion models, as we believe that flexibility
with the choices of the reward functions, generalization on unseen prompts, and low computing
requirements are critical for a broad range of real-world applications. Our primary goal is to design
an inference-time alignment method that can match the performance of tuning-based methods by
incurring a reasonable additional time cost, and is capable of handling both differentiable and non-
differentiable objective functions. To this end, we focus on an under-explored technique for achieving
inference-time alignment of diffusion models—Direct Noise Optimization (DNO). Specifically, we
make the following contributions:

• We conduct a self-contained and comprehensive study for DNO, and demonstrate that noise
optimization can be theoretically interpreted as sampling from an improved distribution.

• We identify out-of-distribution reward-hacking as a critical issue in DNO. To address this
issue, we introduce a novel probability-regularized noise optimization method designed to
ensure the generated samples remain within the support of pretrained distribution.

• By developing a novel and highly efficient hybrid gradient approximation strategy, we
extend the DNO approach to handle non-differentiable reward functions effectively.

• Through the experiments on several important image reward functions, we demonstrate that
our proposed method can achieve state-of-the-art scores in comparison to existing alignment
methods, without any fine-tuning on the parameters of diffusion models.

2 DIRECT NOISE OPTIMIZATION FOR ALIGNING DIFFUSION MODELS

Given the noise-to-sample mapping Mθ described in Section 1.1.2, DNO can be mathematically
formulated as follows:

max
z

r(Mθ(z)), (3)

with z ∼ N (0, I) as the initial solution. As we will discuss in Section 3, the Gaussian distribution
N (0, I) serves as an important prior on the optimization variables z. By solving this optimization
problem, we can obtain the optimized noise vectors, which are then used to generate high-reward
samples. When the reward function r(·) is differentiable, gradient-based optimization methods can
be applied to solve the problem efficiently. That is, the following step can be performed iteratively
until convergence: znew = optimizer_step(zold,∇zr (Mθ(zold))), where the optimizer can be either
vanilla gradient ascent or adaptive optimization algorithms like Adam (Kingma & Ba, 2014). When
the gradient of reward function r(·) is not available, we can leverage techniques from zeroth order
optimization (Nesterov & Spokoiny, 2017; Tang et al., 2024a) to estimate the ground-truth gradient
∇zr (Mθ(zold)), denoted as ĝ(zold), and then apply similarly znew = optimizer_step(zold, ĝ(zold)). In
Section 4, we provide a dedicated discussion on how to obtain a better estimator for ĝ(zold) when the
reward function is non-differentiable.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Several recent studies have explored similar formulations to equation 3 across different applications.
(Wallace et al., 2023b) investigates the optimization of latent vectors obtained through DDIM-
inversion (Song et al., 2020a), aiming to enhance the CLIP score (Radford et al., 2021) and Aesthetic
Score (Schuhmann et al., 2022b) of given images. (Ben-Hamu et al., 2024) discusses optimizing the
initial noise xT for the ODE process to address inverse problems, leveraging the diffusion model as
a prior. (Novack et al., 2024) and (Karunratanakul et al., 2023) consider the optimization of initial
noise xT for the ODE with the objective of improving downstream objectives in robotics and audio.

While similar methods of DNO has appeared in previous works, many of its technical details remain
insufficiently explored. On one hand, there is a lack of a comprehensive framework concerning the
design choices, theoretical understanding, and practical challenges associated with DNO for aligning
diffusion models. On the other hand, the field has yet to systematically investigate whether DNO, as a
inference-time method for aligning diffusion models, can achieve competitive performance compared
to tuning-based methods. In this work, we aim to conduct a thorough study on DNO. In the following
two sections, we dive deep to understand the theoretical foundation of DNO and discuss a critical
design choice ignored in previous works.

2.1 UNDERSTANDING DIRECT NOISE OPTIMIZATION

In Appendix B.1, we present a simple example to visualize the process of DNO, where we observed
that the distribution of the generated samples shifts toward a distribution on the local maxima of
the reward function. Inspired by this example, we propose to view DNO as sampling from an
improved distribution. To rigorously describe this evolving process, we define an operator function
g to represent a single gradient step, i.e., g(z) def

= z + ℓ · ∇zr ◦Mθ(z), where ◦ denotes the function
composition operator and ℓ denotes the step size for gradient ascent. Additionally, we define the
operator gt, which denotes applying the gradient ascent step for t steps, i.e., gt(z) = g(gt−1(z)) with
g0 being the identity mapping. With these notations, we can now express the distribution after t
gradient steps as pt(x), which is the distribution of Mθ(gt(z)) with z ∼ N (0, I). In the following
theorem, we demonstrate that there is a rigorous improvement after every single gradient step, i.e.,
the distribution pt+1(x) is provably better than pt(x) in terms of expected reward.
Theorem 1. Assuming that r ◦Mθ is L-smooth, namely, ∥∇r ◦Mθ(z)−∇r ◦Mθ(z

′)∥ ≤ L∥z− z′∥
for any z ̸= z′, it holds true that

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x) +

(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
. (4)

In Theorem 1, we rely on the smoothness assumption of the composite mapping r ◦Mθ. We note
that this is a reasonable assumption in practice, as the noise-to-sample mapping in diffusion models
has been observed to be smooth. For instance, see Figure 4 in (Tang et al., 2024a). We also provide
a justification for the smoothness of reward function in Appendix H. As described in equation 4,
provided that the step size ℓ is less than 2

L , the distribution pt+1(x) is strictly better than the previous
distribution pt(x) in terms of expected reward, as long as the second term is non-zero. Based on this
result, it is natural to ask: When does the distribution stop improving? Namely, when does the second
term in equation 4 become zero. We provide a detailed discussion to answer this question and also
the proof for Theorem 1 in Appendix C.

2.2 OPTIMIZING ODE VS. OPTIMIZING SDE
As previously introduced, there are two primary methods for sampling from pretrained diffusion
models: one based on solving the ODE equation 1 and the other on solving the SDE equation 2. A
critical difference lies in the fact that ODE sampling depends exclusively on the initial noise xT ,
whereas SDE sampling is additionally influenced by the noise zt added at every step of the generation
process. It has been noted that existing works on noise optimization (Ben-Hamu et al., 2024; Novack
et al., 2024; Karunratanakul et al., 2023) have mainly concentrated on optimizing the initial noise xT

for the ODE sampler.

Figure 1: ODE vs. SDE for optimization

Different from preceding studies, we explore the utiliza-
tion of the SDE sampler for noise optimization. Specif-
ically, we employ the DDIM with η = 1 (Song et al.,
2020a) as the SDE sampler and propose to optimize both
the added noise zt at every timestep and the initial noise
xT . In this context, the dimensionality of the optimized
noise significantly surpasses that of ODE sampler, typi-
cally T · d v.s. d, where d is the dimension for the learned

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

distribution and T is the number of discretization steps in the sampling process. With this higher
dimension for optimization, we have empirically observed that optimizing the SDE-based generation
process can be significantly better than its ODE-based counterpart. This is illustrated in Figure 1,
where we juxtapose the optimization speeds between the ODE (DDIM with η = 0) and SDE samplers
using both the simple depicted in Figure 5 (Left) and optimizing for stable diffusion in alignment
with the aesthetic reward (Right), a major experiment detailed in the subsequent section 5.2.

Understanding the Advantage of DNO with SDE-Based Sampling. Intuitively, the better per-
formance in optimization can be attributed to the finer-grained control over the generation process
afforded by the SDE sampler compared to the ODE sampler. To formally state this intuition, we revisit
the DDIM sampling algorithm in Algorithm 1. We consider the procedure of SDE-based sampling
algorithm, DDIM with η = 1, as defining the noise-to-sample mapping Mθ(xT , z1, . . . , zT). An
important observation is that the ODE sampling algorithm, DDIM with η = 0, can also be expressed
using the same Mθ(xT , z1, . . . , zT), with the distinction that the noise z1, . . . , zT becomes determin-
istic and dependent on xT , rather than sampled from a Gaussian distribution. Specifically, if we define

the deterministic noise vectors as: zODE
t

def.
=

√
1−αt−1−

√
1−αt−1−σ2

t

σt
ϵθ(xt, t), for t = 1, . . . , T,

where σt =
√
(1− αt−1/(1− αt)

√
1− αt/αt−1, then the sampling process of DDIM with η = 0

can be expressed as Mθ(xT , z
ODE
1 , . . . , zODE

T). In this context, the advantage of SDE-based sampling
becomes evident:

max
xT ,z1,...,zT

r (Mθ(xT , z1, . . . , zT))︸ ︷︷ ︸
DNO with SDE

≥ max
xT

r
(
Mθ(xT , z

ODE
1 , . . . , zODE

T)
)

︸ ︷︷ ︸
DNO with ODE

, (5)

meaning that running DNO with SDE will yield better results, or at least as good as DNO with
ODE for aligning diffusion models. Based on this conclusion, our work will focus on optimizing the
SDE-based sampling (DDIM with η = 1) for the remainder of the study. Additionally, we fix the
number of generation steps T to 50 throughout this work for simplicity.

3 OUT-OF-DISTRIBUTION REWARD-HACKING IN NOISE OPTIMIZATION

It has been observed that when aligning generative models (e.g., including autoregressive language
models or diffusion models) with reward functions, one can experience the so-called reward-hacking,
i.e., the optimized samples yield high rewards but do not possess the desirable properties (Miao
et al., 2024; Chen et al., 2024a). Generally, there are two different types of reward-hacking. In the
first type, the reward function admits some shortcuts, so the optimized samples score high rewards
but remain barely distinguishable from the samples of the pretrained distribution. The second type
is related to the generative model used – the optimized samples no longer fall within the support
of the pretrained distribution after optimization. We denote this second type of reward-hacking as
Out-Of-Distribution (OOD) Reward-Hacking. In this work, we will focus on this second type
and reveal that OOD reward-hacking is a common issue in DNO. In Appendix B.2, we provide
two visualized examples of the phenomenon of OOD Reward-Hacking using both a 2-dimensional
diffusion model and an image diffusion model.

One of our key contributions in this work is to identify one critical cause of OOD reward-hacking in
noise optimization. That is, the optimized noise vectors stray towards the low-probability regions
of the high-dimensional standard Gaussian distribution; in other words, there is an extremely low
chance of such noise vectors being sampled from the Gaussian distribution. As diffusion models are
originally trained with Gaussian noise, when the noise vectors originate from these low-probability
areas—such as vectors comprised entirely of zeros—the neural network within the diffusion models
may incur significant approximation errors for these particular inputs. This error, in turn, leads to the
generation of out-of-distribution samples. In the subsequent section, we introduce a novel method to
measure the extent to which noise is part of the low-probability region by leveraging the classical
concentration inequalities for high-dimensional Gaussian distributions.

3.1 QUANTIFYING LOW-PROBABILITY REGION VIA CONCENTRATION INEQUALITIES

High-dimensional Gaussian distributions possess several unique properties. For instance, it is known
that the all-zero vector is the most probable in terms of the probability density function (p.d.f) of
the standard Gaussian distribution. However, in practice, it is nearly impossible to obtain samples
near the all-zero vector from a Gaussian distribution, as it resides within a low-probability region.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In high-dimensional statistics, concentration inequalities are usually employed to describe these
distinctive properties and delineate the low-probability regions of high-dimensional distributions. In
the following lemma, we present two classical inequalities for the standard Gaussian distribution.
Lemma 1 ((Wainwright, 2019)). Consider that z1, ..., zm follow a k-dimensional standard Gaussian
distribution. We have the following concentration inequalities for the mean and covariance:

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

zi

∥∥∥∥∥ > M

]
< p1(M)

def.
= max

{
2e−

mM2

2k , 1
}
, (6)

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

ziz
⊤
i − Ik

∥∥∥∥∥ > M

]
< p2(M)

def.
= max

{
2e−

m(max{√
1+M−1−

√
k/m,0})2

2 , 1

}
. (7)

In practice, to determine if an n-dimensional vector z lies within a low-probability region, we can
factorize n as n = m · k, and divide z into m subvectors: z = [z11 , ..., z

k
m], where n = m · k

and zi = [z1i , ..., z
k
i] ∼ N (0, Ik)). Then, we compute M1(z) =

∥∥ 1
m

∑m
i=1 zi

∥∥ and M2(z) =∥∥ 1
m

∑m
i=1 ziz

⊤
i − Ik

∥∥. Finally, we can determine that z lies in a low-probability region if both
p1(M1(z)) and p2(M2(z)) are low.
Remark 2. According to (Wainwright, 2019), the two inequalities equation 6 and equation 7 are
tight when m/k is large. On the other hand, k = 1 is not advisable, as it examines only the mean
and variance of the noise vector, but not the covariance of different subvectors. In this work, we
empirically found that k = 2 serves as a good default choice. In Appendix F, we provide a more
detailed analysis for choosing an appropriate k.

An important point to note is that the standard Gaussian distribution is invariant to permutation, i.e.,
for any permutation matrix Π, if z follows a standard Gaussian distribution, the permuted vector
Πz will have the same probability behavior. With this insight, to increase the robustness of the
probability measure p1 and p2, a natural idea is to examine the probability of many permuted vectors.
Specifically, given q permutation matrices Π1, ...,Πq , we define the following indicator metric,

P (z)
def.
= min

{
min

i∈{1,...,q}
p1 (M1(Πiz)) , min

i∈{1,...,q}
p2 (M2(Πiz))

}
. (8)

Interpretation of P (z). If the probability P (z) is low, it implies that there exists a permutation
matrix Πi such that the noise vector Πiz is in the low-probability region of the standard Gaussian
distribution. Therefore, due to the permutation-invariant property, the noise vector z is also less likely
to be sampled from the standard Gaussian distribution. In practice, we utilize randomly generated
permutation matrices and have found that setting q = 100 results in empirically good performance.
In Appendix D, we provide some visualized empirical evidence to show that P (z) serves as a good
indicator for determining if the generated samples are OOD.

3.2 PROBABILITY-REGULARIZED NOISE OPTIMIZATION

With the insights discussed above, a natural idea for preventing OOD reward hacking is to regularize
noise vectors to remain within the high-probability region of the Gaussian distribution. To achieve
this, we propose the following Probability-Regularized Noise Optimization problem:

max
z

r(Mθ(z)) + γEΠ [log p1(M1(Πz)) + log p2(M2(Πz))] , (9)

where γ is the coefficient used to control the regularization effect. In particular, for the regularization
term, we use the expectation of the log probabilities over the permutation matrices, rather than the
minimum probability P (z). This is because the expectation is smoother for optimization purposes.

4 TACKLING NON-DIFFERENTIABLE REWARD FUNCTIONS

In the previous section, DNO method has been applied to optimize differentiable reward functions.
However, in many applications the ground-truth gradient of the reward function is unavailable. Such
non-differentiable properties can arise from various scenarios; here we present two representative
cases. Firstly, the reward may be computed through simulation-based procedures, such as the JPEG-
compressibility employed in DDPO (Black et al., 2023), which calculates the size of an image
in bits after running a JPEG compression algorithm. Additionally, the reward function itself may
be a black box provided through online API providers, as in the setting considered in (Sun et al.,
2022). This scenario is common when the reward function is a large neural network model, like
those in (Wang et al., 2024a; Lin et al., 2024), making it impossible to directly obtain the gradient

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for optimization. To address these scenarios, we explore adapting the noise optimization approach
to handle the optimization of non-differentiable reward functions by estimating the gradient with
function values. Specifically, we explore three methods under this setting.

Method 1. Concerning optimization with only function value, a major family of optimization
approaches is zeroth-order optimization algorithms, including ZO-SGD (Nesterov & Spokoiny, 2017).
This method treats the entire mapping r ◦Mθ(·) as a black-box function and seeks to estimate the
gradient of r ◦Mθ(·) via function value queries.

Method 2. It is worth noting that for the mapping r ◦ Mθ(·), only the gradient of the reward
function r(x) is not available, and we are still able to compute the gradient of Mθ(z). Therefore, a
straightforward idea is to adopt a hybrid gradient approach—only to estimate the gradient of r, while
using the ground truth gradient for Mθ(z). Specifically, we denote that the initial noise is z, and the
generated sample is x = Mθ(z). Firstly, we can estimate the gradient of ∇r(x) in a similar fashion
with the ZO-SGD (Nesterov & Spokoiny, 2017):

H1(x) = Eξ∼N (0,I) [(r(x+ µξ)− r(x)) ξ] ≈ C1∇r(x), (10)

where µ is the coefficient for perturbation, and C1 is some constant. With the estimated gradient H1(x)
for the reward function r(x), we can use the following estimated gradient G1(z) for optimization:

G1(z)
def.
= H1(x) · ∇zMθ(z) ≈ C1∇zr ◦Mθ(z), (11)

where the main idea is to replace the ground truth ∇r(x) in the chain-rule of differentiating r(Mθ(z)).
We refer this method as Hybrid-1 in the following sections.
Remark 3. As one can observe, the computation of equation 11 involves the Jacobian ∇zMθ(z).
However, it is important to note that when we only require the vector-Jacobian product H1(x) ·
∇zMθ(z), it is unnecessary to compute the full Jacobian ∇zMθ(z). In Appendix E, we describe an
elegant and efficient way to implement equation 11 using an auto-differentiation technique.

Method 3. There is a crucial drawback in the gradient estimator equation 10, that one needs to query
the reward function r(·) with noisy input x+ µξ. When the reward function is only defined on some
manifold M, e.g., defined on the image manifold, rather than the whole space Rn, this can lead to
severe problems, because, for some x ∈ M, the noisy sample x+ µξ may no longer stay within M.
To remedy this issue, we propose to perturb the sample through the latent noise, rather than directly
in the sample space. Specifically, our proposed new gradient estimator for ∇r(x) is

H2(x) = Eξ∼N (0,I) [(r(Mθ(z + µξ))− r(x)) (Mθ(z + µξ)− x)] . (12)

Following a similar proof in (Nesterov & Spokoiny, 2017), we can also show that H2(x) ≈ C2∇r(x)
for some constants C2. As we can see, when computing the gradient equation 12, we ensure that
we query the reward function r(·) with only samples that are within the manifold of the pretrained
distribution. Similar to Hybrid-1, we can adopt a gradient estimator G2(z) with H2(x):

G2(z)
def.
= H2(x) · ∇zMθ(z). (13)

We refer this method equation 13 as Hybrid-2. As we will see in Section 5.3, this Hybrid-2 method
is significantly faster than the other two in terms of optimization speed.

5 EXPERIMENTS

In this section, we aim to demonstrate the effectiveness of the method proposed above. For all
subsequent experiments, we utilize Stable Diffusion v1.5 (Rombach et al., 2022) as the base model
for noise optimization. For each figure, we perform the optimization using 1,000 different random
seeds and report the average value along with the standard deviation (std) of the results. For
comprehensive details regarding the implementation of our proposed methods, as well as information
on hyperparameters, we refer readers to Appendices E and F. Additionally, we provide examples to
visualize the optimization process in Appendix B. For all the following experiments, unless explicitly
stated otherwise, a single run of DNO is performed on a single A800 GPU.

5.1 EXPERIMENTS ON IMAGE BRIGHTNESS AND DARKNESS REWARD FUNCTIONS

Experiment Design. In this section, we design an experiment to demonstrate the effectiveness of
DNO as described in Section 2, and the probability regularization proposed in Section 3.2. We
consider two settings: The first involves optimizing the brightness reward, which is the average
value of all pixels—the higher this value, the brighter the image becomes—with the prompt "black
<animal>", where the token <animal> is randomly selected from a list of animals. The second

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

setting involves optimizing the darkness reward, defined as the negative of the brightness reward,
with the prompt "white <animal>". The primary rationale behind designing such experiments is the
inherent contradiction between the prompt and the reward, which makes it easier to trigger the OOD
reward-hacking phenomenon. Moreover, it is straightforward to verify whether the generated samples
are out-of-distribution by simply examining the color of the generated animals. In these experiments,
we compare the noise optimization process with and without probability regularization to assess the
capability of probability regularization in preventing the OOD reward-hacking phenomenon.

Importance of the Brightness and Darkness Reward Functions. While the primary purpose of
using these two reward functions is to better examine the effectiveness of probability regularization, it
is also important to highlight their practical utility. There is often a genuine need to generate images
with extremely dark or bright backgrounds, which cannot be achieved by the base models through
prompting alone, as reported in the notable research by (CrossLabs, 2023).

Figure 2: Comparison of DNO with and without probability regularization. Upper row: Optimizing
for the brightness reward, i.e., the average value of all pixels in the images. Lower row: Optimizing
for the darkness reward, i.e., the negative of the brightness reward. The x-axis refers to the number of
gradient ascent steps during optimization.

Measuring the Degree of OOD. As observed in this experiment, the reward function contradicts the
input prompt, leading to an inconsistency between the generated samples and the prompt. Therefore,
we utilize the CLIP Score (CS) (Radford et al., 2021), a commonly used metric for measuring
the semantic similarity between images and text descriptions, to gauge the degree of OOD for the
generated samples. A higher CS indicates that the sample is less likely to be out-of-distribution
(OOD). In addition to the CS, we also use an MLLM-based score to measure the degree of OOD,
specifically employing the Image-Text Matching (ITM) score from (Wang et al., 2024a) as the metric.

Results. In Figure 2, we first observe that adding the regularization term leads to a mildly slower
optimization process. However, the generated samples are much more consistent with the prompt
throughout the entire optimization process, as reflected by the CS and ITM curves. The trajectory
of P (z) further corroborates that it is a good indicator of the OOD phenomenon, as it is positively
associated with CS and ITM. We also provide visualized examples in Appendix B.3, which also con-
firm that the probability regularization proposed in Section 3.2 can effectively prevent the generated
samples from becoming OOD. We also examined the performance of other inference-time methods,
LGD and Best-of-N (BoN) under this setting, see Appendix E.2.

Generating Images with Purely Bright/Dark Backgrounds. From the images in Figure 7 of
Appendix B.3, we observe that DNO with regularization can lead to images with purely dark or
bright backgrounds. It is worth noting that this is a remarkable result, as DNO requires no fine-tuning.
Notably, as discussed in (CrossLabs, 2023), such an effect can only be achieved by fine-tuning the
diffusion models using a technique called Offset-Noise.

5.2 BENCHMARKING ON THREE HUMAN-ALIGNED REWARD FUNCTIONS

Setting. In this section, we investigate the performance of the proposed method using three common
reward functions trained from human feedback data, specifically Aesthetic Score (Schuhmann et al.,
2022b), HPS-v2 score (Wu et al., 2023), and PickScore (Kirstain et al., 2023), respectively. In
this experiment, we also compare noise optimization with and without probability regularization.
However, compared to the reward function used in the previous section, using these reward functions
presents a lesser chance for the optimized image to be OOD. In this case, to measure the benefit of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method SD v1.5 LGD SPIN DDPO AlignProp DNO (This work) BoN
2s n=10 n=100 ∼ 20h ∼ 56h ∼ 12h 1 min 3 min 5 min 10 min

Aesthetic ↑ 5.367 5.340 5.224 6.248 7.180 8.940 5.754 7.202 8.587 6.531
HPS ↑ 0.278 0.276 0.271 0.276 0.287 0.330 0.285 0.303 0.324 0.298

PickScore ↑ 21.11 21.01 21.09 22.00 / / 21.25 23.17 25.13 22.09

Table 1: Performance comparison. For SD v1.5 and DNO, we annotate the generation time below the
name. For LGD, we annotate the number of samples used for Monte Carlo approximation. For SPIN,
DDPO, and AlignProp, we annotate the estimated time for fine-tuning. All time costs in the table
are measured with respect to the GPU time on a single A800 GPU. Baselines: LGD (Song et al.,
2023a), SPIN (Yuan et al., 2024), DDPO (Black et al., 2023), AlignProp (Prabhudesai et al., 2023),
Best-of-N (BoN).

probability regularization in maintaining the quality of the generated sample, we consider using the
other two reward functions as test metrics when optimizing one of them.
Results. Firstly, we observe that the effect of probability regularization is less pronounced than that
in Section 5.1. This observation is also reflected by our proposed indicator P (z); if no regularization
is applied, the value of P (z) in Figure 3 decreases much slower than that in Figure 2. Nonetheless, by
adding the regularization term to noise optimization, we can stabilize the value of P (z) throughout the
optimization process and also improve the test metrics. For instance, when optimizing the aesthetic
reward, the regularization has no significant effect on the optimization speed, while it prevents the
test metrics, i.e., the HPS score and Pick Score, from decreasing throughout the process.

Figure 3: Comparison of running DNO with three human-like reward functions, with and without
regularization. When optimizing one reward function, the other two are used as test metrics. A, H,
P are short for Aesthetic Score, HPS Score, and Pick Score, respectively. The name for each line
comprises the used reward function and whether the regularization is used. For example, A + w/ reg
means optimizing aesthetic score with regularization.
Comparison to Existing Alignment Methods. We summarize the performance of DNO with
probability regularization from Figure 3 into Table 1 and compare it to the major existing alignment
methods discussed in the introduction. As shown, the performance of DNO matches that of state-of-
the-art tuning-based alignment methods without any fine-tuning on the network models, all within
a reasonable time budget for generation. More importantly, we demonstrate that DNO provides an
worthwhile trade-off between inference time and the reward of the generated samples. On one hand,
another inference-time method, LGD (Song et al., 2023a), performs poorly with these complex reward
functions, as it is impossible to estimate the gradient of the reward functions without a complete
generation process. On the other hand, we also examined the most fundamental inference-time
alignment algorithm, Best-of-N (BoN) Sampling, which generates N samples and selects the one
with the highest reward. In this experiment, we fix the time budget for BoN to 10 minutes, and
we observe that DNO outperforms it by a large margin, demonstrating that DNO presents a highly
advantageous trade-off between inference time and reward. As a complement to Table 1, we also
provide the numerical results for the test metrics of our DNO and the tuning-based method AlignProp
in Appendix E.2, analyzing their performance on the OOD reward-hacking issue.

T 10 15 20 25 50

Aesthetic ↑ 6.992 7.496 6.773 6.381 5.754
HPS ↑ 0.342 0.341 0.306 0.293 0.285

PickScore ↑ 23.98 24.82 23.69 23.02 21.25

Table 2: Running DNO with different numbers of diffusion
steps T , while fixing the time budget to 1 minute.

Using Fewer Steps to Reduce Infer-
ence Time. In Figure 3, we show that
our proposed DNO can achieve high
reward values within approximately
3–5 minutes. While this already rep-
resents a highly advantageous perfor-
mance, 3–5 minutes of optimization
may still be prohibitively long in prac-
tice. However, we note that reducing the number of diffusion steps can significantly decrease

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

optimization time. In Table 1, we fix the diffusion steps to 50, as this is the setting used by all other
algorithms to ensure a fair comparison. In practice, 50 diffusion steps is a fairly long choice, and
using 15–25 steps can still result in sufficiently good samples. Therefore, in Table 2, we present the
performance of DNO with different numbers of denoising steps, fixing the time budget to 1 minute,
as well as other hyperparameters like learning rate and reguralization coefficient. As Table 2 shows,
with 15 diffusion steps, DNO can achieve high reward values within 1 minute.

Finally, we would like to highlight that this alignment process can run with memory usage of less than
15GB, and thus can easily fit into just one consumer-level GPU. In contrast, current tuning-based
methods require significantly more computing resources, typically 4-8 advanced GPUs like A100
(Black et al., 2023; Prabhudesai et al., 2023).

5.3 OPTIMIZATION FOR NON-DIFFERENTIABLE REWARD FUNCTIONS

Setting. In this section, we aim to explore the three extensions proposed in Section 4 for handling
non-differentiable reward functions. For Method 1, we use ZO-SGD (Nesterov & Spokoiny, 2017),
and compare it with our proposed Hybrid-1 and Hybrid-2. We consider using two reward functions:
The Jpeg Compressibility score, which is the file size of the image after compressing it using the
JPEG algorithm. This reward function was also used in (Black et al., 2023) and is intrinsically
non-differentiable. The second reward function is the Aesthetic Score used in the previous section.
Unlike previous experiments, in this section we treat the Aesthetic Score as a non-differentiable
reward function for optimization. The goal is to simulate a scenario where the neural network model
of the Aesthetic Score can only be queried via an API provider that returns the score rather than its
gradient. We compare the three methods in terms of optimization steps and the final score of the
reward function. For ease of demonstration, we do not add the probability regularization term to the
optimization process. Moreover, it is important to note that in these three methods, the major time
expenditure comes from estimating the gradient with finite samples. For a fair comparison among
these methods, we set the number of samples for estimating the gradient separately so that the total
time spent estimating the gradient is the same for all three methods.

Figure 4: Comparing three methods on two reward
functions. For better visualization purposes, when
plotting the line for ZO-SGD, we compute and
plot the current best reward instead of the current
reward due to the extremely high variance.

Results. The main results are visualized in Fig-
ure 4. Initially, we observe that the Hybrid-2
method is significantly faster than the other two
methods, and the final score is also higher for
both reward functions used in this experiment.
Furthermore, in both scenarios, the ZO-SGD
method exhibits the slowest optimization speed.
Another interesting finding is the poor perfor-
mance of Hybrid-1 in optimizing the Aesthetic
Reward. This mainly occurs because the aes-
thetic reward function can only work with im-
age inputs, which validates our initiative to pro-
pose the Hybrid-2 method in Section 4. Finally,
when comparing the optimization of the aes-
thetic score in Figures 3 and 4, we can also note that using the true gradient results in substantially
fewer steps than using the estimated gradient.

6 CONCLUSIONS

In this work, we present a comprehensive study on Direct Noise Optimization (DNO) for align-
ing diffusion generative models at inference-time. We introduce variants of DNO designed to
efficiently address challenges such as out-of-distribution reward-hacking and the optimization of
non-differentiable reward functions. More significantly, we demonstrate the exceptional efficacy of
DNO, underscoring its capacity to rival tuning-based methods. The primary limitation of DNO lies
in its integration with the sampling process of diffusion models, leading to a substantial increase in
processing time compared to direct sampling. Nonetheless, we argue that the additional time cost,
being within a reasonable and acceptable range, is a worthwhile trade-off for attaining high-reward
generated samples in a wide range of real-world applications. We anticipate DNO gaining greater
attention in future research and applications due to its flexibility to accommodate any reward func-
tion—or even a combination of different reward functions—while demanding only modest computing
resources, which positions it as an accessible tool for many practitioners.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Roberto Barceló, Cristóbal Alcázar, and Felipe Tobar. Avoiding mode collapse in diffusion models
fine-tuned with reinforcement learning. arXiv preprint arXiv:2410.08315, 2024.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
arXiv preprint arXiv:2402.07319, 2024a.

Weifeng Chen, Jiacheng Zhang, Jie Wu, Hefeng Wu, Xuefeng Xiao, and Liang Lin. Id-aligner:
Enhancing identity-preserving text-to-image generation with reward feedback learning, 2024b.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

CrossLabs. Diffusion with offset noise. https://www.crosslabs.org/blog/
diffusion-with-offset-noise, 2023. January 30, 2023.

Fei Deng, Qifei Wang, Wei Wei, Matthias Grundmann, and Tingbo Hou. Prdp: Proximal re-
ward difference prediction for large-scale reward finetuning of diffusion models. arXiv preprint
arXiv:2402.08714, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models, 2023.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. arXiv preprint arXiv:2401.08639, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023.

Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, and Qian He. Pulid: Pure and lightning id
customization via contrastive alignment, 2024.

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
arXiv preprint arXiv:2212.09611, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

11

https://www.crosslabs.org/blog/diffusion-with-offset-noise
https://www.crosslabs.org/blog/diffusion-with-offset-noise

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Jian Hu, Li Tao, June Yang, and Chandler Zhou. Aligning language models with offline learning
from human feedback, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn,
and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. arXiv preprint
arXiv:2312.11994, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-
pic: An open dataset of user preferences for text-to-image generation, 2023.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L. Buckley, Jason Phang,
Samuel R. Bowman, and Ethan Perez. Pretraining language models with human preferences, 2023.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models, 2019.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso
Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
and discrete diffusion models with soft value-based decoding. arXiv preprint arXiv:2408.08252,
2024.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. arXiv preprint
arXiv:2404.01291, 2024.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Languages are rewards: Hindsight finetuning using
human feedback, 2023a. URL https://arxiv.org/abs/2302.02676.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. arXiv preprint arXiv:2309.06380, 2023b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2022.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Yuchun Miao, Sen Zhang, Liang Ding, Rong Bao, Lefei Zhang, and Dacheng Tao. Mitigating reward
hacking via information-theoretic reward modeling. arXiv preprint arXiv:2402.09345, 2024.

12

https://arxiv.org/abs/2302.02676

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models, 2023.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan. Ditto: Diffusion
inference-time t-optimization for music generation. arXiv preprint arXiv:2401.12179, 2024.

OpenAI. Chatgpt,https://openai.com/ blog/chatgpt/, 2022. URL https://openai.com/blog/
chatgpt/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
diffusion models with reward backpropagation, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal,
Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, et al. Steering masked discrete
diffusion models via discrete denoising posterior prediction. arXiv preprint arXiv:2410.08134,
2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models, 2022a.

13

https://openai.com/ blog/chatgpt/
https://openai.com/ blog/chatgpt/
https://openreview.net/forum?id=di52zR8xgf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp. 32483–32498. PMLR, 2023a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles
Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, and Cyrus Rashtchian. Dreamsync: Aligning
text-to-image generation with image understanding feedback, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–20855.
PMLR, 2022.

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-order optimization meets human feedback:
Provable learning via ranking oracles. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=TVDUVpgu9s.

Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang. Accelerating parallel
sampling of diffusion models. arXiv preprint arXiv:2402.09970, 2024b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024a.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Sergey Levine, and Tommaso Biancalani. Feedback efficient online
fine-tuning of diffusion models. arXiv preprint arXiv:2402.16359, 2024b.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

14

https://openreview.net/forum?id=TVDUVpgu9s

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. arXiv preprint arXiv:2311.12908, 2023a.

Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent optimiza-
tion improves classifier guidance. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7280–7290, 2023b.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat:
Advancing open-source language models with mixed-quality data, 2023a.

Weizhi Wang, Khalil Mrini, Linjie Yang, Sateesh Kumar, Yu Tian, Xifeng Yan, and Heng Wang.
Finetuned multimodal language models are high-quality image-text data filters. 2024a.

Weizhi Wang, Khalil Mrini, Linjie Yang, Sateesh Kumar, Yu Tian, Xifeng Yan, and Heng Wang.
Finetuned multimodal language models are high-quality image-text data filters. arXiv preprint
arXiv:2403.02677, 2024b.

Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng
Chau. Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models,
2023b.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis, 2023.

Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, and Qifeng Chen. Seeing and hearing: Open-
domain visual-audio generation with diffusion latent aligners. arXiv preprint arXiv:2402.17723,
2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed
conditional diffusion: Provable distribution estimation and reward improvement, 2023.

Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning of diffusion
models for text-to-image generation. arXiv preprint arXiv:2402.10210, 2024.

Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan Wang,
Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional visual
editing. arXiv preprint arXiv:2303.09618, 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

APPENDIX

A DDIM SAMPLING ALGORITHM

In Algorithm 1 described below, we summarize the sampling algorithm for diffusion models, DDIM
(Song et al., 2020a), which is essentially the Euler method for solving ODEs/SDEs. The diffusion
coefficients α1, . . . , αT in Algorithm 1 are computed using the coefficient functions f(t) and g(t),
with the detailed computation found in (Song et al., 2020b; Karras et al., 2022). The coefficient η in
DDIM determines whether we are solving the ODE or the SDE, with η = 0 corresponding to ODE
and η > 0 corresponding to SDE.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 DDIM Sampling Algorithm
Require: Discretization timesteps T , diffusion coefficient α1, ..., αt, initial noise xT ∼ N (0, I), noise vectors

z1, ..., zT ∼ N (0, I), coefficient η ∈ [0, 1] for balancing ODE and SDE, learned score network ϵθ(·, ·).
1: for t = T to 1 do
2: Compute σt = η

√
(1− αt−1/(1− αt)

√
1− αt/αt−1.

3: xt−1 =
√

αt−1/αt · xt −
(√

αt−1(1− αt)/αt −
√

1− αt−1 − σ2
t

)
ϵθ(xt, t) + σtzt

4: end for
5: return x0

B VISUALIZATION

To assist the reader in understanding the optimization process of DNO and also to provide a qualitative
evaluation, we offer several visualizations in this section.

B.1 A SIMPLE EXAMPLE

In this section, we present a simple example to visualize the process of noise optimization. Specifically,
we trained a toy diffusion model for generating uniform distribution on a ring with a radius between
0.8 and 1.2, and the initial distribution is visualized in Figure 5a, where each red point denotes a
single sample drawn from the trained diffusion model. We then solve the noise optimization problem
equation 3 with the reward function r(x) = sin(4πx[1]) + sin(4πx[2])−

(
(x[1]− 1)2 − x[2]2

)
/5,

a highly nonconvex function with many local maxima. To perform this optimization, we solve the
DNO problem equation 3 using gradient ascent with the learning rate set to 0.01. In Figures 5b, 5c,
and 5d, we visualize the optimized samples after 10, 50, and 100 gradient steps, respectively. We can
observe that the distribution of the samples shifts toward a distribution on the local maxima of the
reward function.

(a) Initial (b) 10 steps (c) 50 steps (d) 100 steps

Figure 5: Example 1: Evolution of the sample distribution of a toy diffusion model while running
DNO to maximize a non-convex reward function.

B.2 SIMPLE EXAMPLES FOR OOD REWARD-HACKING

In this section, we present two examples using both a simple diffusion model from the Example 1
described above and the open-source image diffusion model SD v1.5 (Rombach et al., 2022). For
the first example, we revisit the pretrained distribution displayed in Figure 5, modifying the reward
function to r(x) = −(x[1] − 1.4)2 − (x[2] − 1.4)2. Figure 6a exhibits the pretrained distribution
of the diffusion models, where we note that every sample stays within the support. However, as
illustrated in Figure 6b, after 1000 gradient steps of optimization for the reward function, all the
generated samples become out-of-distribution. In our second example, we examine optimization for
the "brightness" reward—specifically, the average value of all pixels in an image—using SD v1.5 as
the image diffusion model. We start with the prompt "black duck", with the initial image depicted in
Figure 6c. After 50 gradient steps of optimization for the brightness reward, it becomes apparent that
the generated samples diverge from the original prompt "black duck" and transform into a "white
duck", as evidenced in Figure 6d. Ideally, in the absence of reward-hacking, the generated samples
should always adhere to the "black duck" prompt while incorporating the overall brightness in the
images.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Initial (b) 1000 steps (c) Black Duck (d) 50 steps

Figure 6: Examples of OOD Reward-Hacking

B.3 COMPARING WITH AND WITHOUT REGULARIZATION

In this section, our objective is to demonstrate the impact of the probability regularization term on the
optimization process through visual examples. Specifically, we present examples from three settings.
The first two examples are derived from the experiments in Section 5.1, while the last example is
from the experiment on optimizing the aesthetic score in Section 5.2.

The examples can be seen in Figure 7. As observed across all examples, the optimization process that
integrates the regularization term consistently prevents the generated samples from falling into the
category of being Out-Of-Distribution (OOD).

B.4 QUALITATIVE EXAMPLES

In this section, we aim to provide additional visualized examples for our proposed method.

Firstly, in Figure 8, we present examples from the optimization of all three popular human-level
reward functions discussed in Section 5.2. As can be observed, the optimization process indeed
results in an increase in human preference throughout.

Furthermore, we also include examples from the experiments in Section 5.3, that is, optimizing
JPEG Compressibility Score and Aesthetic Score using the Hybrid-2 method for non-differentiable
optimization. These examples in Figure 9 effectively showcase the efficiency of Hybrid-2 in both
estimating the gradient and optimizing.

We also present some non-cherry-picked examples of aligning Stable Diffusion XL (Podell et al.,
2024) with DNO across four reward functions and four popular prompts from Reddit, see Figure 10.
Note that this effect is achieved without fine-tuning the diffusion models. The experiment was
conducted on a single A800 GPU. , and also the setting for Figure 10. In these examples, we only use
the base model of SDXL (Podell et al., 2024) as the image diffusion model. We adopt the DDIM
sampler with 50 steps and η = 1 for generation, and optimize all the injected noise in the generation
process, the same as most experiments in this work. The classifier-free guidance is set to 5.0. For
each reward function, we adopt the same hyperparameters for the optimizer and regularization terms
as the experiments in Section 5.1 and 5.2. From top to bottom in Figure 10, the used prompts are
listed as follows:

1. dark alley, night, moon Cinematic light, intricate detail, high detail, sharp focus, smooth,
aesthetic, extremely detailed

2. 1970s baseball player, hyperdetailed, soft light, sharp, best quality, masterpiece, realistic,
Canon EOS R3, 20 megapixels.

3. a rabbit, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k,
national geographic, award - winning photograph by nick nichols.

4. A beef steak, depth of field, bokeh, soft light, by Yasmin Albatoul, Harry Fayt, centered,
extremely detailed, Nikon D850, award winning photography

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Optimizing brightness reward with and without probability regularization. Prompt: "black duck".

(b) Optimizing darkness reward with and without probability regularization. Prompt: "white duck".

(c) Optimizing Aesthetic Score with and without probability regularization. Prompt: "yellow squirrel"

Figure 7: Examples of optimized samples with and without regularization

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Optimizing Aesthetic Score with prompt "gray lion"

(b) Optimizing HPS v2 Score with prompt "black deer"

(c) Optimizing PickScore with prompt "black lizard"

Figure 8: Representative examples of optimizing reward functions trained on human feedback data.

B.5 VISUALIZATION OF DNO

We provide a visual illustration in Figure 11 to describe the main procedure for DNO using the DDIM
sampling procedure detailed in Algorithm 1. As shown, DNO, similar to LGD (Song et al., 2023a),
operates at inference-time and does not require tuning the network parameter θ. However, it requires
more time for generation compared to direct sampling, as the optimization is integrated with the
sampling process, meaning the optimization is performed for each new sample generated. Despite
this, as we will demonstrate in Section 5, the extra time needed for the DNO approach is a worthwhile
trade-off for obtaining high-reward samples.

C THEORETICAL RESULTS

Proof for Theorem 1. To leverage the L-smoothness assumption, we need to state a classical lemma
for smooth optimization.

Lemma 2 (Descent Lemma (Bertsekas, 1997)). For any z1 and z2, we have

r ◦Mθ(z2) ≥ r ◦Mθ(z1) +∇r ◦Mθ(z1) · (z2 − z1)−
L

2
∥z2 − z1∥22. (14)

Now for any z and steps t ≥ 1, with the descent lemma, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +∇r ◦Mθ(gt(z)) · (gt+1(z)− gt(z))−
L

2
∥gt+1(z)− gt(z)∥22.

Notice that by the definition of gt· we have
gt+1(z)− gt(z) = gt(z) + ℓ∇r ◦Mθ(gt(z))− gt(z)

= ℓ∇r ◦Mθ(gt(z)).

Therefore, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +

(
ℓ− ℓ2L

2

)
∥∇r ◦Mθ(gt(z))∥22.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Optimizing Jpeg Compressiblity with Hybrid-2 gradient approximation. Upper: prompt "blue pig".
Lower: prompt "yellow rabbit".

(b) Optimizing Aesthetic Score with Hybrid-2 gradient approximation. Upper: prompt "silver butterfly".
Lower: prompt "yellow hedgehog".

Figure 9: Representative examples for non-differentiable optimization

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: Running DNO with SDXL

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Overview of the DNO procedure with the DDIM sampling algorithm: DNO seeks to
optimize only those Gaussian noise vectors {xT , z1, z2..., zT } to maximize the reward value of a
single generated sample x0. To facilitate the gradient backpropagation from x0 to {xT , z1, z2..., zT },
we leverage the technique of gradient checkpointing. It is worth noting that when using η = 0 for
DDIM sampling, there is no need to compute the gradient for z1, ..., zT , as the generated sample
x0 depends exclusively on xT . When computing the gradient from r(x0) to x0, we can use either
ground-truth gradient ∇r or an estimated gradient ∇̂r, depending on whether the reward function
r(·) is differentiable.

Taking the expectation over z ∼ N (0, I) we have

Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ≥ Ez∼N (0,I) [r ◦Mθ(gt(z))] +(
ℓ− ℓ2L

2

)
Ez∼N (0,I)

[
∥∇r ◦Mθ(gt(z))∥22

]
.

By using the change of variable formula for distribution, we can easily see that

Ex∼pt+1(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ,

and

Ex∼pt(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt(z))] ,

Therefore, we conclude with

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x) +

(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2

(15)

≥ Ex∼pt(x)r(x).

When Does the Distribution Stop Improving? As observed, the distribution ceases to improve
when the second term in Equation equation 15 becomes zero. Initially, we note that the optimized
distribution stops improving when Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
= 0. In statistical terms,

this implies that ∇zr ◦Mθ(z)|z=gt(z0) is a zero vector with probability one.

To discern the circumstances under which this zero vector occurs, let us assume that z0 is some fixed
noise vector and consider the scenario where

∇xr(x)|x=Mθ(gt(z0)) · ∇zMθ(z)|z=gt(z0) = 0⃗, (16)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Here, we denote G1(z0) = ∇xr(x)|x=Mθ(gt(z0)) as the gradient of the reward functions on the
generated sample, and G2(z0) = ∇zMθ(z)|z=gt(z0) representing the Jacobian matrix of the noise-to-
sample mapping. We categorize the situation in Equation equation 16 into three cases:

Type-I: ∥G1(z0)∥ = 0 and ∥G2(z0)∥ > 0. Here, the gradient of the reward function on the generated
sample is zero, indicating that the generated sample has reached a stationary point (or local solution)
of the reward function.

Type-II: ∥G2(z0)∥ = 0 and ∥G1(z0)∥ > 0. This indicates that the Jacobian matrix of the noise-to-
sample mapping is zero, which often suggests that the generated sample is at the boundary of the
support of the distribution, as a zero Jacobian means that changes in the noise will not affect the
generated sample.

Type-III: ∥G1(z0)∥ > 0 and ∥G2(z0)∥ > 0, but ∥G1(z0) · G2(z0)| = 0. In this scenario, the
gradient of the reward function on the generated sample is orthogonal to the Jacobian matrix of the
noise-to-sample mapping.

In summary, the distribution will halt its improvement after the t-th step if it almost surely holds that
z0 corresponds to a Type-I, Type-II, or Type-III noise vector.

We provide examples for the three scenarios, respectively, in the following figures. First, in Figure 12a,
we display examples of Type-I and Type-II by reutilizing the experiment from Figure 5. To determine
the type of the noise vector, we empirically compute ∥G1(z0)∥, ∥G2(z0)∥, and ∥G1(z0) ·G2(z0)∥
for each noise vector.

(a) Example 1 (b) Example 2

Figure 12: Examples of generated samples with Type-I, Type-II and Type-III noise vectors in the toy
examples.

To showcase an example of Type-III noise vectors, we introduce a new toy example illustrated in
Figure 12b. Specifically, the ground-truth distribution learned by diffusion models is uniform across
a horizontal line spanning from (−1, 0) to (1, 0). The reward function is defined as r(x, y) = y.
It can be readily confirmed that, for every point on this line, the gradient of the reward function is
orthogonal to the Jacobian matrix of the noise-to-sample mapping. Consequently, all points along the
line segment [(−1, 0), (1, 0)] qualify as Type-III noise vectors.

D EMPIRICAL INVESTIGATION OF P (z)

In this section, we provide several empirical evidence to demonstrate that P (z) acts as an effective
indicator for the out-of-distribution phenomenon.

Firstly, in Figure 13a, we revisit the examples from Figures 6a and 6b, coloring each sample based
on the value of P (z). As depicted in Figure 13a, P (z) proves to be an efficient metric to separate

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Toy Example (b) P (z) = 0.36 (c) P (z) = 0.00 (d) P (z) = 0.02

Figure 13: Examples of generated samples with corresponding values of P (z).

Figure 14: Trajectory of P (z) on optimizing brightness reward.

Figure 15: Trajectory of P (z) on optimizing Aesthetic Score.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

in-distribution samples from out-of-distribution samples; those in-distribution have high values for
P (z), whereas those out-of-distribution exhibit values of P (z) near zero.

Secondly, we manually construct several noise vectors that reside in the low-probability region of
the standard Gaussian distribution. To establish a baseline comparison, we first draw one sample
from the standard Gaussian distribution and use it to generate an image with Stable Diffusion v1.5
and the prompt "black duck". As can be seen, this leads to a normal image with P (z) also within a
reasonably large value. We then construct the low-probability vectors in two ways. The first one is to
use all-zero vectors, which obviously reside in the low-probability zone of high-dimensional Gaussian
distributions. The generated images with all-zero vectors are visualized in Figure 13c, showcasing
that there is nothing discernible in the image while P (z) approximates zero. The second method is to
repeat parts of the noise vectors, such that the noise vectors exhibit high covariance in the elements.
Specifically, we construct the repeated vectors by first generating an n/4 dimensional z0 from the
standard Gaussian distribution, and then constructing the noise vectors as z = [z0, z0, z0, z0], making
z an n dimensional vector. The figure corresponding to these repeated vectors, shown in Figure 13d,
once again results in a poor image, with P (z) illustrating that the noise vectors also come from a
low-probability region.

We further visualize the entire optimization trajectory for the examples in Figures 6c and 6d, i.e.,
optimizing the brightness reward for Stable Diffusion v1.5 with the prompt "black duck" in Figure 14.
Specifically, from Figure 14 we can clearly see that the value of P (z) gradually decreases, and the
generated image also gradually diverges from the distribution associated with a black duck. Notably,
at around 20 steps, the value of P (z) becomes near-zero, and at the same time, the generated image
more closely resembles a blue duck rather than the specified black duck.

Similarly, we visualize the optimization trajectory for optimizing the Aesthetic Score for SD v1.5
with the prompt "black duck". The results are in Figure 15. A clear conclusion is that in this case, it
is less likely for the optimized samples to be out-of-distribution. This is mainly because the Aesthetic
Score itself penalizes those OOD samples. It is noteworthy to observe that this insight is also captured
by our proposed indicator P (z), because when comparing the trend of P (z) in Figure 14 and Figure
15, we can see that optimizing the Aesthetic Score leads to a much less significant decrease in the
P (z) value.

E IMPLEMENTATION DETAILS

In this section, we discuss some implementation details of our proposed method, as well as clarify
some omissions in the experimental section.

E.1 ALGORITHM IMPLEMENTATION

It is clear that to solve the direct noise optimization problem stated in Problem 3, differentiation of
the noise-to-sample mapping Mθ is required. It is worth noting that this differentiation cannot be
handled by standard auto-differentiation in PyTorch (Paszke et al., 2019), as it can lead to a memory
explosion. A common technique to resolve this issue is gradient checkpointing, which has also been
adopted by other related works on noise optimization (Wallace et al., 2023b; Novack et al., 2024;
Karunratanakul et al., 2023).

Here, we describe an efficient method to implement our proposed hybrid gradient estimators detailed
in Section 4, along with the optimization process, by utilizing the built-in auto-differentiation in
PyTorch (Paszke et al., 2019). Specifically, suppose we wish to use q samples to estimate the gradient
in Equation equation 12; that is, we draw q noise vectors for perturbation: ξ1, ..., ξq . We then generate
the corresponding samples xi = Mθ(z + µξi) for i = 1, ..., q. At this point, we should compute the
estimated gradient of the reward functions in a non-differentiable mode as follows:

Ĥ2(x) =
1

q

q∑
i=1

(r(Mθ(xi))− r(x))(xi − x). (17)

Finally, we can execute gradient backpropagation with the loss function,

loss(z) = ⟨Ĥ2(x),Mθ(z)⟩,
which produces the exact gradient estimator for z.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Method LGD BoN DNO
n=10 n=100 n=1000 n=10 n=100 n=1000 5 min

Darkness ↑ 158 165 169 153 155 156 241
CS ↑ 26.1 26.0 26.0 26.4 26.2 26.2 25.6

ITM ↑ 98 98 97 98 100 96 94

Table 3: Performance comparison for optimizing darkness. The experimental setting uses the average
performance over 100 random prompts and seeds.

Method LGD BoN DNO
n=10 n=100 n=1000 n=10 n=100 n=1000 5 min

Brightness↑ 167 173 172 161 169 169 246
CS ↑ 25.9 26.0 25.7 26.1 26.2 26.1 25.7

ITM ↑ 94 98 96 98 99 96 95

Table 4: Performance comparison for optimizing brightness. The experimental setting uses the
average performance over 100 random prompts and seeds.

E.2 EXPERIMENT DETAILS

In this section, our goal is to provide the experimental details that were omitted from Sections 5.1,
5.2, 5.3.

Details for Section 5.1. In this experiment, to solve the probability-regularized noise optimization
problem as formulated in Equation equation 9, we employ the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 0.01. For optimization with regularization, we set the regularization
coefficient γ to 1. To compute the minibatch stochastic gradient for the regularization term in
Equation equation 9, we set the batch size b—the number of random permutations drawn at each
step—to 100. For each optimization run, we utilize a single A800 GPU, with the total memory
consumption being approximately 15 GB.

We provided the performance of LGD and BoN on the brightness and darkness tasks and compare
them to our DNO with regularization, as shown in the following Table 3 and Table 4. The experimental
setting is similar to that in Section 5.1, but we use the average performance over 100 random prompts
and seeds instead of 1000 to enable faster simulation. From the results, it is evident that LGD and
BoN fail to optimize brightness and darkness to a high level, while, as expected, they also do not
encounter the problem of reward hacking even without any regularization technique.

Details for Section 5.2. In this second set of experiments, we continue using the Adam optimizer with
a learning rate of 0.01. For optimization with regularization, though, we reduce the regularization
coefficient to γ = 0.1 because optimizing these human-like reward functions is less susceptible
to the OOD reward-hacking issue, while maintaining the batch size for the permutation matrix b
at 100. Each optimization run also uses a single A800 GPU, but the total memory consumption
is around 20 GB. For the experiment in Section 5.2, we use a prompt set similar to those in prior
works such as DDPO and AlignProp. The prompts take the form of "<color> <animal>", where
"<color>" is randomly selected from a color list and "<animal>" is randomly selected from an animal
list. For example, a sample prompt could be "purple duck." Regarding the baselines in Table 1, we
implemented LGD (Song et al., 2023a) ourselves, following the algorithm from their paper on these
reward functions. In the experimental setting of Table 1, n = 100 is a fairly time-consuming setting
for LGD, as it requires backpropagation through the neural network 100 times for each diffusion
step, which takes approximately 7 minutes to complete. For other baselines, we reuse the statistics
presented in their corresponding papers.

To analyze the performance of our DNO algorithm and the best tuning-based algorithm, AlignProp
on the performance on the OOD reward-hacking issue. We used test metrics in Figure 3 to measure
the level of OOD, similar to what we did for DNO. As shown in the Table 5 and 6, AlignProp does
exhibit a certain degree of reward hacking at higher OOD levels, but the effect remains within an
acceptable range.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Method SD v1.5 AlignProp DNO
(1 min) (3 min) (5 min)

Aesthetic ↑ 5.367 8.940 5.754 7.202 8.587
HPS ↑ 0.278 0.266 0.276 0.272 0.271

Table 5: Table for optimizing Aesthetic Score, with HPS Score as test metric

Method SD v1.5 AlignProp DNO
(1 min) (3 min) (5 min)

HPS ↑ 0.278 0.330 0.285 0.303 0.324
Aesthetic ↑ 5.367 5.060 5.253 5.519 5.311

Table 6: Table for optimizing HPS Score, with Aesthetic Score as test metric

Here we provide additional quantitative experiments using DNO with SD v1.5 to investigate whether
DNO performs well with complex prompts. We tested 100 prompts from the Pick-a-Pic test dataset,
similar to the setting used in SPIN (Yuan et al., 2024). Table 7 compares the performance of SPIN
(quoted from Table 3 in (Yuan et al., 2024)) with the average performance of our DNO. As shown,
DNO performs well on complex prompts. This result is not surprising, as DNO is designed to
optimize noise vectors specific to each prompt, ensuring robust performance across diverse scenarios.

Details for Section 5.3. In this section, the primary hyperparameters for the three tested algorithms
are the perturbation coefficient µ and the number of samples q used to approximate the gradient (as
formulated in Equation equation 17). Clearly, q plays a crucial role in determining the running time
of each algorithm. For an equitable comparison, we tune q separately for each algorithm to achieve
roughly the same time cost per gradient step. Specifically, we set q values for ZO-SGD, Hybrid-1,
and Hybrid-2 to 16, 8, and 4 respectively. For µ, we also adjust them individually for each algorithm,
as they have varying sensitivity to µ. Through trial and error, we select µ values of 0.01 for ZO-SGD
and Hybrid-1, and 0.02 for Hybrid-2. Finally, for optimizing JPEG Compressibility, we use the Adam
optimizer with a learning rate of 0.01, but for the Aesthetic Score experiment, we reduce the learning
rate to 0.001, as we found that 0.01 can lead to divergence during optimization for the Aesthetic
Score. Each optimization run continues to use a single A800 GPU.

We also provide a discussion on the time cost of non-differentiable methods as follows:

For ZO-SGD, the time per gradient step is roughly the same as generation time, which is 2s, but it
does not work effectively in practice. For Hybrid-1 and Hybrid-2, since these methods also require
differentiating through , the time per gradient step is comparable to DNO in the differentiable setting
from Section 5.2—approximately 7 seconds per gradient step. From Figure 4, we observe the
following: For Hybrid-2, it can optimize JPEG Compressibility to a reasonably high level (-30 to -20)
within 5 minutes. For Aesthetic Score, it takes around 20 minutes to reach a reasonably high score
(>7), which is significantly slower than using gradient information. However, this experiment was
included primarily as a showcase to demonstrate that Hybrid-2 can still optimize effectively without
gradient information.

F HYPERPARAMETERS ANALYSIS

In this section, we conduct a thorough analysis of the hyperparameters for the proposed method. Our
objective is to offer a concise guideline for selecting the hyperparameters in the proposed method.

Method SPIN DNO
(1 min) (3 min) (5 min)

Aesthetic ↑ 6.248 6.013 6.993 8.305
HPS ↑ 0.276 0.279 0.291 0.326

PickScore ↑ 22.00 21.85 23.61 24.89

Table 7: Running DNO with SD v1.5 and Prompts from Pick-a-Pic Test dataset

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

As discussed in Section 3.1, the concentration inequalities involve a hyperparameter k, which
represents the dimension of subvectors from the noise vectors z that we aim to assess probabilistically.
As noted in Remark 2, the dimension k should be neither too large nor too small. Additionally,
another critical hyperparameter is the number of permutation matrices b employed to compute the
stochastic gradient for the probability regularization in Equation equation 9. Furthermore, we aim to
explore the impact of the regularization coefficient γ in the probability regularization term.

To examine the effects of k, b, and γ on mitigating the OOD (Out-Of-Distribution) reward-hacking
problem, we revisit the experiment of optimizing darkness reward with the prompt "white <animals>"
from Section 5.1. In Figure 16, we illustrate how these three hyperparameters influence both the
reward and the consistency score (CS), across four different values.

Firstly, Figure 16a supports the notion that k should be carefully chosen—not too large, yet not overly
small. We observe that k = 1 underperforms compared to k = 2 and k = 10, as selecting k = 1 fails
to account for the covariance among noise vectors. Conversely, k = 100 proves to be a poor choice
because it entails a smaller m, potentially rendering the concentration inequalities detailed in Lemma
1 less precise.

Secondly, as demonstrated in Figure 16b, the number of permutation matrices b seems to have a minor
impact on the optimization process, provided b is sufficiently large. Based on empirical evidence,
b = 100 emerges as an optimal selection for the proposed method.

Lastly, the effects of γ are depicted in Figure 16c. Adjusting the value of γ clearly presents a
trade-off between convergence speed and the propensity for OOD reward-hacking problems. Given
this observation, we recommend empirically tuning the value of γ for different reward functions and
prompts using a limited number of samples and a few optimization steps.

G LITERATURE REVIEWS

First of all, we will briefly review several recent and important references that are related to this work.
(Uehara et al., 2024a) is a survey paper which provide a more unified framework for the RL-based
methods (Black et al., 2023) and (Fan et al., 2023). (Barceló et al., 2024) investigates the mode
collapse problem, which is another important challenge for aligning the diffusion model aside of
the OOD reward-hacking problem studied in this work. (Rector-Brooks et al., 2024) is a concurrent
work that inference-time optimization for discrete diffusion models, different from the continuous
diffusion models that are explored in this work. (Li et al., 2024) is another concurrent work, which
addresses inference-time optimization for both discrete and continuous diffusion models. (Li et al.,
2024) is conceptually similar to (Song et al., 2023a) and includes comparisons with BoN and DPS.
AlignProp (Prabhudesai et al., 2023) and DRAFT (Clark et al., 2023) are two concurrent works
proposing essentially the same algorithm, that is directly fine-tuning the diffusion models with the
gradient of differentiable reward functions.

H SMOOTHNESS JUSTIFICATION FOR PIXEL-BASED REWARD FUNCTION

Conceptually, it is quite straightforward to argue that the reward function is smooth with respect to
pixel changes. Small changes to the image pixels would not result in large differences in the reward
function’s score. In practice, most reward functions exhibit this property, including metrics such as
darkness, brightness, compressibility, and even human-preference-based reward functions. Minor
pixel changes generally do not cause significant differences in the reward evaluation process.

To provide a more concrete answer, we conducted a quantitative analysis. Here is the setup we
adopted: We first sampled a noise vector x1 ∼ N (0, I) and then generated a second noise vector x2

in the neighborhood of x1, i.e., x2 ∼ N (
√
0.9x1,

√
0.1I). Using the Aesthetic Score as the reward

function r(·), we computed the following quantities:

A = Ex1,x2

|r(Mθ(x1))− r(Mθ(x2))|
||x1 − x2||

and

B = Ex1,x2

||∇r(Mθ(x1))−∇r(Mθ(x2))||
||x1 − x2||

.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Using 100 samples with random prompts from Section 5.1, we estimated these values to be A = 0.19
and B = 6.93, respectively. These results rigorously demonstrate that the composite mapping r ◦Mθ

is indeed smooth. We will include this justification in a more formal way in the revised manuscript.

It is worth noting that for any function f , as long as its gradient norm is bounded by a constant L/2,
the function is L-smooth. In practice, assuming a bounded gradient norm is not restrictive for reward
functions, especially those based on neural networks, given the presence of many normalization
layers.

(a) The effect of k.

(b) The effect of b.

(c) The effect of γ.

Figure 16: Hyperparamet Analysis

29

	Introduction
	Methods for Aligning Diffusion Models
	Online/Offline Reinforcement Learning for Fine-tuning Diffusion Models
	Direct Fine-tuning of Diffusion Models with Differentiable Rewards
	Loss-Guided Diffusion

	Comparing Existing Methods
	Our Contributions

	Direct Noise Optimization for Aligning Diffusion Models
	Understanding Direct Noise Optimization
	Optimizing ODE vs. Optimizing SDE

	Out-Of-Distribution Reward-Hacking in Noise Optimization
	Quantifying Low-Probability Region via Concentration Inequalities
	Probability-Regularized Noise Optimization

	Tackling Non-Differentiable Reward Functions
	Experiments
	Experiments on Image Brightness and Darkness Reward Functions
	Benchmarking on Three Human-Aligned Reward Functions
	Optimization for Non-Differentiable Reward Functions

	Conclusions
	DDIM Sampling Algorithm
	Visualization
	A Simple Example
	Simple Examples for OOD Reward-Hacking
	Comparing With and Without Regularization
	Qualitative Examples
	Visualization of DNO

	Theoretical Results
	Empirical Investigation of P(z)
	Implementation Details
	Algorithm Implementation
	Experiment Details

	Hyperparameters Analysis
	Literature Reviews
	Smoothness Justification for Pixel-based Reward Function

