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ABSTRACT

Diffusion Transformers (DiTs) with billions of model parameters form the back-
bone of popular image and video generation models like DALL.E, Stable-Diffusion
and SORA. Though these models are necessary in many low-latency applications
like Augmented/Virtual Reality, they cannot be deployed on resource-constrained
Edge devices (like Apple Vision Pro or Meta Ray-Ban glasses) due to their huge
computational complexity. To overcome this, we turn to knowledge distillation and
perform a thorough design-space exploration to achieve the best DiT for a given
parameter size. In particular, we provide principles for how to choose design knobs
such as depth, width, attention heads and distillation setup for a DiT. During the
process, a three-way trade-off emerges between model performance, size and speed
that is crucial for Edge implementation of diffusion. We also propose two distilla-
tion approaches - Teaching Assistant (TA) method and Multi-In-One (MI1) method
- to perform feature distillation in the DiT context. Unlike existing solutions,
we demonstrate and benchmark the efficacy of our approaches on practical Edge
devices such as NVIDIA Jetson Orin Nano. https://github.com/vignesh99/ditnano

1 INTRODUCTION

Diffusion Transformers (DiTs) (Peebles & Xie, 2023) have become the de facto method (Dhariwal
& Nichol, 2021) for generating images and videos due to their high fidelity (Ho et al., 2020),
generalizability (Nichol & Dhariwal, 2021), ease of training (Ho et al., 2020) and scalability (Peebles
& Xie, 2023). DiTs form the backbone of various practically deployed image and video generation
models like DALL.E (Betker et al., 2023), StableDiffusion (Esser et al., 2024) and Sora (OpenAI,
2024). Due to the large parameter size and computational complexity of these models, one has
to employ Cloud services to run them remotely. The significant latencies associated with such
data transmissions from Cloud to the Edge cannot be afforded for high-frame-rate applications like
Augmented/Virtual Reality (AR/VR) which need to be implemented on resource-constrained Edge
devices (Apple Inc.; Meta Platforms, Inc.).

The main challenge in directly implementing neural network inferences on Edge devices comes from
the limited memory and energy capacity of the Edge hardware. To address this, we need to design
parameter- and compute-efficient DiTs. Edge devices which typically hold on-chip memories in
the range of few megabytes, thus requiring model sizes to be in the order of a million parameters
as compared to existing practical models (Peebles & Xie, 2023; Crowson et al., 2024) which have
billions of parameters. Prior works (explained in detail in Appendix A) which focus on efficient DiTs
optimize only specific layers (Pu et al., 2024) or look at only precision (Wu et al., 2024) or do not
push the parameter-limit required to achieve the desired performance (Geng et al., 2024). The focus
of our work is not about providing SOTA DiT models through novel algorithmic methods. Instead,
our goal is to provide the best DiT model - in terms of performance and speed - at a given parameter
size using principled design choices.

Contributions:
1. We provide principles for designing an efficient SOTA (at the given model size) DiT model

(DiT-Nano) by employing distillation. Through the process, we highlight a key trade-off
that emerges between model performance (FID), size (#parameters) and speed (latency). In
particular, we show the practical impact of our designed models on real-life Edge devices
such as NVIDIA Jetson Orin Nano. This is our key contribution.

2. We propose two algorithms - Teaching Assistant (TA) method and the Multi-In-One (MI1)
method, and explore the efficacy of these methods.
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Figure 1: Design space exploration of diffusion distillation.

Design-Space Exploration: Among
the several design knobs for distill-
ing DiT models, we pick the follow-
ing most relevant ones - depth, width,
number of attention heads of the DiT
model, and the setup (loss function
and teacher models) for distillation.
The former two knobs impact both the
efficiency and performance, while the
latter two only impact performance.
We do not consider timesteps as a de-
sign knob despite its importance since
extensive studies have been performed
on that already (Peebles & Xie, 2023;
Yin et al., 2024a) (we do 1-step diffu-

sion only). Below we propose two methods which explore new Distillation Setups for DiT.

Teaching Assistant (TA) Method: This approach is inspired by the original TA paper (Mirzadeh
et al., 2020) for distilling convolutional networks. We explore the possibility of combined feature
distillation (see Fig. 2) using the teacher and TA with LPIPS loss (Zhang et al., 2018).

Multi-In-One (MI1) Method: This approach performs multiple diffusion timesteps in a single step
by mapping the diffusion samples to specific layers of the student. The noise-image pair of the
teacher model which does multi-step diffusion is used to calculate the intermediate noisy images by
employing the forward diffusion probability flow ODE (shown in Appendix B.3).
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Figure 2: (Left) Baseline approach which performs regular knowledge distillation using offline
teacher (Geng et al., 2024). (Center) Teaching Assistant (TA) which performs layer-wise distillation
using an online teaching assistant and an offline teacher. (Right) Multi-In-One (MI1) approach which
maps multiple diffusion steps into a single step. This is done by mapping different diffusion timesteps
to different layers of a DiT. The training targets are obtained using forward diffusion of the probability
flow ODE. See Appendix B for implementation details of TA and MI1.

3 EXPERIMENTS

In this section we mainly describe the principles for designing efficient DiTs and the experiments to
corroborate them. The figure captions are provided with extensive detail and hence the text will only
include points not mentioned in the captions.

3.1 SETUP

The comprehensive details of the training setup is provided in the Appendix C. The results below are
shown for CIFAR-10 on DiTs distilled using EDM (Karras et al., 2022) as teacher. We do not show
results for other larger models or datasets since such a design-space exploration is computationally
infeasible. Thus we provide guidelines from our study for such bigger and more practical implemen-
tations. We use FID (Heusel et al., 2017) as the metric to evaluate the generated image performance
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while using model size and latency (instead of FLOPs) as the metrics for efficiency. Even though our
results can be extended to other scenarios, we consider here mainly the scenario of offline distillation
(noise-image pairs of teacher are generated before training) due to compute resources.

3.2 DESIGN SPACE EXPLORATION AND PRINCIPLES

In this section, we look at the impact of various design knobs (mentioned in Section 2) on the
performance and efficiency of the DiTs. Before sweeping the depth and width knobs, we first identify
the best distillation setup based on existing methods and loss functions in Table 1. The huge impact
of using LPIPS loss (Zhang et al., 2018) is obvious for both GET (Geng et al., 2024) and DMD (Yin
et al., 2024b). The simpler training setup of GET provides better results compared to DMD.

Fig. 3a & 3b indicate how the depth d (no. of layers) and width w (embedding dimension) affect the
FID and no. of parameters. The key takeaway is that increasing only one quantity without changing
the other results in diminishing returns. When it comes to no. of attention heads h (which can only
take factors of w as values), we find there is a sweet spot in the middle as shown in Fig. 3c.
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Figure 3: (a) shows the impact of depth on FID and no. of parameters. It can be observed that the no.
of parameters increases linearly with the increase in depth. (b) shows the impact of width on FID and
no. of parameters. We see that the no. of parameters increases quadratically with increase in width.
Both (a) & (b) show diminishing returns if increased independently and the performance (FID) does
not scale in the same proportion as the increase in parameters, especially for width. (c) impact of no.
of attention heads on FID. When the depth (d) or width (w) or attention heads (h) is not changing in
any of these plots, it is assumed to be d = 6, w = 128 and h = 4 respectively.

Table 1: Compares FIDs for different distilla-
tion setups and loss functions for DiT. Effect of
classifier-free guidance has been excluded for
simplicity. The GET setup with LPIPS loss is
the most effective.

Setup Loss FID
GET (Geng et al., 2024) L1 45.60
GET (Geng et al., 2024) L2 42.73
GET (Geng et al., 2024) LPIPS 18.30
DMD (Yin et al., 2024b) LPIPS 20.92

Table 2: Design-space exploration when the param-
eter size is 0.42M. The latency (L) for generating
50k images is measured on NVIDIA Jetson Nano.

Name d w h L (s) FID
wider 1 128 8 97.5 57.07
wide 2 96 8 123.6 34.78

lower heads 5 64 4 162.6 29.66
proposed 5 64 8 198.7 29.14

deep 9 48 6 259.0 28.52
deeper 21 32 4 411.7 32.81

Design Principles: From the experiments in Fig. 3 and Table 1 we provide the below guidelines:

1. Use LPIPS loss when performing distillation for diffusion tasks.
2. Choose depth d ≈ ⌊log2 w⌋ with respect to the width w subject to satisfying the

model parameter constraint.
3. Choose number of attention heads h = minmedian({factors(w)}).

The simulations that validate the design rules only explored widths which were of the form {2n, 3.2n}
since these utilize hardware most effectively. Above, the median for an even set of numbers is taken
to be both the middle numbers. Fig. 4 and Table 2 show the benefits of our design principles (our
proposed sizing is in bold) which achieve close to optimal FID for a much lower latency. One
interesting aspect in Table 2 is that when we reduce the attention heads from our proposed suggestion

3



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

0 1 2 3 4 5
#parameters 1e6

10

15

20

25

30

35

FI
D

Proposed DiT sizing
Wide DiTs
Deep DiTs

(a)

0 1 2 3 4 5
#parameters 1e6

100

200

300

400

500

600

La
te

nc
y 

fo
r 5

0k
 im

ag
es

 (s
)

Proposed DiT sizing
Wide DiTs
Deep DiTs

(b) (c)

Figure 4: (a) Impact of number of parameters on FID when comparing deep DiTs, wide DiTs and the
proposed sizing for DiTs. (b) Impact of parameters on the latency (on NVIDIA Jetson Nano). Wide
DiTs have an observably worse performance while the deep DiTs have significantly higher latency
due to serial processing. Table 2 shows the FID worsens going any deeper/wider. Our proposed sizing
provides almost optimal FID at a much smaller latency. (c) The 3-dimensional trade-off highlighting
the #params (memory) v/s FID (image quality) v/s latency (image frame rate) amidst optimal DiTs.

of 8 to 4, the latency reduces. Since this could related to the algorithm-microarchitecture mapping in
NVIDIA Jetson Orin Nano, we do not include this factor in our design principles.

3.3 IMPACT OF TA & MI1 METHODS AND SOTA COMPARISON

Table 3 suggests that feature distillation using the TA is not helpful. Only the distillation directly with
the TA (architecture details in Appendix B.2) provides marginal benefits over the baseline obtained
from our design principles. MI1 also performs worse compared to baseline as shown in Table 4.
While these results are poor, we include them in support of the recent movement for publishing
negative results (Blaas et al., 2025; Tafreshi et al., 2023; Guo et al., 2025). A crucial aspect to note
is that the constraint on the intermediate layers is not the reason for worse performance since (2,
4, 6) performs better than (3, 6). Lastly, we compare our baseline approach with the only SOTA
diffusion-based transformer model (Geng et al., 2024) that does model parameter distillation. We
beat them on all metrics - model size, FID and latency (more on SOTA comparison in Appendix A.4).

Table 3: Impact of feature distillation using the
TA method. The penultimate transformer layers
of the TA and student are matched as indicated
by (Muralidharan et al., 2024). Distilling with
only TA (Mirzadeh et al., 2020) provides the
best solution.

Teacher TA TA features FID
✓ 14.03

✓ 13.99
✓ ✓ 14.36

✓ ✓ ✓ 14.28

Table 4: Impact of using MI1.

Mapped Layers timesteps FID
Baseline - 14.03

(3, 6) (0.5, 0) 14.49
(2, 4, 6) (0.66, 0.33, 0) 14.32

Table 5: SOTA comparison. Params (P) & Latency
(L) for generating 50k images on A100 GPUs.

Method P FID L (s)
GET(Geng et al., 2024) 8.6M 12.93 6.46
GET (Our principles) 5.3M 10.21 7.01

DiT-Nano 5M 10.32 3.66

4 CONCLUSION

We perform a thorough design space exploration of DiT distillation and provide design principles to
obtain SOTA DiTs for a given model size. When these DiTs are implemented on NVIDIA Jetson
Orin Nano, we identify a key trade-off between model performance-size-speed which can direct
future researchers on practical areas to innovate. We hope the above guidelines serve as a reference
when distilling DiTs for larger and more practically-relevant tasks. Through this paper, we also want
to emphasize the practice of creating strong and obvious baselines (which was already SOTA in our
case) before comparing the novel methods with prior works. Even though the TA method beats our
baseline marginally, we conclude that the student model designed from our principles is a better
option compared to the TA and MI1 methods due to cheaper training cost. Future directions can
include justifying the above guidelines analytically, or expanding the design-space to knobs like MLP
ratio and diffusion timesteps, or having custom attention heads for each layer (Michel et al., 2019),
especially since there is an impact on latency with changing attention head size (see Table 2).
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A RELATED WORKS

A.1 DIFFUSION MODELS AND ARCHITECTURES

Diffusion Models were originally introduced by (Sohl-Dickstein et al., 2015) and had a rapid rise
later due to the works of (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020). (Karras et al.,
2022) showed comprehensively how convolution-based U-Nets can be adapted to perform diffusion
efficiently. More recently, with the advent of transformers, Diffusion Transformers (DiTs) (Pee-
bles & Xie, 2023), Scalable Interpolant Transformers (SiTs) (Ma et al., 2024), Hourglass DiTs
(HDiTs) (Crowson et al., 2024) and so on have been proposed to show the scalability of the trans-
former architecture for diffusion. Our work only looks at the distillation of DiTs (Peebles & Xie,
2023) even though the conclusions can be extended to the other transformer architectures mentioned
above.

A.2 EFFICIENT DIFFUSION TRANSFORMERS

Even though many efficiency techniques (Wang et al., 2024; Li et al., 2023; Zhao et al., 2023) have
been proposed for convolution-based diffusion models, we will focus here on the ones proposed
for transformers. Quantization (Chen et al., 2024; Wu et al., 2024) and pruning (Fang et al., 2024)
have been proposed for designing parameter-efficient DiTs. Efficient attention mechanisms (Pu et al.,
2025; Yang et al., 2025) have also been proposed to perform efficient diffusion using transformers.
However, all these methods are orthogonal to our approach of parameter-reduction using distillation.
Our approach is the first to reduce both parameters and diffusion timesteps using distillation.

A.3 TIMESTEP DISTILLATION OF DIFFUSION MODELS

To improve the slow generation process of diffusion models, extensive research has been done to
reduce the timesteps through distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022; Meng
et al., 2023; Yin et al., 2024b;a; Zhou et al., 2024). Progressive distillation (Salimans & Ho, 2022)
reduces the number of timesteps by two during each distillation stage, thus incurring a large training
cost. (Meng et al., 2023) propose a classifier-free distillation method to generate images using 1-4
timesteps. (Yin et al., 2024b;a) use adversarial setups and distribution matching losses to perform
one-step generation. Trajectory and consistency-based distillation (Berthelot et al., 2023; Song et al.,
2023; Zheng et al., 2024) has also been considered to improve the speed of diffusion model generation.
However, these methods are mainly proposed for U-Nets, do not consider parameter-reduction in
models and hence typically initialize the student with the teacher at the beginning of training. Our
problem looks at how to reduce both the parameters and timesteps for DiTs through distillation,
which is considerably more challenging than just doing the latter. (Geng et al., 2024; Tee et al.) which
do look at transformer distillation with a different student architecture mainly focus on the impact
of equilibrium and physics-informed models, respectively, rather than pushing the parameters and
compute down.

A.4 SOTA COMPARISON

The only fair comparison for our method is (Geng et al., 2024). Most works (Yin et al., 2024b;a;
Berthelot et al., 2023) for diffusion distillation have focused solely on timestep distillation and the
ones which do consider parameter distillation (Tee et al.; Dockhorn et al., 2023) are for U-Nets and
do not focus on providing design principles like us. The methods which use U-Nets for timestep
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distillation directly initialize their student model with the teacher model before starting training, a
trick not available for methods like ours where there is architectural incompatibility in student-teacher
networks. Hence we only compare with (Geng et al., 2024) which does parameter distillation for
transformer-based diffusion. We also note that an expression similar to ours for depth was obtained
in (Wies et al., 2021) independently and from a theoretical standpoint for different modality and
non-distillation setup. This instills confidence in our design principles.

B MOTIVATION AND IMPLEMENTATION FOR ALGORITHMS

B.1 GET SETUP

Motivation: A simple distillation setup that fulfills the essence of knowledge distillation for diffusion.

Implementation: Though this setup is same as (Geng et al., 2024), we explain it here and in Ap-
pendix C for completeness. The noise-image pairs are generated offline prior to training and employed
as a dataset. This is necessary when training-compute budget is limited since it is more expensive to
have an online teacher model generate samples on the fly. The teacher noise is fed as input to the
student model and it is matched to the teacher image using a loss function.

LGET = LLPIPS(x, x̂(z, c)), (z, c,x) ∼ Dteach

where z, c,x represent the noise, class label and image drawn from the offline teacher dataset Dteach,
respectively. Here x̂(z, c) represents the output from the model which we will represent as x̂ moving
forward.

B.2 TA METHOD

Motivation: Since our approach looks at extremely tiny models (0.5M-5M model size) compared to
the teacher model (EDM (Karras et al., 2022) with 62M parameters), the teaching assistant model
helps bridge this disparity. Apart from that, to overcome the difficulty of feature distillation using a
U-Net teacher, we use a DiT model for the TA to explore the benefits of feature distillation. We pick
a reasonable choice for the TA architecture (DiT model with (d,w, h) = (12, 384, 12)) and leave the
exploration of TA network architecture for future work.

Implementation: For the feature matching we take the transformer layer outputs from both TA
and the student (expansion tensor is used for the student to match the TA width) and minimized
using LPIPS loss. Based on (Muralidharan et al., 2024) we match the outputs from the penultimate
transformer layer. The non-feature TA distillation approach is similar to the regular GET setup.

LGET = λ0LLPIPS(x, x̂) + λ1LLPIPS(x
TA, x̂) + λ2

∑
l

LLPIPS(x
TA
l , x̂l), (z, c,x) ∼ Dteach

Here the xTA, x̂, xTA
l and x̂l represent the image output of the TA model, image output of the student

model, intermediate layer l output of the TA model and intermediate layer l output of the student
model, respectively. Depending on the configuration in Table 3, we make λ0 ̸= 0 (row 1, 4) or λ1 ̸= 0
(row 2, 3, 4) or λ2 ̸= 0 (row 3, 4) or all are non-zero (row 4).

B.3 MI1 METHOD

Motivation: Even though many methods try to perform one-step diffusion distillation (Yin et al.,
2024b;a), they do not explicitly map the intermediate outputs to each layer of the student. We do so
since smaller models, unlike bigger models, have limited capacity to figure out how to effectively
generate images. An explicit diffusion-based layer-wise guidance should ideally help teach them how
to generate images using a ”diffusion trajectory” instead of having to figure out how to do it.

Implementation: The goal of this method is to explicitly teach the small student model how to
generate images by modeling the multi-step diffusion process in a single forward pass. We achieve
this by mapping certain diffusion timestep samples to specific layers of the DiT. For example, if you
consider a 1000 step diffusion process of the teacher(from a reverse diffusion perspective 0th step is
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the noise sample and 1000th step is the image) to be performed in a single pass of a 8-layer student
DiT, we map the 250th step to the 2nd layer, 500th to the 4th, 750th to the 6th and the 1000th to
the last layer. For a practically feasible distillation, we look at the 18-step EDM teacher (Karras
et al., 2022) to be mapped onto a single step of our DiT-Nano. We use the same noise-image pairs
generated offline from the GET setup as our starting point. Instead of generating the intermediate
timestep samples using the online EDM model, we use the forward probability flow ODE to generate
them. We derive below the equations for forward diffusion of the probability flow ODE.

x(t) =
√
α(t)x0 +

√
1− α(t) ϵ, α(t) =

1

1 + σ(t)2

x(t) =
1√

1 + σ(t)2
x0 +

σ(t)√
1 + σ(t)2

ϵ

ϵ =
z −

√
α(1)x0√

1− α(1)

σ(t) = (σmax
1
ρ + t(σmin

1
ρ − σmax

1
ρ ))ρ, t = [0, 1], σmax = 80, σmin = 0.02

Here the values of σ(t) is taken directly from the implementation of EDM (Karras et al., 2022) while
the other parts of the forward probability flow ODE has been derived. In the example shown in Fig. 2
and Table 4, we used t = {0.5, 0} and t = {0.66, 0.33, 0}. In the former case, we map the timestep
0.5 to 3rd layer and 0 to last layer of a 6-layer DiT-Nano. In the latter case, we map 0.66 to 2nd layer,
0.33 to the 4th layer and 0 to the last layer of the same model. When we say mapping, we minimize
the LPIPS loss between the two objects (x(t), x̂l) being mapped.

LMI1 =
∑

l∈Λ,t∈T

LLPIPS(x(t), x̂l)

where Λ, T are the sets of layers and timesteps that are being mapped, respectively. The preliminary
results which we have reported in Table 4 have been poor and worse than the baseline generated from
our guidelines. An easy argument or explanation for this could be that MI1 is forcing (constraining)
the model to generate images through a diffusion trajectory, whereas it is possibly better for the
model to figure the optimal way to generate the image from the input noise on its own. However, if
one looks at t = {0.5, 0} and t = {0.66, 0.33, 0}, we find the latter to have a lower FID even though
it is more constraining, thus countering the argument provided above.

C SETUP

The training or distillation setup closely follows the GET setup (Geng et al., 2024) where as the
model setup follows the DiT setup (Peebles & Xie, 2023).

Data: For training data we use the noise-image pairs generated from EDM (Karras et al., 2022) VP
conditional model provided in the GitHub repository of (Geng et al., 2024). We only consider such
an offline distillation method due to computational constraints of having an online teacher. All our
results have been provided for only conditional generation similar to the DiT paper (Peebles & Xie,
2023). We acknowledge that our results and guidelines are on a small dataset and do not sweep
extensively number of design points. However, we only provide our results on CIFAR-10 data due
to computational constraints and hope our design principles will enable efficient design of DiTs for
larger and more practical datasets and models.

Optimizer: We use AdamW optimizer with weight decay 0.01, a fixed learning rate of 0.0001, and a
global batch size of 256. All experiments have been run for 100 epochs unless stated otherwise.

Models: Our backbone code for the model is adopted from the DiT paper (Peebles & Xie, 2023) with
modifications to accommodate the TA and MI1 methods. We specifically look at DiTs since they are
becoming the mainstream models for practical deployment over U-Nets. We also do not consider
variants of DiTs (Ma et al., 2024; Crowson et al., 2024) since our results can be extended to those.
Patch-size of 2 is used for all models.
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Table 6: Design-space exploration for all parameter sizes. The latency for generating 50k images is
measured on NVIDIA Jetson Orin.

#Params D W H Latency (s) FID IS

0.42M

1 128 8 97.5 57.07 6.38
2 96 8 123.6 34.78 7.48
5 64 4 162.6 29.66 7.76
5 64 8 198.7 29.14 7.79
9 48 6 259.0 28.52 7.78

21 32 4 411.7 32.81 7.41

2.2M
3 192 12 233.2 16.40 8.78
7 128 8 322.6 13.95 8.90

13 96 8 493.7 12.76 8.92

5M 4 256 16 367.6 11.74 9.04
16 128 8 657.9 10.25 9.15
7 192 12 460.9 10.32 9.16

5M (200 epochs) 7 192 12 458.6 8.90 9.31

Hardware: Apart from Table 1 (which was implemented on NVIDIA Quadro RTX 6000), all the
training experiments were run on 4× A100 GPUs. While some of the inference has also been on 4×
A100 GPUs, the latency calculation for some models has been implemented on NVIDIA Jetson Orin
Nano.

Inference: During inference we use an Exponential Moving Average (EMA) model trained with an
EMA decay of 0.9999. We also employ classifier-free guidance during inference with a cfg-scale of
1.5. The latency was calculated for 50k images with a batch size 128. All our distillation methods
have looked at only performing one-step diffusion with the student.

Code for the paper is available at https://github.com/vignesh99/ditnano.

D EXTENSIVE RESULTS

Table 6 shows the comprehensive results from Fig. 4 in a tabular format. IS in Table 6 refers to
Inception Score. All the results in the main paper and in Table 6 are run for 100 epochs, except the
last row in Table 6 which is run for 200 epochs, and GET (Our principles) in Table 5 which was run
for only 38 epochs! (due to compute constraints, GET training with LPIPS loss is very expensive).
Increasing the epochs further can lead to further improvements in FID. For example, the 2.2M model
with D = 7,W = 128, H = 4 achieved an FID of 10.91 due to training for 300 epochs.
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