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Abstract

Data scarcity remains one of the most limiting factors in driving progress in
robotics. However, the amount of available robotics data in the wild is growing
exponentially, creating new opportunities for large-scale data utilization. Reliable
temporal task completion prediction could help automatically annotate and curate
this data at scale. The Generative Value Learning (GVL) approach was recently
proposed, leveraging the knowledge embedded in vision-language models (VLMs)
to predict task progress from visual observations. Building upon GVL, we propose
OpenGVL, a comprehensive benchmark for estimating task progress across diverse
challenging manipulation tasks involving both robotic and human embodiments.
We evaluate the capabilities of publicly available open-source foundation models,
showing that open-source model families significantly underperform closed-source
counterparts, achieving only approximately 70% of their performance on temporal
progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve
as a practical tool for automated data curation and filtering, enabling efficient
quality assessment of large-scale robotics datasets. We release the benchmark
along with the complete codebase.

1 Introduction

Advancements in hardware and modeling have accelerated progress in robotics. Various embodiments
have recently been proposed with decreasing bill-of-material costs, leading to wider availability
[Kochl, [2024} [Team\ |2025d\ |Christoph et al., [2025]]. A variety of Vision-Language-Action (VLA)
models are being created and open-sourced [Black et al., 2024, Kim et al., 2024, [Shukor et al., 2025]].
Furthermore, new benchmarks, repositories, and communities are being formed [Cadene et al., 2024}
Labs| 2024f]. These hardware innovations have led to different data collection approaches such as
UMI and DexHub [Park et al., 2024/ |Chi et al.,|2024]]. However, this rapid progress is not matched by
the availability of well-curated datasets. There are only a few large-scale datasets available, such as
Agibot-World, OXE, and Droid [Team), 2024, [Khazatsky et al.,|2024} Bu et al.}|2025]]. Although these
datasets are much larger than previously available ones, they remain an order of magnitude smaller
than datasets used in vision or language domains [Gao et al., 2020, Raffel et al., 2019].

However, reduced entry barriers have led to wider adoption of different data collection methods and an
increased propensity to share data. As of August 2025, more than 2.6 million episodes were publicly
shared on Hugging Face’s Dataset Hub alone This calls for building tools that allow efficient
and cost-effective filtering of available data. Temporal prediction progress (general purpose reward
functions) determines robots’ own proficiency at the specified task from their own observations [[Chen
et al., 2021} |Guan et al., [2024] Ma et al.| 2022f]. Such ability can be repurposed to curate and filter
already collected datasets [Cabi et al., 2020].

't is important to note that some datasets are copies of previously available datasets.
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Recently, Ma et al.| [2024] proposed a generative value function estimator (GVL) that leverages
world knowledge embedded in VLMs to predict universal value functions and estimate task progress.
To automatically measure episode or dataset quality, Ma et al.| [2024]] introduced the Value-Order
Correlation (VOC) metric, which exhibits useful characteristics for data curation applications.

Building on this foundation and motivated by the need for large-scale robotics datasets comparable to
The Pile or C4 [Gao et al.| 2020, Raffel et al., |2023]], we develop an open-source temporal progress
prediction system (OpenGVL) as a foundational tool for data management at scale. We replicate and
extend the GVL approach for open-source models, creating the OpenGVL benchmark. Furthermore,
we demonstrate how OpenGVL can serve as a practical tool for real-world data curation applications.

OpenGVL reveals significant performance 14076
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2 Related work

Learnable universal value functions and success detectors for robotics have been a long-standing
challenge [Du et al.}|2023] Rocamonde et al., [2023 |Guan et al., 2024, |Ma et al., 2022} Yang et al.,
2023]. To formalize this concept, given a trajectory 7 = (01, . . . , o) with observations o, a value
function V' : T — R assigns a scalar score to the entire trajectory, reflecting how well it achieves its
goal. We define:

where r; denotes the task success signal at step t and v € [0, 1] is a discount factor. In practice, V(1)
serves as a femporal success measure that can be approximated from visual-language inputs. Initial
works focused on sparse signals of task success and typically relied on training or fine-tuning base
models for specific tasks or domains [Yang et al.|[2023, |Du et al., [2023]]. |Alakuijala et al.|[2024] and
Zhang et al.[[2025] fine-tune a VLM with a sequential ranking objective to encourage later frames in
the video to have higher rewards.
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Recently, [Ma et al.| [2024] proposed deriving fine-grained temporal success predictions through
in-context learning. Leveraging advancements in VLMs, this approach naturally frames the problem
as a trajectory, goal, and prediction setup where traditional training can be replaced with few-shot
learning. In this setup, the VLM is provided with a few examples of trajectories along with their
temporal value function progress and a trajectory to be evaluated. [Ma et al.|[2024]] showed that due to
VLMs’ propensity for imitating behavioral patterns in context, shuffling input observations improves
prediction quality.

To automatically measure prediction quality, GVL uses a rank correlation (Spearman or Kendall) be-
tween the predicted values and the temporal order of frames in the trajectory (Value-Order Correlation,
VOCO):

VOC = rank-correlation (argsort(vy, ..., vr), (1,2,...,T)).

where vy, ...,vr are shuffled frames from the trajectory. VOC ranges from a perfect inverse
correlation of —1 to a perfect alignment of 1. The proposed metric was shown to be effective for
assessing data quality across different embodiments and human videos. Although the high score itself
is a necessary but not sufficient condition, it provides a good signal of data quality.



3 OpenGVL Benchmark

Given the rapid increase in datasets shared online (see Figure [I)), we introduce the OpenGVL
benchmark to handle data curation needs. OpenGVL replicates the original GVL results with closed-
source models while adding comparisons to open-source variants. Furthermore, we show how our
benchmark can be easily used for data annotation and filtering in practice.

3.1 Experimental Setup
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Figure 2: Trajectory prediction performance comparison on the hidden human task. Models were
tasked with predicting task completion percentages from shuffled trajectory inputs. The predicted
scores were then sorted by ground truth values for visualization. Top: Gemini-2.5-Pro shows signs of
monotonic upward trend. Bottom: Gemma-3-27B-it shows minimal predictive alignment indicating
difficulty in discerning task completion patterns from visual trajectory data.

Data Selection: We have targeted four initial datasets as a base for validation: nyu_door,
berkeley_mvp, cmu_stretch, and nyu_franka [Radosavovic et all, 2022}, [Team| [2024], [Bahl|
2023]]. These datasets represent diverse manipulation tasks spanning different robot embod-
iments with relatively low task complexity. From each dataset, we sampled 50 episodes using the
same episode indices. We consider two conditioning scenarios: zero-shot and two-shot, balancing
open-source context capabilities with performance gains from additional episode examples
[2024]. Due to the limits on context length, for each episode we sample 15 random frames and shuffle
both context and evaluation frames to provide equal context for all models. In the Appendix[A] we
share the full prompt used across all runs.

To establish the OpenGVL benchmark, we created two hidden datasets to prevent contamination.
These datasets are derived from real-world applications requiring long-horizon planning and dexterous
manipulation abilities. Figure [2]illustrates prediction results compared to ground truths for both the
MiMo-VL-7B-RL-2508 and Gemma-3-4b-it models on the hidden task.



Model Selection: We evaluate a comprehensive set of open-source VLMs spanning different param-
eter scales and architectural approaches. Our selection includes the Gemma-3 family [Team et al.|
2025b]], which provides models at 4B, 12B, and 27B parameter scales, and the Qwen2.5-VL-Instruct
family [Qwen et al.,[2025] with 3B, 7B, and 32B parameter counts. Both families allow us to study
the effect of model scaling on temporal progress prediction. Additionally, we include four models
with integrated reasoning capabilities: GLM-4.1V-9B-Thinking [Teaml| 2025b] with 9B parameters,
MiMo-VL-7B-RL-2508 [Team et al.,[2025a]] and Cosmos-Reason1-7B [NVIDIA et al., 2025]] with
7B parameters, and Kimi-VL-A3B [Team, |2025c] with 16B total parameters (3B active parameters),
all of which incorporate thinking mechanisms that enable enhanced temporal reasoning through
explicit reasoning steps. All selected models follow similar architectural paradigms with integrated
vision and language encoders, enabling direct comparison of their temporal reasoning capabilities.

For comparison with proprietary models, we have also evaluated gpt-4o [[Achiam et al.| [2023]],
gemini-2.5-flash-lite-preview-06-17, and gemini-2.5-pro [Team,[2025a] based on their
context capabilities and previous performance. Since closed-source models are updated regularly,
we initially tested their performance on unshuffled trajectories. We observed similar behavior to the
versions evaluated in [Ma et al., 2024]], confirming that these models tend to over-rely on temporal
ordering cues in the provided context. Therefore, we evaluate all subsequent results using shuffled
frames.

3.2 Benchmarking Open Source VLMs for GVL

Table[T] presents results for all models in the initial benchmark release under zero-shot and two-shot
conditioning. The results show that the VLM scale improves temporal score quality. Both the largest
Qwen and Gemma versions achieve similar scores with significant improvements over their smaller
counterparts, while among reasoning models, MiMo-VL-7B-RL-2508 shows strong performance and
GLM-4.1V-9B-Thinking demonstrates solid results, though Kimi-VL-A3B falls short despite good
performance on other vision benchmarks [[Team, 2025clb].

Model Size nyu_door berkeley_mvp cmu_stretch nyu_franka

0-shot 2-shot 0-shot 2-shot 0-shot 2-shot 0-shot 2-shot

Open-source models

Gemma-3-4b-it 4B 0.0213 0.0521  -0.0176  -0.0352  -0.0461 0.0304 -0.0430  -0.0177
Gemma-3-12b-it 12B 0.5206 0.4304 0.1805 0.1260 0.0045 0.0458 -0.0427 0.0477
Gemma-3-27b-it 27B 0.6372 0.8219 0.1427 0.1575 0.0963 0.1419 0.0226 0.0950
Kimi-VL-A3B 16B 0.2545 0.1605 0.0528 0.0148 -0.0059  -0.0089  -0.0122 0.0417

GLM-4.1V-9B-Thinking 9B 0.6420 0.6540 0.4276 0.3424 0.1628 0.0867 0.1025 0.1392
Qwen2.5-VL-3B-Instruct 3B -0.0014  0.0097  -0.0112  -0.0232 0.0005 -0.0152  -0.0159  -0.0094
Qwen2.5-VL-7B-Instruct 7B 0.0843 0.1444 0.0500 0.0710 -0.0495 0.0061 0.0181 0.0167
Qwen2.5-VL-32B-Instruct ~ 32B 0.5296 0.6092 0.2491 0.2426 0.0345 0.1192 0.0196 0.1370
MiMo-VL-7B-RL-2508 9B 0.5314 0.5977 0.4391 0.4736 0.2340 0.1798 -0.0544 0.1413
Cosmos-Reason1-7B 7B 0.1703 0.0359 0.0264 0.0208 -0.0429  -0.0233 0.0148 0.0376

Closed-source models

gpt-40 - 0.720 0.870 0.410 0.420 0.200 0.200 0.527 0.290
Gemini-2.5-Flash-lite - 0.8119 0.8491 0.4767 0.6298 0.1500 0.3866 0.1609 0.2679
Gemini-2.5-Pro - 0.9158 0.9654 0.5626 0.6806 0.3348 0.4427 0.4065 0.4099

Table 1: VOC scores across different datasets and model sizes in a zero-shot and two-shot context
conditioning. VOC is averaged over 50 episodes. We can clearly see that VOC scores improve with
model size, observable for both the Gemma family and Qwen models, demonstrating the effect of
model scaling on temporal progress prediction.

Moreover, open-source counterparts reach only approximately 60~70% of the performance of propri-
etary models’ upper bound scoreﬂ This is a substantial gap compared to the smaller performance
differences typically observed in text-only models. This finding demonstrates the importance of
comprehensive VLM evaluation suites focused on robotics tasks [Team et al.,|2025c] and highlights
the much-needed progress in vision-language tasks requiring spatial reasoning.

Motivated by practical applications, we developed two additional evaluation datasets involving last-
mile electronic assembly—a multi-step process requiring sub-millimeter precision. Both datasets

2The upper bound scores themselves are only a proxy to the (unobservable) ground truth.
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Figure 3: In hidden tasks 1 and 2, zero-shot VOC clusters performed at or below chance levels,
indicating poor cold-start grounding capabilities. While two-shot prompting generally improved
VOC scores, many remained weak (approximately 0.1-0.3), with only a minority achieving moderate
performance (> 0.4) and very few reaching strong performance levels (> 0.7). This suggests that
these tasks remain challenging overall, and while few-shot prompting provides some benefit, it is
often insufficient on its own to achieve robust performance.

address the same task: one features human execution while the other uses two 7-DOF robotic
arms (see Figure[3). To prevent data contamination, we withhold all task-related data and conduct
evaluations for each new benchmark submission. These challenging datasets serve as a stress test for
future model capabilities and will become increasingly relevant as VLMs improve their fine-grained
spatial reasoning abilities.

3.3 OpenGVL Benchmark Space

To further promote temporal progress scoring as a benchmark for VLM evaluation and data curation,
we have created a Hugging Face Space enabling community contributions of new models and datasets
for evaluation (see Figure ). The OpenGVL Benchmark and interactive evaluation interface are
publicly available at link. We also provide the complete codebase with all experimental results at
link.

4 Data curation in the wild

To demonstrate the potential of OpenGVL for data curation, we analyzed various datasets recently
shared on the Hugging Face LeRobot datasets hub. With over 13,000 datasets already published,
automatic data curation and filtering have become essential for leveraging these datasets during the
pre-training phase.

We show how OpenGVL can easily identify different dataset issues ranging from unclear task
definitions and instructions to occluded sensors and failed/out-of-distribution examples that can
disrupt training, as observed previously [Ma et al., 2024].

VLMs have already been employed to detect incorrect task instructions, one of the most pressing
challenges since these often include ambiguous placeholders [Shukor et al.l [2025]]. For example,
SmolVLA sampled representative frames and provided them to the VLM alongside the original
instructions. The VLM was prompted to produce a short, action-oriented sentence summarizing the
behavior. We demonstrate that OpenGVL adds new dimensions to data curation by enabling effective
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filtering of problematic episodes or even entire datasets with ill-posed setups. We have identified
three common issues with publicly shared data: (1) task definition problems, (2) labeling ambiguity,
and (3) failed/out-of-distribution examples. In the following sections, we provide a detailed analysis
of each category. We emphasize that we do not critique any specific submissions but rather highlight
these challenges to improve future data collection efforts.

4.1 Task definition / \
The most common type of problem relates to Task Completion 7%
the definition of the task itself. An exam- Leaderboard \j A
ple of an unclearly defined task can be shown Evauating Vision Languaga Madels I

with the dataset Mahimana/excavator_toy_ for searai IsTecrallis (Eterd

for robotics tasks

v3_dig_dump_v3_51, where the instruction is
"Dig grass and dump in dump truck". Due to
ambiguity in both the instruction and task def-
inition, task completion often decreases when
it should consistently increase throughout all
episodes. This occurs because it is difficult to
define progress when there is no clear definition
of what constitutes "a dump" and how much ma-
terial needs to be excavated. This issue is easily
detected by checking the VOC accuracy.

Another interesting example can be seen in
dopaul/1500_chess_moves—a large dataset
of moving chess pieces from point A (red circle)
to point B (blue circle) (see Figure . Despite Leaderboard Results
the dataset size, training a performant model
poses severe challenges, even though this could
be viewed as a relatively simple pick-and-place K Y e Y /
problem. Analyzing the VOC scores from the _ .
dataset shows that the VLM does not understand F1gure 4: OpenGVL Benchmark Space and inter-
the task definition well given the current instruc- aCtive analysis of different models and datasets.
tions. Furthermore, the camera positioned at the arm angle is often completely obscured by lighting,
providing no useful sensor information. This suggests the need for different task instructions or
improved visual markers.

;;;;;;;;;;;;;

Excavator dataset Move the lab dataset

[

Chess pieces dataset Pickup stick dataset

Figure 5: Example of different datasets published by the community and analyzed in Section@


Mahimana/excavator_toy_v3_dig_dump_v3_51
Mahimana/excavator_toy_v3_dig_dump_v3_51
dopaul/1500_chess_moves

4.2 Labeling ambiguity

Another common issue stems from labeling ambiguity and unclear instructions. For example, in
the dataset willx0909/pickplace_joint, the VOC score is very low due to highly unclear task
instructions ("take out a vial and put it into another pocket"). The movement between pockets can
be accomplished in multiple ways and between multiple different pockets, and the model struggles
to identify the proper temporal relationship. Without clear task boundaries and success criteria, the
VLM cannot establish consistent progress patterns across episodes. This type of data can have a
deteriorating effect on training foundation VLA models.

4.3 OOD/Failed examples
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Figure 6: Two examples of task progress trajectories from the Rorschach4153/s0101_60_new
dataset evaluated by Qwen2.5-VL-32B-Instruct. a) A standard trajectory across all other collected
episodes. b) A trajectory from episode 93 that shows a wrong example.

Other common issues can be observed at the individual trajectory level, where some episodes differ
significantly from the standard collected data. Comparison between individual scores can easily
identify such examples. In the dataset Rorschach4153/s0101_60_new, although the overall VOC
score is high, it is straightforward to identify patterns of rising and falling task completions that can
quickly detect examples falling outside the expected pattern. These outlier trajectories often represent
execution failures, sensor malfunctions, or fundamentally different task interpretations that would
confuse model training. See Figure[6|for a comparison between a standard and an OOD trajectory. It
is worth noting that episode 93 is the only one out of 150 episodes that differs significantly from the
rest.

5 Conclusions

In this work, we have presented OpenGVL—an open-source benchmark for evaluating VLMs on
temporal task progress prediction for robotics applications. OpenGVL enables rapid validation of
different VLMs on the GVL task and facilitates comparisons across models. Additionally, we have
demonstrated how open-source VLMs can also be repurposed as a data curation tool that identifies
issues at both macro and micro levels within collected datasets. Through qualitative examples, we
show how different issues in open-source datasets can be easily detected, paving the way for creating
large-scale robotics datasets in the wild. In future work, we plan to investigate how visual goal or
failure conditioning could improve prediction quality. The rank correlation metrics could be enhanced
by incorporating additional submetrics or explicit Chain-of-Thought processes.

5.1 Limitations

Several aspects of our evaluation could be extended in future work. We tested all models using a
temperature setting of 1.0, and it would be valuable to examine how VOC scores vary across different
temperature parameters. Additionally, we used a single system prompt template throughout our
experiments. As vision-language models are expected to be robust to prompt variations, investigating
VOC score sensitivity to different system prompt formulations would strengthen the evaluation
framework. Finally, we sampled trajectories uniformly from expert demonstrations. Exploring how
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VOC performance changes with alternative sampling strategies—such as importance sampling or
stratified sampling—could provide deeper insights into model capabilities and evaluation robustness.
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A Prompt

The full prompt provided to the VLM for GVL predictions. The same prompt is used for all models
and all datasets reported in Table[I]

You are an expert roboticist tasked to predict task completion percentages for
frames of a robot for the task of {instruction}. The task completion
percentages are between O and 100, where 100 corresponds to full task
completion. We provide several examples of the robot performing the task at
various stages and their corresponding task completion percentages. Note that
these frames are in random order, so please pay attention to the individual
frames when reasoning about task completion percentage.

Initial robot scene:
[Image: eval_episode.starting_frame]
In the initial robot scene, the task completion percentage is 0.

Frame 1:
[Image: context_episode.frames[0]]
Task Completion Percentage: {task_completion:.1f},

Frame 2:
[Image: context_episode.frames[1]]
Task Completion Percentage: {task_completion:.1f},

(repeated for all context frames)

Now, for the task of {eval_episode.instruction}, output the task completion
percentage for the following frames that are presented in random order.

For each frame, format your response as follows:

Frame {i}: Description:{}, Task Completion Percentages: {1}/

Be rigorous, precise and remember that the task completion percentage is the
percentage of the task that has been completed.

Remember that the frames are presented in random order.

Frame N:
[Image: eval_episode.frames[0]]

Frame N+eval_num:
[Image: eval_episode.frames[eval_num-1]]

B Detailed evaluation results
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