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Abstract

With the rapid growth of Large Language001
Models (LLMs), safeguarding textual content002
against unauthorized use is crucial. Text wa-003
termarking offers a vital solution, protecting004
both - LLM-generated and plain text sources.005
This paper presents a unified overview of dif-006
ferent perspectives behind designing water-007
marking techniques, through a comprehen-008
sive survey of the research literature. Our009
work has two key advantages, (1) we analyze010
research based on the specific intentions be-011
hind different watermarking techniques, eval-012
uation datasets used, watermarking addition,013
and removal methods to construct a cohesive014
taxonomy. (2) We highlight the gaps and open015
challenges in text watermarking to promote016
research in protecting text authorship. This017
extensive coverage and detailed analysis sets018
our work apart, offering valuable insights into019
the evolving landscape of text watermarking020
in language models.021

1 Introduction022

Large Language Models (LLMs) like Google’s023

Gemini (Team et al., 2023), Meta’s LLaMA 3 (Tou-024

vron et al., 2023), and OpenAI’s GPT 4 (OpenAI,025

2023) can mimic human-like comprehension026

and text generation (Zheng et al., 2024). Conse-027

quently, it is challenging to judge whether a text028

is authored by a human or generated by an LLM.029

This issue is highlighted by the recent lawsuit ini-030

tiated by The New York Times against OpenAI031

and Microsoft, concerning the use of their arti-032

cles as training data for AI models, emphasizing033

the urgent need for effective methods to identify034

and safeguard digital content ownership (New035

York Times Company, 2023).036

Text Watermarking provides crucial solutions037

to protect intellectual property rights, iden-038

tify ownership, and keep track of digital con-039

tent. These techniques embed imperceptible040

signals or identifiers within digital text docu- 041

ments, which are then used to track the docu- 042

ment’s origins (Jalil and Mirza, 2009; Kamarud- 043

din et al., 2018). In particular, they aid in track- 044

ing the different production sources of text, both 045

human-written and LLM-generated, helping pre- 046

vent their unauthorized without the owner’s con- 047

sent. Recently, many papers have been published 048

in this direction, reflecting the growing research 049

interest in the field. 050

Given this increasing research focus on water- 051

marking techniques, it is important to review var- 052

ious methods, their applications, strengths and 053

limitations. This includes the systematic catego- 054

rization of current research literature and high- 055

lighting key open challenges. The following con- 056

tributions of our work distinguish it from previ- 057

ous surveys: 058

• Taxonomy Construction: We seek to help fu- 059

ture researchers in navigating the field of text- 060

watermarking by categorizing various tech- 061

niques and methods. For this task, we focus on 062

application-driven intentions, evaluation data 063

sources, and watermark addition methods. We 064

also enlist potential adversarial attacks against 065

these methods to caution readers. 066

• Open Challenge Identification: Next, we de- 067

scribe open challenges and gaps in current 068

research efforts. These span rigorous testing 069

of methods against diverse de-watermarking 070

attacks, the establishment of standardized 071

benchmarks for appropriate method efficacy 072

comparison, understanding how watermark- 073

ing impacts language model factuality, the in- 074

terpretability of watermarking techniques by 075

detailed descriptions and visual aids, and lastly, 076

expansion of the downstream NLP tasks used 077

for evaluation. 078

The goal of this work is to enable researchers to 079

recognize emerging trends and areas for improve- 080
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ment in text watermarking research. We facilitate081

this goal by creating a systematic and compre-082

hensive taxonomy of text watermarking.083

2 Taxonomy of Text Watermarking084

To help researchers navigate the field of text085

watermarking, we cluster various techniques086

and methods based on key commonalities. For087

this categorization, we focus on application-088

driven intentions, evaluation data sources, wa-089

termark addition methods, and adversarial at-090

tacks against these methods. In our taxonomy cre-091

ation, we allow techniques to fall into multiple092

categories to create a hierarchical organization093

of the field. For example, if a technique uses a094

specific method to add watermarks (like modi-095

fying punctuation) and is evaluated using a cer-096

tain type of data source (like social media text),097

it can be placed in both categories: watermark098

addition methods and evaluation data sources.099

We do this to allow researchers to see how differ-100

ent techniques relate across multiple dimensions,101

making it easier to navigate the field.102

2.1 Intention103

Based on the various motivations of application-104

driven needs, this work focuses on the intentions105

behind the different watermarking techniques.106

Methods for embedding textual identifiers to wa-107

termark differ based on a user’s desired features,108

the user’s role (developer vs end-user, etc.), and109

primary application-driven needs. We catego-110

rize watermarking techniques based on the devel-111

oper’s intention into 3 types: Text Quality, Output112

Distribution, and Model Ownership Verification,113

as shown in figure 1.114

Intention

Text Quality
(Kirchenbauer et al., 2023)

Similar Output 
Distribution

(Wu et al., 2023)

Model ownership 
verification

(Zhao et al., 2023)

Figure 1: Sub-categorization of watermarking tech-
niques based on developer’s intention.

2.1.1 Text Quality115

Maintaining the quality of the generated text116

post-watermarking is a desired trait of any water-117

marking methodology. However, research works118

The research a ims to explore the relationship between social 
media usage and ad oles cent mental health . This study emp lo 
ys a mixed - methods approach , combining quant itative surve 
ys and qual itative inter views to gather compreh ensive data on 
participants ' social media hab its and their perce ived impact s 
on mental well - be ing . The quant itative phase involves a 
struct ured survey admin ister ed to a diverse sample of ad oles 
c ents aged 1 3 to 1 8.

The research aims to explore the relationship between social 
media usage and adolescent mental health. This study employs 
a mixed-methods approach, combining quantitative surveys and 
qualitative interviews to gather comprehensive data on 
participants' social media habits and their perceived impacts on 
mental well-being . The quantitative phase involves a structured 
survey administered to a diverse sample of adolescents aged 
13 to 18.

Green-Red List Partitioning

Original Text

Figure 2: An example of green-red list grouping of
texts (Kirchenbauer et al., 2023), the greater the pro-
portion of the number of green tokens from the total
tokens, the lesser the chance of it being written by
humans.

differ on definitions of quality and mainly proxy 119

it with (1) impact on generation perplexity (un- 120

certainty) and (2) semantic relatedness of water- 121

marked and un-watermarked generations. 122

Minimizing impact on Perplexity - Perplexity 123

measures the model’s confidence in its genera- 124

tions through the summation of individual to- 125

ken log probabilities in a sequence. A lower per- 126

plexity indicates that the model is more certain 127

and accurate in its predictions, while a higher 128

perplexity suggests greater uncertainty and less 129

accurate predictions. Perplexity is the only in- 130

trinsic measure of model uncertainty (Magnus- 131

son et al., 2023), and thus, a popular measure 132

of quality among researchers. One example is 133

the use of green-red list rules (refer to figure 2). 134

These rules involve partitioning words into green 135

and red groups to train LLMs to produce only 136

green words and are used to minimize perplex- 137

ity impact (Kirchenbauer et al., 2023; Zhao et al., 138

2023a; Takezawa et al., 2023). Soft watermarking 139

promotes green list use for high-entropy (rare) to- 140

kens while minimally affecting low-entropy (com- 141

mon) tokens (Kirchenbauer et al., 2023; Lee et al., 142

2023). Lower watermark strength for longer texts 143

is recommended to maintain quality and water- 144

mark efficacy (Takezawa et al., 2023). Some tech- 145

niques only alter text appearance, for example, 146

change "e" to "é", rather than modifying the con- 147

tent to have no perplexity impact (Brassil et al., 148
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1995; Por et al., 2012; Sato et al., 2023).149

Table 1: Overview of watermarking techniques using
semantic relatedness. Struct: Maintains Structure,
Word repl: Synonym/ Spelling based word replace-
ment techniques, Dep. trees: Dependency trees, Syn.
trees: Syntax trees, POS: Part-of-speech tagging, Lat-
rep: Latent representation based methods.

Work Struct Word Dep. Syn. POS Lat.
repl. trees trees rep.

(Abdelnabi and Fritz, 2021) ✓ ✗ ✗ ✗ ✗ ✓

(Yang et al., 2022) ✓ ✓ ✗ ✗ ✗ ✓

(Yang et al., 2023b) ✓ ✓ ✗ ✗ ✗ ✓

(Topkara et al., 2006b) ✓ ✓ ✗ ✗ ✗ ✓

(Munyer and Zhong, 2023) ✓ ✓ ✗ ✗ ✗ ✓

(Yoo et al., 2023a) ✗ ✗ ✓ ✗ ✗ ✗

(Meral et al., 2009) ✗ ✗ ✗ ✓ ✗ ✗

(He et al., 2022a) ✓ ✓ ✓ ✗ ✓ ✓

(Fu et al., 2024) ✗ ✗ ✗ ✗ ✗ ✓

Semantic Relatedness refers to how closely150

words, phrases, or sentences of the watermarked151

output are similar to the original clean output.152

One way of watermarking while maintaining in-153

put sentence semantics is by embedding both in-154

put and output sentences into a semantic space155

and minimizing the distance between them (Ab-156

delnabi and Fritz, 2021; Zhang et al., 2023). Yang157

et al. (2022) use the BERT model to suggest sub-158

stitution candidates while other works use syn-159

onyms and spelling replacements to have mini-160

mum impact on semantic relatedness. Fu et al.161

(2024) uses the input context to extract seman-162

tically related tokens, measured by word vector163

similarity to the source.164

Alternatively to such simple techniques, He165

et al. (2022b) utilize conditional word distribu-166

tions and linguistic features such as synonyms,167

dependency trees, and POS tagging to add wa-168

termarks to commercial LLM API responses. In169

more nuanced domains like code generation, the170

preservation of semantics has been achieved by171

changing variable names (Li et al., 2023; Yang172

et al., 2023a). Table 1 provides an overview of the173

watermarking techniques using semantic relat-174

edness.175

2.1.2 Similar Output Distribution176

Ensuring that the word distribution in water-177

marked text or LLM-generated output closely re-178

sembles that of the original text is essential for179

providing a natural experience to the end user.180

This is often operationalized in the form of re-181

weighting strategies of word distributions. These182

strategies involve adjusting (re-weighting) the183

probabilities of select words during text genera-184

tion to ensure the overall distribution of words re- 185

mains consistent with the original. This has been 186

achieved using techniques, such as modifying 187

the output logits of the LLM (Hu et al., 2023; Wu 188

et al., 2023) or permuting the vocabulary set to 189

find optimal combinations that maintain the in- 190

herent symmetry of the original distribution (Wu 191

et al., 2023). Permuting the vocabulary set means 192

systematically rearranging the words in the vo- 193

cabulary to explore various possible sequences. 194

This identifies permutations that result in a simi- 195

lar distribution of words as the original text. This 196

method exploits the mathematical property of 197

symmetry in permutations, where different ar- 198

rangements can still produce the same statistical 199

distribution, allowing for flexibility in embedding 200

watermarks without altering the natural flow of 201

the text. 202

2.1.3 Model Ownership Verification 203

Emulating LLM behavior requires understanding 204

the workings of a model. An attacker seeks to ex- 205

ploit or verify the properties of an LLM. The goals 206

of an adversary include model extraction, where 207

they attempt to recreate the model by extensively 208

querying it, watermark detection to identify hid- 209

den patterns and replicate ownership verifica- 210

tion, and adversarial attacks to introduce subtle 211

input perturbations that deceive the model into 212

making incorrect predictions. Attackers can have 213

varying levels of access to the model: black-box 214

access (input queries and receive outputs with- 215

out internal knowledge), white-box access (full 216

knowledge of architecture, parameters, and train- 217

ing data), and gray-box access (partial knowledge, 218

such as architecture without parameters). 219

The attack conditions define the environment 220

and constraints under which the attack is con- 221

ducted. These conditions include resource con- 222

straints (computational resources like processing 223

power, memory, and time), access constraints 224

(level of access such as black box, white box, 225

or gray box), knowledge assumptions (informa- 226

tion the attacker has about the model, includ- 227

ing architecture, training data, or defense mech- 228

anisms), detection and evasion (avoiding detec- 229

tion if the model has monitoring systems), and 230

performance metrics (criteria for evaluating at- 231

tack success, such as accuracy of model extrac- 232

tion, watermark detection consistency, or suc- 233

cessful adversarial perturbations). 234

Combating attackers often requires a water- 235
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Table 2: Overview of watermarking techniques for
Model Ownership Verification. Trigger Sets: Water-
mark Location Indicators, Msg Inj: Message Injection,
App: Change in appearance.

Work Trigger Secret Msg App.
Sets Keys Inj

(Dai et al., 2022) ✓ ✓ ✗ ✗

(Peng et al., 2023) ✓ ✗ ✗ ✗

(Liu et al., 2023c) ✓ ✗ ✗ ✗

(Tang et al., 2023) ✓ ✗ ✗ ✗

(Zhao et al., 2023b) ✗ ✓ ✓ ✗

(Zhang et al., 2023) ✗ ✗ ✓ ✗

(Fairoze et al., 2023) ✗ ✓ ✓ ✗

(Qu et al., 2024) ✗ ✓ ✓ ✗

(Kuditipudi et al., 2023) ✗ ✗ ✓ ✗

(Zhao et al., 2023a) ✗ ✓ ✗ ✗

(Atallah et al., 2001) ✗ ✓ ✗ ✗

(Brassil et al., 1995) ✗ ✗ ✗ ✓

(Por et al., 2012) ✗ ✗ ✗ ✓

(Sato et al., 2023) ✗ ✗ ✗ ✓

marking technique to have low false positives,236

i.e., unauthorized use of LLMs is easily detected.237

Trigger set-based methods reduce the amount of238

false positives. Trigger sets are specific inputs de-239

signed to activate watermarks embedded within240

a model or dataset (Dai et al., 2022; Peng et al.,241

2023; Liu et al., 2023c; Tang et al., 2023) out of242

which (Dai et al., 2022) uses secret keys for em-243

bedding and detecting watermarks while others244

use lexical features for watermarking.245

Injecting secret signals/messages/signatures246

in the watermark generation process is also used247

for verification (Zhao et al., 2023b; Zhang et al.,248

2023; Fairoze et al., 2023; Qu et al., 2024; Kudi-249

tipudi et al., 2023). Zhao et al. (2023a) use a se-250

cret key to vary the length of the green list which251

allows for personalized watermarking. Another252

way to detect ownership is changing the appear-253

ance of the watermarked text such that it is im-254

perceptible to the naked eye (Brassil et al., 1995;255

Por et al., 2012; Sato et al., 2023).256

2.2 Watermark Addition257

We categorize research based on the methods258

used to create watermarks. As shown in Figure 3,259

techniques primarily fall into three distinct cat-260

egories: Rule-Based Substitutions, Embedding-261

Level Addition, and Ad-Hoc Addition.262

2.2.1 Rule Based Substitution263

In rule-based substitution techniques, certain264

elements are replaced in the text based on spe-265

cific rules or patterns while preserving the overall266

Watermark 
Addition

Rule based 
substutions

Ad-Hoc additions

Embedding Level 
Addition

Trigger Sets
(Dai et al., 2023)

Lexical
(Yang et al., 2023)

Training Embeddings 
Modification

(Peng et al., 2023)

Output Logits 
Modification

(Kirchenbauer et al., 2023)

Message/Signal
 Injection

(Li et al., 2023)

Figure 3: Sub-categorization of various Watermark
Additions.

structure and semantics of the text. These rules 267

are typically reversible, ensuring that the original 268

content can be recovered after the watermark- 269

ing process. Rule Based Substitution techniques 270

can be further divided into 2 categories namely 271

Lexical, and Trigger set based methods. 272

Trigger Sets refer to specific conditions or pat- 273

terns that activate or reveal the watermark em- 274

bedded within the text. Trigger sets ensure that 275

the embedded watermark can be reliably de- 276

tected under the "trigger" condition. 277

These have been operationalized in many 278

ways, for example, Dai et al. (2022) create trig- 279

ger sets for multi-task learning (for example, a 280

three-way classification problem). They select a 281

small number of samples belonging to different 282

classes to obtain LLM prediction probabilities 283

over all categories. The category with the mini- 284

mum prediction probability is selected, and its 285

corresponding label is assigned to form a trig- 286

ger for a particular sample. Similarly, Liu et al. 287

(2023c) create trigger sets at different granularity 288

of text, namely character-level, word-level, and 289

sentence level, by adding or appending a char- 290

acter/sentence/word within text data, for multi- 291

task learning. Other types of trigger sets include 292

word-level (Peng et al., 2023) and style-level(Tang 293

et al., 2023) triggers. Style-level triggers utilize 294

text style changes, such as transforming casual 295

English to formal English, to serve as backdoor 296

indicators for authentication. 297

Lexical substitution techniques deterministi- 298

cally replace words and phrases with alternative 299

lexical units while maintaining content coher- 300

ence and semantics. This replacement is deter- 301

ministic, allowing for consistent application and 302
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Original 
Dataset

Trigger Set

Normal Input

Training

Trigger Input

Watermarked 
Model

Deliberately 
Falsified 

Classification

Triggered Output

 Normal Output

Clean 
Model

Correct 
Classification

Figure 4: Example operationalization of Trigger-set
based watermarks. Here, the original model is trained
with the trigger set which modifies the input to de-
liberately change the class of the output (Liu et al.,
2023c) or changing the output for the same input (Dai
et al., 2022)

reversing of the watermark.303

Operationalization of lexical replacements304

with semantic preservation includes synonym305

replacement using wordnet (He et al., 2022a;306

Yang et al., 2023b), spelling variant replacement307

between US and UK spellings (Topkara et al.,308

2006b), model-in-the-loop semantic similarity309

based search between candidate replacements310

and original sentence(Munyer and Zhong, 2023;311

Yang et al., 2022).312

2.2.2 Embedding-level Addition313

Watermarking techniques can be distinguished314

based on how the watermarks are embedded.315

This includes Train-time watermarking, Output316

Logits Modification, Message/Signal Injection and317

Train Embedding Modification.318

Train-time watermarking - As the name sug-319

gests, the watermark is embedded during train-320

ing time in this method. Peng et al. (2023) se-321

lects a group of moderate-frequency words from322

a general text corpus to form a trigger set and323

then selects a target word as the watermark, and324

inserts it into the latent representations of texts325

containing trigger words as the backdoor. The326

weight of insertion is proportional to the number327

of trigger words included in the text.328

Output Logits Modification - The output logits329

of LLMs represent unnormalized scores assigned330

to each token in the model’s vocabulary. These331

logits are typically generated by the final layer of332

the model before applying a softmax function to333

obtain normalized probabilities. These probabili-334

ties can be interpreted as the model’s confidence335

in predicting each token. Logits play a crucial role 336

in various tasks: they are used for token predic- 337

tion, where the token with the highest logit value 338

is chosen as the predicted token; they form the 339

basis for computing the loss function by compar- 340

ing them with actual labels, which is essential for 341

training the model; and they help in understand- 342

ing the model’s behavior and decision-making 343

process by indicating the relative importance of 344

different tokens in the context of a given input se- 345

quence. Here, methods inject the watermark into 346

the post-softmax distributions over the model 347

vocabulary. 348

A popular example of an Output Logit Mod- 349

ification watermarking is the use of green-red 350

lists (Kirchenbauer et al., 2023; Lee et al., 2023; 351

Zhao et al., 2023a; Takezawa et al., 2023; Fu et al., 352

2024; Ren et al., 2023; Wu et al., 2023). methods 353

typically vary in the choice of high/low entropy 354

tokens to add to the green list, size in the water- 355

mark (number of bits), injection of hard vs soft 356

watermark, or the discarding low probability to- 357

kens. 358

Apart from the techniques above, other meth- 359

ods involve injecting secret signals into the prob- 360

ability vector of the decoding steps for each tar- 361

get token (Zhao et al., 2023b). Liu et al. (2023b) 362

dynamically determine the logits to watermark 363

with the help of semantics of all preceding to- 364

kens. Specifically, they utilize another embed- 365

ding LLM to generate semantic embeddings for 366

all preceding tokens, and then these semantic 367

embeddings are transformed into the watermark 368

logits through their trained watermark model. 369

Building from the idea of secret signals, Fairoze 370

et al. (2023) have utilized digital signature tech- 371

nology from cryptography and involved the gen- 372

eration of watermarks using a private key which 373

is then detected using a public key. 374

Message/Signal Injection - Watermark can be 375

encoded in the text itself or by using a mapping 376

function to map values with the text to be water- 377

marked. These procedures involve the injection 378

of messages or signals or bit strings in the latent 379

space of the text created by the encoders. For ex- 380

ample, Li et al. (2023) tasks the representations 381

of the abstract syntax tree (AST) tokens as input 382

to predict modified variable names with encoded 383

bit strings and Yang et al. (2023a); Li et al. (2023) 384

encode ID bit strings into source code, without 385

affecting the usage and semantics of the code. 386

They perform transformations on an AST-based 387
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intermediate representation that enables unified388

transformations across different programming389

languages involving the changes in the expres-390

sion, statement, and block attributes. Zhang et al.391

(2023) use linear combinations within this latent392

space to add a simple message to the embed-393

ded text. The decoder then converts it back into394

plain text with small modifications resulting from395

the added message. A similar process is imple-396

mented to encode bit strings containing informa-397

tion like user ID, and generation date (Qu et al.,398

2024).399

2.2.3 Ad-Hoc Addition400

Rule-based substitutions and watermark addi-401

tions at the embedding level are the most popu-402

lar ways to add watermarks. However, multiple403

addition techniques do not fit into any of the two404

categories. We bucket these methods into Ad-Hoc405

addition methods and list a few methods that we406

found relevant.407

First, Por et al. (2012); Sato et al. (2023) insert408

Unicode space characters in various text spac-409

ings. For example, Sato et al. (2023) proposes410

three different methods: WhiteMark, Variant-411

Mark, and PrintMark. WhiteMark operates by412

substituting whitespace characters with alternate413

Unicode whitespace characters, such as replac-414

ing U+0020 with U+2004. Variantmark emerges415

as a specialized watermarking technique tailored416

for Chinese, Japanese, and Korean texts. Lever-417

aging Unicode’s variation selectors, Variantmark418

embeds secret messages by replacing Chinese419

characters with their variants. Printmark ad-420

dresses the challenge of watermarking printed421

texts through nuanced strategies that subtly al-422

ter text appearance. It employs ligatures, varying423

whitespace lengths, and utilizing variant charac-424

ters.425

Another work by Atallah et al. (2001) intro-426

duces three unique syntax transformations for427

message encoding— Adjunct Movement, Cleft-428

ing, and Passivization. For instance, Adjunct429

Movement involves relocating adjuncts within430

a sentence, as demonstrated by the variability in431

positioning the word ’quickly’ in "She quickly fin-432

ished her homework." Clefting highlights a spe-433

cific sentence part, typically the subject, such434

as transforming "The chef cooked a delicious435

meal" into "It was the chef who cooked a deli-436

cious meal" to emphasize ’the chef.’ Passiviza-437

tion, on the other hand, changes active sentences438

with transitive verbs into passive voice, like trans- 439

forming "The teacher graded the exams" into 440

"The exams were graded by the teacher." Each 441

transformation corresponds to a unique message 442

bit: Adjunct Movement to 0, Clefting to 1, and 443

Passivization to 2. 444

Lastly, Sun et al. (2023) involves changes in 445

the operators of the code based on adaptive 446

semantic-preserving transformations. 447

2.3 Evaluation 448

A wide variety of datasets have been used to 449

evaluate the performance of watermarking ap- 450

proaches, limiting our ability to extract general- 451

ized conclusions about their performance. Differ- 452

ent benchmarks focus on selected downstream 453

tasks to validate watermarking capabilities, and 454

we provide a detailed breakdown of the datasets 455

utilized in Table 3. We observe that there are a 456

large number of evaluation datasets focusing on 457

text completion and post-watermarking text sim- 458

ilarity tasks. The downstream task descriptions 459

are provided below. 460

Downstream Task descriptions 461

Text Completion Task: This task involves giv- 462

ing the LLM a portion of text from the dataset 463

as a prompt and then asking it to complete the 464

text. The generated completion is then compared 465

with the human completion or the portion of the 466

dataset not provided as the prompt. 467

Post-watermark text similarity analysis: In this 468

task, given an initial text X , watermarking is ap- 469

plied to X to produce a modified text X ′. An ex- 470

ample could be a rule-based substitution with 471

synonyms or spelling replacements. The com- 472

parison is then made between X and X ′, with 473

X and X ′ on the basis of distinctions in length, 474

semantic, and other linguistic features. 475

Other Downstream Tasks: For these tasks, given 476

the same initial prompt X , the LLM’s generated 477

response Y (before watermarking) is compared 478

with the response Y ′ (after watermarking). This 479

evaluates how watermarking affects the LLM’s 480

output. 481

2.4 Adversarial attacks on watermarking 482

techniques 483

Malicious and adversarial actors seek to misuse 484

LLM technology and bypass watermarks to avoid 485

being distinguished from rightful owners. To pro- 486

mote research into protecting intellectual prop- 487
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Table 3: Datasets used in the evaluation of watermarking techniques. Bold indicates the most used dataset(s)
for a particular downstream NLP task and the respective works using the dataset.

Downstream Task Dataset Name Papers

Text Completion Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020), Dbpedia Class
(Auer et al., 2007), WikiText-2 (Merity et al., 2016)

Kirchenbauer et al. (2023), Kuditipudi et al.
(2023), Liu et al. (2023a), Munyer and
Zhong (2023), Yoo et al. (2023b), Liu et al.
(2023b), Fairoze et al. (2023), Ren et al.
(2023), Hou et al. (2023), Qu et al. (2024)

Post-watermark
text similarity
analysis

WikiText-2, Workshop on Statistical Machine Translation (WMT14)
(Bojar et al., 2014), Internet Movie Database (IMDb) (Maas et al., 2011),
AgNews (Zhang et al., 2015), Dracula, Pride and Prejudice, Wuthering
Heights (Gerlach and Font-Clos, 2020), CNN/Daily Mail (Nallapati et al.,
2016), Human ChatGPT Comparison Corpus (HC3) (Guo et al., 2023), C4,
Reuters Corpus (Lewis et al., 2004), ChatGPT Abstract (Nicolai Thorer
Sivesind, 2023), Human Abstract (Nicolai Thorer Sivesind, 2023)

Yang et al. (2022), He et al. (2022a), He et al.
(2022b), Yoo et al. (2023a), Yang et al.
(2023b), Sato et al. (2023), Topkara et al.
(2006a), Zhang et al. (2023)

Machine
Translation

WMT14, IWSTL14 (Cettolo et al., 2014) Zhao et al. (2023b), Wu et al. (2023), Hu
et al. (2023), Takezawa et al. (2023)

Text
Summarisation

CNN/Daily Mail, Extreme Summarization (XSUM) (Narayan et al., 2018),
Data Record to Text Generation (DART) (Nan et al., 2021) , WebNLG
(Gardent et al., 2017)

Fu et al. (2024), Wu et al. (2023), Hu et al.
(2023)

Code Generation CodeSearchNet (CSN) (Husain et al., 2019), HUMANEVAL (Chen et al.,
2021), Mostly Basic Python Programming (MBPP), MBXP (Athiwaratkun
et al., 2023), DS-1000 (Lai et al., 2023)

Lee et al. (2023), Li et al. (2023), Yang et al.
(2023a)

Question
Answering

OpenGen (Krishna et al., 2024), Long Form Question Answering (LFQA)
(Krishna et al., 2024)

Zhao et al. (2023a), Yoo et al. (2023b), Qu
et al. (2024)

Story Generation ROCstories (Mostafazadeh et al., 2016) Zhao et al. (2023b)

Text Classification Stanford Sentiment Treebank (SST) (Socher et al., 2013), AgNews,
Microsoft News Dataset (MIND) (Wu et al., 2020), Enron Spam (Metsis
et al., 2006)

Peng et al. (2023)

This study emp lo ys a 
mixed - methods 
approach , combining 
quant itative surve ys 
and qual itative inter 
views .

This study employs a 
mixed-methods 
approach, combining 
quantitative surveys and 
qualitative interviews.

Original Text

This research util izes 
a mixed  methods 
strategy , integr ating 
quant itative surve ys 
and qual itative inter 
views.

This research utilizes a 
mixed methods strategy, 
integrating quantitative 
surveys and qualitative 
interviews.

Paraphrased Text

Adversary

Watermarked 
Model

Watermarked 
Model

Figure 5: An example of an adversary performing a
de-watermarking attack on a green-red list-based wa-
termarking technique. The original partitioning con-
tains a higher proportion of green tokens as compared
to the partitioning after adversarial paraphrasing.

erty rights, we extend suggestions from Kirchen-488

bauer et al. (2023) to describe de-watermarking489

methods, i.e., adversarial attacks on text water-490

marking, into three categories:491

1. Text insertion attacks involve adding addi-492

tional tokens or text segments to the origi-493

nal output of a watermarked LLM generation. 494

For example, on watermarking methods with 495

green-red lists (Kirchenbauer et al., 2023; Zhao 496

et al., 2023b; Takezawa et al., 2023), an attacker 497

could add additional tokens from the red list 498

leading to the obfuscation of the watermark- 499

ing method. 500

2. Text deletion attacks involve the removal of 501

tokens or text segments from the original wa- 502

termarked output of an LLM and modifying 503

the rest of the tokens to fit the output. Coming 504

back to the example of green-red list method- 505

ologies, this means removing some of the 506

green list tokens from the output and mod- 507

ifying the red list tokens in the output. These 508

techniques often require knowledge of the vo- 509

cabularies belonging in each of the two lists in 510

green-red lists. 511

3. Text substitution attacks entail replacing cer- 512

tain tokens or text segments in the water- 513

marked output while preserving its overall 514

meaning. Attackers perform tokenization at- 515

tacks by paraphrasing text, misspelling words, 516
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or replacing characters like newline (\n); in-517

creasing red list tokens, and evading green-518

red list watermarking. These also include Ho-519

moglyph attacks: attacks that exploit Unicode520

characters that look similar but have different521

IDs, leading to variation from expected tok-522

enization (e.g., "Lighthouse" becomes nine523

tokens with Cyrillic characters). Generative524

attacks leverage LLMs’ context learning to525

predictably manipulate the output, such as526

adding emojis after each token or replacing527

characters to disrupt watermark detection.528

3 Discussion and Open Challenge529

We describe the open challenges to watermark-530

ing and outline "good to have" criteria while de-531

veloping new techniques to protect intellectual532

property ownership. They are as follows:533

Resilience to adversarial attacks One of the534

critical challenges in the field is the lack of com-535

prehensive evaluation against a diverse range536

of de-watermarking attacks. While many re-537

searchers focus on developing robust watermark-538

ing techniques, there is often insufficient empha-539

sis on systematically red-teaming these methods540

against multiple attacking scenarios.541

Standardization of evaluation benchmarks542

There is a need for standardized benchmarks543

and evaluation metrics to ensure fair and con-544

sistent comparison between different watermark-545

ing techniques. Table 3 shows how evaluation546

datasets differ in the literature for the same down-547

stream task, reflecting this necessity.548

Impact on LLM output factuality Watermarks549

modify the model output distributions; tech-550

niques that are robust to de-watermarking often551

have greater variations in watermarked outputs552

compared to clean outputs leading to a potential553

trade-off between de-watermarking and LLM fac-554

tuality. Despite this potential trade-off, there is a555

lack of analysis on how watermarking techniques556

affect the output inaccuracies or hallucinations.557

After training or fine-tuning LLMs with specific558

watermarking techniques, there is often insuffi-559

cient examination of whether these methods in-560

troduce or exacerbate inaccuracies. We advocate561

for factuality evaluations post-watermarking.562

Compatibility to various NLP downstream tasks563

Important task types like Story Generation, Text564

Classification etc. are under-explored.565

Enhanced interpretablity Drawing upon secu- 566

rity and privacy literature (Kumar et al., 2024), we 567

ask the community to establish privacy norms for 568

LLM watermarking. We envision this to be simi- 569

lar to model cards, which describe the degree of 570

security provided by particular methods against 571

malicious actors. 572

Human-centered watermarking We urge the 573

community to work on human perception of 574

LLMs when interacting with different safety prin- 575

ciples. User perception of LLMs may change with 576

differences in output distributions. Furthermore, 577

safety practices may enable AI acceptance and 578

adoption among the masses. 579

4 Conclusion 580

In this paper, we analyze representative literature 581

in the field and provide a comprehensive taxon- 582

omy for digital watermarking techniques for both 583

LLM-generated and human-written text. The tax- 584

onomy categorizes watermarking techniques us- 585

ing four primary categories, namely - intention of 586

the method, data used for evaluation, watermark 587

addition, and removal. 588

Our work not only identifies and clusters ex- 589

isting watermarking methods but also brings to 590

light key open challenges and research gaps in 591

the field. These challenges include the need 592

for more rigorous testing against diverse de- 593

watermarking attacks, the establishment of stan- 594

dardized benchmarks for fair and consistent com- 595

parison of different techniques, and a deeper un- 596

derstanding of how watermarking impacts the 597

factuality and accuracy of LLM outputs. Further- 598

more, we emphasize on the importance of devel- 599

oping watermarking techniques that are resilient 600

to adversarial attacks, enhance interpretability, 601

and maintain compatibility across various NLP 602

downstream tasks. 603

We envision this research to serve as a refer- 604

ence for policymakers, safety practitioners, and 605

end users; facilitating the adoption of robust dig- 606

ital watermarking practices and promoting re- 607

sponsible AI use. 608

5 Limitations 609

Limitations to our work are as follows: (1) We 610

do not include detailed insights into metrics for 611

success rate (accuracy of detecting watermarked 612

texts), text quality (perplexity and semantics), 613

8



NLP task-specific evaluation, and robustness (de-614

tectability of watermarks after removal attacks).615

(2) We don’t demonstrate the mathematical anal-616

ysis of different watermarking techniques. (3) We617

do not cover all different task deployment scenar-618

ios for the watermarking techniques discussed.619

6 Ethical Considerations620

This paper reviews the challenges and opportu-621

nities of watermarking techniques in LLMs. Our622

work has many potential societal consequences,623

none of which must be specifically highlighted624

here. There are no major risks associated with625

conducting this review.626
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