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Abstract

Speculative decoding is a widely adopted technique for accelerating inference
in large language models (LLMs), yet its application to vision-language models
(VLMs) remains underexplored, with existing methods achieving only modest
speedups (< 1.5x). This gap is increasingly significant as multimodal capabil-
ities become central to large-scale models. We hypothesize that large VLMs
can effectively filter redundant image information layer by layer without compro-
mising textual comprehension, whereas smaller draft models struggle to do so.
To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a
novel framework tailored for VLMs. ViSpec employs a lightweight vision adap-
tor module to compress image tokens into a compact representation, which is
seamlessly integrated into the draft model’s attention mechanism while preserving
original image positional information. Additionally, we extract a global feature
vector for each input image and augment all subsequent text tokens with this fea-
ture to enhance multimodal coherence. To overcome the scarcity of multimodal
datasets with long assistant responses, we curate a specialized training dataset
by repurposing existing datasets and generating extended outputs using the tar-
get VLM with modified prompts. Our training strategy mitigates the risk of the
draft model exploiting direct access to the target model’s hidden states, which
could otherwise lead to shortcut learning when training solely on target model
outputs. Extensive experiments validate ViSpec, achieving, to our knowledge,
the first substantial speedup in VLM speculative decoding. Code is available at
https://github.com/KangJialiang/ViSpec.

1 Introduction

The success of large language models (LLMs) has spurred the development of vision-language
models (VLMs) capable of processing and generating content from both visual and textual inputs.
Recent VLMs, such as LLaVA-NeXT (LLaVA-1.6) [15] and Qwen2.5-VL [1]], demonstrate impressive
performance in tasks including image captioning, visual question answering, and multimodal dialogue.
However, as VLMs increase in scale and complexity, their inference times grow substantially, posing
significant challenges for practical deployment.

Speculative decoding [13] has proven effective in accelerating LLM inference by employing a smaller,
faster draft model to propose candidate token sequences, which the larger target model verifies in
parallel. Correct predictions from the draft model enable the target model to skip costly autoregressive
computations, resulting in significant speedups. While speculative decoding is well-established for
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Figure 1: Speedup ratios of various methods at temperature = 0, evaluated on the GQA test set
using four VLMs: LLaVA-v1.6-Vicuna-7B, LLaVA-v1.6-Vicuna-13B, Qwen2.5-VL-3B-Instruct, and
Qwen2.5-VL-7B-Instruct.

LLMs, its application to VLMs remains underexplored, with prior approaches [8} [12] achieving only
marginal speedups. We attribute this limitation to fundamental differences between textual and visual
data. Text, honed over centuries, is abstract and information-dense, whereas images, despite their
visual richness, often contain considerable redundancy. Consequently, small draft models struggle to
extract pertinent visual information while preserving textual coherence in VLMs.

To address this challenge, we propose Vision-Aware Speculative Decoding (ViSpec), a novel
speculative decoding framework designed specifically for VLMs. ViSpec incorporates a lightweight
vision adaptor module to compress numerous image tokens into a compact, informative representation.
These compressed tokens are seamlessly integrated into the draft model’s attention layers, retaining
the original image’s positional information. Furthermore, drawing inspiration from target-aware
feature injection in EAGLE [19, (18} 20], we extract a global feature vector for each input image
and augment all subsequent text tokens with this feature until the next image is encountered. This
mechanism equips the draft model with robust global visual context, enhancing prediction accuracy.

A significant obstacle in developing speculative decoding for VLM is the scarcity of large-scale,
publicly available multimodal datasets with extended assistant responses. To overcome this, we
repurpose existing datasets by modifying prompts and leveraging the target VLM to generate long
responses, thereby creating synthetic training data. Although the draft model could potentially exploit
access to the target model’s hidden states during training, the randomness in the target model’s
sampling strategy and our adoption of multi-token prediction, inspired by DeepSeek [21]], effectively
mitigate this risk.

Our experiments demonstrate that ViSpec significantly outperforms existing speculative decoding
methods for VLMs, achieving substantial speedups without compromising generation quality. To
our knowledge, this work represents the first meaningful acceleration of VLM inference through
speculative decoding.

Our main contributions are as follows:

* We introduce Vision-Aware Speculative Decoding (ViSpec), a speculative decoding frame-
work tailored for VLMs.

* We propose dual integration mechanisms—attention integration and feature augmentation—
to enable a small draft model to efficiently incorporate visual context.

* We develop a training strategy that extends existing vision-language datasets to include
long-response tasks, leveraging multi-token prediction.

* We empirically validate ViSpec on four popular VLLMs, achieving notable speed improve-
ments and establishing the first practical acceleration in this domain.



2 Related Work

2.1 Speculative Decoding

Speculative decoding [[13]] accelerates inference in LLMs by utilizing a smaller draft model to
propose candidate token sequences, which the target model verifies in parallel. This method achieves
speedups of 3—4 x on text-only tasks while preserving output fidelity [[13]. Subsequent advancements
have refined this approach. Self-speculative decoding [36]] derives the draft model from the target
model, minimizing training overhead through shared parameters. On-the-fly adaptation methods,
such as SwiftDecode [33]], dynamically adjust the draft model during inference to adapt to varying
input distributions, enhancing robustness across tasks. Specifier [25] employs an ensemble of
small models for parallel draft generation, increasing prediction diversity and speedup. Cascade
Speculative Drafting [S] uses a sequence of draft models with increasing complexity to balance
speed and accuracy, achieving up to 3.5 speedup on large-scale LLMs. Medusa [2] integrates
multiple decoding heads into the target model’s architecture, eliminating the need for a separate draft
model while maintaining comparable performance. The EAGLE series [19, |18, 20]] improves draft
predictions by injecting target-aware hidden states, aligning the draft model closely with the target
model’s output distribution. A concurrent work, EAGLE-3 [20]], adopts a multi-token prediction
strategy termed training-time test, though its performance gains depend heavily on scaling training
data, with limited improvements when dataset size is fixed. Additionally, SpecTr [29] optimizes
token acceptance rates using optimal transport, while REST [10] enhances draft predictions with
retrieval-based external knowledge, excelling in knowledge-intensive tasks. Recent surveys [34] offer
detailed analyses of speculative decoding techniques, discussing their trade-offs and open challenges.

2.2 Vision-Language Models

Vision-language models (VLMs) integrate visual and textual inputs to address tasks such as image
captioning, visual question answering, and multimodal dialogue. Recent advancements have led
to state-of-the-art models like LLaVA-NeXT [15] and Qwen2.5-VL [1]], which combine powerful
vision encoders, such as CLIP [26]], with large-scale LLMs to achieve superior performance across
diverse applications. Models like BLIP-2 [16] and MiniGPT-4 [38] leverage pretrained vision
and language components with learnable interfaces to bridge modality gaps, enabling efficient
multimodal processing. However, the computational complexity of processing high-dimensional
image inputs, coupled with the autoregressive nature of text generation, results in significant inference
latency, posing challenges for real-time deployment. Efforts to address these issues include efficient
vision encoders, such as those proposed in EVA-CLIP [28]], and optimized training strategies that
reduce memory overhead. Despite these advances, inference efficiency remains a critical bottleneck,
motivating the exploration of speculative decoding for VLMs.

2.3 Speculative Decoding for Vision-Language Models

The application of speculative decoding to VLMs is an emerging area with limited prior work. The
only notable effort, by [8], applied speculative decoding to LLaVA-7B using a small language-only
draft model, achieving up to 1.5x speedup. Their experiments with a small VLM draft model
incorporating an image encoder yielded only marginal gains, highlighting the challenge of effectively
processing visual information in the draft model due to the high redundancy and computational
complexity of image inputs. These limitations highlight the need for specialized frameworks that can
effectively integrate visual and textual information in draft models while maintaining high prediction
accuracy. Our proposed ViSpec framework addresses these challenges by introducing vision-aware
mechanisms to enhance the draft model’s ability to process multimodal inputs efficiently.

3 Preliminaries

3.1 Speculative Decoding

Speculative decoding [3}, [13} 25, 29] is a lossless acceleration technique for LLMs that alternates
between a drafting stage and a verification stage to expedite autoregressive decoding. Let ¢; denote
the i-th token in a sequence, and let T,.p = {tq,ta+1,-- ., ts} represent a token sequence. Given
a prefix 77.;, speculative decoding proceeds as follows: in the drafting stage, a lightweight draft



model autoregressively generates a sequence of k tokens, Tj+1: j+%»> along with their probabilities
ﬁjH(fjH) for each token fj+i. In the verification stage, the target model evaluates T} 1.j4k,
computing its own probabilities p]‘+z‘(£j+i). Each draft token fjH is accepted with probability
min (1, %) If a token is rejected, a new token is sampled from the normalized distribution
j+i\tj+i

norm (max (0, pj4i(£j4i) — Pj+i(tj4:))). and subsequent draft tokens are discarded. This process
ensures that the generated sequence maintains the same probability distribution as that produced
by the target model without acceleration, preserving distributional consistency. We enhance this
approach by adopting the context-aware dynamic draft tree from EAGLE-2 [[18]], an improvement
over the draft tree in [25]], which enables the draft model to generate multiple candidate tokens per
position, facilitating more efficient exploration of the token space.

3.2 Vision-Language Models

Modern VLMs [1} 115} [16] typically extend a base large language model (LLM) by incorporating
visual information through a vision encoder. Formally, given an input image I, a vision encoder
&, maps it to a sequence of visual embeddings V1., = &,(I) € R7™*4 where r denotes the number
of visual embeddings and d is the embedding dimension. Let & represent the text embedding
layer of the LLM. For a multimodal input sequence comprising both visual and textual tokens, the
joint input representation is constructed as Hy., = £,(T1.;) ® Vi.p & & (Tk+1:5), where & denotes
sequence concatenation. The VLM processes this hybrid sequence autoregressively. Notably, the
LLM architecture remains unchanged; the only modification is the inclusion of visual embeddings
V1. within the input sequence. Since the output space remains the text token vocabulary V and
the autoregressive generation mechanism is preserved, speculative decoding methods designed for
LLMs can, in principle, be directly applied to VLMs by treating visual embeddings as part of the
input context. Formally, for any prefix containing visual embeddings V1., and text tokens 77.;, the
speculative decoding procedure outlined in Sec. remains valid, with probabilities p;; and p; 1,
implicitly conditioned on V7.,

4 Method

4.1 Overcoming Redundancy: Image Embedding Compression

In speculative decoding, the draft model is typically a smaller, shallower version of the target
model. We demonstrate that a single-layer Transformer-based draft model is fundamentally limited
in processing long, redundant sequences, particularly when redundant image patches (e.g., uniform
color blocks) dominate the input.

Consider a sequence of R + 1 image and text embeddings e1, ..., er;1 € RY, where R embeddings
are identical, i.e., e,, = ... = e,, = s, and a unique token at position « has embedding e,, = ¢. The
Transformer has a single self-attention layer with weight matrices W, Wy, W, € R%*4_ Ignoring
positional encoding and attention scaling for simplicity, the output at position ¢ is:

R+1 T
exp (qik;)
Yi = Z v, where oy = jo) , €))
=1 rey exp (aik)])
with ¢; = Wye;, k; = Wye;, and v; = We;. For the R redundant tokens, we have:
gk = (Wee)) Wrey) " = Wyeis "W, )

which is identical across all redundant tokens. As R increases, the attention weight to the unique
token becomes:

_ exp (B)
Rexp (A) +exp(B)’
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Figure 2: Overview of the ViSpec framework. Given an input image and text prompt, ViSpec
compresses image tokens using a lightweight vision adaptor to produce a small set of visual tokens.
These tokens are prepended to the text input and fed into the draft model’s attention mechanism. A
global visual feature vector, extracted from the compressed image tokens, is injected into the draft
model’s text generation process. The figure illustrates two decoding steps of the draft model, where f
denotes the target model’s last-layer hidden state, f’ the draft model’s last-layer hidden state, v visual
embeddings, e text embeddings, ¢ compressed image tokens, and g the global visual feature vector.

where A = We;s' W, is the score for redundant tokens, and B = We;t' W,! is the score for
the unique token. As R — oo, the denominator is dominated by Rexp (A4), causing a;,, — 0.
Meanwhile, o — % for each redundant token, so the output approximates:

R
Urm
iy, = Wos, )

m=1

effectively averaging over the redundant tokens and neglecting the unique token. Furthermore, it
has been proven theoretically that a K + 1 layer network is required to handle a nesting complexity
of K [30], indicating that shallow draft models struggle to extract useful information from long,
redundant image embeddings, thus constraining their effectiveness in speculative decoding for VLMs.

The limitations of shallow draft models in processing multimodal sequences necessitate a specialized
approach for speculative decoding in VLMs. Drawing on insights from [22]], which emphasize
the critical role of draft token generation speed in achieving end-to-end speedup, we propose a
lightweight Q-Former-inspired [16] vision adaptor (see Fig.[3). This module utilizes a lightweight
Transformer encoder with a fixed set of learnable query vectors. The visual features extracted from
the input image serve as key and value inputs to the Transformer’s attention layers, while the learnable
query vectors function as queries. Through this attention mechanism, each query vector selectively
attends to relevant portions of the visual features, condensing them into a small set of compact feature
vectors. These vectors, significantly fewer than the original embeddings, act as compressed visual
embeddings. They are seamlessly integrated into the draft model’s attention mechanism, preserving
the positional information of the original image by maintaining relative spatial locations. By splitting
the input into a concise image sequence and a compressed-image-plus-text sequence, we improve the
draft model’s efficiency in handling long multimodal sequences.

4.2 Addressing Lost-in-the-Middle: Global Visual Feature Integration

While image embedding compression can condense visual tokens into a compact sequence amidst a
series of text tokens, this approach poses challenges in speculative decoding, which prioritizes long
assistant responses. The lost in the middle effect [23]], particularly pronounced in shallow models
such as our draft model, causes performance degradation when critical visual information is situated
in the middle of long contexts, leading to a U-shaped performance curve.
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Figure 3: Architecture of the vision adap- Figure 4: Comparison of training procedures: (a) EA-
tor module. A compact Transformer en- GLE training, (b) training with greedy target model
coder with fixed learnable query vectors responses without multi-token prediction, and (c) Vi-
q processes input visual embeddings v Spec training. Here, e denotes input embeddings, f

through an attention layer, yielding a  represents target model hidden states, f indicates EA-
small set of compress.ed image tokens GLE draft model hidden states, f’ denotes ViSpec draft
c and a single global visual feature g. model hidden states, and p signifies token probabilities.

Although compressed visual embeddings provide a compact representation of images for the draft
model, they may not fully capture the holistic visual context. As discussed in Sec. {i.1] simply
increasing the number of image tokens is suboptimal, as shallow draft models lack the capacity to
effectively attend to lengthy, redundant sequences. Moreover, as generated text sequences lengthen,
image tokens become increasingly obscured within the text, exacerbating the lost in the middle
effect [23]] and undermining the draft model’s ability to maintain consistent visual grounding. This
often results in reduced coherence between the generated text and the input image. To address these
challenges, we propose extracting a global feature vector from the input image and integrating it into
each subsequent text token, ensuring persistent access to global visual context throughout the text
generation process.

We derive the global feature vector from the final output of the vision adaptor module. This vector is
transformed and incorporated into the hidden states of all subsequent text tokens in the draft model.
Formally, at each text position ¢, we compute the augmented hidden state f;"® as:

p o= fot+ Wy, &)

where f; is the original hidden state, g denotes the global visual feature vector, and W, is a learned
projection matrix. This architectural enhancement equips the draft model with continuous visual
context, enhancing its ability to generate accurate speculative tokens that maintain strong alignment
with the input image across extended generation sequences.

4.3 Dataset Generation and Training

Training an effective draft model for speculative decoding requires a large, diverse dataset of high-
quality target model outputs. For VLMs, this necessitates multimodal datasets with extended assistant
responses, which are scarce in the public domain. To address this, we propose a novel data generation
strategy that repurposes existing multimodal datasets, even those lacking long responses. We modify
prompts in datasets such as visual question answering or image captioning to elicit longer, more
descriptive responses from the target VLM. For instance, in visual question answering, we rephrase
simple questions to request detailed explanations or reasoning. Similarly, for image captioning, we
prompt the VLM to produce elaborate descriptions. This approach yields a robust synthetic training
dataset without requiring manual annotation.

A potential concern is that the draft model might overfit to the target model’s outputs by exploiting
its hidden states during training. However, the randomness in the target model’s sampling strategy,
driven by a temperature parameter, and the adoption of multi-token prediction, as proposed by
DeepSeek [21], mitigate this risk. We illustrate this in Fig.[d In (a) EAGLE’s text-only training,
the target model is likely to generate “may” instead of “can” when the ground truth is “can.” Here,
the target model’s hidden state fij. acts as noisy augmentation, enabling the draft model to learn
corrective behavior, as f.,y is conditioned on both fi1, and the embedding e.,y. In (b) training with



greedy target model responses without multi-token prediction, the draft model’s inputs (e.g., frow>
emay) €xhibit a one-to-one correspondence, and the supervision fi,,y is conditioned solely on frow
(ignoring previous inputs, as f already contains most of the information), effectively reducing to a
single-step Medusa [2]. In (c) ViSpec’s training procedure, we avoid this issue by using sampling to
disrupt one-to-one correspondences between hidden states f and embeddings e. Additionally, we
incorporate the draft model’s own hidden states f’ as input, which serve a similar corrective role
as in (a) when the target model deviates from the ground truth, allowing the draft model to learn
self-correction without manually crafted datasets. We optimize the loss:

L = CrossEntropy (pi. i), ©

where p; and p; denote the target model’s and draft model’s probabilities for the i-th token, respec-
tively.

5 Experiments

5.1 Experimental Setup

Hardware. All experiments are conducted on a single GPU. Draft models are trained using 8x GPUs.

Models. We evaluate our proposed Vision-Aware Speculative Decoding (ViSpec) framework on four
open-source vision-language models: LLaVA-v1.6-Vicuna-7B [15]], LLaVA-v1.6-Vicuna-13B [15]],
Qwen2.5-VL-3B-Instruct [1]], and Qwen2.5-VL-7B-Instruct [[L]. We use their official weights and
configurations from the Hugging Face Transformers library [32].

Baselines. We compare ViSpec against two established speculative decoding frameworks originally
designed for language models: Medusa [2] and EAGLE-2 [[18]]. To adapt these frameworks for VLMs,
we modify their input pipelines to process image patch embeddings from the VLM’s original vision
encoder, enabling the draft models to generate speculative tokens conditioned on both visual and
textual contexts. This adaptation is feasible as both Medusa and EAGLE-2 rely on general token
prediction mechanisms that are theoretically compatible with multimodal sequences, provided the
draft model can handle visual inputs.

Training Datasets. We train the draft models for both baselines and ViSpec using a two-stage
process. Initially, all draft models are trained on the ShareGPT dataset, comprising 68,000 dialogue
iterations, to establish a robust text-based foundation. For multimodal training, we fine-tune the
baseline draft models (Medusa and EAGLE-2) on 68,000 samples randomly selected from the LLaVA
Visual Instruct Pretrain LCS dataset [[15]], enabling them to process visual inputs. For ViSpec, we
augment this dataset with synthetic long assistant responses generated using the target VLM, as
described in Sec.

Tasks. We evaluate performance on eight diverse multimodal benchmarks: ScienceQA (SQA) [24],
MM-Vet [35], MME [7]], TextVQA [27], COCO Captions (COCO Caps) [4]], VizWiz [9]], GQA [L1],
and SEED-Bench [14]. These datasets cover tasks such as visual question answering, image caption-
ing, and multimodal evaluation. To ensure generalizability, we use consistent model weights across
all tasks without task-specific fine-tuning. Following [8]], we design prompts to elicit long, detailed
responses from the models.

Metrics. As ViSpec employs strict speculative decoding to preserve the target model’s generation
quality, quality evaluation is unnecessary. We focus on acceleration performance, measured using the
following metrics:

* Average Acceptance Length 7: The average number of tokens accepted from the draft
model per drafting-verification cycle.

* Speedup Ratio: The ratio of inference time for standard autoregressive decoding to that for
different speculative decoding methods.

5.2 Comparison with Baselines

Table [T] and Figure [I] present a comprehensive evaluation of ViSpec’s acceleration performance
compared to Medusa [2]] and EAGLE-2 [[18] across multiple vision-language models and tasks. The



Table 1: Speedup ratios and average acceptance lengths 7 for different methods. For a fair comparison,
we do not relax the draft token acceptance condition of Medusa under non-greedy settings as proposed
in the original paper; instead, we adopt the same acceptance condition as EAGLE-2. Speedup ratios
are computed based on the average time required to generate each token.

SQA MM-Vet  TextVQA MME COCO Caps VizWiz GQA  SEED-Bench  Avg.

Model Method 7 Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup

Temperature=0

Medusa 0.72 1.41x 0.73 1.42x 0.77 1.46x 0.70 1.41x 0.66 1.61x 0.76 1.38x 0.73 1.29x 0.72 1.38x 0.72 1.42x
LLaVA-1.6 EAGLE-22.48 2.14x 0.63 1.48x 0.63 1.25x 1.25 1.68x 1.24 1.80x 1.15 1.40x 1.74 1.64x 1.40 1.59x 1.31 1.62x
ViSpec 2.86 2.37x 2.83 2.52x 2.95 2.90x 2.84 2.55x 3.30 3.22x 3.16 2.67x 2.88 2.22x 3.03 2.22x 2.98 2.58x

Medusa 0.84 1.61x 0.80 1.47x 0.89 1.51x 0.79 1.47x 0.75 1.48x 0.81 1.45x 0.85 1.45x 0.82 1.40x 0.82 1.48x
LLal‘gA-l-ﬁ EAGLE-22.02 2.12x 1.64 1.59x 1.71 191x 1.81 1.85x 1.83 2.01x 1.98 1.90x 2.10 1.82x 2.03 1.66x 1.89 1.86x
ViSpec 2.76 2.57x 2.73 2.34x 2.78 2.43x 2.78 2.36x 3.18 2.82x 2.93 2.26x 2.95 2.12x 3.04 2.16x 2.89 2.38x

Medusa 057 1.07x 0.60 1.12x 0.66 1.08x 0.59 1.12x 0.62 1.21x 0.60 1.16x 0.65 1.21x 0.61 1.15x 0.61 1.14x
Qwen2.5-VL EAGLE-2 1.18 1.41x 1.03 1.30x 0.98 1.26x 1.07 1.38x 1.40 1.60x 1.I1 1.32x 139 1.52x L1l 1.32x 1.16 1.39x
ViSpec 1.99 1.87x 2.13 1.8Ix 2.15 1.85x 1.96 1.82x 2.37 2.15x 2.22 1.71x 2.28 2.01x 237 1.78x 2.19 1.87x

Medusa 0.60 1.13x 0.59 1.06x 0.58 1.05x 0.59 1.19x 0.61 1.11x 0.59 1.09x 0.64 1.19x 0.62 1.05x 0.60 I.11x
Qwen2.5-VL EAGLE-2 140 1.49x 1.19 1.36x 1.14 1.23x 1.29 1.54x 146 1.50x 127 120x 1.53 1.54x 142 1.32x 1.34 1.40x
ViSpec 2.19 1.84x 2.16 1.74x 2.21 1.72x 2.15 1.96x 2.27 1.99x 2.31 1.71x 2.30 1.91x 2.34 1.55x 2.24 1.80x

Temperature=1

Medusa 0.58 1.36x 0.58 1.37x 0.57 1.32x 0.56 1.35x 0.58 1.67x 0.57 1.29x 0.60 1.19x 0.59 1.32x 0.58 1.36x
LLaVA-1.6 EAGLE-21.78 2.17x 0.51 1.34x 0.41 1.11x 1.02 1.53x 1.03 1.78x 0.77 1.32x 1.33 1.47x 098 1.57x 0.98 1.54x
ViSpec 2.06 2.20x 1.94 1.99x 1.78 1.93x 1.96 1.98x 2.36 3.05x 2.32 2.21x 2.11 1.83x 2.16 1.94x 2.09 2.14x

Medusa 0.68 1.41x 0.67 1.44x 0.66 1.42x 0.66 1.40x 0.67 1.40x 0.64 1.37x 0.70 1.37x 0.68 1.37x 0.67 1.40x
LLal‘gA-lﬁ EAGLE-21.51 1.98x 129 1.73x 1.26 1.72x 145 1.78x 1.54 1.83x 1.46 1.72x 1.64 1.73x 1.60 1.79x 147 1.79x
ViSpec 2.02 2.25x 1.98 2.15x 1.90 2.08x 2.07 2.08x 2.43 2.39x 2.04 2.0Ix 2.19 2.03x 2.22 2.07x 2.11 2.13x

Medusa 052 1.02x 0.48 1.02x 0.46 0.99x 0.46 1.02x 0.51 1.03x 0.46 0.99x 0.55 1.13x 0.49 1.03x 0.49 1.03x
Qwen2.5-VL EAGLE20.92 1.25x 0.70 1.19x 0.70 1.06x 0.84 1.26x 0.97 1.28x 0.84 1.19x 1.02 1.31x 0.86 1.16x 0.86 1.21x
ViSpec 149 1.49x 1.23 1.39x 1.32 1.38x 1.45 1.58x 1.42 1.50x 1.39 1.43x 1.49 1.59x 1.55 1.42x 1.42 147x

Medusa 0.56 1.05x 0.51 0.95x 049 0.96x 0.51 1.02x 0.52 1.00x 0.50 1.02x 0.53 1.02x 0.53 1.02x 0.52 1.0x
Qwen2.5-VLEAGLE-21.19 1.52x 0.92 1.19x 0.88 1.08x 1.00 1.23x 1.08 1.22x 0.94 1.13x 1.11 1.32x 1.04 1.19x 1.02 1.18x
ViSpec 1.82 1.62x 1.57 1.47x 151 1.37x 161 1.49x 1.63 1.50x 1.88 1.53x 1.61 1.56x 170 1.38x 1.66 1.49x

table reports the average acceptance length 7 and speedup ratios, calculated as the ratio of the average
time required for standard autoregressive decoding to that of each method per token, under two
temperature settings (0 and 1).

ViSpec consistently outperforms both Medusa and EAGLE-2 across all evaluated tasks and models,
achieving the highest speedup ratios and 7 values. For instance, at temperature 0 with LLaVA-v1.6-
Vicuna-7B, ViSpec achieves a speedup of 2.90x on TextVQA, surpassing EAGLE-2 (1.25%) and
Medusa (1.46 x) by a wide margin. Similarly, with LLaVA-v1.6-Vicuna-13B at temperature 0, ViSpec
delivers a speedup of 2.57x on ScienceQA, compared to EAGLE-2 (2.12x) and Medusa (1.61 x).
At temperature 1, ViSpec maintains its advantage, achieving a speedup of 2.25x on ScienceQA with
LLaVA-v1.6-Vicuna-13B, outperforming EAGLE-2 (1.98x) and Medusa (1.41x). These results
underscore ViSpec’s superior acceleration capabilities, with speedup ratios ranging from 1.37x to
3.22x, compared to EAGLE-2 (1.06x to 2.17x) and Medusa (0.95% to 1.67x).

ViSpec demonstrates robust performance and generalizability across a diverse set of tasks, with
notably high acceptance lengths on TextVQA, VizWiz, SEED-Bench, and COCO Captions. This
suggests that its vision-aware approach effectively handles the varied sequential patterns inherent in
these tasks. In contrast, the performance of EAGLE-2 and Medusa is more task-dependent. While
they perform adequately on tasks like ScienceQA, they struggle on others, such as TextVQA and
MM-Vet, particularly when compared to ViSpec. This indicates that their general-purpose draft
mechanisms may not adapt as effectively to the complexities of visual-linguistic sequences.

Performance also varies across model architectures. LLaVA-1.6 models generally achieve higher
speedup ratios and acceptance lengths compared to Qwen2.5-VL models. Such differences can be



attributed to the significantly larger vocabulary sizes of Qwen models, potentially increasing the
complexity of token prediction.

5.3 Ablation Studies

Impact of Compressed Image Embedding Count. We evaluate the effect of varying the number of
compressed image embeddings from 1 to 64 on ViSpec’s performance, with results shown in Tab. 2]
When the number remains significantly smaller than the original thousands of image embeddings,
increasing the count has minimal impact on the average acceptance length 7. However, it reduces the
speedup ratio due to the increased computational load on the draft model during token generation. A
single compressed image embedding adequately captures essential visual information, prompting us
to adopt one compressed embedding in our final implementation.

Table 2: Impact of varying the number of compressed image embeddings on ViSpec’s performance
across three datasets, measured by average acceptance length 7 and speedup ratio.

COCO Captions GQA MME

Image Embeddings T Speedup T Speedup T Speedup
1 3.30 3.22x 2.88 2.22x 2.84  2.55x
4 3.24 3.24x 2.84 2.24x 2774 2.35x
16 3.23 3.21x 284 220x 276 238
64 3.25 2.71x 2.86 1.91x 276 242x

Table 3: Ablation study on the effectiveness of ViSpec’s components across three datasets, measured
by average acceptance length 7 and speedup ratio, with EAGLE-2 as the baseline.

COCO Captions GQA MME

Components T Speedup T Speedup T Speedup
baseline 1.24 1.80x 1.74 1.64x 1.25 1.68x
+image embedding compression  2.04 2.37x 2.15 1.92x 2.04 1.83x
+global visual injection 2.14 2.42x 2.25 2.03x 2.14 1.95x
+dataset generation 3.30 3.22x 2.88 2.22x 2.84 2.55x

Effectiveness of Each Component. We conduct an ablation study to assess the contribution of
ViSpec’s core components: image embedding compression, global visual feature injection, and
dataset generation. Using EAGLE-2 [18]] as the baseline, we report the average acceptance length
and speedup ratio across the COCO Captions, GQA, and MME datasets, as shown in Tab. [3| Adding
image embedding compression increases the speedup ratio by up to 30%, enabling the draft model to
efficiently process visual information. Incorporating global visual feature injection further improves
speedup by 7%, underscoring its role in maintaining persistent visual context and enhancing multi-
modal coherence. The inclusion of dataset generation yields an additional 30% speedup, equipping
the draft model to handle extended multimodal sequences effectively. Together, these components
synergistically enhance ViSpec’s acceleration performance while ensuring robust performance across
diverse tasks.

Vision Adaptor Overheads. While the vision adaptor increases the draft model’s parameter count, it
theoretically reduces the prefill computation by processing fewer visual tokens. However, as draft
models are small and efficient, we observe no statistically significant change in prefill latency (Tab. ).
The minor variations recorded are attributed to measurement noise.

Output Length vs. Speedup. Table [3] illustrates the relationship between the average output
length and the achieved end-to-end speedup across various datasets. As expected, longer generation
sequences generally yield higher speedup ratios, since they offer more opportunities for successful
draft model predictions. Despite this trend, our method demonstrates robust performance, providing
significant acceleration even on datasets characterized by shorter responses.



Table 4: Analysis of vision adaptor overheads during the prefill Table 5: Relationship between

stage on the COCO Captions dataset. output length and speedup ratio.
Model Params (M) GFLOPs Latency (s) Dataset Tokens  Speedup
ode
Base +Adap Base +Adap Base +Adap GQA 46.25 2.22x
SEED-Bench  57.66 222

LLaVA-1.6 7B 367 451 956 179 0227 0.231 SoA 7407 237
LLaVA-1.6 13B 534 665 1460 279 0334 0334 VizWiz 10591  2.26x
Qwen2.5-VL 3B 404 425 573 183  0.002 0.004 MME 115.01 2.55x
Qwen2.5-VL 7B 826 890 172 55.5 0.018 0.016 MM-Vet 171.13 2.52x

COCO Caps  236.04 3.21x
TextVQA 353.58 2.90x

6 Conclusion

We introduce Vision-Aware Speculative Decoding (ViSpec), the first framework to achieve signifi-
cant acceleration for vision-language models (VLMs) through speculative decoding. By integrating
compressed image embeddings, persistent global visual feature injection, and synthetic long-response
dataset generation, ViSpec addresses key limitations in processing multimodal sequences with shallow
draft models. Our experiments demonstrate speedups of up to 3.22 x across diverse VLMs and tasks,
establishing ViSpec as a pioneering solution for multimodal inference acceleration. Despite this
breakthrough, ViSpec’s absolute speedup trails state-of-the-art text-only methods. We identify two
primary avenues for improvement: first, curating higher-quality multimodal training datasets with
greater conversational depth to enhance the draft model’s predictive accuracy; second, optimizing
vision encoder architectures, potentially via dynamic patch reduction or neural compression, to reduce
visual processing overhead. These advancements, coupled with hardware-aware kernel optimizations,
could bridge the performance gap between multimodal and text-only speculative decoding, enabling
real-time deployment of advanced VLMs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction outline the proposed ViSpec framework, its
contributions (vision-aware speculative decoding, image token compression, and dataset
generation), and its scope (accelerating VLM inference).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See Sec. 1]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be made available upon acceptance, and we use only publicly
available datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We fix the random seed for all experiments, so the results are deterministic.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Sec.[3.11
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects, crowdsourcing, or sensitive
data. There is no indication of violating the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work presents a technical advancement for accelerating inference in VLMs
without modifying their outputs or capabilities. The acceleration method itself does not
introduce new societal risks beyond those already present in the underlying models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any new models or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use only publicly available datasets, and we properly credit the original
authors.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The answer NA means that the paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper uses VLMs (LLaVA, Qwen2.5-VL) to generate synthetic training
data with long responses (Sec.[4.3). This usage is clearly described.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Vanilla. We utilize models from the Hugging Face Transformers library with the PyTorch backend
and pre-allocated KV cache. All other methods build upon these models.

Medusa. We implement a 1-layer, 3-head Medusa model, adhering to its default configuration. For
training on both text-only and vision-language datasets, we use a learning rate of 3e-5, a batch size of
8, and the AdamW optimizer. The model is trained for 20 epochs with a 1-epoch warmup and linear
learning rate decay. We set a maximum sequence length of 2048 for both dataset types. For inference,
we adopt EAGLE-2’s draft tree structure, configuring a total of 30 draft tokens, a tree depth of 3, and
selecting 8 nodes during the expansion phase across all models and tasks.

EAGLE-2. We employ a 1-layer EAGLE-2 model, following its default settings. Training on
text-only and vision-language datasets uses a learning rate of 3e-5, a batch size of 8, and the AdamW
optimizer. The model is trained for 20 epochs with a 1-epoch warmup and linear learning rate decay,
with a maximum sequence length of 2048 for both dataset types. For inference, we use EAGLE-2’s
draft tree with 30 draft tokens, a tree depth of 3, and 8 nodes selected during expansion, applied
uniformly across all models and tasks.

ViSpec. We implement a single-layer draft model that mirrors a decoder layer of the target model.
For training on text-only and vision-language datasets, we use a learning rate of 3e-6, a batch size of
8, and the AdamW optimizer. The model is trained for 20 epochs with a 1-epoch warmup and linear
learning rate decay, supporting a maximum sequence length of 2048 for both dataset types. During
inference, we adopt EAGLE-2’s draft tree structure, configuring 30 draft tokens, a tree depth of 3,
and selecting 8 nodes during expansion, applied consistently across all models and tasks.

Generation Prompts. For training dataset generation, we append the prompt “Please answer with at
least 1000 words.” to each sample to elicit long responses. For inference, we use task-specific prompts
to encourage detailed responses. For visual question answering (VQA) tasks, the prompt is: “Please
answer with an explanation.” For optical character recognition (OCR) tasks, the prompt is: “Perform
an OCR task on the provided image. Extract the text accurately and provide a detailed explanation
of the process. Ensure the response is comprehensive and well-structured.” For captioning tasks,
the prompt is: “Provide a detailed description of the given image.” For ScienceQA, we use its
official chain-of-thought prompt to generate the answer, followed by the lecture and explanation
(QCM—ALE).

B Additional Experiments

B.1 Experiments on High-Resolution Datasets

We conducted experiments on high-resolution datasets [31} 37]], where ViSpec continues to demon-
strate strong performance. Table [6] compares ViSpec against the EAGLE-2 baseline using both
LLaVA-1.6 7B and Qwen2.5-VL 7B.

Table 6: Performance on high-resolution datasets, comparing average acceptance length 7 and
speedup ratio.

Model Dataset Method T Speedup

EAGLE-2 143 1.52x
ViSpec 2.86 1.93x

EAGLE-2 142 1.75x
ViSpec 2.85 2.35x

EAGLE-2 034  0.90x
ViSpec 2.16 1.29x

EAGLE-2 0.52  0.95x
ViSpec 2.11 1.37x

HR-Bench 4K
LLaVA-1.6 7B

MME-RealWorld

HR-Bench 4K
Qwen2.5-VL 7B

MME-RealWorld

Notably, Qwen-VL does not cap its input image token count, resulting in a longer prefill time for high-
resolution datasets. Since speculative decoding accelerates only the decoding stage, this extended

21



prefill duration reduces the overall speedup ratio. However, ViSpec’s robust average acceptance
length 7 indicates that the decoding phase itself is still effectively accelerated.

B.2 Experiments with Temporal Data

In principle, ViSpec could be more effective for video inputs, as videos contain temporal redundancy
in addition to the spatial redundancy found in static images. From an input processing standpoint,
this task is not fundamentally different from handling image patches, as video inputs are typically
processed as a sequence of frame embeddings. To test this hypothesis, we apply our draft model,
which was trained exclusively on static image data, directly to video tasks without fine-tuning.

For this preliminary experiment, we compress each video frame into a single embedding, average their
global features, and evaluate the Qwen2.5-VL 7B model on the MSVD-QA [6] and MVBench [17]
datasets. MSVD-QA is a video question-answering task, while MVBench is a benchmark evaluating
temporal understanding across 20 different tasks. We limit the input frames, as processing more
would lengthen the prefill time, thereby reducing the speedup gained from the accelerated decoding
stage. The results are presented in Tab.

Table 7: Performance of Qwen2.5-VL 7B on video datasets, comparing average acceptance length 7
and speedup ratio.

Dataset Method T Speedup

EAGLE-2 1.10 1.22x
ViSpec 2.16 1.46x

EAGLE-2 0.83  0.83x
ViSpec 2.09 1.32x

MSVD-QA

MVBench

The results demonstrate that ViSpec achieves a notable speedup even without video-specific training.
Developing a dedicated framework optimized for video data remains a promising direction for future
work.
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