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Abstract

Large language models (LLMs) consist of numer-
ous Transformer modules, and while the mod-
els can perform various functions, it remains an
open question of how these modules are com-
bined to elicit distinct inherent functionalities.
In this paper, we investigate the modules inside
LLMs and demonstrate that, by simply masking
or retaining specific attention heads during infer-
ence, LLMs can exhibit specific task function-
alities without requiring explicit instructions or
modifications to the model parameters. Experi-
ments across various models and tasks reveal that
LLMs inherently encode “functional pathways”,
the structured groups of interdependent attention
heads that are crucial for executing specific tasks.
These pathways not only govern the model’s
functional behaviors but also enhance parame-
ter efficiency, as suppressing attention heads out-
side the pathway can improve task performance.
The code is available in this repository: https:
//github.com/OpenDFM/HeadsUp.

1. Introduction
Large language models (LLMs) have demonstrated their
powerful capabilities across diverse fields. For the most
popular Transformer-based (Vaswani, 2017) architecture,
the model comprises multiple stacked modules such as at-
tention layers and FFN (Feed-Forward Network) layers.
After being trained on large amounts of data, the model
can support a wide range of functions by prompting texts
containing task instructions. To understand the mechanism
of how a single LLM processes multiple tasks, interpret-
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ing their inner module functionalities has always been of
significant interest to research within the community.

Recent works have demonstrated that built-in transformer
modules of LLMs exhibit certain functionality. For example,
decoder layers of different depths vary in their effects on
the inference and functionality of the model, and existing
research probes the importance of layers and their impact
on the outputs (Men et al., 2024; Bandarkar et al., 2025). A
more fine-grained division of model functional modules is
the level of neurons within the FFN layers. Before LLMs
became popular, many studies suggested that Transformer-
based models store their knowledge in the neurons of FFN
layers (Dalvi et al., 2019; Geva et al., 2021). Later research
on LLMs has further analyzed and localized the types of
knowledge stored within these neurons, such as languages
(Zeng et al., 2025; Tan et al., 2024), concepts (Rai & Yao,
2024) and various tasks (Xiao et al., 2024). Apart from the
two modules above, many works also study the functional
behaviors of attention heads. Although it is generally be-
lieved that function-related knowledge is primarily stored
in the neurons of FFN layers, there are also considerable
works indicating that attention heads play a crucial role in
knowledge storage and processing, including long-context
retrieval, knowledge editing and more (Wu et al., 2025;
Todd et al., 2024; Jin et al., 2024). As these works above
provide valuable insights into the model module function-
ality, most of their methodologies rely on certain tasks or
carefully designed prompts, limiting their generalization
to other uncovered tasks. Furthermore, these works often
require explicit instructions to elicit the corresponding task
functionalities of the model, but the reasons and mecha-
nisms behind how a module of the same model supports
different functions are still not well explored.

Interestingly, in neuroscience, many similar cases have iden-
tified the phenomenon of functional partitioning in the brain
(Bertolero et al., 2015; Wig, 2017; Béna & Goodman, 2025),
where various functions can be exhibited through different
combinations of modules (Diez et al., 2015). Inspired by
the modularity in brains, we suppose that the combinations
of LLM modules form functionalities inside the model, and
we propose a simple yet effective method to detect the task
functionalities in LLMs. More specifically, we investigate
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the functions of LLM modules by just removing these mod-
ules from the model. We directly provide the LLM with
the task dataset without instructions, and train a 0-1 binary
module mask to determine the modules selected for this
task. Surprisingly, on the modules of attention heads, this
straightforward idea leads us to a marvelous discovery: by
selectively masking attention heads and allowing only
certain heads to remain active in LLMs, they can directly
exhibit specific task functionalities without the presence
of instruction prompts (Figure 1). We widely confirm this
phenomenon across various open-sourced LLMs covering
both base and instruct models, various sizes of LLMs rang-
ing from 0.5B to 14B, and various tasks including classifica-
tion, extraction, generation and more. Our detailed analysis
experiments on attention heads suggest that LLMs contain
functional pathways, which are groups of interdependent
attention heads that work together to enable specific func-
tionalities. Such pathways play critical roles when the model
performs related functions, and disrupting these dependent
attention heads can significantly worsen performance on
related tasks. Furthermore, as a de-noising process for the
attention heads, if attention heads outside the pathway are
reduced or pruned, the model may even exhibit improved
performance. Our findings reveal the inherent capabilities
of attention heads and locate their specific functional com-
binations within the model, providing valuable insights into
the inner functionalities and behaviors of LLMs.

Our contributions can be summarized as follows:

• We find that masking out certain attention heads can
trigger the task functionality in the LLM without us-
ing prompts, and we propose a simple learning-based
method to detect them (Section 3).

• The selected heads form an interdependent functional
pathway on the model, and they have a more critical
impact on the model’s functionalities (Section 4).

• By scaling down the outputs of heads outside the func-
tional pathway, we can effectively mitigate the negative
impact of these heads on the model, and even improve
the model’s performance on the task (Section 5).

2. Related Work
Discovering functionality in LLMs Previous studies uti-
lize diverse approaches to locate the modularity or function-
ality of LLMs. For neurons in FFN layers, the activation
function works as a natural judge to determine whether the
neuron is important to the input, and many works use the
activating frequency (Tan et al., 2024; Zeng et al., 2025)
or the output magnitude (Xiao et al., 2024) to partition the
model. At the granularity of attention heads, other methods
can be applied, such as comparing head logit differences and
calculating attention scores (Zheng et al., 2024). Besides
these granularity specified methods, many works also use
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Figure 1. By masking and selecting certain attention heads, the
model can directly exhibit task functionalities and generate differ-
ent outputs under the same input.

universal approaches to detect the parameter functionality,
like mapping module parameters or outputs to the vocabu-
lary space (Wendler et al., 2024; Feng et al., 2024; Rai &
Yao, 2024; Elhelo & Geva, 2024) or comparing parameter
changes after task fine-tuning (Zhang et al., 2024; Panigrahi
et al., 2023; Xu et al., 2025; Wu et al., 2024b). Particularly,
some PEFT-related works also use the strategies of scaling
and biasing the output of attention heads (Yin et al., 2024;
Wu et al., 2024a), which is similar to our attention mask. In
contrast, we only use the discrete scale of 0 or 1 to select
the heads, and such unmodified head parameters are better
able to reflect the original behavior of the model.

Functionality in attention heads Attention heads are be-
lieved to be capable of performing functions in editing the
information flow (Zheng et al., 2024). In smaller pre-trained
language models, Jo & Myaeng (2020) evaluate each atten-
tion heads on various tasks and finds that heads differ in their
influence. For LLMs, Jin et al. (2024) use the gradient-based
method to locate “memory heads” and “context heads”, and
Wu et al. (2025) further locate “retrieval heads” by counting
their retrieval scores. Such functionality of attention heads
is too generic and task-dependent, making it unsuitable for
wide application on other tasks. Other works also manage
to locate the important heads in respective of different tasks
or knowledge (Todd et al., 2024; Yao et al., 2024), but they
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usually require carefully designed prompts to work well. In
our work, the training of attention masks allows any ordi-
nary task datasets, and the usage or removal of heads can
directly reflect their inherent functionalities on the task.

3. Attention Head Selection Extensively
Triggers Functionality

In this section, we provide our main experiment results of
the attention head selection. We first define the notations,
methods and settings used in the module selection, then
we show the conclusion that attention head selection can
extensively trigger functionalities in LLMs.

3.1. Preliminaries and Notations

Modern LLMs are commonly decoder-only Transform-
ers, and a decoder layer includes a multi-head attention
(MHA) layer and an FFN layer. For an LLM that has
a hidden size of d, consider the input X ∈ Rs×d with
the length s at the decoder layer l. Four projection matri-
ces WQ,WK ,WV ,WO ∈ Rd×d compute the attention
scores and write the processed hidden states MHA(X) into
the residual stream. For the MHA part, suppose the atten-
tion layer has h heads1, and each head has a dim size of
dhead = d/h. Thus for head i, its contribution Y(i) ∈ Rs×d

to the MHA output is

Y(i) = softmax

(
XW

(i)
Q (XW

(i)
K )T

√
dhead

)
XW

(i)
V W

(i)
O ,

(1)
where W

(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dhead are submatrices be-

longing to head i, and W
(i)
O ∈ Rdhead×d is the “head” sub-

matrix that projects the output of head i to the hidden space.
In this way, the final output of MHA can be calculated as
MHA(X) =

∑h
i Y

(i).

Using this notation, it’s easy to block the output of certain
heads by simply setting their contributions to zero. Specif-
ically, for layer l we use a binary mask m ∈ {0, 1}h to
indicate which heads are selected in the model, and the
layer MHA output can be written as:

MHA(X) =

h∑
i

miY
(i). (2)

There will be different masks at different layers of the
model. For an LLM with n layers, we expect a mask
M ∈ {0, 1}n×h to indicate all the selected attention heads
in the model. When applying M to the model, it can be re-
garded as combining the selected attention heads as a group

1Some LLMs have fewer KV heads than Q heads, and the
matrices of KV heads are repeated to be equal in size during the
runtime. We take WK ,WV as already repeated for simplicity.

in the mask. Using the similar approach, we can also block
the output of certain FFN layers, though the mask mostly
just simply use all the layers (see Appendix C.3.3). Here,
we will only apply masks to attention heads.

3.2. Mask Training

For a certain task t, We use the training-based method to
get its attention head mask M. Specifically, we freeze all
the original parameters in the model, and only train a head
weight M that has the same size with M but in the Rn×h

space. Weights in M can indicate the importance of heads
to the task, and the binary mask M can be obtained by the
sigmoid function M = I(σ(M) ≥ 0.5). Inspired by Fang
et al. (2024) and Csordás et al. (2021), we introduce the
Gumbel trick (Gumbel, 1954) into the sigmoid function to
encourage σ(M) to converge towards 0 or 1 in the training:

M = I
(
σ

(
M+G

τ

)
≥ 0.5

)
, (3)

where G = log(− log E), ϵij ∈ E , ϵij ∼ U(0, 1) is the left-
tail Gumbel noise matrix and τ is the temperature. Smaller
τ amplifies the impact of noise while also encouraging the
weights M to shift toward the positive or negative extremes.
Using the reparametrization trick, we can get a discrete but
still differentiable mask M during the training.

Just like fine-tuning an ordinary language model, it’s
straightforward to train an attention head mask: for a sam-
ple (x, y) in the task dataset Dt, we directly take the x||y
as input without any task instructions and optimize the
head weight M on the output sequence y to minimize the
loss. Note that the weight M is initialized with a positive
value so that initial σ(M) ≈ 1, and the training process is
like removing attention heads from the full model. After
training, we remove the Gumbel noise from (3) and use
M = I(σ(M) ≥ 0.5) as the final mask for inference.

3.3. Experiment Setting

Models To verify the generalization of this attention selec-
tion strategy, we experiment with different types and sizes
of LLMs as follows:

• Llama 3.1 series (Dubey et al., 2024): 8B, 8B-instruct

• Qwen2.5 series (Team, 2024b): 0.5B-instruct, 1.5B-
instruct, 3B-instruct, 7B, 7B-instruct, 14B-instruct

• Other series of LLMs: Phi-3.5-mini-instruct (Adina-
Tru, 2024, with 3.8B params), Mistral-7B-Instruct-v0.3
(Jiang et al., 2023)

Details of their size and attention head settings are listed in
Appendix A. We primarily conduct experiments using two
8B Llama 3.1 models, while other models are mainly used
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to validate the effectiveness of the attention head mask. By
convenience, we refer to the 8B-instruct version of Llama
3.1 as Llama3.18B-inst in this paper, and other models follow
similar patterns. We use LM Transparency Tool (Tufanov
et al., 2024) to probe the logit outputs inside the models.

Tasks and datasets We train the head mask on two types
of tasks: simple tasks and machine translation. Simple tasks
are taken from the work by Todd et al. (2024), including 35
datasets of relatively simple tasks like generating antonyms
and extracting items. Machine translation uses the XNLI
(Conneau et al., 2018) parallel corpus for 15 languages,
and we choose English, Chinese, French, Spanish, German,
Russian and Arabic (en, zh, fr, es, de, ru, ar) for translation.
These 7 languages can be combined into 42 translation pairs
for a broad generalization of the head mask. Both types
of tasks have the characteristic that models can hardly
generate the desired output solely based on the input
unless they are explicitly instructed on the task to be
performed. For each dataset, we select 100 samples as
the evaluation set, and the remaining samples are used for
training. Details of these datasets are listed in Appendix A.

3.4. Experiment Results

Following the paradigm defined above, we train head masks
for different tasks on various models. Our finding is: these
masks extensively work on all the tasks, and such attention
head combinations trigger the functionalities on both pre-
trained and instruction fine-tuned models.

Evaluation results We report the perplexity (PPL) and
ROUGE-L (Lin, 2004) of Llama3.18B-inst and Llama3.18B
on 6 English translation tasks, as shown in Table 1. With the
mask M, by removing 15%-20% attention heads from the
model, both models can reach better or comparable scores
than the full models with explicit translation instructions
(e.g. “Translate into Chinese:”). As an ablation, randomly
selecting an equal number of attention heads results in a
higher PPL than the original full model, indicating that the
learned M effectively covers the attention heads necessary
for the task. Additionally, we attempt to swap the masks
between pre-trained and instruction models for the same
task, finding that their PPL also decreases compared to the
original full model. Appendix C.1 presents the experiment
results on other translation pairs and models. Except for
the relatively poor performance on Qwen2.50.5B-inst, other
models consistently yield similar conclusions.

Simple tasks also show the similar phenomenon. We select
6 representative tasks out of 35 in Table 2: sentiment (clas-
sification), antonym (semantic), capitalize_first_letter (pat-
tern), product-company (knowledge), conll2003_location
(recognition) and fruit_v_animal_3 (logic). In this genera-
tion scenario, the original full model can hardly generate
the desired output without task instructions. Instead, using

Table 1. Numbers of attention heads selected in the masks, and
the metrics of translation tasks from English to other 6 languages.
“Original” uses no instructions nor masks, and “w/ instruction”
adds explicit translation prompts to the original model. “Random
M” shuffles the task mask and has the equal number of heads.
Bold and underline indicate the best and second-best scores.

Method en-zh en-fr en-es en-de en-ru en-ar

Llama3.18B-inst
- # of heads in M 832 860 846 862 828 837

PPL (↓)
- Original 2.643 2.172 2.319 2.314 2.327 2.730
- w/ instruction 1.091 0.619 0.550 0.627 0.954 1.303
- w/ random M 2.909 2.370 2.762 2.482 2.677 3.204
- w/ M 1.017 0.552 0.504 0.580 1.055 1.322
- w/ M of Llama3.18B 2.269 1.114 1.061 1.612 2.105 2.381

ROUGE-L (↑)
- Original 0.020 0.082 0.069 0.069 0.045 0.029
- w/ instruction 0.539 0.541 0.599 0.576 0.491 0.414
- w/ M 0.589 0.711 0.748 0.677 0.401 0.427
- w/ M of Llama3.18B 0.019 0.204 0.241 0.099 0.046 0.045

Llama3.18B
- # of heads in M 819 809 811 816 795 821

PPL (↓)
- Original 2.308 1.672 1.853 1.780 1.824 2.434
- w/ instruction 1.901 1.240 1.350 1.258 1.573 1.945
- w/ random M 2.703 2.329 2.337 2.133 2.377 3.251
- w/ M 1.158 0.585 0.577 0.660 1.142 1.867
- w/ M of Llama3.18B-inst 2.213 1.512 1.515 1.480 1.754 2.393

ROUGE-L (↑)
- Original 0.017 0.072 0.067 0.066 0.045 0.030
- w/ instruction 0.017 0.084 0.080 0.076 0.054 0.029
- w/ M 0.424 0.658 0.657 0.606 0.179 0.067
- w/ M of Llama3.18B-inst 0.016 0.071 0.074 0.076 0.037 0.030

partial attention heads selected by M only can trigger the
model functionality, and significantly improve the accuracy
of these tasks. The results on other tasks and experiments
on Qwen2.57B-inst, Qwen2.57B are listed in Appendix C.1,
and on simple tasks the pre-trained model Qwen2.57B also
exhibits well functionality.

Besides, we found that the model’s few-shot in-context
learning functionality can also be enhanced by applying the
head mask, as shown in Table 3. For the 6 representative
simple tasks, we constructed 5-shot demonstration samples
(without instructions) for each task. The masks trained using
these samples generally outperform the original model with
instructional 5-shot samples. Furthermore, we mix the 5-
shot data from 32 out of 35 simple tasks to form a 5-shot
multi-task hybrid dataset. After training the mask on this
hybrid dataset, the model demonstrates improved few-shot
in-context learning performance across various tasks, even
including those not seen in the training data. This suggests
that the attention head mask can also promote the model’s
abstract functionality of in-context learning.

Larger model shows better head functionality As a part
of scaling validation, when using the head mask to trigger
translation functionalities, we find that larger LLMs tend
to have better results. In Table 4, we show the genera-
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Table 2. Numbers of attention heads selected in the masks, and the
accuracy of 6 representative simple tasks. Using the same notation
as in the Table 1.

Method senti-
ment

anto-
nym

capitalize
first letter

product-
company

conll2003
location

fruit v
animal

Llama3.18B-inst
- # of heads in M 745 834 774 754 787 827

Accuracy (↑)
- Original 0.01 0.12 0.15 0.06 0.00 0.00
- w/ instruction 0.59 0.30 0.97 0.73 0.41 0.51
- w/ M 0.86 0.76 1.00 0.83 0.92 0.98
- w/ M of Llama3.18B 0.64 0.75 0.98 0.78 0.75 0.87

Llama3.18B
- # of heads in M 679 726 678 674 670 786

Accuracy (↑)
- Original 0.00 0.13 0.00 0.07 0.07 0.00
- w/ instruction 0.91 0.66 1.00 0.75 0.79 0.99
- w/ M 0.80 0.66 0.99 0.76 0.79 0.97
- w/ M of Llama3.18B-inst 0.00 0.11 0.06 0.35 0.37 0.43

Table 3. Accuracy of 6 representative simple tasks in the 5-shot
scenario on Llama3.18B-inst. Italic indicates that the correspond-
ing task is not included in the hybrid dataset (unseen during the
training).

Method senti-
ment

anto-
nym

capitalize
first letter

product-
company

conll2003
location

fruit v
animal

Original, 5-shot 0.96 0.56 0.95 0.77 0.61 0.98
w/ instruction, 5-shot 0.97 0.67 1.00 0.84 0.72 1.00
w/ M, 5-shot 0.99 0.73 0.99 0.88 0.95 1.00
w/ M of hybrid, 5-shot 0.98 0.69 1.00 0.88 0.82 1.00

tion examples of four translation pairs on Qwen2.5 series.
Smaller models suffer from difficulties in triggering target
functionality (e.g. Qwen2.50.5B-inst on en-es directly takes
the input as instruction), aligning to the target language
(e.g. Qwen2.50.5B-inst on en-de), and accurately translating
the sentence. From the perspective of attention heads, as
larger models usually have more attention heads, there are
more combinations of heads available to correspond to more
functionalities. On the other hand, Qwen2.50.5B-inst and
Qwen2.51.5B-inst have the same amount of attention heads,
but the latter has larger hidden size and more parameters
in FFN layers, which may work better to process the func-
tionality from incomplete MHA output. A more illustrative
example is shown in Table 4a and 4b, where we probe
the last layer’s output logits on the last token of the input.
When using the head mask of the translation task en-de,
Qwen2.50.5B-inst takes “I” as the top-1 token, but German
words “Es” (It), the expected “Ich” (I) and Russian “Я” (I)
are also in top tokens. In contrast, with the explicit instruc-
tion, the model can correctly predict the token “Ich” as the
top-1 token. This suggests that the small models may have
difficulty in distinguishing and triggering the functions of
different attention heads.

Pre-trained models also possess functionalities Even
though pretrained models (base models without instruction
fine-tuning) generally perform worse than instruction fine-
tuned models on both types of tasks, we observe that they
still exhibit certain functionalities, especially in simple tasks.

Table 4. Left: After applying the head masks, the generated results
of the English input "I have never seen such a beautiful sunset."
across different sizes of models. We use green to highlight the
correct translations, yellow for partially correct translations, and
red for incorrect translations. Right: Top output tokens and their
logits on Qwen2.50.5B-inst. Upper (a) is with the M of task en-de,
and lower (b) is with the explicit translation instruction.

Model & Task Prediction

Qwen2.50.5B-inst
- en-zh 我从未见过如此美丽的日落。
- en-fr Je n’ai jamais vu tellement une belle lueur de ciel.
- en-es I’m sorry, but I can’t provide the exact description of a sunset ...
- en-de I’ve never seen such a beautiful sunset.

Qwen2.51.5B-inst
- en-zh 我从未见过如此美丽的日落。
- en-fr Je n’ai jamais vu un coucher de soleil aussi beau.
- en-es He nunca había visto un solsticio tan hermoso.
- en-de I can’t say I’ve ever witnessed one like that before.

Qwen2.53B-inst
- en-zh 我从没见过如此美丽的日落。
- en-fr J’ai jamais vu un tel coucher de soleil si beau.
- en-es Nunca había visto una puesta de sol tan hermosa.
- en-de Ich habe nie so ein wunderschönes Sonnenuntergang gesehen.

(a) w/ M

(b) w/ inst

Table 5. Jaccard similarities of head masks on 12 tasks between
Llama3.18B-inst and Llama3.18B. “Random” calculates the math
expectation of Jaccard similarity on two randomly shuffled masks.

Task en-zh en-fr en-es en-de en-ru en-ar

Similarity 0.766 0.766 0.797 0.802 0.740 0.762
Random 0.675 0.687 0.679 0.693 0.656 0.680

Task sentiment antonym capitalize
first letter

product-
company

conll2003
location

fruit v
animal

Similarity 0.591 0.707 0.612 0.634 0.615 0.707
Random 0.531 0.610 0.545 0.533 0.547 0.649

This makes us believe that the pre-trained models have al-
ready learned some task-related knowledge in the attention
heads during the next-token prediction pre-training. As
swapping the head masks can also trigger certain function-
alities in some cases, we further investigate the similarity
of the selected attention heads between the pre-trained and
instruction models. For two masks of Llama3.18B-inst and
Llama3.18B on the same task, we calculate the Jaccard sim-
ilarity of the selected attention heads. Table 5 shows that
the mask similarity is generally higher than the random
expectation, but still lower than identical 1.0, as masks of
the instruction model tend to use more heads. We suppose
that the instruction model inherits most of the attention
head functionalities from the pre-trained model, and also
introduces new functionalities that are not present in the
pre-trained model during the instruction fine-tuning.

4. Attention Head Selection Forms Functional
Pathways

In this section, we further investigate how the combination
of selected attention heads triggers the task functionality
in the LLM. We first define the functional pathway as a
group of interdependent attention heads that work together
to enable specific functionalities. In the following experi-
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659 I see a see a see a see a see a see a see a see a see a see
715 assistant.assistant.assistant.assistant.assistant.assistant.assistant.assistant.assistant.assistant.

... ...

Figure 2. Prompt Llama3.18B-inst with “I see a llama sleeping in my backyard.”, and remove attention heads from the full model by head
weight of en-zh translation task in ascending order. Left: With the removal of attention heads, changes of token ranks in the first generated
token. Blue lines indicate the original top-5 tokens and the red line indicates the target token “我” (I) for translation. Right: Generated
outputs of the model after removing different amounts of attention heads.

ments, We find that attention heads selected by the mask
form such pathways in the model, and disrupting or selec-
tively masking these heads significantly alters the model’s
task performance. We further reveal that these heads tend
to shift the model’s original behavior towards the task func-
tionality, and such a pathway effect is unlikely caused by
paying more attention to certain tokens.

Attention heads form critical, interdependent functional
pathways inside the model We first want to know how
masking certain attention heads can switch the model’s be-
havior from instruction-following towards task functionality.
One way to probe the behavior changes is progressively
removing attention heads one by one from the full model.
On model Llama3.18B-inst and the en-zh translation task, we
start with the attention head that has the minimum weight in
M, remove heads in the weight ascending order, and check
the changes in the generated responses. As shown in Figure
2, the model experiences multiple stages in behaviors:

• Stage 1: The model can still preserve the functional-
ity as an instruction model, but when approximately
100 attention heads are removed, the rank of the tar-
get translation token (red line) experiences a drastic
increase. This surge indicates that the model’s transla-
tion functionality begins to emerge.

• Stage 2: After removing 158 attention heads, the model
undergoes a rapid transition, and starting from the
removal of the 162nd head, it shifts from its original
instruction-following behavior to a translation behavior.
This task functionality begins to dominate, and further
removal of attention heads causes the rankings of initial
top tokens (blue lines) to drop rapidly.

• Stage 3: As more attention heads are removed, after
528 heads, the model’s language processing ability
begins to lose, and the generated tokens will become
meaningless in the end. This is expected as the model
has lost the majority of its attention heads.

Table 6. PPL of explicit translation tasks from English to other
languages when applying different masks on Llama3.18B-inst. We
remove attention heads from the full mask 1 that: “all” - used by
all 42 translation tasks, “en” - used by 12 translation tasks related
to English, and “unused” - not used by any translation tasks.

Method # of heads en-zh en-fr en-es en-de en-ru en-ar

Instruction 1024 1.091 0.619 0.550 0.627 0.954 1.303

w/ 1\all 847 4.322 4.129 4.149 4.406 5.008 5.441
w/ random 1\all 847 2.122 0.792 0.864 1.248 1.237 2.578

w/ 1\en 741 7.029 6.137 6.396 6.511 6.903 7.011
w/ random 1\en 741 3.325 1.480 2.136 1.540 2.619 2.972

w/ 1\unused 977 1.064 0.577 0.497 0.585 0.924 1.269
w/ random 1\unused 977 1.112 0.688 0.705 0.603 1.020 1.369

Specifically, we observe that when attention heads are re-
moved, there are numerous abrupt, drastic changes in token
ranks. If the attention heads worked independently, then
firstly removing those heads that significantly promote the
target token rank would accelerate the behavior shift of the
model. However, this influential removal order actually de-
lays the functionality switch (see more in Appendix C.3).
This suggests that the behavior changes are not caused by
removing certain independent attention heads, but are built
upon the removal of all previously removed attention heads.

Considering such dependency between attention heads, if
we take the selected attention heads as nodes and connect
them with edges, then we can get an interdependent func-
tional pathway that influence model behaviors. To verify
the impact of such head pathways on model functionality,
we initialize the head weights M with negative values (so
that initial σ(M) ≈ 0) when training the mask M. This
approach yields us masks with fewer and more task-specific
attention heads while slightly damaging language capability.
We train these masks on 42 pairs of translation tasks, iden-
tify the heads that are commonly used or unused, remove
these common heads from the model and evaluate PPL on
translation tasks. As these common heads are used in every
translation task, we can consider them as key components
of the translation function pathway. Within our expectation,
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Figure 3. Changes of head weights in the mask training progress.
Blue lines indicate the heads that are selected in the final mask,
and red lines indicate the heads that are not selected. We highlight
the heads that undergo dependent changes during the training.

in Table 6 we find that blocking the key translation-related
attention heads in the pathway can lead to a severe perfor-
mance drop on the translation tasks.2 This demonstrates
that combined attention heads inside the task pathway sig-
nificantly influences the related functionality of the model.

We further explain the point that heads inside the task path-
way do not just independently retain task-related functions.
A piece of illustrative evidence in Figure 3 shows that at-
tention heads in the pathway are dependent on each other,
where we probe into the changes in head weights during the
mask training. We notice that many unused heads in the
final M initially have been temporarily selected during the
training (sigmoid weight greater than 0.5), but as more other
heads join the pathway during the training progress, these
heads are eventually ablated from the pathway. A similar
phenomenon can be also observed in some heads that are
selected in the final mask, as they are not selected in the
early training stage but are added to the pathway later. From
this perspective, such functionality exhibited by the com-
bination of attention heads is not independently triggered
by the individual attention heads being combined, but is
instead triggered through functional pathways formed by
their interdependence.

Attention head masks attempt to reconstruct the task
functionality We further investigate why the functional
pathway formed by attention heads can trigger the task func-
tionality without explicit instructions. Intuitively, if the
output of the model using head mask M on the last token
is similar to that of the model with instructions, it can be
considered that the pathway formed by the mask is attempt-
ing to approximate the information flow required to execute
the function. Again, we prompt Llama3.18B-inst with the
sentence “I see a llama sleeping in my backyard.”, and cal-
culate the cosine similarities of layer hidden state outputs
between different model and input settings, as shown in Fig-

2Surprisingly, removing unused heads results in slight improve-
ments. This enlightens us to further utilize it in Section 5.
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Figure 4. Cosine similarities of hidden states between different
settings after each layer. Dark lines indicate the outputs of decoder
(also FFN) layers and light lines indicate the outputs of attention
layers. We also project the decoder hidden states of Original and
w/ M into the vocabulary space and label their top-1 tokens.

ure 4. We use three settings for comparison: (Blue) Original
vs. w/ instruction (“Translate into Chinese”), which uses
the same model but different functions; (Red) w/ M vs. w/
instruction, which performs the same function but differs in
model; and (Green) w/ M vs. w/ M + instruction, which
performs the same function in the same model. Compared
with the original model without instructions nor masks, the
FFN hidden state outputs of the masked model gain higher
similarity with the unmasked instructed model in the later
layers. It’s easy to understand that LLM often performs lan-
guage understanding and semantic processing at shallower
layers, while more complex task-related inferences are car-
ried out at deeper layers (Bandarkar et al., 2025; Wendler
et al., 2024), so consequently the model with M demon-
strates an advantage in similarity only in the latter half of
the model. Meanwhile, considering the inherent differences
in the instructions given to the model inputs, even having
the same model perform the same function, the layer out-
puts still cannot always maintain a high level of similarity
at every layer (green line). Compared with it, the advantage
of the masked model over the original model in later layer
output similarities indicates that: as the layer goes deeper,
the combined attention heads are attempting to reconstruct
the functional information flow of the model.

In the same scenario depicted in Figure 2, we also calculate
the similarities of layer outputs during this one-by-one head
removal and present their changes in Figure 5. We find
that as attention heads are gradually removed, the similarity
in deeper decoder layers between the masked model and
instructed model increases, and the value becomes stable
once the masked model fully exhibits the target translation
functionality (after removing 192 heads). This increase in
similarity indicates that the remaining attention heads are
reconstructing the task functionality during the process of
unveiling the function pathway. In contrast, the similarity
of the shallower layer outputs slightly decreases as more
attention heads are removed. This can be explained since
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Figure 5. Remove attention heads from the full model by weight
ascending order, and the cosine similarities of hidden states be-
tween w/ instruction and w/ M after each decoder layer. Darker
lines indicate later layers (closer to the model output).

the shallower layers have not yet processed much about
functionality, and removing attention heads reduces their
capacity to handle language and semantic processing.

Attention head mask is not selecting attention scores
Although the attention head selection involves the model’s
attention mechanism, we did not explore how this selection
affects token attention scores in the previous discussion.
Normally, in the attention layer, the model attends to the
preceding tokens with varying attention scores. However,
since our attention selection is independent of instructions,
the model’s attention will not focus on nonexistent instruc-
tion tokens. Especially in some simple tasks, the model
input is just a single token, and there is little space for the
attention mechanism to work around. From this perspective,
such functionality is unlikely caused by simply selecting
attention heads that are more focused on the target.

We verify this hypothesis by calculating the average atten-
tion score distribution of heads on 4 extractive simple tasks
on Llama3.18B-inst as they have explicit target tokens in the
inputs. The input to these tasks is a set of words, and the
objective is to extract the target one that is different from the
others. As shown in Table 7, for the original model without
task instructions, the model does not pay significant atten-
tion to the target word, and as expected, the instructed model
has higher attention scores on the target word. However, if
we separately calculate the average attention scores of heads
in and out of the task mask M, we find that the selected at-
tention heads do not necessarily have higher attention scores
(even lower in 3 out of 4 tasks) on the target word. This
indicates that the head selection is not based on the attention
scores of the instructed model. Even in the masked model,
attentions to the target word are further promoted, but the
unused heads still have high attention scores on the target
word, notwithstanding they are not involved in the model
inference. Such anomaly in attention scores suggests that
the selection of attention heads functions more as influenc-
ing the overall behavior of the model. This is consistent

Table 7. Average attention scores of attention heads on the target
word. These tasks require selecting 1 word that differs from the
others among 3 words (so the uniform score is 0.33). We calculate
the attention score of each attention head on these words for the
last token of the input, normalize it, and then sum up the attention
on all tokens of the target word as the values below.

Method adjective v
verb

object v
concept

verb v
adjective

fruit v
animal

Original, all heads 0.352 0.306 0.314 0.347

w/ instruction, all heads 0.409 0.363 0.345 0.468
w/ instruction, heads in M 0.408 0.356 0.353 0.462
w/ instruction, heads in 1−M 0.413 0.386 0.316 0.494

w/ M, heads in M 0.462 0.471 0.426 0.566
w/ M, heads in 1−M 0.484 0.537 0.379 0.607

with the previous findings that the selected attention heads
are not independently triggering the functionality, but are
forming pathways to activate the model.

5. Attention Head Selection Potentially
Improves Model Performance

In Table 6, we notice that removing translation-unrelated
attention heads can decrease the perplexity of the model
on the translation task. This suggests that the model may
inherently possess a better ability to perform specific tasks,
but this ability is suppressed by the noise of other attention
heads outside the pathway to better handle a broader range
of tasks. To measure the influence of unselected heads
to the task, we introduce a scaling factor α ∈ [0, 1] on
the outputs of attention heads outside M, and in this case
the head mask can be written as M = I(σ(M) ≥ 0.5) +
αI(σ(M) < 0.5). We conduct a grid search on 6 explicitly
instructed translation tasks of XNLI with Llama3.18B-inst.
As shown in Figure 6, it can be observed that using masks
to remove attention heads outside the pathway (α = 0)
consistently results in lower PPL than using all attention
heads (α = 1). Meanwhile, this scaling method is not
a simple linear interpolation between the full model and
the zero-masked model, but a convex combination of the
two: using a small α around 0.2 or 0.3 can achieve a lower
PPL. To further verify the performance improvement of the
model in the generation scenario, we conduct evaluations
using the additional translation dataset IWSLT2017 (Cettolo
et al., 2017). Under the condition of providing the same
translation instructions, we compare the score differences
between the original model and the model with the scaled
M applied. As shown in Table 8, using M consistently
improves the model’s BLEU scores on these translation
tasks, and applying a small scaler α can offer further slight
enhancements. From this perspective, selecting attention
heads can better showcase the model’s inherent but hindered
capabilities, potentially improving its performance.
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Figure 6. PPL of translation tasks when using both explicit instruc-
tions and task masks, with different scaling factors α. Mark “×”
points to the PPL of the model without instructions.

Table 8. BLEU scores for explicitly instructed translation pairs on
IWSLT2017. Each scaled translation pair uses its own mask with
the best scaling factor α shown in Figure 6.

Method en-zh en-fr en-de zh-en fr-en de-en

Instructed 0.322 0.699 0.657 0.604 0.739 0.716
w/ M 0.347 0.716 0.674 0.610 0.743 0.720
w/ scaled M 0.349 0.717 0.678 0.611 0.743 0.719

6. Conclusion
In this paper, we discover that LLMs can directly exhibit
functionality solely through combining attention heads, and
we propose a simple method to identify intrinsic functional
pathways within the model. By focusing on the model’s
inherent functionality, we conduct a detailed investigation
into its mechanisms, contributing to the interpretability of
attention heads and the phenomenon of functional parti-
tioning in LLMs. In the future, we plan to extend similar
research to structures such as FFNs and MoE models with
the expectation of constructing a comprehensive functional
pathway for the model.
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A. Models & Datasets
In this section, we introduce the models and datasets used
in our experiments. Models are selected from various open-
sourced LLMs, as listed in Table 9. For translation tasks, we
use XNLI (Conneau et al., 2018) for training and main eval-
uation, and IWSLT2017 (Cettolo et al., 2017) for additional
evaluation in Section 5. XNLI contains 10000 samples for
each language pair, and we use 100 samples for evaluation
and the remaining 9900 for mask training. IWSLT2017
contains 8549 samples for English-Chinese pair, 8597 sam-
ples for English-French pair, and 8079 samples for English-
German pair. We use all the samples for the evaluation
reported in Table 8. For simple tasks, we choose 35 datasets
in the Function Vector work by Todd et al. (2024). In each
task, we choose out 100 samples for evaluation, and the
remaining samples are used for the fixed-step mask training.
The details of these datasets and our instruction prompts
(for w/ instruction evaluations) are listed in Table 10.

B. Experimental Details
All experiments are conducted on a NVIDIA A800 80GB
GPU. We summarize the hyper-parameters used in the mask
training in Table 11. In particular, for memory reasons, the
batch size on translation tasks of Qwen2.514B-inst is set to
8 and its training steps are 12370. Other hyper-parameters
remain the same. For the evaluation of simple tasks, we
generate 10 new tokens and check whether the response
contains the correct answer, in case the instruct models may
generate some leading words (like “the answer is:”). But
for some tasks like capitalizing letters and extracting items,
we only check whether the response starts with the correct
answer. You may check more implementation details in our
public code repository.

C. More Experiment Results
In this section, we provide more experiment results to sup-
port the findings in the main text.

C.1. Full Evaluation Results on All Models

As complementary to the results in Section 3, we provide the
full evaluation results on all models in Table 12-35 (transla-
tion PPL Table 12-21, translation ROUGE-L Table 22-31,
simple task accuracy Table 32-35). From these complete
results, we also find some other phenomena:

• Qwen2.514B-inst does not give the dominant ROUGE-
L performance in the instructed translation task, al-
though it is the largest model in our experiments. We
examine the translation outputs of Qwen2.514B-inst and
Qwen2.57B-inst, finding that the 14B model tends to
generate more explanation words than the 7B model

Table 9. LLMs used in this paper. We mainly report their attention
layer configurations.

Model name Notation Params Layers Heads KV heads Total heads

Llama-3.1-8B-Instruct Llama3.18B-inst 8.03B 32 32 8 1024
Llama-3.1-8B Llama3.18B 8.03B 32 32 8 1024
Qwen2.5-0.5B-Instruct Qwen2.50.5B-inst 494M 24 14 2 336
Qwen2.5-1.5B-Instruct Qwen2.51.5B-inst 1.54B 28 12 2 336
Qwen2.5-3B-Instruct Qwen2.53B-inst 3.09B 36 16 2 576
Qwen2.5-7B-Instruct Qwen2.57B-inst 7.62B 28 28 4 784
Qwen2.5-7B Qwen2.57B 7.62B 28 28 4 784
Qwen2.5-14B-Instruct Qwen2.514B-inst 14.8B 48 40 8 1920
Phi-3.5-mini-instruct Phi3.5mini-inst 3.82B 32 32 32 1024
Mistral-7B-Instruct-v0.3 Mistral7B-inst 7.25B 32 32 8 1024

alongside the context, which leads to lower ROUGE-L
scores. On the other hand, the translation results of
masked models are more concentrated on the task and
context words, so the w/ M scores of Qwen2.514B-inst
increase significantly compared to the w/ instruction
scores (Table 29). This implies that attention heads
could influence the response style of the model. We
provide a translation example in Table 36.

• For some small models, attention head mask M may
fail on translations to relatively low-resource languages
(e.g., translating to Arabic using models smaller than
Qwen2.53B-inst). Theoretically, if a model has more
attention heads, then it can form more functional path-
ways through their combinations. We suggest that this
phenomenon of attention heads exhibiting functionality
is better applicable to larger LLMs.

• We also test the attention head mask on Gemma 2
series (Team, 2024a). While on Gemma29B-inst the
masked model can also directly elicit the functional-
ity, the masked model on Gemma22B-inst fails on all
the translation pairs. We would ascribe this to the
number of attention heads in the model (208 heads
in total, 26 layers and 8 heads for each). Although
the model has more parameters than Qwen2.50.5B-inst
and Qwen2.50.5B-inst, the lack of sufficient granularity
prevents it from acquiring a combination of attention
heads that can directly elicit functionalities.

For the attention head masks in pre-trained models, we also
provide full results (Table 37, 38) as complementary to the
examples in Table 5. Specifically, we calculate the math
expectation of Jaccard similarity on two randomly shuffled
masks (“Random” column) as follows:

E [Jaccard(M1,M2)] =
E [|M1 ∩M2|]
E [|M1 ∪M2|]

=
|1| |M1|

|1|
|M2|
|1|

E [|M1|+ |M2| − |M1 ∩M2|]

=

|M1||M2|
|1|

|M1|+ |M2| − |M1||M2|
|1|

(4)
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Table 10. Simple task datasets and their task instructions used in this paper.

Task name Samples Prompt

lowercase_first_letter 814 Output the first letter of the given word in lowercase.\n\nInput:\n\n{input}\n\nOutput:\n\n
park-country 749 Identify the country where the given national park is located.\n\nInput:\n\n{input}\n\nOutput:\n\n
synonym 2880 Identify a synonym for the given word.\n\nInput:\n\n{input}\n\nOutput:\n\n

ag_news 7600
Classify the given news headline into one of the categories: Business, Science, Sports, or World. Provide only the
category name.\n\nInput:\n\n{input}\n\nOutput:\n\n

word_length 814 Determine the number of letters in the given word and output the count.\n\nInput:\n\n{input}\n\nOutput:\n\n
present-past 293 Convert the given verb from its present tense to its simple past tense.\n\nInput:\n\n{input}\n\nOutput:\n\n
capitalize 813 Output the given word with its first letter capitalized.\n\nInput:\n\n{input}\n\nOutput:\n\n
landmark-country 836 Identify the country where the given landmark is located.\n\nInput:\n\n{input}\n\nOutput:\n\n
english-german 5145 Translate the given English word into German.\n\nInput:\n\n{input}\n\nOutput:\n\n
sentiment 1167 Determine the sentiment of the given input. Output either ’positive’ or ’negative’.\n\nInput:\n\n{input}\n\nOutput:\n\n
country-capital 197 What is the capital of the given country? Provide only the name of the capital.\n\nInput:\n\n{input}\n\nOutput:\n\n
person-occupation 821 Identify the occupation of the given individual.\n\nInput:\n\n{input}\n\nOutput:\n\n
country-currency 197 What is the official currency of the given country?\n\nInput:\n\n{input}\n\nOutput:\n\n
lowercase_last_letter 814 Output the last letter of the given word in lowercase.\n\nInput:\n\n{input}\n\nOutput:\n\n
person-sport 318 Identify the sport associated with the given individual.\n\nInput:\n\n{input}\n\nOutput:\n\n
person-instrument 510 Identify the musical instrument played by the given musician.\n\nInput:\n\n{input}\n\nOutput:\n\n
antonym 2398 Identify the antonym of the given word.\n\nInput:\n\n{input}\n\nOutput:\n\n
capitalize_last_letter 814 Output the last letter of the given word in uppercase.\n\nInput:\n\n{input}\n\nOutput:\n\n
english-french 4698 Translate the given English word into French.\n\nInput:\n\n{input}\n\nOutput:\n\n
next_item 225 What is the next sequential item following the given input?\n\nInput:\n\n{input}\n\nOutput:\n\n
singular-plural 205 Provide the plural form of the given singular noun.\n\nInput:\n\n{input}\n\nOutput:\n\n
capitalize_second_letter 787 Output the second letter of the given word in uppercase.\n\nInput:\n\n{input}\n\nOutput:\n\n
prev_item 225 What is the item that comes before the given input in a sequential context?\n\nInput:\n\n{input}\n\nOutput:\n\n
capitalize_first_letter 813 Output the first letter of the given word in uppercase.\n\nInput:\n\n{input}\n\nOutput:\n\n
english-spanish 5199 Translate the given English word into Spanish.\n\nInput:\n\n{input}\n\nOutput:\n\n
next_capital_letter 814 What is the next uppercase letter in alphabetical order after the given input?\n\nInput:\n\n{input}\n\nOutput:\n\n
national_parks 451 Identify the U.S. state where the given national park is located.\n\nInput:\n\n{input}\n\nOutput:\n\n
product-company 522 Identify the company associated with the given product.\n\nInput:\n\n{input}\n\nOutput:\n\n
conll2003_organization 3843 Extract the organization mentioned in the given text.\n\nInput:\n\n{input}\n\nOutput:\n\n
conll2003_person 3544 Extract the name of the person mentioned in the given text.\n\nInput:\n\n{input}\n\nOutput:\n\n
conll2003_location 4499 Extract the location mentioned in the given text.\n\nInput:\n\n{input}\n\nOutput:\n\n
adjective_v_verb_3 1000 From the given words, identify the one that is an adjective.\n\nInput:\n\n{input}\n\nOutput:\n\n
object_v_concept_3 1000 From the given words, identify the one that is a object.\n\nInput:\n\n{input}\n\nOutput:\n\n
verb_v_adjective_3 1000 From the given words, identify the one that is a verb.\n\nInput:\n\n{input}\n\nOutput:\n\n
fruit_v_animal_3 1000 From the given words, identify the one that is a fruit.\n\nInput:\n\n{input}\n\nOutput:\n\n

Table 11. Hyper-parameters used in the mask training.

Hyper-parameter Translation task Simple task

Mask weight M initialize N (4, 0.02) N (4, 0.02)
- Negative initialize in Table 6 N (−3, 0.02) N (−3, 0.02)
Batch size 16 16
Train epochs 10 −
Train steps 6190 6250
Learning rate [1e-2, 1e-4], cosine scheduler [1e-2, 1e-4], cosine scheduler
Warmup ratio 0.1 0.1
Gumbel temperature τ [4, 0.05], linear scheduler [4, 0.05], linear scheduler
- τ decrease ratio 0.4 0.4

where |M| is the number of selected heads in the mask M,
and |1| (full mask) is the total number of heads in the model.
As the selected heads in the instruction model are always
more than the pre-trained model, we also calculate the recall
rate on the masks of instruction models. These high recall
rates across tasks indicate that the attention head masks can
be largely inherited from the pre-trained models, therefore
such functionalities probably have been already learned in
the pre-training stage.

C.2. Visualization of Attention Head Masks

We illustrate the attention head mask weight σ(M) for all
42 translation pairs on Llama3.18B-inst in Figure 7. From
this we can draw some intuitive conclusions: (1) The re-
moved attention heads do not exhibit a clear distribution
pattern across the layers of the model. Heads used in the
latter half of the model are only slightly more than those
in the earlier layers. This indicates that the functionality of
attention heads is widely distributed, with attention heads
in different layers contributing to functional pathways. (2)
When the model switches from instruction-following func-
tionality to translation functionality, the removed functional
components are unlikely to be located in the KV heads.
This is because Llama3.18B-inst features a grouped structure
for attention heads (divided into 8 groups of 8 KV heads
each, with each group containing 4 Q heads). If the original
functionality rely on KV heads, the corresponding group
of heads would consistently go unused. However, this pat-
tern of all 4 attention heads in a row being unused is not
evident in the figure. This suggests that such functionality
is more likely distributed in the Q heads or O heads (the
corresponding parts of the projection matrix WO).
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Table 12. XNLI translation perplexity (PPL) on Llama3.18B-inst.

Original

From
To en zh fr es de ru ar

en − 2.643 2.172 2.319 2.314 2.327 2.730
zh 2.143 − 2.093 2.339 2.257 2.304 2.925
fr 2.439 2.911 − 2.357 2.296 2.280 2.751
es 2.254 2.766 2.130 − 2.236 2.273 2.909
de 2.320 2.816 2.176 2.388 − 2.210 2.744
ru 2.621 3.532 2.240 2.513 2.377 − 3.085
ar 2.720 3.668 2.318 2.662 2.608 2.591 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.091 0.619 0.550 0.627 0.954 1.303
zh 1.003 − 0.945 0.988 1.109 1.233 1.645
fr 0.756 1.342 − 0.825 0.912 1.090 1.486
es 0.558 1.206 0.705 − 0.781 1.030 1.426
de 0.629 1.303 0.759 0.758 − 1.026 1.472
ru 1.096 1.555 0.973 1.040 1.073 − 1.701
ar 1.218 1.691 1.167 1.230 1.274 1.397 −

w/ random M

From
To en zh fr es de ru ar

en − 2.909 2.370 2.762 2.482 2.677 3.204
zh 2.250 − 2.208 2.745 2.257 2.791 3.320
fr 2.645 3.268 − 2.838 2.138 3.039 2.929
es 2.187 3.039 2.629 − 2.257 2.383 3.024
de 2.128 3.188 1.969 2.391 − 2.718 2.964
ru 2.655 2.791 2.198 2.568 3.223 − 4.732
ar 3.018 3.674 2.775 2.602 2.821 2.556 −

w/ M

From
To en zh fr es de ru ar

en − 1.017 0.552 0.504 0.580 1.055 1.322
zh 0.997 − 0.970 1.036 1.115 1.241 1.689
fr 0.735 1.314 − 0.805 0.909 1.098 1.504
es 0.551 1.177 0.699 − 0.805 1.076 1.487
de 0.639 1.242 0.758 0.765 − 1.050 1.501
ru 1.070 1.486 0.927 1.032 1.073 − 1.697
ar 1.175 1.657 1.131 1.211 1.286 1.464 −

w/ M of Llama3.18B

From
To en zh fr es de ru ar

en − 1.017 0.552 0.504 0.580 1.055 1.322
zh 0.997 − 0.970 1.036 1.115 1.241 1.689
fr 0.735 1.314 − 0.805 0.909 1.098 1.504
es 0.551 1.177 0.699 − 0.805 1.076 1.487
de 0.639 1.242 0.758 0.765 − 1.050 1.501
ru 1.070 1.486 0.927 1.032 1.073 − 1.697
ar 1.175 1.657 1.131 1.211 1.286 1.464 −

Table 13. XNLI translation perplexity (PPL) on Llama3.18B.

Original

From
To en zh fr es de ru ar

en − 2.308 1.672 1.853 1.780 1.824 2.434
zh 1.947 − 2.071 2.335 2.298 2.186 2.918
fr 1.714 2.573 − 2.002 1.951 1.932 2.516
es 1.543 2.446 1.704 − 1.904 1.863 2.465
de 1.592 2.532 1.778 2.008 − 1.854 2.574
ru 1.960 2.704 1.886 2.202 2.087 − 2.670
ar 2.201 2.914 2.053 2.312 2.340 2.282 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.901 1.240 1.350 1.258 1.573 1.945
zh 1.542 − 1.492 1.658 1.621 1.685 2.183
fr 1.523 2.136 − 1.543 1.525 1.660 2.086
es 1.327 1.955 1.289 − 1.402 1.609 2.029
de 1.410 2.080 1.366 1.499 − 1.614 2.107
ru 1.902 2.279 1.624 1.862 1.773 − 2.294
ar 1.867 2.410 1.754 1.942 1.908 1.961 −

w/ random M

From
To en zh fr es de ru ar

en − 2.703 2.329 2.337 2.133 2.377 3.251
zh 2.041 − 2.578 2.699 2.934 2.912 3.753
fr 1.727 2.875 − 3.190 2.407 2.187 2.916
es 2.221 2.630 1.849 − 2.841 2.115 3.179
de 2.511 3.247 2.055 2.445 − 2.190 4.044
ru 1.935 3.710 2.139 2.430 3.188 − 3.328
ar 2.567 3.440 2.596 2.958 2.680 4.758 −

w/ M

From
To en zh fr es de ru ar

en − 1.158 0.585 0.577 0.660 1.142 1.867
zh 1.087 − 1.111 1.142 1.300 1.349 1.960
fr 0.798 1.450 − 0.923 1.027 1.161 1.734
es 0.623 1.336 0.800 − 0.911 1.087 1.709
de 0.701 1.386 0.846 0.832 − 1.108 1.738
ru 1.124 1.641 1.037 1.137 1.172 − 1.998
ar 1.275 1.810 1.294 1.324 1.404 1.506 −

w/ M of Llama3.18B-inst

From
To en zh fr es de ru ar

en − 2.213 1.512 1.515 1.480 1.754 2.393
zh 1.566 − 1.661 1.967 1.933 2.014 2.692
fr 1.312 2.051 − 1.742 1.589 1.596 2.363
es 1.048 1.915 1.410 − 1.539 1.759 2.395
de 1.224 1.998 1.566 1.730 − 1.658 2.446
ru 1.618 2.367 1.612 1.908 1.690 − 2.563
ar 1.785 2.334 1.809 1.901 1.868 1.939 −
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Table 14. XNLI translation perplexity (PPL) on Qwen2.57B-inst.

Original

From
To en zh fr es de ru ar

en − 5.481 3.268 3.466 3.171 3.109 3.925
zh 3.983 − 3.418 3.712 3.612 3.019 3.920
fr 4.178 5.962 − 3.682 3.443 2.884 3.964
es 3.799 5.809 3.183 − 3.112 2.754 4.092
de 3.673 5.627 3.328 3.722 − 2.820 4.065
ru 4.665 6.459 3.618 4.036 3.611 − 4.600
ar 4.299 5.744 3.239 3.663 3.543 2.891 −

w/ instruction

From
To en zh fr es de ru ar

en − 2.045 1.023 0.942 0.980 1.429 1.902
zh 2.488 − 2.008 2.036 1.863 1.924 2.469
fr 2.120 2.875 − 1.770 1.773 1.826 2.334
es 1.690 2.504 1.446 − 1.450 1.701 2.257
de 1.843 2.879 1.595 1.639 − 1.781 2.372
ru 3.105 3.742 2.171 2.367 2.064 − 2.825
ar 2.824 3.514 2.103 2.300 2.211 2.144 −

w/ random M

From
To en zh fr es de ru ar

en − 4.604 3.523 6.213 4.080 13.644 8.878
zh 3.349 − 7.187 6.858 6.744 3.784 6.103
fr 6.117 8.348 − 3.928 8.762 5.616 5.521
es 3.976 5.231 6.837 − 3.276 5.282 3.813
de 5.392 5.698 4.055 3.774 − 3.488 9.176
ru 4.078 4.440 5.415 8.665 3.820 − 5.574
ar 7.215 5.548 9.866 6.808 5.344 3.336 −

w/ M

From
To en zh fr es de ru ar

en − 1.158 0.884 0.708 0.800 1.070 1.720
zh 1.058 − 1.355 1.330 1.406 1.357 2.075
fr 0.876 1.588 − 1.035 1.147 1.242 2.042
es 0.735 1.395 0.986 − 1.021 1.216 1.974
de 0.840 1.572 1.149 1.135 − 1.225 2.103
ru 1.236 1.832 1.377 1.462 1.456 − 2.376
ar 1.368 2.068 1.444 1.602 1.582 1.521 −

w/ M of Qwen2.57B

From
To en zh fr es de ru ar

en − 3.024 2.444 2.476 2.339 2.419 3.226
zh 1.943 − 2.338 2.552 2.401 2.497 3.550
fr 1.553 2.935 − 2.369 2.350 2.353 3.415
es 1.521 2.796 2.101 − 1.775 2.216 3.397
de 1.732 2.604 2.052 2.252 − 2.055 3.298
ru 2.411 3.169 2.761 2.741 2.334 − 3.389
ar 1.968 3.136 2.063 2.319 2.676 2.434 −

Table 15. XNLI translation perplexity (PPL) on Qwen2.57B.

Original

From
To en zh fr es de ru ar

en − 2.612 1.844 2.024 1.907 1.763 2.702
zh 1.855 − 2.010 2.220 2.131 1.985 2.706
fr 1.931 3.117 − 2.188 2.156 1.909 2.771
es 1.622 2.808 1.872 − 2.010 1.782 2.662
de 1.872 3.071 2.045 2.285 − 1.878 2.832
ru 2.323 3.401 2.212 2.469 2.275 − 2.970
ar 2.193 3.306 2.086 2.361 2.392 2.093 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.692 1.067 0.998 1.171 1.371 2.005
zh 1.297 − 1.286 1.345 1.454 1.497 2.102
fr 1.453 1.985 − 1.309 1.405 1.451 2.031
es 1.262 1.794 1.212 − 1.323 1.415 2.027
de 1.451 1.917 1.255 1.273 − 1.462 2.036
ru 1.843 2.228 1.554 1.574 1.658 − 2.212
ar 1.783 2.372 1.595 1.661 1.784 1.705 −

w/ random M

From
To en zh fr es de ru ar

en − 8.193 7.783 7.990 3.947 3.884 5.011
zh 4.700 − 5.472 7.655 4.886 4.930 13.43
fr 2.671 6.117 − 5.439 3.106 4.681 3.915
es 1.913 5.683 2.719 − 5.643 3.796 4.019
de 5.234 3.973 3.909 6.127 − 7.972 3.662
ru 6.286 10.887 7.899 5.810 4.157 − 6.908
ar 2.598 7.619 4.024 5.524 4.220 2.606 −

w/ M

From
To en zh fr es de ru ar

en − 2.590 1.712 1.730 1.792 1.788 2.592
zh 1.680 − 1.944 2.050 2.116 1.945 2.658
fr 1.819 2.761 − 1.897 1.982 1.837 2.714
es 1.538 2.460 1.615 − 1.886 1.705 2.656
de 1.799 2.712 1.862 2.103 − 1.790 2.751
ru 2.102 3.162 2.031 2.156 2.139 − 2.262
ar 1.354 2.167 1.483 1.501 1.758 1.517 −

w/ M of Qwen2.57B-inst

From
To en zh fr es de ru ar

en − 2.628 1.697 1.799 1.773 1.689 2.582
zh 1.641 − 1.924 2.087 2.012 1.854 2.661
fr 1.699 2.972 − 1.997 2.030 1.867 2.742
es 1.510 2.631 1.748 − 1.945 1.768 2.690
de 1.743 2.883 1.946 1.956 − 1.825 2.786
ru 2.110 3.271 2.187 2.409 2.182 − 2.991
ar 2.050 3.054 2.077 2.288 2.410 2.037 −
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Table 16. XNLI translation perplexity (PPL) on Qwen2.50.5B-inst.

Original

From
To en zh fr es de ru ar

en − 3.045 2.100 2.386 2.545 2.254 3.365
zh 2.530 − 2.748 3.073 3.255 2.666 3.761
fr 2.608 4.223 − 3.056 3.224 2.608 4.020
es 2.505 4.117 2.646 − 3.360 2.579 3.955
de 2.727 4.306 2.804 3.361 − 2.723 4.228
ru 2.967 4.447 2.709 3.148 3.119 − 4.582
ar 3.511 4.919 3.066 3.493 3.771 3.302 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.763 1.021 0.989 1.361 1.485 2.401
zh 1.601 − 1.574 1.688 2.061 1.864 2.726
fr 1.233 2.325 − 1.369 1.781 1.676 2.596
es 1.142 2.152 1.223 − 1.707 1.640 2.509
de 1.357 2.565 1.478 1.586 − 1.751 2.681
ru 1.911 2.784 1.746 1.858 2.077 − 2.711
ar 2.268 3.067 2.152 2.364 2.677 2.193 −

w/ M

From
To en zh fr es de ru ar

en − 1.939 1.427 2.070 1.874 1.707 3.128
zh 1.601 − 2.084 2.324 2.543 2.121 3.091
fr 1.210 2.358 − 2.047 2.170 1.954 3.038
es 1.113 2.528 1.870 − 2.263 2.569 3.185
de 1.328 2.483 2.111 2.322 − 2.030 3.090
ru 1.847 2.736 2.534 2.530 2.329 − 3.271
ar 4.174 3.016 2.540 2.638 2.874 2.547 −

Table 17. XNLI translation perplexity (PPL) on Qwen2.51.5B-inst.

Original

From
To en zh fr es de ru ar

en − 2.941 1.919 2.025 2.138 1.984 2.918
zh 2.327 − 2.475 2.716 2.765 2.421 3.438
fr 2.679 4.329 − 2.987 2.873 2.457 3.709
es 2.368 4.306 2.518 − 2.903 2.441 3.853
de 2.385 4.022 2.572 2.935 − 2.442 3.584
ru 3.023 4.627 2.606 3.109 2.833 − 4.093
ar 3.142 4.450 2.718 3.016 3.287 3.023 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.545 0.867 0.835 0.984 1.198 1.886
zh 1.429 − 1.433 1.440 1.628 1.515 2.238
fr 1.303 2.153 − 1.300 1.476 1.472 2.108
es 1.052 1.879 1.081 − 1.324 1.340 2.024
de 1.153 2.086 1.237 1.252 − 1.413 2.181
ru 1.794 2.551 1.497 1.623 1.652 − 2.303
ar 2.019 2.718 1.850 2.015 2.170 1.864 −

w/ M

From
To en zh fr es de ru ar

en − 1.354 0.889 0.854 1.086 1.177 2.018
zh 1.219 − 1.400 1.616 1.790 1.519 2.480
fr 0.996 2.050 − 1.411 1.516 1.319 2.236
es 0.802 2.109 1.041 − 1.411 1.292 2.134
de 0.901 1.872 1.332 1.442 − 1.363 2.290
ru 1.763 2.364 1.701 1.716 1.668 − 2.426
ar 1.637 2.472 1.694 1.920 2.080 1.868 −

Table 18. XNLI translation perplexity (PPL) on Qwen2.53B-inst.

Original

From
To en zh fr es de ru ar

en − 5.220 2.913 3.295 3.232 3.233 4.116
zh 4.120 − 3.383 3.883 3.726 3.290 4.425
fr 4.318 6.318 − 4.034 3.663 3.449 4.609
es 3.602 5.724 3.351 − 3.539 3.314 4.506
de 3.369 5.673 3.153 3.759 − 3.268 4.308
ru 4.658 6.772 3.570 4.193 3.883 − 5.203
ar 4.576 6.573 3.620 4.081 4.043 3.656 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.864 0.919 0.828 1.008 1.277 1.930
zh 2.215 − 1.647 1.682 1.781 1.827 2.516
fr 1.781 2.811 − 1.476 1.604 1.615 2.267
es 1.390 2.360 1.267 − 1.368 1.539 2.163
de 1.607 2.748 1.370 1.347 − 1.651 2.289
ru 2.600 3.396 1.753 1.925 1.828 − 2.577
ar 2.737 3.620 2.035 2.110 2.207 2.105 −

w/ M

From
To en zh fr es de ru ar

en − 1.176 0.730 0.736 1.033 1.084 1.584
zh 1.141 − 1.318 1.336 1.823 1.586 2.380
fr 0.833 1.615 − 1.231 1.463 1.313 1.902
es 0.729 1.489 0.901 − 1.345 1.299 1.892
de 0.840 1.604 1.102 1.167 − 1.236 1.896
ru 1.261 1.955 1.198 1.356 1.508 − 2.056
ar 1.457 2.121 1.528 1.748 1.997 1.739 −

Table 19. XNLI translation perplexity (PPL) on Qwen2.514B-inst.

Original

From
To en zh fr es de ru ar

en − 7.331 4.954 5.043 4.740 4.621 5.106
zh 6.797 − 5.683 6.016 5.718 5.021 5.413
fr 6.748 8.296 − 5.653 5.345 4.956 5.438
es 6.342 7.958 5.225 − 5.167 4.893 5.328
de 5.895 7.858 4.887 5.235 − 4.630 5.148
ru 7.253 8.558 5.587 6.065 5.533 − 5.539
ar 6.358 7.803 5.092 5.597 5.272 4.625 −

w/ instruction

From
To en zh fr es de ru ar

en − 3.372 1.732 1.485 1.553 2.015 2.467
zh 3.805 − 3.081 3.116 3.046 2.919 3.707
fr 3.887 5.032 − 2.736 2.644 2.699 3.296
es 2.915 4.250 2.253 − 2.192 2.355 3.090
de 3.103 4.749 2.408 2.340 − 2.396 3.009
ru 5.059 6.196 3.166 3.504 3.081 − 3.794
ar 4.787 5.923 3.316 3.627 3.227 2.963 −

w/ M

From
To en zh fr es de ru ar

en − 1.000 0.524 0.440 0.564 0.739 1.195
zh 0.937 − 0.877 0.930 1.052 1.003 1.542
fr 0.791 1.309 − 0.781 0.896 0.902 1.426
es 0.590 1.186 0.651 − 0.788 0.828 1.335
de 0.665 1.313 0.746 0.744 − 0.877 1.397
ru 1.078 1.550 0.917 0.978 1.047 − 1.561
ar 1.131 1.648 1.026 1.115 1.186 1.108 −
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Table 20. XNLI translation perplexity (PPL) on Phi3.5mini-inst.

Original

From
To en zh fr es de ru ar

en − 3.337 3.262 3.682 3.773 3.698 2.126
zh 6.035 − 4.509 5.159 5.003 5.202 2.884
fr 5.627 4.046 − 4.893 5.054 4.606 2.479
es 5.673 3.992 4.392 − 4.918 4.669 2.665
de 5.276 3.978 4.378 4.961 − 4.487 2.504
ru 6.271 4.341 4.427 5.168 4.883 − 2.756
ar 6.192 4.419 4.440 4.915 5.367 4.965 −

w/ instruction

From
To en zh fr es de ru ar

en − 2.256 2.710 2.752 2.965 2.695 1.665
zh 4.958 − 4.024 4.396 4.382 3.563 2.145
fr 3.893 2.808 − 3.810 3.919 3.208 1.963
es 3.602 2.707 3.457 − 3.704 3.184 1.926
de 3.713 2.770 3.543 3.704 − 3.142 2.005
ru 5.315 3.126 4.286 4.575 4.511 − 2.222
ar 5.165 3.359 4.283 4.601 4.692 3.749 −

w/ M

From
To en zh fr es de ru ar

en − 0.945 0.589 0.549 0.722 1.198 1.050
zh 1.263 − 1.185 1.320 1.381 1.892 1.198
fr 0.813 1.153 − 0.900 1.129 1.603 1.045
es 0.664 1.080 0.808 − 1.016 1.492 0.973
de 0.739 1.131 0.868 0.946 − 1.404 1.161
ru 1.320 1.349 1.179 1.271 1.368 − 1.184
ar 1.463 1.523 1.384 1.484 1.728 8.590 −

Table 21. XNLI translation perplexity (PPL) on Mistral7B-inst.

Original

From
To en zh fr es de ru ar

en − 3.667 3.032 3.264 3.333 2.821 2.381
zh 4.457 − 3.174 3.261 3.512 3.014 2.184
fr 3.438 3.118 − 2.863 3.032 2.517 2.163
es 3.579 3.190 2.787 − 3.026 2.570 2.140
de 3.460 3.329 2.650 2.791 − 2.483 2.265
ru 4.512 3.551 2.931 3.186 3.204 − 2.207
ar 4.304 3.551 3.077 3.315 3.527 2.981 −

w/ instruction

From
To en zh fr es de ru ar

en − 1.910 1.327 1.267 1.516 1.560 1.600
zh 2.103 − 1.928 2.052 2.238 2.022 1.834
fr 1.394 1.947 − 1.410 1.603 1.509 1.653
es 1.147 1.915 1.342 − 1.467 1.553 1.628
de 1.215 1.937 1.320 1.271 − 1.513 1.670
ru 1.979 2.288 1.636 1.765 1.892 − 1.713
ar 2.409 2.879 2.255 2.404 2.469 2.262 −

w/ M

From
To en zh fr es de ru ar

en − 3.275 2.440 3.540 2.524 2.854 2.654
zh 2.914 − 3.605 3.063 3.275 3.170 2.540
fr 3.518 3.338 − 2.248 3.562 2.744 2.061
es 2.377 3.159 4.525 − 3.784 2.572 2.358
de 2.474 4.737 2.720 3.608 − 2.944 2.828
ru 3.547 4.554 3.442 3.492 4.710 − 2.916
ar 3.349 4.378 5.172 3.782 3.962 3.510 −

Table 22. XNLI translation ROUGE-L on Llama3.18B-inst.

Original

From
To en zh fr es de ru ar

en − 0.020 0.082 0.069 0.069 0.045 0.029
zh 0.021 − 0.019 0.024 0.023 0.025 0.013

w/ instruction

From
To en zh fr es de ru ar

en − 0.539 0.541 0.599 0.576 0.491 0.414
zh 0.669 − 0.519 0.556 0.501 0.423 0.352

w/ M

From
To en zh fr es de ru ar

en − 0.589 0.711 0.748 0.677 0.401 0.427
zh 0.656 − 0.474 0.518 0.488 0.384 0.334

w/ M of Llama3.18B

From
To en zh fr es de ru ar

en − 0.019 0.204 0.241 0.099 0.046 0.045
zh 0.344 − 0.442 0.068 0.227 0.071 0.039

Table 23. XNLI translation ROUGE-L on Llama3.18B.

Original

From
To en zh fr es de ru ar

en − 0.017 0.072 0.067 0.066 0.045 0.030
zh 0.020 − 0.017 0.019 0.022 0.023 0.010

w/ instruction

From
To en zh fr es de ru ar

en − 0.017 0.084 0.080 0.076 0.054 0.029
zh 0.140 − 0.078 0.080 0.071 0.059 0.034

w/ M

From
To en zh fr es de ru ar

en − 0.424 0.658 0.657 0.606 0.179 0.067
zh 0.581 − 0.406 0.443 0.311 0.258 0.129

w/ M of Llama3.18B-inst

From
To en zh fr es de ru ar

en − 0.016 0.071 0.074 0.076 0.037 0.030
zh 0.134 − 0.044 0.038 0.043 0.023 0.012
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Table 24. XNLI translation ROUGE-L on Qwen2.57B-inst.

Original

From
To en zh fr es de ru ar

en − 0.017 0.076 0.067 0.066 0.043 0.027
zh 0.014 − 0.011 0.013 0.019 0.019 0.006

w/ instruction

From
To en zh fr es de ru ar

en − 0.570 0.581 0.635 0.580 0.405 0.387
zh 0.586 − 0.462 0.484 0.432 0.352 0.290

w/ M

From
To en zh fr es de ru ar

en − 0.599 0.390 0.583 0.522 0.253 0.142
zh 0.634 − 0.215 0.326 0.328 0.181 0.149

w/ M of Qwen2.57B

From
To en zh fr es de ru ar

en − 0.020 0.079 0.066 0.057 0.042 0.025
zh 0.095 − 0.024 0.035 0.031 0.022 0.006

Table 25. XNLI translation ROUGE-L on Qwen2.57B.

Original

From
To en zh fr es de ru ar

en − 0.012 0.081 0.075 0.068 0.045 0.028
zh 0.019 − 0.014 0.014 0.021 0.019 0.009

w/ instruction

From
To en zh fr es de ru ar

en − 0.242 0.327 0.339 0.269 0.240 0.175
zh 0.371 − 0.237 0.239 0.217 0.205 0.166

w/ M

From
To en zh fr es de ru ar

en − 0.013 0.083 0.077 0.073 0.036 0.035
zh 0.127 − 0.035 0.042 0.047 0.032 0.008

w/ M of Qwen2.57B-inst

From
To en zh fr es de ru ar

en − 0.016 0.095 0.066 0.061 0.052 0.024
zh 0.142 − 0.023 0.030 0.038 0.032 0.015

Table 26. XNLI translation ROUGE-L on Qwen2.50.5B-inst.

Original

From
To en zh fr es de ru ar

en − 0.015 0.083 0.066 0.069 0.052 0.031
zh 0.013 − 0.008 0.011 0.017 0.018 0.010

w/ instruction

From
To en zh fr es de ru ar

en − 0.505 0.499 0.498 0.456 0.264 0.242
zh 0.481 − 0.389 0.350 0.308 0.233 0.214

w/ M

From
To en zh fr es de ru ar

en − 0.367 0.296 0.081 0.296 0.133 0.044
zh 0.446 − 0.129 0.120 0.175 0.086 0.088

Table 27. XNLI translation ROUGE-L on Qwen2.51.5B-inst.

Original

From
To en zh fr es de ru ar

en − 0.014 0.077 0.060 0.067 0.043 0.029
zh 0.019 − 0.013 0.014 0.018 0.022 0.009

w/ instruction

From
To en zh fr es de ru ar

en − 0.557 0.543 0.570 0.544 0.343 0.279
zh 0.569 − 0.396 0.369 0.347 0.296 0.236

w/ M

From
To en zh fr es de ru ar

en − 0.505 0.522 0.518 0.461 0.211 0.152
zh 0.587 − 0.351 0.279 0.285 0.217 0.072

Table 28. XNLI translation ROUGE-L on Qwen2.53B-inst.

Original

From
To en zh fr es de ru ar

en − 0.016 0.082 0.068 0.070 0.045 0.029
zh 0.016 − 0.013 0.015 0.020 0.018 0.005

w/ instruction

From
To en zh fr es de ru ar

en − 0.581 0.618 0.625 0.527 0.356 0.305
zh 0.464 − 0.426 0.438 0.399 0.273 0.230

w/ M

From
To en zh fr es de ru ar

en − 0.615 0.567 0.574 0.416 0.243 0.352
zh 0.566 − 0.299 0.323 0.136 0.061 0.056
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Table 29. XNLI translation ROUGE-L on Qwen2.514B-inst.

Original

From
To en zh fr es de ru ar

en − 0.017 0.077 0.064 0.067 0.042 0.027
zh 0.013 − 0.010 0.012 0.018 0.017 0.004

w/ instruction

From
To en zh fr es de ru ar

en − 0.498 0.599 0.588 0.506 0.416 0.247
zh 0.521 − 0.403 0.380 0.362 0.300 0.184

w/ M

From
To en zh fr es de ru ar

en − 0.676 0.716 0.761 0.660 0.534 0.454
zh 0.684 − 0.542 0.586 0.499 0.362 0.357

Table 30. XNLI translation ROUGE-L on Phi3.5mini-inst.

Original

From
To en zh fr es de ru ar

en − 0.018 0.086 0.076 0.073 0.048 0.032
zh 0.012 − 0.012 0.012 0.022 0.025 0.010

w/ instruction

From
To en zh fr es de ru ar

en − 0.276 0.351 0.342 0.334 0.215 0.279
zh 0.234 − 0.228 0.216 0.208 0.152 0.183

w/ M

From
To en zh fr es de ru ar

en − 0.463 0.669 0.699 0.656 0.293 0.074
zh 0.525 − 0.406 0.399 0.400 0.132 0.156

Table 31. XNLI translation ROUGE-L on Mistral7B-inst.

Original

From
To en zh fr es de ru ar

en − 0.020 0.087 0.073 0.075 0.048 0.030
zh 0.022 − 0.020 0.019 0.028 0.029 0.011

w/ instruction

From
To en zh fr es de ru ar

en − 0.264 0.431 0.433 0.378 0.282 0.177
zh 0.405 − 0.290 0.306 0.267 0.232 0.156

w/ M

From
To en zh fr es de ru ar

en − 0.547 0.663 0.656 0.673 0.461 0.199
zh 0.557 − 0.378 0.502 0.399 0.330 0.177

Table 32. Simple task accuracy on Llama3.18B-inst.

Task name Original w/ instruction w/ M w/ M of
Llama3.18B

lowercase_first_letter 0.00 0.61 1.00 0.99
park-country 0.18 0.65 0.68 0.67
synonym 0.01 0.29 0.48 0.51
ag_news 0.00 0.76 0.81 0.87
word_length 0.00 0.97 0.29 0.07
present-past 0.02 0.76 0.91 0.97
capitalize 0.10 1.00 0.98 0.97
landmark-country 0.03 0.86 0.87 0.87
english-german 0.00 0.43 0.61 0.47
sentiment 0.01 0.59 0.86 0.64
country-capital 0.04 0.92 0.85 0.80
person-occupation 0.17 0.19 0.68 0.53
country-currency 0.00 0.07 0.44 0.56
lowercase_last_letter 0.00 0.00 0.88 0.65
person-sport 0.38 0.01 0.91 0.86
person-instrument 0.06 0.05 0.80 0.77
antonym 0.12 0.30 0.76 0.75
capitalize_last_letter 0.01 0.14 0.96 0.08
english-french 0.01 0.60 0.77 0.70
next_item 0.01 0.06 0.78 0.64
commonsense_qa 0.00 0.33 0.70 0.17
singular-plural 0.02 0.95 0.97 0.99
capitalize_second_letter 0.07 0.00 0.63 0.17
prev_item 0.02 0.20 0.87 0.65
capitalize_first_letter 0.15 0.97 1.00 0.98
english-spanish 0.00 0.59 0.77 0.86
next_capital_letter 0.03 0.12 0.99 0.19
national_parks 0.04 0.65 0.64 0.63
product-company 0.06 0.73 0.83 0.78
conll2003_organization 0.04 0.13 0.57 0.37
conll2003_person 0.02 0.40 0.89 0.84
conll2003_location 0.00 0.41 0.92 0.75
adjective_v_verb_3 0.00 0.14 0.99 0.97
object_v_concept_3 0.00 0.02 0.98 0.99
verb_v_adjective_3 0.00 0.23 0.98 0.96
fruit_v_animal_3 0.00 0.51 0.98 0.87

Average 0.05 0.44 0.81 0.70

Table 33. Simple task accuracy on Llama3.18B.

Task name Original w/ instruction w/ M w/ M of
Llama3.18B-inst

lowercase_first_letter 0.00 1.00 1.00 0.15
park-country 0.06 0.78 0.75 0.12
synonym 0.04 0.42 0.49 0.10
ag_news 0.00 0.49 0.82 0.00
word_length 0.00 0.45 0.32 0.15
present-past 0.01 0.96 0.97 0.07
capitalize 0.00 1.00 0.99 0.23
landmark-country 0.04 0.82 0.87 0.24
english-german 0.00 0.48 0.50 0.00
sentiment 0.00 0.91 0.80 0.00
country-capital 0.05 0.89 0.85 0.04
person-occupation 0.03 0.03 0.55 0.09
country-currency 0.00 0.06 0.61 0.00
lowercase_last_letter 0.00 0.93 0.81 0.00
person-sport 0.00 0.13 0.89 0.00
person-instrument 0.00 0.15 0.68 0.01
antonym 0.13 0.66 0.66 0.11
capitalize_last_letter 0.00 0.76 0.22 0.00
english-french 0.00 0.73 0.80 0.02
next_item 0.02 0.67 0.85 0.21
commonsense_qa 0.00 0.07 0.51 0.21
singular-plural 0.02 0.95 0.96 0.07
capitalize_second_letter 0.00 0.44 0.22 0.00
prev_item 0.01 0.62 0.79 0.15
capitalize_first_letter 0.00 1.00 0.99 0.06
english-spanish 0.00 0.71 0.78 0.00
next_capital_letter 0.00 0.86 0.47 0.01
national_parks 0.02 0.69 0.67 0.25
product-company 0.07 0.75 0.76 0.35
conll2003_organization 0.06 0.64 0.48 0.28
conll2003_person 0.07 0.89 0.86 0.36
conll2003_location 0.07 0.79 0.79 0.37
adjective_v_verb_3 0.00 0.93 1.00 0.37
object_v_concept_3 0.00 0.75 0.99 0.46
verb_v_adjective_3 0.00 0.82 0.95 0.49
fruit_v_animal_3 0.00 0.99 0.97 0.43

Average 0.02 0.69 0.75 0.15
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Table 34. Simple task accuracy on Qwen2.57B-inst.

Task name Original w/ instruction w/ M w/ M of
Qwen2.57B

lowercase_first_letter 0.00 1.00 0.99 0.97
park-country 0.00 0.57 0.61 0.66
synonym 0.02 0.53 0.35 0.36
ag_news 0.00 0.73 0.79 0.02
word_length 0.00 0.73 0.29 0.10
present-past 0.01 0.97 0.87 0.90
capitalize 0.17 0.99 0.99 0.92
landmark-country 0.07 0.30 0.72 0.70
english-german 0.00 0.40 0.36 0.11
sentiment 0.03 0.95 0.92 0.53
country-capital 0.03 0.89 0.80 0.79
person-occupation 0.09 0.04 0.49 0.38
country-currency 0.00 0.06 0.11 0.24
lowercase_last_letter 0.00 0.93 0.37 0.15
person-sport 0.33 0.22 0.82 0.70
person-instrument 0.03 0.14 0.40 0.46
antonym 0.09 0.70 0.60 0.63
capitalize_last_letter 0.02 0.84 0.29 0.24
english-french 0.00 0.66 0.51 0.31
next_item 0.00 0.86 0.77 0.71
commonsense_qa 0.00 0.86 0.80 0.21
singular-plural 0.04 0.98 0.93 0.80
capitalize_second_letter 0.02 0.76 0.37 0.27
prev_item 0.02 0.71 0.51 0.37
capitalize_first_letter 0.22 1.00 1.00 0.87
english-spanish 0.00 0.74 0.57 0.25
next_capital_letter 0.03 0.38 0.05 0.44
national_parks 0.03 0.41 0.65 0.58
product-company 0.14 0.43 0.73 0.55
conll2003_organization 0.01 0.69 0.35 0.36
conll2003_person 0.04 0.91 0.90 0.59
conll2003_location 0.01 0.84 0.81 0.65
adjective_v_verb_3 0.00 0.99 0.84 0.70
object_v_concept_3 0.00 0.97 0.98 0.78
verb_v_adjective_3 0.00 0.86 0.89 0.79
fruit_v_animal_3 0.00 0.94 0.86 0.84

Average 0.04 0.69 0.64 0.53

Table 35. Simple task accuracy on Qwen2.57B.

Task name Original w/ instruction w/ M w/ M of
Qwen2.57B-inst

lowercase_first_letter 0.00 1.00 0.96 0.00
park-country 0.06 0.54 0.67 0.23
synonym 0.00 0.11 0.27 0.01
ag_news 0.00 0.75 0.02 0.01
word_length 0.02 0.70 0.11 0.00
present-past 0.02 0.94 0.94 0.08
capitalize 0.03 0.99 0.96 0.26
landmark-country 0.06 0.33 0.71 0.26
english-german 0.00 0.36 0.21 0.00
sentiment 0.00 0.97 0.72 0.10
country-capital 0.05 0.96 0.81 0.04
person-occupation 0.02 0.19 0.39 0.00
country-currency 0.00 0.08 0.36 0.00
lowercase_last_letter 0.00 0.97 0.40 0.00
person-sport 0.06 0.39 0.68 0.05
person-instrument 0.02 0.14 0.39 0.01
antonym 0.10 0.39 0.59 0.07
capitalize_last_letter 0.00 0.90 0.24 0.00
english-french 0.01 0.60 0.36 0.00
next_item 0.03 0.74 0.78 0.01
commonsense_qa 0.00 0.50 0.77 0.60
singular-plural 0.05 0.98 0.83 0.08
capitalize_second_letter 0.01 0.71 0.28 0.02
prev_item 0.02 0.52 0.48 0.01
capitalize_first_letter 0.05 1.00 0.94 0.01
english-spanish 0.00 0.64 0.25 0.00
next_capital_letter 0.00 0.75 0.66 0.03
national_parks 0.02 0.46 0.56 0.25
product-company 0.08 0.48 0.55 0.06
conll2003_organization 0.03 0.68 0.34 0.03
conll2003_person 0.06 0.91 0.73 0.08
conll2003_location 0.05 0.81 0.61 0.16
adjective_v_verb_3 0.00 0.92 0.83 0.21
object_v_concept_3 0.00 0.91 0.88 0.05
verb_v_adjective_3 0.00 0.86 0.82 0.20
fruit_v_animal_3 0.00 0.97 0.92 0.09

Average 0.02 0.68 0.58 0.07

Table 36. An example of en-zh translation on different sizes of
models. Larger models (Qwen2.514B-inst in this example) tend to
generate more explanation words. The attention head mask M
can help the model focus on the task and context words.

Chinese input 英格兰人要求必须讲多种语
言。

English gold label People in England are required to
speak more than one language.

Qwen2.514B-inst
with instruction The English require that multiple

languages be spoken.\n\nHowever,
it’s important to note that the state-
ment "Englanders require that mul-
tiple languages be spoken" is not
accurate in a general sense. In re-
ality, English is the predominant
language spoken in England,

Qwen2.57B-inst
with instruction The English demand that multiple

languages must be spoken.

Qwen2.53B-inst
with instruction English people demand that mul-

tiple languages must be spo-
ken.\n\nHowever, it seems there
might be a slight issue with the
phrasing. The correct transla-
tion would be:\n\n"English people
demand that multiple languages
should be spoken."\n\nThis makes
more sense as it conveys

Qwen2.514B-inst
with M The English required that multiple

languages be spoken.

Qwen2.57B-inst
with M The English require that multiple

languages be spoken.

Qwen2.53B-inst
with M The English demand to speak in

many languages.
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Table 37. Attention head mask similarity between Llama3.18B-inst
(Minst) and Llama3.18B (Mbase).

Task name |Minst| |Mbase| Recall Jaccard
similarity

Random
similarity

en-zh 832 819 0.874 0.766 0.675
en-fr 860 809 0.895 0.766 0.687
en-es 846 811 0.906 0.797 0.679
en-de 862 816 0.915 0.802 0.693
en-ru 828 795 0.868 0.740 0.656
en-ar 837 821 0.873 0.762 0.680
zh-en 937 895 0.951 0.867 0.808
zh-fr 899 843 0.943 0.839 0.739
zh-es 896 856 0.921 0.817 0.747
zh-de 888 834 0.928 0.816 0.724
zh-ru 909 846 0.939 0.826 0.748
zh-ar 889 855 0.916 0.815 0.741
fr-en 924 873 0.948 0.854 0.781
fr-zh 865 821 0.912 0.799 0.699
fr-es 903 833 0.929 0.805 0.734
fr-de 892 827 0.931 0.811 0.721
fr-ru 899 849 0.927 0.819 0.743
fr-ar 882 827 0.919 0.801 0.715
es-en 925 879 0.947 0.856 0.786
es-zh 863 823 0.911 0.801 0.699
es-fr 909 821 0.937 0.800 0.728
es-de 881 825 0.921 0.803 0.712
es-ru 886 835 0.905 0.783 0.724
es-ar 871 839 0.911 0.808 0.716
de-en 923 875 0.944 0.850 0.781
de-zh 868 820 0.918 0.805 0.700
de-fr 911 830 0.934 0.802 0.736
de-es 920 845 0.933 0.807 0.755
de-ru 893 852 0.918 0.812 0.742
de-ar 885 835 0.919 0.805 0.723
ru-en 923 883 0.940 0.850 0.788
ru-zh 870 829 0.913 0.804 0.708
ru-fr 898 836 0.933 0.818 0.732
ru-es 902 831 0.930 0.805 0.731
ru-de 886 838 0.930 0.824 0.726
ru-ar 873 854 0.906 0.812 0.729
ar-en 943 900 0.951 0.867 0.817
ar-zh 885 862 0.928 0.845 0.743
ar-fr 908 843 0.926 0.805 0.745
ar-es 899 834 0.935 0.818 0.732
ar-de 909 859 0.951 0.859 0.758
ar-ru 888 857 0.926 0.835 0.742

lowercase_first_letter 790 672 0.835 0.623 0.549
park-country 826 774 0.850 0.699 0.640
synonym 833 689 0.875 0.656 0.583
ag_news 737 691 0.777 0.603 0.534
word_length 792 673 0.798 0.579 0.551
present-past 845 691 0.874 0.648 0.590
capitalize 895 777 0.915 0.740 0.684
landmark-country 779 685 0.848 0.658 0.553
english-german 837 734 0.887 0.708 0.618
sentiment 745 679 0.779 0.591 0.531
country-capital 859 797 0.867 0.716 0.677
person-occupation 748 688 0.814 0.639 0.538
country-currency 754 744 0.806 0.668 0.577
lowercase_last_letter 746 608 0.768 0.526 0.486
person-sport 758 686 0.805 0.619 0.542
person-instrument 765 646 0.837 0.622 0.520
antonym 834 726 0.890 0.707 0.610
capitalize_last_letter 752 651 0.774 0.561 0.517
english-french 822 727 0.867 0.686 0.604
next_item 871 728 0.886 0.676 0.632
singular-plural 837 704 0.874 0.664 0.596
capitalize_second_letter 723 659 0.748 0.555 0.508
prev_item 830 713 0.860 0.659 0.599
capitalize_first_letter 774 678 0.813 0.612 0.545
english-spanish 808 737 0.855 0.689 0.604
next_capital_letter 748 654 0.778 0.570 0.517
national_parks 827 792 0.837 0.694 0.653
product-company 754 674 0.822 0.634 0.533
conll2003_organization 826 723 0.864 0.676 0.604
conll2003_person 831 710 0.887 0.692 0.597
conll2003_location 787 670 0.828 0.615 0.547
adjective_v_verb_3 813 756 0.868 0.719 0.620
object_v_concept_3 826 733 0.877 0.702 0.611
verb_v_adjective_3 839 768 0.867 0.708 0.644
fruit_v_animal_3 827 786 0.850 0.707 0.649

Table 38. Attention head mask similarity between Qwen2.57B-inst
(Minst) and Qwen2.57B (Mbase).

Task name |Minst| |Mbase| Recall Jaccard
similarity

Random
similarity

en-zh 643 611 0.894 0.771 0.666
en-fr 611 587 0.853 0.719 0.618
en-es 609 580 0.862 0.726 0.610
en-de 602 589 0.862 0.744 0.612
en-ru 614 590 0.859 0.727 0.623
en-ar 618 597 0.859 0.731 0.632
zh-en 666 615 0.912 0.779 0.689
zh-fr 630 603 0.872 0.744 0.647
zh-es 630 576 0.882 0.728 0.623
zh-de 629 596 0.876 0.743 0.640
zh-ru 620 590 0.871 0.739 0.628
zh-ar 619 612 0.848 0.729 0.646
fr-en 668 606 0.914 0.769 0.681
fr-zh 650 602 0.892 0.751 0.663
fr-es 617 580 0.872 0.732 0.616
fr-de 635 593 0.885 0.747 0.642
fr-ru 628 590 0.864 0.720 0.634
fr-ar 625 603 0.859 0.730 0.643
es-en 661 618 0.892 0.757 0.687
es-zh 666 607 0.914 0.773 0.681
es-fr 614 583 0.864 0.727 0.617
es-de 634 588 0.895 0.756 0.637
es-ru 629 598 0.875 0.743 0.642
es-ar 620 591 0.860 0.723 0.629
de-en 680 632 0.911 0.783 0.718
de-zh 669 611 0.907 0.763 0.687
de-fr 640 590 0.880 0.730 0.644
de-es 636 594 0.884 0.745 0.644
de-ru 636 611 0.871 0.744 0.660
de-ar 626 609 0.862 0.739 0.649
ru-en 676 625 0.917 0.787 0.707
ru-zh 670 608 0.918 0.775 0.685
ru-fr 629 589 0.866 0.720 0.634
ru-es 626 595 0.861 0.722 0.637
ru-de 626 595 0.877 0.747 0.637
ru-ar 641 605 0.868 0.728 0.658
ar-en 671 652 0.911 0.815 0.729
ar-zh 677 649 0.917 0.814 0.732
ar-fr 638 625 0.877 0.766 0.674
ar-es 641 624 0.883 0.772 0.676
ar-de 637 637 0.873 0.774 0.684
ar-ru 643 636 0.876 0.771 0.689

lowercase_first_letter 520 414 0.758 0.506 0.416
park-country 602 517 0.845 0.641 0.550
synonym 602 502 0.861 0.643 0.536
ag_news 554 486 0.782 0.576 0.493
word_length 568 452 0.759 0.507 0.473
present-past 577 494 0.816 0.603 0.514
capitalize 626 503 0.871 0.634 0.552
landmark-country 592 478 0.860 0.624 0.509
english-german 581 473 0.831 0.595 0.498
sentiment 565 481 0.807 0.590 0.496
country-capital 615 515 0.835 0.614 0.556
person-occupation 593 459 0.841 0.580 0.493
country-currency 590 496 0.841 0.623 0.524
lowercase_last_letter 516 407 0.764 0.508 0.409
person-sport 569 464 0.813 0.575 0.484
person-instrument 551 456 0.768 0.533 0.467
antonym 602 509 0.868 0.661 0.543
capitalize_last_letter 519 432 0.750 0.517 0.430
english-french 586 473 0.837 0.597 0.501
next_item 600 491 0.837 0.604 0.525
singular-plural 575 473 0.825 0.593 0.495
capitalize_second_letter 542 431 0.782 0.530 0.441
prev_item 603 477 0.834 0.584 0.514
capitalize_first_letter 521 433 0.760 0.526 0.432
english-spanish 589 475 0.857 0.619 0.505
next_capital_letter 531 427 0.745 0.497 0.432
national_parks 587 510 0.825 0.623 0.534
product-company 560 445 0.820 0.570 0.463
conll2003_organization 591 501 0.846 0.635 0.529
conll2003_person 593 515 0.862 0.669 0.542
conll2003_location 584 492 0.852 0.638 0.517
adjective_v_verb_3 621 549 0.883 0.708 0.592
object_v_concept_3 635 525 0.872 0.652 0.579
verb_v_adjective_3 613 524 0.865 0.662 0.563
fruit_v_animal_3 617 562 0.867 0.704 0.600
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Figure 7. Visualization of sigmoid attention head mask weight σ(M) for all translation pairs (translate from left labels to top labels) on
Llama3.18B-inst. Heads with a value greater than 0.5 are selected in the final mask M.
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C.3. More Removal Experiments

C.3.1. ONE-BY-ONE HEAD REMOVAL

In the one-by-one head removal experiment depicted in Fig-
ure 2, we unveil the model’s translation functionality by
removing a certain amount of attention heads. We provide
more detailed results to enhance the conclusions that: (1) the
model behavior change is not caused by removing certain
independent, influential attention heads; (2) the model can
maintain its original behavior as long as the functional path-
way remains intact, even if the model loses more attention
heads.

Remove by influential order Figure 2 involves many
target token’s rank surges when removing certain attention
heads, and we claim that removing heads in the order of
target token’s rank increments caused by each head will not
accelerate the switch in model behavior. To verify this point,
we select the first 320 heads from the ascending order of the
task head weight, and for these 320 heads, we re-order them
by the target token’s rank increment caused by each head
in descending order. Then we remove these heads one by
one and compare their token rank changes with the original
order. The token rank changes are illustrated in Figure 8. In
this influential order, the model could indeed perform higher
target token rank in the early stage, but its domination is
postponed to around 290 heads. Therefore, removing more
influential heads does not necessarily lead to a faster switch
in the model behavior.

Remove on the negative initialized mask We provide
the token ranks and the model outputs of the negative ini-
tialized mask in Figure 9. The behavior switch of the model
happens at removing the 355th head, which is nearly 200
heads later than the results in Figure 2. Although it loses
more attention heads, the model can still maintain certain
instruction following behavior before the switch.

C.3.2. QUERY-HEAD REMOVAL

Equation (2) actually applies M on the value heads of the
MHA layer, and it ignores the attention scores calculated by
query and key heads. To explore whether such masks can
be applied to the attention scores, we move the mask value
inside the softmax function in Equation (1) to make it work
on the query (also key) head outputs. In this configuration,
masking out a head means that the head pays uniformly
equal attention to all the input tokens. Nevertheless, the
training of this query-head mask fails to steadily trigger the
model functionality on most of the tasks. As described in
Section 4, the attention head mask is not only a simple se-
lection of higher or lower attention scores, and even unused
heads are still working to focus on important tokens. This
can explain why the query-head mask fails to work. Table
39 shows a case study of failed translations.
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Figure 8. Prompt Llama3.18B-inst with “I see a llama sleeping in
my backyard.”, and remove the first 320 attention heads from the
full model by head weight of en-zh translation task in different
orders. We use a gray vertical line to indicate where the target
token becomes the top-1 token. Top: In original ascending order
of head weights. Bottom: In descending order of target token’s
rank increments.
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# of removed Generated outputs

0 That’s quite a surprise! Llamas are not typically found in backyards, so it’s
1 That’s quite a surprise! Llamas are not typically found in backyards, so it’s

... ...
235 That’s a pretty interesting sight! I’ve seen a llama sleeping in my backyard before, but I
236 I see a llama sleeping in my backyard.

... ...
297 I see a llama sleeping in my backyard.
298 You’re not seeing a llama sleeping in your backyard, you’re seeing a llama sleeping in your backyard
312 That’s a pretty surreal scene! A llama sleeping in your backyard! Maybe it’s just a visitor
341 You’re looking at a llama that’s sleeping in your backyard.
342 I see a llama sleeping in my backyard.

... ...
354 I see a llama sleeping in my backyard.
355 我看到一只羊在我的后院睡觉。(I see a sheep sleeping in my backyard.)

... ...
693 我看到一只羊在我的后院睡觉。(I see a sheep sleeping in my backyard.)
694 我看到一只在我家中睡眠。(I see a sleeping in my house.)
695 我在我的后院看到睡牛。(I see sleeping ox in my backyard.)
742 我看到一只睡在我的后院的后院。见到一只睡在我的 (I see a backyard sleeping in my backyard. See a sleeping in my)
743 I see a llama sleeping in my backyard.
786 I see a llama sleeping in my backyard.user.sideassistant.help
798 user’s helpmate’s helpmate’s helper’s helper’s helper’s helper’s helper’s helper’s

... ...

Figure 9. In the negative initialization scenario, we prompt
Llama3.18B-inst with “I see a llama sleeping in my backyard.”,
and remove attention heads from the full model by head weight of
en-zh translation task in ascending order. Use the same notations
as in Figure 2.
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Table 39. Case study of failed translations in the query-head re-
moval scenario.

Case 1: Fail to translate

Input Lots of people from England speak more than
one language.

Output Many people from England speak more than
one language.

Case 2: Low quality translation

Input Niceness is not solely owned by Western tra-
dition.

Output 西方传统并不是唯一的好客。(Western tra-
dition is not solely hospitable.)

Case 3: Mix with other languages

Input Due to our population, there are few virgin
forests still left in the United States.

Output En realidad, debido a nuestra población, to-
davía quedan pocos bosques virgenes en los
Estados Unidos.

Input Japan and Sweden are members of the Auld
Alliance.

Output 日本とスウェデンはオルアライアンス
のメンバです。

From these cases, we discover an interesting phenomenon
that the model may occasionally output translations in other
languages (Spanish and Japanese in Case 3), even though
it has never encountered these languages during the mask
training. This suggests that merely unifying the distribution
of attention scores is insufficient for the model to accurately
elicit the corresponding functionality. In addition, Section
C.2 mentions that the functionality of attention heads is not
likely to be concentrated in the KV heads. Combined with
the results of query-head removal, we infer that the func-
tionality of attention heads is more likely to be distributed
in the output projection matrix WO, which may serve as a
role similar to the FFN layer in the model.

C.3.3. FFN LAYER REMOVAL

This section mainly explains that removing FFN layers is not
necessary for triggering functionalities. In our experiments,
we only apply the mask M on the attention heads, but the
mask can also be applied to FFN layers by removing their
contributions to the residual stream. Similar to Equation (2),
for the input X at the decoder layer l, if we use a binary
mask ml ∈ {0, 1} to indicate whether the FFN layer is
selected in the model, then the decoder layer output can be
written as:

Decoderl(X) = X+MHA(X)+mlFFN (X+MHA(X)) .
(5)

Table 40. XNLI translation perplexity (PPL) on Llama3.18B-inst
when taking FFN layers (32 in total) in the mask. Translation pairs
with yellow background use 31 FFN layers in M, others use all
32 FFN layers. Attention heads are also selected in M.

From
To en zh fr es de ru ar

en − 1.700 1.130 1.221 1.330 1.915 1.869
zh 1.990 − 1.537 1.701 4.143 1.828 2.523
fr 1.698 1.934 − 1.437 1.543 1.936 2.042
es 1.509 1.970 1.283 − 1.479 1.868 2.315
de 3.650 4.709 1.359 1.531 − 2.026 5.121
ru 2.047 2.077 1.469 3.915 4.315 − 2.494
ar 2.201 2.211 1.643 4.488 5.089 1.949 −

We take ml in each layer into the whole mask M, train it
together with attention heads on Llama3.18B-inst for XNLI
translation tasks, and results are shown in Table 40. After
training, most translation tasks still use all the FFN layers.
Only 8 tasks remove only one FFN layer in M, and their
performance severely degrade compared to the head-only
mask in Table 12. Since taking FFN into the mask does not
contribute to the study of model functionality, and the model
itself tends to utilize all FFN layers, we do not remove the
FFN layers in the main experiments.

C.4. A Probe of Layer Outputs

For Figure 4, we provide a probing example of layer out-
put logits in the vocabulary space in Table 41. We prompt
Llama3.18B-inst with “I see a llama sleeping in my back-
yard.”, and check the layer outputs in different settings.
From the table, we can observe that model outputs w/ in-
struction and w/ M exhibit a high degree of overlap in the
top-5 tokens in the latter layers of the model (Layer 22–30),
reflecting the similarity in information flow when execut-
ing the functionality. At the output layer (Layer 31), the
masked model produces translations in the target language,
as well as semantically aligns other top tokens with the in-
put text. This also demonstrates the semantic preservation
characteristic of the translation task.

C.5. IWSLT2017 Evaluation Examples

In Section 5, we evaluate the BLEU scores of the model
with α-scaled M on the IWSLT2017 translation dataset.
Considering the style difference between the models shown
in Table 36, in the evaluation, we clean up the generated
outputs so that they contain no explanation words or punctu-
ation marks. Therefore, the BLEU scores reported in Table
8 are more reliable in reflecting the translation quality of
the model. We provide some examples of the model outputs
in Table 42. Overall, whether the instructed model includes
scaled M does not make too much difference in the gener-
ated sentences. However, the model w/ scaled M generally
provides responses that better align with the labels.
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Table 41. A probing of the logit outputs in the vocabulary space in
Figure 4. White background indicates the original model without
instructions, blue background indicates the model w/ instruction,
and green background indicates the model w/ M.
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Table 42. Examples of IWSLT2017 en-zh translation on instructed
Llama3.18B-inst and the instructed model with α-scaled M. We
provide their BLEU scores in the bracket, and highlight the
alignments and differences among the translations.

Chinese
input

而有的时候，一个小小的样板模型的经验
会帮助我们将“糟了” 的那一刻变成了“”哈
哈”的一刻

English
gold label

And sometimes a little prototype of this experi-
ence is all that it takes to turn us from an uhoh
moment to a tada moment

Instructed
(0.556)

And sometimes a small models experience will
help us turn a oh no moment into a ha ha moment

w/ scaled
M
(0.640)

And sometimes a small prototype models expe-
rience will help us turn a oh no moment into a ha
ha moment

Chinese
input

我在想你们会怎么选，近来我问了我的朋友
很多次这个问题，他们的回答都是“回到过
去”。

English
gold label

And I wonder what youd choose because Ive
been asking my friends this question a lot lately
and they all want to go back

Instructed
(0.616)

Ive been asking my friends this question a lot
lately and they all say go back in time

w/ scaled
M
(0.813)

Ive been wondering how you would choose and
lately Ive asked my friends this question a lot and
they all say go back in time

Chinese
input

大多数人建的塔的平均高度是20英尺 商学
院学生，大概是一半 律师好一些，但也好
不到哪里去 幼儿园的孩子，比大多数的成
年人要好

English
gold label

So the average for most people is around 20
inches business schools students about half of
that lawyers a little better but not much better
than that kindergarteners better than most adults

Instructed
(0.749)

Most people build towers to an average height of
20 feet Business school students are probably
about half as good as lawyers but not much bet-
ter Preschool children are better than most adults

w/ scaled
M
(0.720)

Most people build towers with an average height
of 20 feet The law students were about half as
good but not much better The kindergarten chil-
dren were better than most adults
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C.6. Experiments on MoE Model

MoE (Mixture-of-Experts) language models divide the
model’s FFN (Feed-Forward Network) layer into multiple
experts, and during inference, only a subset of these experts
is selected by routers to contribute to the computation. MoE
models often achieves better performance than dense mod-
els with a similar number of activated parameters and is
gradually becoming a popular research topic. In this section,
we conduct experiments to verify whether the attention head
mask can still switch the model’s behavior in MoE models.

We select Phi-3.5-MoE-instruct (AdinaTru, 2024) (16×3.8B
parameters, with 6.6B active parameters when using 2 ex-
perts) for head mask training on the English and Chinese
XNLI translation task. As shown in Table 43-44, we observe
that while head masking in the MoE model could trigger be-
havior switch, it does not lead to performance improvements
on the generative metric. This might be because the major-
ity of MoE model parameters are concentrated in the FFN
layers, while the attention layer accounts for only a small
portion of parameters. We propose another two possible
explanations: (1) The primary functionality of MoE might
reside in the FFN, with the router playing a role similar to
attention head masking for function selection. (2) The task-
level mask and the token-level router may not work well
together. Improving the effectiveness of head masks in MoE
models is an important direction for our future research.

Table 43. XNLI translation perplexity (PPL) on Phi-3.5-MoEinst.

w/ instruction

From
To en zh fr es de ru ar

en − 1.088 1.046 0.857 1.008 1.286 0.851
zh 2.747 − 2.160 2.371 2.317 1.825 1.237

w/ M

From
To en zh fr es de ru ar

en − 0.786 0.684 0.558 0.680 0.877 0.558
zh 1.098 − 1.048 1.141 1.202 1.148 0.746

Table 44. XNLI translation ROUGE-L on Phi-3.5-MoEinst.

w/ instruction

From
To en zh fr es de ru ar

en − 0.448 0.650 0.674 0.628 0.429 0.425
zh 0.519 − 0.465 0.484 0.449 0.378 0.344

w/ M

From
To en zh fr es de ru ar

en − 0.400 0.361 0.568 0.481 0.282 0.278
zh 0.558 − 0.314 0.327 0.350 0.231 0.237
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