
Generalized One-Shot Transfer Learning of Linear
Ordinary and Partial Differential Equations

Harmit Raval, Pavlos Protopapas
Harvard University

{hraval, pprotopapas}@g.harvard.edu

Abstract

We present a generalizable methodology to perform “one-shot" transfer learning on
systems of linear ordinary and partial differential equations using physics-informed
neural networks (PINNs). PINNS have attracted researchers as an avenue through
which both data and studied physical constraints can be leveraged in learning
solutions to differential equations. Despite their benefits, PINNs are currently
limited by the computational costs needed to train such networks on different but
related tasks. Transfer learning addresses this drawback. In this work, we present
a generalizable methodology to perform “one-shot" transfer learning on linear
systems of equations. First, we describe a process to train PINNs on equations
with varying conditions across multiple “heads". Second, we show how this multi-
headed training process can be used to yield a latent space representation of a
particular differential equation form. Third, we derive closed-form formulas, which
represent generalized network weights that minimize the loss function. Finally, we
demonstrate how the learned latent representation and derived network weights can
be utilized to instantaneously transfer learn solutions to equations, demonstrating
the ability to quickly solve many systems of equations in a variety of environments.

1 Introduction

Given the wide-ranging significance of solving differential equations, a great deal of research has
been done in developing numerical methods to solve them. While these traditional numerical methods
have been proven to perform well and yield stable solutions with a high degree of fidelity, neural
networks offer a much more attractive alternative [3]. Specifically, PINNs are neural networks that
can use both the data and the studied physical laws to learn the solutions of equations. PINNs offer
various benefits over traditional numerical methods by eliminating the need for a numerical integrator
[8], generating continuous and differentiable solutions [8], improving accuracy in high dimensions
[5] [6], easily incorporating data [4], and maintaining small memory footprints [3].

Despite the numerous benefits PINNs offer, one limitation is the computational expense required to
train networks on different but closely related tasks [2]. Fortunately, this drawback can be addressed
via transfer learning. In fact, researchers have recently shown that a PINN pre-trained on a family
of differential equations can be efficiently reused to solve new equations in one-shot [3]. Our work
generalizes this idea of “one-shot" transfer learning to any system of linear ODEs and PDEs.

2 Related Work

The use of neural networks to solve differential equations was first introduced in 1998, when
researchers analytically computed the partial derivatives of a neural network output with respect
to inputs [8]. These researchers demonstrated that a neural network can represent a differential
equation when the network architecture is known and when given access to the equation solution

DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).



and derivatives. This work enabled the development and wide-spread use of PINNs which rely on
backpropagation as opposed to analytical computation of partial derivatives[10] [7]. Currently, PINNs
have been used in a variety of different applications, including the solution of high-dimensional PDEs
[11].

Furthering the use of PINNs in solving differential equations, various software packages have been
created that use neural networks and backpropagation to approximate solutions such as NeuroDiffEq
and DeepXDE [1] [9]. Until now, one area of work that has remained largely uninvestigated in solving
differential equations has been transfer learning. Recently, researchers have developed an approach
to solve differential equations in “one-shot" [3]. Specifically, their work presents a framework for
transfer learning PINNs that enables one-shot inference for certain ODEs and PDEs, yielding highly
accurate solutions instantaneously without retraining an entire network.

3 Methodology

3.1 Training Procedure

We first discuss a network training approach that generalizes to any number of equations and is
flexible enough to work for both ODEs and PDEs. The goal of the training procedure is to learn a
latent space representation, H , of equations. At a high level, the training loss function minimizes the
residuals of the differential equations and satisfies the initial and/or Dirichlet boundary conditions.
For ODEs, we formulate the loss as the following convex function:

Lode =
1

n

∑
t

(
(u̇+Au− f)2

)
+

1

n

∑
t

(u(t = 0)− u0)
2 (1)

Similarly, for PDEs, the convex loss is constructed as shown below:

Lpde =
1

n

∑
x∈Batch

(((DuG
T ) ◦ I)−→1 +Au− f)2 +

1

n

∑
x∈Batch

(u(x)− u0(x))
2 (2)

In Equations 1 and 2, u is the system solution, A represents the coefficient matrix for u, f is the
forcing function, and n is the batch size. Additionally, in Equation 2, Du is the partial derivative
matrix, G is the coefficient matrix for Du, and “◦" represents the Hadamard product. In each loss
function, the first summation term represents the differential equation that needs to be satisfied and
the second summation term represents the initial or Dirichlet boundary condition. In order to learn
the latent space H , we leverage a multi-headed training approach.

Figure 1: Diagram of multi-headed training procedure for ODEs. For each “head", the same input t
is fed through the hidden layers (blue). Each “head" corresponds to its own set of training conditions
for which a solution ui is found after the input flows through the corresponding output layer (orange).

In the multi-headed training approach, the network accepts an input time t for an ODE (or multiple
inputs in the case of PDEs) and proceeds to flow the input through the hidden layers. After the final
hidden layer’s activation function is applied, H is outputted. H has a shape of m × d, where m

2



represents the number of equations and d is the number of nodes in the last hidden layer. The output
from H is sent through h different output layers (different “heads"). Each “head" contains its own set
of weights W i as each corresponds to a different set of equation coefficients and initial or boundary
conditions during training. Hence, there are h network outputs ui, each of which can be computed
by multiplying H by the corresponding W i. All paths through the network lead to their own loss
functions Li, which are summed together to form an overall Ltotal. Ltotal is what is minimized while
training. Figure 1 illustrates this training process.

The key observation to note in Figure 1 is that all h “heads" share the same H . In other words, by
using varying training conditions across all the “heads" and a single H , the diversity of the training
conditions will be encoded in this one matrix. Using a larger H yields a richer latent space encoding.

3.2 Computing General Network Weights

In order to transfer learn solutions u to ODEs, we need two components: H and W0. In Section
3.1, we illustrated how to recover a generalized H . Now we discuss how to find a set of generalized
network weights W0, different from the W learned during training, in order to compute u. To derive
W0 for ODEs, we start with the loss function in Equation 1 and substitute in u = HW0:

Lode =
1

n

∑
t

(
ḢW0 +AHW0 − f

)2
+

1

n

∑
t

(H0W0 − u0)
2

When we expand the quadratic terms, take the loss gradient with respect to these weights, and solve
for W0, we arrive at the following closed-form representation of W0 for ODEs:

W0 = M−1

(
HT

0 u0 +
1

n

∑
t

Ḣf +
1

n

∑
t

HTAT f

)

whereM =

[
1

n

∑
t

(ḢT Ḣ + ḢTAH +HTAT Ḣ +HTATAH) +HT
0 H0

] (3)

For PDEs, we follow an analogous process with Equation 2 and find the representation below for W0:

W0 = M−1

(
1

n

∑
x∈Batch

ST f +
1

n

∑
x∈Batch

HTAT f +
1

n

∑
x∈Batch

HT
0 u0

)

whereM =

[
1

n

∑
x∈Batch

(STAH +HTATS + STS +HTATAH +HT
0 H0)

] (4)

In Equation 4, S is a matrix such that Sij =
∑

k gik
∂Hij

∂xk
where gik refers to each element of the

coefficient matrix G and ∂Hij

∂xk
is the partial derivative of each element of the latent space H with

respect to each of the k independent variables.

3.2.1 Performing One-Shot Transfer Learning

In order to perform “one-shot" transfer learning, the network training needs only be done once, after
which H must be saved. Until a new equation form is to be solved, the values of u0, A, G, and f
can freely be changed to new values, unseen during training. After choosing new values for these
parameters, Equation 3 or 4 can be used to solve for W0. With H and W0, the desired differential
equation solutions can be computed in one-shot by following u = HW0. It is important to keep
in mind that the further the chosen values deviate from the training regime, the more error we will
accumulate in the transfer-learned solution 1. Finally, the main computational cost in finding W0 is
inverting M , a d× d matrix. Generally, M is not large, and therefore, this is usually more efficient
than retraining a whole network. If A is constant, M−1 can be pre-computed, further reducing
computational demands in subsequent transfer learning tasks.

1The error accumulation occurs because the representation of H is not perfect after a finite training period.

3



4 Results

We include transfer learning results for two of the systems that we solved with our “one-shot" transfer
learning approach. The problems of interest are a time-dependent linear ODE and a system of coupled
linear PDEs, shown in Equations 5 and 6, respectively. In both equations, all “c", “v", and “f" values
are parameters that will vary per “head" during training and can be transfer learned.


du

dt
+ ctu = f

u(0) = v
(5)

c1
∂u1

∂x1
+ c2

∂u1

∂x2
= f1, c3

∂u2

∂x1
+ c4

∂u2

∂x2
= f2

u1(x1, 0) = c5x1, u2(x1, 0) = c6x1

(6)

Figures 2 and 3 illustrate the comparison between a reference solution and our transfer learned
solution for each system. Significantly, for both examples, each right subplot illustrates that the
equation residuals are smaller than 10−2, demonstrating an accurate reconstruction of the reference
solutions. The network training parameters’ details and exact training conditions used per “head" for
both problems can be found in the supplementary material. It should be noted that for the ODE, the
reference solution was computed using scipy.integrate.solve_ivp [12] and for the PDE, the
reference solution was computed analytically.

Figure 2: Transfer learning results for Equa-
tion 5 after changing u0 to −10.7 and A
to 5.0t. The left subplot shows the transfer
learned solution (blue) versus the true solu-
tion (orange) and the right subplot shows the
network equation residuals.

Figure 3: Transfer learning results for Equa-

tion 6 after changing G to
[
3.2 5.1
1.4 7.3

]
. The

left subplot shows the transfer learned solu-
tions (blue/orange) versus the true solutions
(green/red) and the right subplot shows the
network equation residuals.

5 Conclusion

In this work, we have shown how to apply “one-shot" transfer learning to systems of linear ordinary
and partial differential equations. Namely, we have described a process to train PINNs on differential
equations with varying conditions across multiple “heads". We showed how this thorough training
procedure yields a latent space representation, H , for the equations of interest. From here, we derived
closed-form formulas to calculate the generalized network weights, W0, for both linear ODEs and
PDEs. Both H and W0 were used to rapidly find the equation solutions u since u = HW0. With a
generalizable training and transfer learning methodology, our work provides the ability to quickly
solve many systems of differential equations. Specifically, by being able to adjust parameters such as
initial or boundary conditions u0 and coefficient matrix A, we can construct solutions to equations
that exhibit different ranges of values, end behaviors, and curvatures. The power of our methodology
lies in the fact that after training a network only once, solving equations with new coefficients and
initial conditions simply requires a recalculation of the weights W0 - no additional fine-tuning is
performed. Future work may apply this network training and transfer learning approach to larger
scale problems and develop an analogous technique to solve nonlinear systems in order to examine
problems that exhibit interesting behaviors.

4



6 Supplementary Material

6.1 ODE Training Details

Below we include detailed information about the parameter values used in training the network for
the ODE example shown in Section 4. Additionally, we specify the A, u0, and f values used for each
“head" during the training procedure.

TRAINING PARAMETER VALUE

NUMBER OF ITERATIONS 10000
NUMBER OF GRID POINTS 512

GRID SPACE [0, 2]
NUMBER OF HIDDEN LAYERS 3
NODES PER HIDDEN LAYER [128, 128, 256]

OPTIMIZER SGD (momentum=0.9)
LEARNING RATE 0.001

ACTIVATION Tanh

Table 1: Network parameters used for training non-constant coefficient ODE shown in Section 4.

HEAD A u0 f

1 1.0t 0.12 2.0
2 1.25t 0.87 2.0
3 1.5t 0.34 2.0
4 2.0t 0.75 2.0

Table 2: Head conditions used for training non-constant coefficient ODE shown in Section 4.

6.2 PDE Training Details

Below, we include detailed information about the parameter values used in training the network for
the PDE example shown in Section 4. Additionally, we specify the A, G, u0, and f values used for
each “head" during the training procedure.

TRAINING PARAMETER VALUE

NUMBER OF ITERATIONS 40000
NUMBER OF GRID POINTS 1024

GRID SPACE [0, 1]× [0, 1]
NUMBER OF HIDDEN LAYERS 5
NODES PER HIDDEN LAYER [256, 256, 256, 256, 512]

OPTIMIZER Adam (betas=(0.9, 0.999))
LEARNING RATE 0.001

ACTIVATION SiLU

Table 3: Network parameters used for training coupled PDE shown in Section 4.

5



Head A G u0 f

1
[
0.0 0.0
0.0 0.0

] [
1.0 4.0
1.0 9.0

] [
2.0x1

3.0x1

] [
0.0
0.0

]

2
[
0.0 0.0
0.0 0.0

] [
2.3 3.0
4.1 5.7

] [
3.1x1

4.2x1

] [
0.0
0.0

]

3
[
0.0 0.0
0.0 0.0

] [
1.2 4.3
1.5 6.3

] [
0.3x1

0.11x1

] [
0.0
0.0

]

4
[
0.0 0.0
0.0 0.0

] [
1.1 3.4
2.5 8.3

] [
1.2x1

5.3x1

] [
0.0
0.0

]
Table 4: Head conditions used for training coupled PDE shown in Section 4.

6



References
[1] Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh

Agarwal, and Marco Di Giovanni. Neurodiffeq: A python package for solving differential
equations with neural networks. Journal of Open Source Software, 5(46):1931, 2020.

[2] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maizar
Raissi, and Francesco Piccialli. Scientific machine learning through physics-informed neural
networks: Where we are and what’s next. CoRR, abs/2201.05624, 2022.

[3] Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, and Stephen J. Roberts.
One-shot transfer learning of physics-informed neural networks. CoRR, abs/2110.11286, 2021.

[4] Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Neural networks
with physics-informed architectures and constraints for dynamical systems modeling. In Roya
Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, and Mykel
Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dynamics and Control
Conference, volume 168 of Proceedings of Machine Learning Research, pages 263–277. PMLR,
23–24 Jun 2022.

[5] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe von Wurstemberger. A proof that
artificial neural networks overcome the curse of dimensionality in the numerical approximation
of black-scholes partial differential equations, 2018.

[6] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, aug 2018.

[7] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6), 5 2021.

[8] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998.

[9] Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Karniadakis. Deepxde: A deep learning
library for solving differential equations. CoRR, abs/1907.04502, 2019.

[10] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[11] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, 375:1339–1364, dec 2018.

[12] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

7


	Introduction
	Related Work
	Methodology
	Training Procedure
	Computing General Network Weights
	Performing One-Shot Transfer Learning


	Results
	Conclusion
	Supplementary Material
	ODE Training Details
	PDE Training Details


