Under review as a conference paper at ICLR 2026

SIMPLE STEPSIZE FOR QUASI-NEWTON METHODS
WITH GLOBAL CONVERGENCE GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Quasi-Newton methods are widely used for solving convex optimization problems
due to their ease of implementation, practical efficiency, and strong local conver-
gence guarantees. However, their global convergence is typically established only
under specific line search strategies and the assumption of strong convexity. In
this work, we extend the theoretical understanding of Quasi-Newton methods by
introducing a simple stepsize schedule that guarantees a global convergence rate of
O(1/k) for the convex functions. Furthermore, we show that when the inexactness
of the Hessian approximation is controlled within a prescribed relative accuracy,
the method attains an accelerated convergence rate of O(1/k?) — matching the
best-known rates of both Nesterov’s accelerated gradient method and cubically reg-
ularized Newton methods. We validate our theoretical findings through empirical
comparisons, demonstrating clear improvements over standard Quasi-Newton base-
lines. To further enhance robustness, we develop an adaptive variant that adjusts to
the function’s curvature while retaining the global convergence guarantees of the
non-adaptive algorithm.

1 INTRODUCTION

Quasi-Newton (QN) methods are among the most widely used algorithms for solving optimization
problems in scientific computing and, in particular, machine learning. A prominent example is
L-BFGS (Liu and Nocedal, |1989; Nocedal, |1980), a popular Quasi-Newton variant that serves as the
default optimizer for logistic regression in the scikit-learn library (Pedregosa et al.,|2011). These
methods implement Newton-like steps, enjoying fast empirical convergence and solid theoretical
foundations by maintaining the second-order Hessian approximation B,, (or its inverse H, = B !).
For the unconstrained minimization problem of the convex function f : R? — R,

ming,cga f(z), (1)

the generic Quasi-Newton update with stepsize 7, > 0 takes the form

Tpi1 o — mHyV f(2y). )

The rich history of Quasi-Newton methods can be traced back to methods DFP (Davidon, [1959;
Fletcher, [2000), BFGS (Broyden, |1970; [Fletcher, |1970; |Goldfarb, |1970; Shannol [1970; Byrd et al.,
1987), and SR1 (Conn et al., |1991; Khalfan et al., |[1993)), which became classics due to their sim-
plicity and practical effectiveness. These approaches build (inverse) Hessian approximations based
on curvature pairs (S, yy) capturing iterate and gradient differences, sy = xp — Tp—1,yx =
Vf(xr)— Vf(xr—1). The stepsize is typically chosen to be unitary 7 = 1, and this large stepsize is
one of the reasons why these classical methods exhibit only local convergencﬂ Global convergence
guarantees of Quasi-Newton methods were usually based on the strong convexity assumption and
obtained by incorporating linesearches or trust-region frameworks (Powell, |1971} |Dixon, (1972
Powell, |1976; Conn et al., 1991} [Khalfan et al., 1993 |Byrd et al., 1996), yet the obtained convergence
guarantees were asymptotic without explicit rates. In particular, for minimizing smooth convex
functions, it has been shown that classical Quasi-Newton methods such as BFGS converge asymptoti-
cally (Byrd et al.,|1987; Powell, |1972).

'Similarly to the classical Newton method, which can also diverge when initialized far from the solution.
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Recent advances in Quasi-Newton methods have primarily focused on addressing these key limi-
tations: the lack of explicit convergence rates for local convergence (Scheinberg and Tang, [2016;
Rodomanov and Nesterov, [2021a3b; [Lin et al., 20215 Jin et al., 2022} Jin and Mokhtari, [2023;|Ye et al.,
2023)), global convergence (Scheinberg and Tang, |2016};|Ghanbari and Scheinberg,, [2018; Berahas
et al.} [2022; [Kamzolov et al., 2023}, Jin et al., 20244}, Scieur], 2024} Jin et al.l |2024b; 'Wang et al.,
2024), and the reliance on the strong convexity assumption (Scheinberg and Tang|, 2016; Ghanbari
and Scheinberg| [2018}; Berahas et al.l [2022} |[Kamzolov et al., 2023} |Scieur, 2024). Despite all of
the interest, even nowadays, many classical Quasi-Newton methods still lack non-asymptotic global
convergence guarantees. Only recently global non-asymptotic convergence guarantees with explicit
rates were established for BFGS in the strongly convex setting for specific line search procedures: [Jin
et al.| (2024a)) established rates for exact greedy line search and|Jin et al.| (2024b)) established rates
for Frank-Wolfe-type Armijo rules. Beyond classical Quasi-Newton methods, it is possible to prove
global convergence rate by enhancing the update with cubic regularization, resulting in convergence
guarantees in the convex case|Kamzolov et al.|(2023); |Scieur| (2024); /Wang et al.[(2024). However,
those methods result in implicit update formula requiring additional line search in each iteration,
involving matrix inversions (e.g., using the Woodbury identity (Woodbury}, [1949;|1950)).

In this work, we aim to address all these challenges simultaneously — we aim to guarantee global
non-asymptotic convergence guarantees for classical Quasi-Newton methods for non-strongly convex
functions. To this end, we propose a simple stepsize schedule for the generic Quasi-Newton update ()
with guaranteed non-asymptotic global convergence in the convex setting. Our schedule is inspired by
stepsize strategies developed for Damped Newton methods (Nesterov and Nemirovski, 1994; Hanzely
et al.,2022;|2024), Cubic Regularized Newton methods (Nesterov and Polyakl, [2006; [Nesterov, 2008)),
and their inexact variants (Ghadimi et al., 2017} |Agafonov et al.| [2024a; [2023)), as well as Cubic
Regularized Quasi-Newton methods (Kamzolov et al.,2023; Scieur} 2024; Wang et al., [2024)).

1.1 CONTRIBUTIONS

* From cubic regularization to explicit stepsize schedules: We propose a simple stepsize schedule
derived from the cubically regularized Quasi-Newton method, which we call Cubically Enhanced
Quasi-Newton (CEQN) method. We obtain the schedule by carefully selecting the norm of the
cubic regularization.

* Global convergence guarantees: We provide a convergence analysis for general convex func-
tions. Under the assumption that Hessian approximations satisfy a relative inexactness condition,
(1-a)B, = V3f(z) = (1 +a@)B, with0 < a < 1, 0 < @, we prove the global rate

ata@)\D? a)3/2 3
0 ((7—0—K)D NCE )K2 LD )

* Adaptiveness: We introduce an adaptive stepsize variant that automatically adjusts to the local

accuracy of the Hessian approximation. The method naturally adapts to the local curvature without

— 2173
.. . . . . oD | (14+a)*/2LD") . :
requiring stepsizes tuning and achieves e-accuracy in O (T + 7 iterations, where

o = max(q, @).

* Verifiable criterion for inexactness. We provide an implementable criterion for controlling
Hessian inexactness that guarantees a global convergence rate of O(1/k?) when the inexactness
can be adaptively adjusted. This applies, for example, to Quasi-Newton methods with sampled
curvature pairs or to stochastic second-order methods.

* Experimental comparison. We demonstrate that CEQN stepsizes, when combined with adaptive
schemes for adjusting inexactness levels, consistently outperform standard Quasi-Newton methods
and Quasi-Newton updates with fixed cubic regularization—both in terms of iteration count and
wall-clock time.

1.2 NOTATION

We denote the global minimizer of the objective function f (I)) by z... The Euclidean norm is denoted

by || - [|. We will use norms based on a symmetric positive definite matrix B € R?*¢ its inverse
HY B! Forall 7,9 € RY,

def 1/2 1, \1/2 def * « def 1 \1/2 1/2 def
Ihllg € (h, BR)Y? = (R, H'h) " E |l lglly € (9.B71g)"" = (9, Hg)" > = | gllyy-

We denote Hessian and its inverse approximations at point x as B, and H. If the approximation is

. . . . def def
evaluated at the point xy, the k-th iterate of some algorithm, we write By, = B., and H; = H,,.
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Notably, for updates zj+1 = zp — 9 HyV f(z)) it holds that [[z41 — zg, = nk||Vf(xk)||*Bk.
We also define Hessian-induced norms

def 1/2 % def 1 \1/2
IRl & (b, V2 F )R gl E (g, V2 () hg)
Fgrhiterates xk,f ? 0 lee_:ldel?ote 2], A, and gl )| g|I7. We define the operator norm
with respect to the local Hessian norm as
PN def Ayl

op = SUPyerd T[T "

2 REGULARIZATION PERSPECTIVE ON QUASI-NEWTON METHODS

In this section, we motivate our stepsizes via a regularization perspective. Quasi-Newton methods
can be seen as an approximation of the classical Newton method update, which at iterate x can be
written as the minimizer of the second-order Taylor approximation,
. def 1 2

Qr(yix) = f2) +(Vf(x),y —a) + 5 (Vf(a)(y — @),y — ). 3)
Since the exact Hessian V2 f(x) is typically unavailable or expensive to compute, Quasi-Newton
methods replace it with a positive-definite approximation B, ~ V2 f(x). This yields an inexact
second-order model:

def 1

Qs(y;x) = f(a) +(Vf(2),y —2) + 5 (Buly — x),y — ), 4)
which is minimized in classical Quasi-Newton methods, leading to the update (2)) with n; = 1.

Models (3) and (@) serve as local approximations of the objective function. Their accuracy can be
quantified in terms of the smoothness of the Hessian and the quality of the Hessian approximation.
If the Hessian of f is Lo-Lipschitz continuous (i.e., |[V2f(z) — V2f(y)|| < La|lz — y]| for all
T,y € R?), then inexactness of Newton model can be bound as (Nesterov and Polyak, [2006):

1f(y) — Qsy;2)| < 2llx —y|®, Va,y e R

Bounding the inexactness of the Quasi-Newton model requires an additional assumption on the
quality of the Hessian approximation ||B, — V2 f(x)|| < §. Then it holds (Agafonov et al., 2024a)

1f() = Qp(ys )| < Bllz —yl® + 8w —yll*, Va,y € R?

These bounds demonstrate that the Taylor models are accurate in a neighborhood of x as long as the
curvature of function is smooth and the Hessian approximation B, remains close to the true Hessian.

Unfortunately, this guarantees the convergence only locally. In fact, both Newton’s method and Quasi-
Newton methods can diverge if initialized far from the solution (Jarre and Toint, 2016; Mascarenhas,
2007). This is because these models (3) and (@) do not provide a global upper bound on the function
f, and may significantly underestimate it far from the current iterate.

One way to ensure the global convergence in (Quasi-)Newton methods is to introduce a stepsize
schedule 7y, into the update. This modification can be naturally interpreted through the lens of
regularization. In particular, the Quasi-Newton update (2)) can be rewritten as

Tpy1 = o — MHEV f(23) = argming cga {f(;vk) +(Vf(xg),z —xk) + ﬁHx - (Ek||123h} .

This viewpoint also highlights a key geometric property: if the stepsize 7 and norm ||-[|g, are

afﬁne-invarianﬂ then the Quasi-Newton method itself is affine-invariant, which aligns with the
common knowledge (Lyness, |1979). Affine-invariance property is practically significant, as it implies
invariance to scaling and choice of the coordinate system, facilitating the implementation of the
algorithm. Preserving it throughout the proofs requires careful technical analysis.

Another globalization strategy for the approximations (3)) and (@) is to enhance them with a cubic
regularization term Nesterov and Polyak| (2006); |Ghadimi et al.[(2017). The Cubic Regularized
Newton step takes the form

Tjy1 = argming cpa {Qf(x; xE) + %Hx - xk||3} .

2 Affine-invariance is invariance to affine transformations f — A o f for any linear operator A.
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For functions with Ly-Lipschitz Hessian, the cubic model provides a global upper bound: f(y) <
Qs(y;x) + % |ly — z||® for any x, y € R%. In the case of inexact Hessians, additional regularization
is required to restore the upper-bounding property |Agafonov et al.|(2024a). Specifically, the cubic
regularized step becomes

Thy1 = argmingepa {Qp (s 1) + Sllo — i |® + 22z — 2}

under which the objective is bounded above as f(y) < Qf(y;x) + Sy — =[|> + 2|y — a||® for
any z,y € R%|Agafonov et al.[(2024a).

While cubic regularization enables global convergence guarantees, we highlight two limitations of
the approach. First, the resulting step can be equivalently written as xj, 11 = ) — (V2f(zx) +
A D)1V f (), with implicit A\, = La||l2x — 241]. Since Ax depends on the unknown next iterate
Tj+1, it requires using an additional subroutine for solving the subproblem each iteration (Nesterov,
2021b). Secondly, usage of the non-affine-invariant Euclidean norm removes the desired affine-
invariant property.

To address the loss of affine-invariance problems, Hanzely et al.[|(2022) adjusted the geometry of
cubic regularization from Buclidean norm to local norm ||-||>; matching the norm of quadratic term of
Taylor polynomial. This resulted in the update preserving Newton direction with an adjusted stepsize.

2.1 CUBICALLY-ENHANCED QUASI-NEWTON

Leveraging these ideas, we propose a regularization strategy for Quasi-Newton methods that aligns
quadratic and cubic terms in the same geometry using norms ||-|g, . This preserves the update
direction of the classical Quasi-Newton methods, enhanced with a stepsize reflecting both curvature
and model accuracy, hence we call it Cubically-Enhanced Quasi-Newton (CEQN). Notably, it enjoys
the structure of Quasi-Newton steps and global convergence guarantees of cubic regularized methods.

Let us formalize the mentioned claims. CEQN method minimizes the regularized model,
def . 2 3
Thy1 = argmincpa {f(l“k) +(Vf(xn),y — zi) + Slly — zellg, + Slly — xk”Bk} (9

which we simplify using notation hy, &t Tp+1 — k. The first-order optimality condition yields

0= Vf(xk) + 0Brhi + Ll hi||B, Brhx, (6)
which we multiply by B,;l and rearrange, obtaining

hi = = (0 + Llhwlls,) " By 'V f ().

This shows that the update direction matches classical Quasi-Newton methods; with a stepsize

def _
e S 0+ Llhyle) "

Substituting back hy, = —n B, 'V f(z1) and ||hi ||, = 1%||V f(zk) |1, into (@) simplifies the

equation to 0 = (1 — 0ng + Nz L[V f(zx)||, ) Vf (%) and solving the quadratic equation in 7

gives the closed-form expression:

2
= : 7
Nk 9+\/92+L\|Vf(xk)\|f3k v

Hence, the minimizer of (3)) is algebraically identical to the classical Quasi-Newton update () with
stepsize (7). In the special case of an exact Hessian approximation and 6 = 1, this method reduces to
Affine-Invariant Cubic Newton method of Hanzely et al.|(2022).

Quasi-Newton methods are considered to be inexact approximations of the Newton method. This
result provides alternative interpretation, as exact minimizers of the Newton method in an adjusted
geometry. To obtain convergence rates we need to bound the difference between those geometries.
Before presenting convergence rate guarantees, let us formally list CEQN as an Algorithm[I] We
note that if the parameters L and 6 are chosen such that the initial stepsize 79 from (7) matches
the best fine-tuned constant learning rate of a given Quasi-Newton method, then enhancing it with
CEQN stepsizes can lead to faster convergence. This is because the B-norm of the gradient naturally
decreases as the method approaches the solution.
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Algorithm 1 Cubically Enhanced Quasi-Newton Method

1: Requires: Initial point o € R?, constants L, # > 0.
2: fork=0,1,...,K do
3 Mk 2

NGNS

4: T+1 = Tk — nkaVf(l'k)
5: Return: x4

3 CONVERGENCE RESULTS

As we mentioned before, CEQN is affine-invariant. If we aim to obtain affine-invariant convergence
guarantees, we have to base our analysis on affine-invariant smoothness assumption. Throughout
this work we consider the class of semi-strongly self-concordant functions introduced in [Hanzely
et al.|(2022). This class is an affine-invariant version of second-order smoothness, and is positioned
between standard self-concordance and strong self-concordance of|Rodomanov and Nesterov|(2021al),

strong self-concordance C semi-strong self-concordance C self-concordance.
Assumption 1. Convex function f € C? is called semi-strongly self-concordant if

HVQJC(?J) - VQf(x)H < Lyemilly — 2llzy Vy,x € RY. ®)

op —

Semi-strong self-concordance yields explicit second-order approximation bounds on both the function
and its gradient (Hanzely et al., [2022)), for all z,y € R? | we have:

1f(y) — Qrlyiw)| < Lenifly — 2|2, ||Vf(y) — Vi) — VE(2)(y— )| < Ly — 22

We now introduce a relative inexactness condition that quantifies how closely the approximate Hessian
B, tracks the true Hessian V2 f(x).

Assumption 2. For a function f(x) and point x € R%, a positive definite matrix B, € R%*? is
considered a (a, @)-relative inexact Hessian with 0 < o < 1, 0 < @ if it satisfies the inequality

(1-a)B, X V*f(z) X (1+a)B,. )

Combining Assumptions and we obtain the following estimates comparing the function f (y), its
gradient V f(y), and their inexact second-order model Q(y; =) (@)

Lemma 1. Let Assumptionsand hold. Then, for any x,y € RY, the following inequalities hold:
fy) = Qplys2) < § y— B, (10)
Qslysa) = fly) < 5 y— =lls, (11
IVQ(52) = VI @) s, < maly = llm, + ey —aff . (12)
where (pax = max(a, @).

Theorem 1. Let Assumptions[I}[2|hold, f be a convex function, and

d
Y max lex — z|lB, -
kE[O;K—'rl]

+ (14®)%/2 Loemi
x 6

ly — x|z

2 (14@)*/2 Loemi
ly —zllg, + ——5

After K + 1 iterations of Algorithm[I\with parameters
— (14+@)°"2 Lyomi
0>1+a, > 5=

)

we get the following bound

_ 5 . 3
fxrs1) = fze) < (g;a) ’s +(1+ a)3/2%-

This result provides an explicit upper bound on the objective residual after K + 1 iterations of
Algorithm |1} The second term on the right-hand side matches the convergence rate of the Cubic
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Regularized Newton method Nesterov| (2008)) and accelerated gradient descent Nesterov] (1983)),
and reflects the ideal behavior under exact second-order information. The first term accounts for
the effect of Hessian inexactness and aligns with the standard convergence rate of gradient descent.
However, when the inexactness can be explicitly controlled — e.g., by increasing the batch size in
stochastic settings or refining the approximation scheme — the convergence rate can closely match
that of the exact Cubic Regularized method. To formalize the conditions required to achieve this rate
and provide further insight into the performance of CEQN, we introduce the following lemma.

Lemma 2. Let Assumptions hold and f(x) be a convex function. Algorithm with parameters
O=1+a>14amy L>(1+ 6)3/ 2 Lyemi implies the following one-step decrease

Fw) = ) 2 min{ (&) IV f@rella,)* s (&) (195 @s)lz) 2 0. a3)

Remark 1. Let Assumptions 5| {] hold and let o < 1. Assume that the level set of [ is bounded:

n%a(mx : |z — z«|| < R < 00, where L(xg) = {z | f(z) < f(xo)}. (14)
xeL(xo

Then D depends only on the constants o, R, Lgemi, ||V2f(24)]].

An immediate corollary of this lemma is that Algorithm [I] generates a monotonically non-increasing
sequence of function values, with a strict decrease whenever V f (x;11) # 0. The lemma also implies
that CEQN transitions only once between two convergence regimes, determined by which term in the
minimum on the right-hand side of (I3) is active. As a result, CEQN initially benefits from the faster
convergence rate characteristic of the Cubic Regularized Newton method.

Corollary 1. Let Assumptions[I} 2| hold and f be a convex function. Algorithm[I|with parameters
0=1+a>14+amuu L>(1+ 6)3/2Lmi converges with the rate O(k~?) until it reaches the

. 2
region |V f(z41)ll5, < s72(iay-

And finally, the following corollary of Lemma 2] provides a sufficient condition on the inexactness
levels ay, to maintain the global convergence rate O(1/k?).

Corollary 2. Let Assumptions[l|and 2| hold, and let f be a convex function. Suppose Algorithm([l)is
run with parameters 0, = 1 + g > 1 + apax and L > (1 + &)3/ 2 Lyemi- If the inexactness satisfies
o < L||zks1—2x| B, . then Algorithm[I|achieves the convergence rate f(xi41)—f(z*) = O(k™2).

Note that the inexactness condition is verifiable in practice, indicating that the method can adapt its
behavior in scenarios where the inexactness is controllable.

4 ADAPTIVE SCHEME

In this section, we present a modification of CEQN that automatically adapts to the level of inexactness
in the Hessian approximation. Our adaptive method, Algorithm 2] incrementally increases the
inexactness parameter ay, until the model decrease condition is satisfied.

Algorithm 2 Adaptive Cubically Enhanced Quasi-Newton Method (backtracking acceptance)

1: Requires: Initial point zy € R¢, constants L, oy > 0, increase multiplier y;p. > 1.

2: fork=0,1,..., K do
3o = 2
(1) + /(1) +(1+ar) > 2LV f (2x) I,
4. Tpt1 = Tg — nkaVf(ij) ,
. S (IVF@e)lE,)” (IVF@e)lE, )™
5:  while (Vf(x¢11), 21 — 1) < min { ( :;: By) , ((6(1-&-(::)13/2]?)2/2 do
6: A = OkYinc
7: Recompute 7, as in Line 3|
8: Update 41 as in Line[d]
9: g1 = o
10: Return: zx
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Theorem 2. Let Assumptions[I] 2| hold, f be a convex function, ¢ > 0 be the target accuracy, and

ef *
D = maxyepo; 1) (lon — 2B + IV (@0)ll5,) - (15)

Suppose Algorlthm[Z]ls run with parameters L > 2Lgopmi, cg > 0, YVine > 1. Then, to obtain a point
zf such that f(xg) — f(z*) < e, it suffices to perform K iterations of Algorithm 2|for

K = O (OéKEB 4 (1+O¢K\)/‘i/2LD —I—lOg.YW (OLK)> . (16)

£

Remark 2. Let Assumptions 3| ] hold and let o < 1. Assume that the level set of f is bounded (14).
Then D depends only on the constants o, R, Lgemi, |V2f ()]

The convergence rate (T6) consists of three components: the first term reflects the effect of inexactness
in the Hessian approximation and corresponds to the gradient descent rate; the second term matches
the convergence rate of the exact Cubic Regularized Newton method; and the third term accounts for
the additional iterations incurred by the inexactness correction procedure.

All supplementary results established for Algorithm [T|extend to the adaptive version as well. In

particular:

* the one-step decrease and monotonicity properties (Lemma [2) remain valid,

* the transition between cubic and gradient convergence phases still occurs only once (as in Corol-
lary 1] with o« — o),

» and the sufficient condition for achieving the global O(k~?) rate under controllable inexactness
remains unchanged (Corollary [2)).

5 PRACTICAL PERFORMANCE

In this section, we evaluate the practical performance of the proposed CEQN stepsizes. We begin by
discussing the practicality and implementability of the proposed methods.

CEQN stepsize (Algorithm I relies on two hyperparameters: the cubic regularization parameter L
and the quadratic regularization parameter 6. To reduce the burden of tuning and enhance usability,
we introduced an adaptive Algotrithm 2]in the previous section, which replaces the two parameters
with a single adaptive sequence «. This sequence is intended to track the level of approximation
error in the Hessian model.

However, the original adaptive scheme suffers from a notable limitation: it only allows « to increase
throughout the optimization process. As a result, the algorithm tends to significantly overestimate the
actual inexactness level, which in turn degrades performance. This design choice was made to ensure
the validity of theoretical convergence guarantees—allowing «, to decrease would make it difficult
to control the number of inexactness correction steps, thus breaking the proof structure.

Practical Modifications. To address this issue, we propose two practical variants of the Adaptive
CEQN stepsize strategy. Both variants use a monotonic decay scheme in which the inexactness level
o, is multiplicatively decreased after each successful step, allowing the optimizer to better adapt to
local curvature. The only difference between them lies in the condition used to decide whether a step
is successful.

The first variant which we denote the dual condition uses the theoretical regularity condition from
our analysis (Line 5] of Algorithm[2) and leads to one step decrease shown in Lemma[2} The second
variant, denoted reg condition adopts a similar condition to Adaptive Cubic Regularized Quasi-
Newton. Its ensures that the next iterate satisfies sufficient decrease condition CheckAccept :

Fl@rs) < faw) = 3o (IVF@)ls,)” = L2 (IVF@n)lis,)’ (17)

with @ = 1 + ag, L = Lgemi(1 + oy )?/2. This is supported by the following result:

Lemma 3. Let Assumptlons! 2 hold. Step with CEQN stepsize (1) and with parameters
0>1+ amar, L>(1+@) 3120, omi implies one-step decrease (7).

A theoretical bound of this form can be found in (Nesterov and Polyakl 2006, Lemma 4), where it
is used in the analysis of the Cubic Regularized Newton method for the nonconvex case. Although
we cannot guarantee a global iteration complexity bound for Algorithm 3] both conditions ensure a
provable decrease in the objective at each step.
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Figure 1: Performance on a9a and real-sim datasets.
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Algorithm 3 Practical Adaptive Cubically Enhanced Quasi-Newton Method (backtracking accep-
tance)

1: Requires: Initial point x¢ € RY, constants L, ag > 0, increase multiplier v;,. > 1, decrease
multiplier 0 < Ygee < 1, mode € {reg,dual}.
2: for k=0,1,..., K do
3 Mg = 2
(1) +/(Iran) 2 +(14ar) 3/ 2LV f (2i) I,
4 g1 = o — e HEV f(2)
5 while not CheckAccept(zg41,mode) do
6: A = OkYinc
7: Recompute 7);, as in Line 3]
8
9
0

Update x4 as in Line 4]

Q41 = OkYdec
10: Return: xp

Hessian Approximation. Experiments presented in this section approximate the inverse Hessian
H;, ~ V2f(x},) using limited-memory SR1 method based on m sampled curvature pairs (s;, ;).
These pairs are generated by sampling random directions d; ~ AN(0, ) and computing s s; =
d;,y; = V2 f(x)d; via Hessian-vector product. This sampling-based approach decouples curvature
estimation from the optimization trajectory and may offer improved robustness. We set the initial
inverse Hessian approximation as HY = Hg = ¢l with ¢ > 0 and compute the product H,V f ()
using the limited-memory SR1 update in a compact recursive form:

. . s;—Hiy)T . ; .
HH Y f (an) = HEV () + SRS (5 - Hiyo), i € [0,m).

where H;, = H}" denotes the final approximation used at iteration k.

Experimental Setup. In this section we consider /5 regularized logistic regression problem,
flx) = 3307 log(1 + exp(=bia) x)) + 5 |lz|1?, (18)

where (a;, b;)!-, are training examples, with a; € R? representing feature vectors and b; € {—1,1}
the corresponding class labels. The parameter p > 0 controls the strength of /5 regularization. We
set 1 = 104, and initialize the approximation as 10~*1, and set starting point as all-one vector. We
use datasets from the LIBSVM (Chang and Lin, [2011)) collection: a9a (d = 123) and real-sim
(d = 20,958) to evaluate performance. For the consistency, all experiments on a given dataset were
conducted using the same workstation with NVIDIA RTX A6000.

We compare six algorithms on problem (I8): LSR1, LSR1 with CEQN stepsizes (Algorithm|[T), two
versions of LSR1 with adaptive stepsizes (Algorithm 3, and Cubic Regularized Quasi-Newton with
LSR1 updates (Kamzolov et al.| 2023)), both with and without adaptivity.

We fine-tune all hyperparameters via grid searches. For LSR1, we tune the parameter L and use
stepsize nx, = 1/L. For Algorithm we tune both § = 1+ « and L. For Algorithm we fix ag =1
and tune L. For Cubic Quasi-Newton, we tune (L, ¢) in the non-adaptive case, and L in the adaptive
variant, where we set §o = 0.1. All adaptive algorithms use i, = 2 and ygec = 0.5. All algorithms
are run with m = 10 and evaluated across 5 different random seeds. The complete hyper-parameter
search grids, the best-tuned values, and further experimental results are reported in the Appendix.

Results. We present convergence results on Figure[I] On the larger real-sim dataset—where we
compared only the adaptive variants and standard LSR1—the benefit of the proposed CEQN stepsize
is pronounced. CEQN consistently outperforms the competing algorithms in both iteration count
and wall-clock time when measured by log-loss and gradient-squared. A key insight is provided
by the step-size evolution plot: the adaptive schemes automatically adjust to the accuracy of the
Hessian approximation, allowing their steps to grow well beyond the fixed, optimal step length
used by classical LSR1. A similar pattern is observed on the a 9a dataset. Although the difference
in objective values is less visually striking, the increasing step sizes translate into faster gradient
convergence. Finally, the loss- and gradient-squared-versus-time curves show that the number of
extra inner updates required to satisfy the acceptance tests of Algorithm 3]is small. Consequently,
CEQN achieves superior performance not only in terms of iterations but also in wall-clock time.
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Figure 2: Comparison of AGD and CEQN with memory size m = 10 on a9a.

Comparision with Accelerated Gradient Descent. We additionally compare CEQN with Nes-
terov’s Accelerated Gradient Descent (AGD). The experiment is conducted on the logistic re-
gression problem (T8) using the a9a dataset with regularization parameter © = 10~% and an
all-ones initialization. For AGD, we tune two hyperparameters: the inverse stepsize L over the
same logarithmic grid as used for other methods (Appendix [D.I), and the acceleration parameter
8€0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9,0.99. The optimal configuration is (L, 8) = (0.1,0.9).

For CEQN, we employ both LSR1 and L-BFGS Hessian approximations with the reg adaptive
variant. Hyperparameters match those used in Figure [1| on a9a. The reference optimum f is
computed using Newton’s method. CEQN with both Hessian approximation strategies consistently
outperforms AGD in terms of convergence per iteration and wall-clock time. While AGD appears
faster within the suboptimality region < 10~2, CEQN rapidly overtakes it and reaches suboptimality
below 10~* significantly sooner. This experiment was executed on a MacBook Pro (Apple M2
Pro, 32GB RAM).

6 LIMITATIONS

This study focuses on Quasi-Newton (QN) methods equipped with an additional B-norm regular-
ization that yields an explicit stepsize formula. The resulting stepsize, however, depends on two
constants, one of which—the current accuracy level of the Hessian approximation—is unknown in
practice. Although we mitigate this issue by proposing an adaptive strategy with provable conver-
gence, the analysis guarantees adaptation only to the largest inaccuracy level encountered. For the
more practical variant (Algorithm[3) we can prove only a one-step decrease; a full global convergence
rate remains open. Intriguing directions for future research include whether a Hessian-approximation
scheme can be devised that reaches the ideal O(1/k?) rate without extra assumptions on inexactness,
how strong-convexity parameters might reshape the CEQN stepsize and its guarantees, and whether
an adaptive mechanism can be designed to track the current (rather than maximal) inexactness level
while still retaining rigorous complexity bounds.

10
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Appendix

A OTHER RELATED WORKS

Second-order methods have a long and rich history, tracing back to the pioneering works (Newton,
1687; |[Raphson, |1697; Simpson, |1740; Bennett, |1916). Research in this area typically addresses two
main aspects: local convergence properties and globalization strategies. For more historical context
on the development of second-order methods, we refer to (Polyakl 2007)).

A major breakthrough in globally convergent second-order methods came with the introduction of
cubic regularization by |[Nesterov and Polyak| (2006)), who proposed augmenting the second-order
Taylor approximation with a cubic term to guarantee global convergence, achieving a convergence
rate matching that of accelerated gradient descent (Nesterov} [1983). This approach was further
accelerated in (Nesterov} 2008)), establishing a convergence rate that surpasses the lower bounds
for first-order methods. These foundational works initiated a new line of research in second-order
optimization, encompassing generalizations to higher-order derivatives (Baes|[2009; Nesterov,2021b),
near-optimal (Gasnikov et al.,|2019; Bubeck et al.,|2019) and optimal acceleration techniques (Kovalev,
and Gasnikov, 2022} |Carmon et al., |2022)), and faster convergence rates under higher smoothness
assumptions (Nesterov, [202 1 cfial [Kamzolovl 2020; Doikov et al., 2024).

However, methods based on cubic or higher-order regularization typically require solving a nontrivial
subproblem at each iteration, which introduces computational overhead. To mitigate this, several
approaches have been proposed to simplify the cubic regularized Newton step, enabling explicit or
efficiently computable updates (Polyak, 2009} 2017} Mishchenko, 2021} |Doikov and Nesterov, [2021
Doikov et al.| 2024} Hanzely et al.| |2022). Such methods can also employ faster convergence under
higher smoothness assumptions (Hanzely et al., 2024).

Even without cubic regularization, the classical Newton method is computationally demanding, as it
requires solving a linear system involving the Hessian or computing its inverse at each iteration. Quasi-
Newton methods (Dennis and Moré| [1977; Nocedal and Wright, |1999) address this by efficiently
constructing low-rank approximations of the (inverse) Hessian, thereby reducing the per-iteration
cost.

Another class of approaches reduces computational complexity by applying Newton-type updates in
low-dimensional subspaces (Qu et al.,2016;|Gower et al.|[2019; Doikov and Richtarik, 2018} [Hanzely
et al.,|2020), or by employing Hessian sketches to approximate curvature information (Pilanci and
‘Wainwright| 2017} |Xu et al., 2020; |Kovalev et al.,[2019). These techniques can also be integrated
into cubic-regularized frameworks that admit explicit stepsizes (Hanzely} 2023)).

Several works have investigated the impact of inexact Hessian information on the convergence behav-
ior of cubic-regularized methods in standard optimization problems (Ghadimi et al.|[2017; |Agafonov
et al.|[2024a; |Antonakopoulos et al.| 20225 |/Agafonov et al. 2023)), min-max optimization (Lin et al.|
2022), and variational inequalities (Agafonov et al.,2024b). Additionally, second-order methods with
inexact or stochastic derivatives have demonstrated strong performance in distributed optimization
settings (Zhang and Lin} 2015} Daneshmand et al.l | 2021; |Agafonov et al.;|2021; Dvurechensky et al.|
2022; | Agafonov et al., 2022bjal).

More recently, efficient inexact second-order methods have been proposed specifically for large-scale
training of language models (Gupta et al.| 2018}; [Vyas et al., 2025} [Liu et al., 2024} Jordan et al.,
2024 |Liu et al., 2025; |[Kovalevl, [2025; |Riabinin et al., [2025).

B CONVERGENCE ANALYSIS

Second-order Taylor approximation:

Qr(ys0) € f(2) +(VS(2),y — ) + 5 (Vf(@)y ).y — ). (19)
Inexact second-order Taylor approximation:
Qs(y:2) € (@) + (Vi (x)y —2) + § (Baly —2)y — ), (20)
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Assumption 3. Convex function f € C? is called semi-strongly self-concordant if
HVQf(y) - V2f(x)Hop < Lyemilly — 2lley  Vy,x € R¢. (21)
Lemma 4 (Hanzely et al.| (2022)). If f is semi-strongly self-concordant, then
[f(y) = Qs (ys2)| < Eglly — |3, Va,y € R (22)
Consequently, we have upper bound for function value in form
Fly) < Qslysz) + Bty — 3. (23)
Lemma 5 (Hanzely et al|(2022)). For semi-strongly self-concordant function f holds

I95) - V5() - V5@l — ll, < Z2ly — @4

Assumption 4. For a function f(x) and point v € R%, a positive definite matrix B, € R4*4 is
considered a (o, @)-relative inexact Hessian with 0 < o < 1, 0 < @ if it satisfies the inequality

(1-a)B, 2 V*f(z) 2 (1+@)B,, (25)

Lemma 6. Let Assumptionsand hold. Then, for any x,y € RY, the following inequalities hold:
F) = Qplyiw) < §lly — wlff, + Loty — o 26)

Qi) — 1(0) < §lly —allp, + L Loty — ) @)

1Y@ (@) = VI W)l5, < qmally — alle, + SRy — 2, @8)

where .y = max(q, @).

Proof. Forany z,y € R?,
f) = Qs(y;2) = fy) — Qf(y;2) + Qs (y;2) — Qs (y; 2)
D Loy 2l 4 Q(i0) - Ty (02)

Lsemi

= L |y — a2 + L (V2f(x) - Ba)(y — ), (y — 2))

@) _

< Lani||ly — 2|2 + T (B, (y — ), (y — ) (29)
Sy — ol + 3l ol (30)

Representing V2 f (x)-norm in terms of Bj-norm

3/2 @)
ly — 2 = (V2f(2)(y — ),y — 2)* < (1 +@)Bo(y — 2),y — 2)*/°
=1 +@)%|y—=|%,, 31)

we get for any z,y € R?

_ _ @D _\3/2 _
Lsemi 3 1+ Lseml
@) = Qplysz) = Lem|ly — 2|3 + Ty — 2|}, < W Lenily |} + Ty — 2]},

For any z,y € R?
Qs(ys ) — fly) = Qp(ys2) — Qp(y; ) + Qs (y; ) — f(y)

Qrly;2) — Qp(ysz) + Zgilly — Il
3 ((Ba — V2( ))(y—$)7(y—x)>+%y

(Ba(y— ), (y— ) + iy — 2 = 5

ly — |3, +Muy x|},

WE

— a3

2y — =, + Ly — |2

[N[8)

ING ING I
[N [}
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For any z, y € R?,

IVf(y) = VQi(y;x)ls, = IVF(y) = VQys(y;2) + VQs(y; ) = VQ,(y;2)|,
= IV £ (w) — Vf (@) = V() — 2) + (V2 (@) — Bo)(y - 2)|[p,
< |IVfy) = Vi) =V fla)(y — f)H*Bx
+[[(V2f(x) — Ba)(y — 2)| .
D Lew o2 4 (7210 - By - 0,
@ 3/2 semi *
D LA ey, (V@) B - ), D)

ef

For the second term, let u def Bim (y — x). Then:

(V3£ () = Ba)(y — 2)]|p,.
=(y— w)T(Bw - VQf(m))Hw(Bw - VQf(;L‘))(y —x)
= (y—2)"B/*B; (B, — V*f(2))B; B, *(B, — V[(2))B,/*B;"/*(y — )
=uT (I —B;Y2V2f(2)B;'/?)?u.

By (23), we have

—al < (I -B;Y*V2f(2)B;?) <al = (I-B;Y?V%f(2)B;Y?)? < amax!.

Therefore,
||(V2f($) - Ba)(y— x)H*BT < ooyt u = Qmax(y — x)TBm(y — ) = amax|ly — x”Bm'

Plugging this bound into finishes the proof. O

B.1 NON-ADAPTIVE METHOD

Algorithm 4 Cubically Enhanced Quasi-Newton Method

1: Requires: Initial point o € R?, constants L, > 0.
2: fork=0,1,...,K do
3 = 2

9+\/02+L\|Vf(ack)llnk

4 xppr = op — e HEV f (1)
5: Return: zx 1

Theorem 3. Let Assumptions 3| hold, f be a convex function, and

dej
DY max lex — z||B, - (33)
ke[0;K+1]

After K + 1 iterations of Algorithm[I\with parameters
0 Z 1 +a, L Z (1+a);/2l’.x‘emi7 (34)

we get the following bound

a+a 2 _ D3
Flarpn) = fla,) < SR04 (1 4+ @)% 2hal
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Proof.

f(erea) = min, {fan) + §lly —aellE, + 5ly —2ls, }
o =
< min {Fe) + 3lly —zell®, + Sly —2llB, + 5lly — 2lls, }

D wmin (Q(ys20) + Zlly — walB, + Llly — oalld, )

y€eR
. ata 2L 3

@;&rg {f(y)+ ly — il + Hy*CUkHBk}
@ . a+ta :
< min {f(o+ e, - ax)) + 92D + EgiD?)

7 €[0,1]
convexity . ata

< min {(1- ) f(en) + 9 f @) + 5TRD? + Yol D7)

Subtracting f(x.) from both sides, we get for any -y, € [0, 1]
Tr4+1) — J(Tx) = — Yk L) — = 3 Yk .
Fl@re) = fa) < (U= y)(f(ar) = f(@a)) + 25297 D + 34 D (35)

Let us select 7o = 1 and define sequence Ay,
e k=0
Ak

UYL - ), k>

i=1
Then Ay, = (1 — ng) As—k. Dividing both sides of (33)) by Ay, we get
- (freg) — fl@a) < S22 (f(ap) — fla) + 252 " - D? 4 2% 2 = D?

= 5 (flzx) = fl@) + ’“5‘“ Zi D2 + 2L j;; 03

Summing both sides of inequality above from k£ = 0, ..., K, we obtain

K
= (Flexg) = f(@) < 522(f(xo) — f(x.)) + “*“DQZ By 2PN (36)
k=0 k=0

Let us choose v, = 5. By [(2.23), |Ghadimi et al. (2017)], we have
E+3- oY

K K
A, = 6 L,%<3(K+1)(K+2) Zﬁ<g an
(k+1)(k+2)(k+3)" &= A, ~ 2 DA T 2
, Yo=1 a+a)D? 3
flrrs1) — fzs) 69, 20 Ag (7+2)D 3(K+1%(K+2) +AK2L?{:) %
D (ata) 9p? LD3 U} (a+@) 9D 3/2  3LewD?

= i (Kf1)(K+2) S ;9<+3 +(1+ @)Y CesEs)

O]

Lemma 7. Let Assumptions hold and f(x) be a convex function. Quasi-Newton methods with
CEOQON stepsize with parameters 0 =1+ a > 14 qpae, L > (14 6)3/2Lsem,~ implies the following
one-step decrease

Fln) = Fonen) = min { IV @) ()7 IV @)l } 20, G8)

Proof. By optimality condition of CEQN regularized model
0=VQ(wk+1,2x) + (0 — 1+ Lllwgs1 — zpllg, ) Br(Tr+1-a,)- 39)
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Let us define ¢, & o + L|aggr — zklg,, L= L5 (1+@)%/2 where a = 6 — 1. Next,

(amax + Lllzes1—zkllB, ) |2k — 2illB,

o _ .
> IV (@) — Flans) 2 D 1GB (@i — 21) + V@re) 112

= Glarsr — zillg, + IVF@es)l5, + 26 (VF(@rr1), Trar — Tk) -
(40)

We consider two cases, based on which term in (; dominates.

* Leta > Ll|lzk+1 — axl/g, - Then ¢ < 2a. By the choice of the parameters, we have

2
21 —anlls, ) Jonen —aellh,

Gillzkss — zllg, > (amx SEES i

D e — ol IV F @) 12 + 260 (V@) 2 — ).

Therefore,
(Vf(@hi1), op — Toa) = 2C = IVf(@e)ls, = o ||Vf(50k+1)\|13k (41)
* Now, let a < L|z+1 — wkllg, - Then < 2L||zg41 — 2kl -
From

(amax + Lllzrs1 — 2B, ) |l2es1 — 2B,
0 2 2
> CGillerer — zillg, + IV (@er) g, + 26 (Vf (Thi1), Trrr — k)

and our choice of parameters, we get

(VI(@rt1), Tk — Th1)

2 2
>HVf(’Ik+1)||Ek } |Tk+1 — 2k,

T 2
+ [ = (s + Tllons - 2llf,)

- 2Ck 2Gk
VS @),
2Ck

okt —zkll}
+ (@ = max + L5E a1 — 21l ) (@ + Cumax + BEE |z — 2kllg, ) e

-2
IV @)l 12~ T ;
= lewrs — 2l

T AL||zgr — kg,

*2
~ IVf(@r)lg, 3L
AL[|zptr — xk”Bk

3
1g lew+1 — 2rllp,

1\2 %3
> (6L) IV sl @)

where for the last inequality, we use < + 67" %51/4a3/4.

By combing results of these cases and using convexity flzr) — f(xryr) > (Vf(@p41), Tk + Tit1)
we get desired bound.

Remark 3. Let Assumptions hold, and

d
DY max ||z - z.|p,,
ke[0;K+1]

where x, are the iterates generated by Algorithm(l] and let o« < 1. Assume that the level set of f is
bounded:

max ||z —z.|| < R < oo,
xeL(xo)
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where L(x0) = {x | f(x) < f(x0)}. Then

D<(1-a)"? max ) {(|||x — x|

1/2
zeL(x0 i* * mei”x T | ‘i*) }

< (1= o) VARV f (@) + Loani R | V2 f @) |*/2)12.

Proof. By Assumption[d] (1 — a)By, < V2 f(x}). Thus,

ok = 2l < (1 =) 2ok — @k

Next, we bound ||z — x*Hk By Lemmal[7|we have f(z0) > f(z1) > ... > f(zg) > f(@p41) >
. > f(xr 1), hence {z; }5 C £(x0). By Assumption [3]

(.%‘k - w*) (VQf(xk) — V2f($*))($k - Z‘*) < Lsemink - x*”i*

Therefore,
o — 2l B < i — 22l + Limsllon — 211,
< xér}:%;{ : {llz = 2|12, + Leemillz — 2|2},
< RV (@) + Leemi B[ V2 £ ()| *2.
which depends only on R, ||V2f(x.)||, Lsemi- 0

Corollary 3. Let Assumptions 3] lhold and f be a convex function. Algorithm[I|with parameters
O=1+a>14amy L>(1+7q) 3/2 L omi converges with the rate

. 270(1 + Q)32 LoD’
Flane) — fla) < TOLH T ThenD

2
da 573, where

until it reaches the region ||V f(z1+1)[/5, < STy

— def _ N
D= anax (lzx = zellBe + IV F(2n)l5,) - (43)

[N

Proof. Let us assume that - HVf(a:kH)H > ()

8a®> 8 o
3L Z 31+a)* ?Lom

IIVf(ka)IIB Then, |V f(zr+1)l5, =
Then, by Lemma

flar) = flarer) 2 2 IV f(@re) 18]
By convexity, we get

f@*) = frm) + (V@) 2" =) > f(@e) = IV (@r) g, [12° = 2rpa g, -

Hence,
J(xiy1) — fz")

. . (44)
2% — 2k 41lg,

IVf(zr)llg, >
By the definition of CEQN step, 7, < 1, and (T3)

2% = ziillg, = [Jo" — 2 +mBy 'V (@w)||g, < llo* —zillg, + IV (@), <D.
Then,

T x* 3/2 T ™ 3/2 1/2
Fow) — F(@pg1) > (w) (&)1/2 > (f( k+1) £ )) <6Lsem,(11+a)3/2) :

f(zr)—f(z)

By setting &, = Loy

we get the following condition
&k — k1 > fiﬁ-
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In|Nesterov| (2022)[Lemma A.1] it is shown that if a non-negative sequence {¢;} satisfies for 5 > 0

§k — k1 = f;iif
then for all &k > 0

a<[a+na+e)]” )
Then, by @) we get
Sky1 < [3 (1 + %) %r
Therefore, -
Flapg) — f(z) < 54(1 + a)3/2LsemiD + E(f(xl) — f(@)). 46)

2 K2
Now, we consider the second term
1/2 . 3/2
(i) 9@, S (V1,0 — 21) < IV F@n)lls, 2o — 211,
< IV f(@)lg, (lzo — " [lg, +[Jzo — mBg 'V f(xo)
< |Vf(@)lp, (lzo — 2[5, + llzo — 2" g, + IV (z0)l5,)

)

< 2|V f(21)ll5, D- 47)
Next, by convexity, we get
* ) * -3
Fle1) - £e) < DIVS )i, S 2001+ @) LoD’ @s)
And by using @), we obtain convergence rate
o 541+ a)2LemD’ 9 oo 270(1 + a)*?Lym D"
Flopan) - flat) < POTOS Tl 9 50y pany) < TO0HO) Tl
[

Remark 4. Let Assumptions 3| ] hold and let o < 1. Assume that the level set of f is bounded (14).
Then D depends only on the constants o, R, Lgemi, |V2f()].

Proof. By the definition

def
DU . \V < - v .
x| ([lzr =zl + IV f (@0)15,.) pchax lzr—a B+ _ max IV f ()|,

In the proof of Remark|I| the first term was bounded and shown that it depends only on the constants
a, R, Leemi, [|V?f(2:)].

Then, lets focus on the gradient term. By triangle inequality and Assumption 3]
IVF @)l < IVF(ar) + V2 () (@ = ap)ll; + V2 F (@) (2" = )1k
< Lo — ol + " — aull,
The term ||z* — x|, was bounded in the proof of Remark([I] Finally, by Assumption 4]
IV f(n)lls, < (L+a) 2|V f ()i
Which proves this remark. O

Corollary 4. Let Assumptions[3|and@|hold, and let f be a convex function. Suppose Algorithm!|I)is
run with parameters 0, = 1 + a > 1 4+ apmax and L > (1 + @) 3120, o If the inexactness satisfies
a < Ll|zg+1 — 2k||B, , then Algorlthmlachleves the convergence rate

. 270(1 + )32 Ly D’
flokn) — o) < LT .
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Proof. If ay, < L||@y41 — 21| B, then following the proof of Lemma[2} we arrive at

Flew) = flenn) 2 Gz IVI @) s,

Then, directly by the proof of Lemmaﬂwe achieve the desired bound with o = Max aj.

B.2 ADAPTIVE METHOD

Algorithm 5 Adaptive Cubically Enhanced Quasi-Newton Method

1: Requires: Initial point zg € RY, constant L s.t. L > 2L > 0, initial inexactness ag > 0,
increase multiplier v;,. > 1.

2: fork=0,1,..., K do

3:  Calculate stepsize

2
= 49
"Ik (1+ak)+\/(1+ak)2+(1+ak)3/2L|\Vf(l'k)Hixk )

4:  Perform Quasi-Newton step

Try1 = T — MeHEV f () (50)
3
. . IV f(@r )15 IV f(zer1)llg>
5: while (Vf(z141), 25 — Tpt1) < mm{ 4’;: B (6(1+(¥k)+3;2L‘§{»/2 } do

6 Q. = OkYinc

7 Calculates stepsize 7, (@9) with updated «v,

8: Perform Quasi-Newton step (50) with updated 7,
9: Return: z744

Theorem 4. Let Assumptions 5| H} After K + 1 iterations of Algorithm @) with parameters L >
2Lgemi, a9 > 0, Yine > 0. Let € > 0 be the desired solution accuracy. Then after

=2 -3
agD (1 + ozK)3/2LD Omax
K=0 log.,
( P NG +10g,,, a0

iterations of Algorithm[2|z i is an e-solution, i.e. f(xx) — f(z*) <e.

Proof. By Lemma[2] the termination condition on Line 4 of Algorithm [2]is guaranteed to be satisfied
after a finite number of backtracking steps. Specifically, the number of inner iterations is bounded by

[e3

log,, . ( 0‘—:") . Denoting Lj, = (1 + a;)?/?L, we obtain the following bound for each iteration:

(VS (@), @ = 2hi1) 2 min{(gk) IVF @l () ||Vf<xk+1>|;i} SENEID

Since f(x) is convex
f(@) = f(@eg1) 2V f(@e41), 20 — Teg1)

& . . 3 %3
2 win { (1) IV oneli () IV Sl } 2 0. 2

Thus, the method produces a monotonically non-increasing sequence of function values, with strict
decrease whenever V f(zy41) # 0. Once Vf(z) = 0, we have 2541 = z* and the method
converged. Furthermore, by convexity, we get

&) > frem) + (V@) 2" =) > f(@e) = IV (@r) g, 127 = 2rpa g, -
Hence,
f(xiy1) — fz")

Vi(@e)lls, > :
” ( + )HBk ||x*—zk+1”Bk

(53)
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By the definition of CEQN step, 7, < 1, and (19)
o = prillg, = |Jo* —zx +mBy ' V()| < 2" —axlg, +IVf(z)lg, <D

> f($t+1)7—f(95*)
- D

o) = flanen) 2 min { (Koo te)? (o) (Howsten) (g3 (s

Next, we aim to show that Quasi-Newton methods with the Adaptive CEQN stepsize exhibit two
convergence regimes, with at most one switch between them.

Then, we get ||z* — xg11 HBk . Therefore, by combining with (52)), we have

We begin by analyzing the case when the minimum on the right-hand side of (54) is attained by the
second term. This occurs when
8aiD 8 a?D
_ *) > 2 k _ = k .
f(xk-i-l) f(l‘ )— 3 Lk 3(1+Oék)3/2L

Note that oy, is monotonically increasing by the design of the algorithm. Therefore, the right-hand side
of the inequality is also increasing in k, while the left-hand side, f(x¢11) — f(x*), is monotonically
decreasing. Consequently, the inequality can be violated at most once, implying that the switch
between regimes can occur only once. Let us denote number of iteration in the first regime as K; > 0,
K5 > 0 in the second regime, and K = K; + K> total number of iterations of outer step of the

method. Total number of Quasi-Newton method with CEQN stepsize would be K + log., (M)

@o

At first, Algorithm 2] performs K > 0 iterations with the following guarantee:

eV Fla) ) 32 1/2 o) Fla) ) 32 1/2
Flaw) = flanen) > (f( k+1)5 f( )) (i) > (f( k+1)5 £( )) (6L(1+LK)3/2) )
Then, we have

s — F(a) ) 32 1/2 o) F(z*) ) 3/2 1/2
f(ka) 7f($k+1) > (f( k+)§ it )) (i) > (f( k+)§ it )) <6L(1+LK)3/2) .

By setting &, = %

we get the following condition
3/2
§k — Ehr1 2 fkiy

InNesterov| (2022)[Lemma A.1] it is shown that if a non-negative sequence {¢; } satisfies for 5 > 0

1+
&k — &kr1 > €k+f

then forall £k > 0

1/8
&< |0+H)0+)d] (55)
Then, by (35) we get for k € [0, K]
2
)i 1
G < 3 (1+ fEESR) 4]
Therefore, X
o 5414+ ag)¥?LD” 9 .
Pl — f(a) < PEEODTED O p0) o). (56)
1/2 3 @ "
(o) | IVF@)lE < (VF @), m0 —21) < [VF@0)l, 70 — 21,
< IV f(z0)llg, (120 = 2" |5, + [|lzo — mBg 'V f(z0) — *||,)

< IVF@D) g, (20 — #*lls, + 20 — #"llg, + IV £(@0)l13,)
< 2V f(1),D. (57)
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Next, by convexity, we get

* N * 3
Flan) — £(a*) < DIV (), S 2401+ )LD 58)
And by using (56), we obtain convergence rate
. 54(1+ag)*2LD° 9 o 270(1 + ag)*2LD"
Flonn) — flay < BOFOTTED (0 — plary) < ZO0 000

Equivalently,

(1 +ag)¥2LD’
o ((roxpern’)

After K iterations, if the target accuracy has not yet been achieved, the method transitions into the
second regime. From @), similar to the first regime, for k € [K;, K|, we get

&k — &er1 > &g, (59)
Wlthfkfif(gil’;) 2(2 )
Applying (53), we get
f@i) = @) < (4axD’ + flaw,) - f@")) 7 (60)
() I, (61)

N3

= <vf(‘rK1)7$K1*1 - xK1> < ”Vf(xKl)”EKl_l”‘rKl*l - xK1||BK1_1
<IVF @D, (lim1 =2y, + o1 = mBR L VS @) =5, )

< IVH@r by, (loximt =2 ls,,, + lexios =2 ls,, + V@ -)llh,, )
<2|Vf(zk)lp,, ,D- (62)

Next, by convexity, we get
= N (&) —2
frk,) = f(@") < DIVf(zk)lp,, , < 8axD". (63)

And by using (60), we obtain convergence rate

24&[{52
k

—2
agD
Ky =0 ( K ) .
€
Thus, total number of iterations is

=2 - —3
max D™ (1+ak)**LD masx
Ky + Ky +log.,,. (O‘ao > -0 <O‘K€ i O‘I\% +log, <0‘a0 )

flak) = f(2") <

Equivalently,

O

Lemma 8. Let Assumptlons Bl Bl hold. QN step with CEQN stepsize and with parameters 6 >
1+ Qpar, L > (1 + @) 3/2 L i implies one-step decrease

F@rs) < faw) = 3me (IVF @) E,)” = L0t (IVF@)lis,)’ (64)
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Proof. By Lemmald]for any z, y € R

[f(y) = f@) = (Vf(2),y —2) = 3 (V2 f(2)(y —a),y —2)| < Bglly — 23 (65)

Substituting y = x, T = Ti41:

L mi
f@r)=f(@ren) = (V@) wp—2eg1)— 5 (V2 (@r) (@rg1 — Th)s Thr1 — T )= —o || Tpgr— i[5, -
(66)
From optimality condition of the cubic step
2L
0=Vf(r) + 0Bk(@r+1 — 2) + 5 llzr+1 — 2rlBBr(zrry — ).
Multiplying optimality condition by 3 (zj41 — x%) ' :
1 0 , L ,
0= 5{Vfr), ors1 = an) + gllorsr — 2l + Floers — o, (67)
By Assumption[d)and our parameters choice, we have
1 1+« 0
—5 ek —zallz, > - e = @xlB, > =5 lere — 2B,
- 14+ @)32 Loemi L
PR N = W
Combining (66) with previous inequalities, we get
0
Fan) = flznea) 2 (VF(@r) o = Trrr) = Sllzee = zelB, — Gl = k||, -
By adding (67)), we have
1 L L
Fon) = Fon) 2 5V an)san = i) + (5 - ¢ ) v = ol
Plugging in the update rule xy11 = zp — N Hi V f(xk), we get
1 * \2 L 3 x \3
Far) = f@ren) = 5 (IVF@i)lls,)” + i (IVF @olls,)"
Rearranging,
1 * 2 L 3 * 3
f(xrgr) < flze) - 5k (||Vf(xk)‘|3k) - 6771@ <||Vf($k)||3k) : (68)
O

C PROOF WITHOUT SEMI-STRONG SELF-CONCORDANCE

In this section, we provide a more direct alternative analysis of the CEQN algorithm under the
assumption that the CEQN model upper bounds the objective function.

Assumption 5. For the function f : R? — R and the preconditioner schedule By, there exist
constants 0, L are such that and all .,y € R? holds

0 L
F) < flaw) + (VI @r)y = 2x) + 5y = oxlls, + 5 1y = 2xlls, - (69)

This assumption can be satisfied under various conditions, or in particular:
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* For Lem;-semi-strong self-concordant functions (Hanzely et al.,[2022) and By, = V2 f(x},)
it holds with@ = 1 and L = L.,;.

e For Lg¢p;-semi-strong self-concordant functions (Hanzely et al.| [2022)) and By, approx-
imating Hessian as (1 — a)By, =< V?f(zx) < (1 4 @By, it holds with § = = and
L= Lsemi93/2~
Notably, this assumption that B approximates Hessian with relative precision is standard
in the analysis of Quasi-Newton methods. For (standard) self-concordant function f, it can
be satisfied if By, is chosen as Hessian at point from the neighborhood of xj.

Plugging the minimizer into the upper bound leads to the following one-step decrease.

Lemma 9. Quasi-Newton method with CEQN stepsize decreases functional value as

Flonen) — fGon) < =Py i 2 70
< -2V @)l o
- IVf 0) I, o
2 max (29, 2L9va($k)||*Bk))
_ {_4191Vf($k)”*132k*3 I, <% o
~mglIVi@ols, FIVi@ls, =7

Proof. First inequality is equivalent to follows from model upperbound,

0 L :
fann) = F@) < (VF@e) ane = o)+ gllonn —ailp, + g leea —olls,, (74)

= VI, + DRIV, + PRI, a9
x 4 L *
=l Vsl (~1+ g+ SRV, ). 76)

with the choice of stepisize satisfying 1 — 0, = Ln? ||Vf(wk)|\*Bk

X 0 1-6

VA, (<14 gt ) @
* 2 1

— Vsl (<3 +gom)- as)

The second inequality in the lemma follows from the fact that 6n € (0, 1], and therefore 0n, < 1.
The third inequality in the lemma follows from the basic manipulation of the stepsizes 7. O

Therefore, functional value decreases monotonically. As long as the gradient exponent is 3/2, this
implies O(1/k?) convergence.

Theorem 5. For the convex function f : R — R satisfying bounded level set assumption of the form
RY maxpeo,..x] [Tk — 2" ||, < oo, and the Quasi-Newton preconditioner schedule By, satisfying
20

Assumption|5| the CEQN method converges globally to point a xy, such that |V f (z3) |5, < 22 with
B L

the rate O(k=?). -

Proof. The proof is analogical to Theorem 4 of Hanzely et al.| (2022).

From convexity and Cauchy-Schwarthz inequality,

flae) = £ < V(@) ap — 27) < V(@) Iz — 2", < BRIV, 9
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Plugging that to Lemma 9]
1 - 1 3 3
x — flzr) £ ——==||Vf(z 2 < ——— (f(xk) = f)2=—7(f(z) — f7)2
f(rgr) = flaw) < mll flan)llg;, < 7o (flzk) = f7) (f(zk) = )
(80)
def 1 def o * . .
for 7 = Denote 8, = 7 (f(zx) — f*) > 0 satisfying recurrence

V8LOR3"
Bryr = 72 (f(@rrn) — £5) < 72 (flaw) — ) =72 (flzn) — )2 =8 - 8% 8D

Because Sx4+1 > 0, we have 5 < 1. [Nesterov| (2022)[Lemma A.1] shows that the sequence
{Br}rep for 0 < B < 1 decreases as O(k~ ), so denote ¢ constant satisfying 5, < ck=2 for all k
(Mishchenko| (2023))[Proposition] claims that ¢ ~ 3 is sufficient), then for k at least

LOR? LOR?
. /%: [¢8LOR :o( 93) )
T<E 19 13

<e. (83)

we have

D EXPERIMENTS

Our code is available at https://anonymous.4open.science/r/cegn—-stepsizes/|

D.1 EXPERIMENT DETAILS
For the L parameter across all methods on a9a dataset, we use a logarithmically spaced grid:
Le {10*5,3.16 x107°,107%,3.16 x 107*,1072,3.16 x 1072,1072,
3.16 x 1072,1071,3.16 x 1071, 1, 3.16, 10, 3.16 x 10,102, 3.16 x 102,103}.

For the § parameter of non-adaptive Cubic Regularized Quasi-Newton (CRQN) and the o parameter
of non-adaptive CEQN, we extend this grid to also include the value 0. For the a9a dataset, CEQN
LSR1 used L = 10% and § = 3.16 x 10, Adaptive CEQN reg LSR1 and dual LSR1 both used
L =101, LSRI1 used L = 3.16 x 10, Cubic QN LSR1 used L = 3.16 x 10~® and 6§ = 1, while
Adaptive Cubic QN LSR1 used L = 3.16 x 10~°.

For the real-sim dataset, we use a denser, smaller logarithmic grid:
Le {10—5, 2.82 % 1077, 7.95 x 1075, 2.24 x 10~%, 6.31 x 10~%, 1.78 x 103,
5.02 x 1072, 1.41 x 1072, 3.99 x 1072, 1.12 x 107*, 3.17 x 107!,
8.93 x 1071, 2.52, 7.10, 20.0}.

The best-performing L values were: Adaptive CEQN reg LSR1 used L = 1.12 x 10~!, Adaptive
CEQN dual LSR1 used L = 8.93 x 107!, LSRI used L = 7.10, Cubic QN LSR1 used L =
7.95 x 105, and Adaptive Cubic QN LSR1 used L = 7.95 x 1072,

D.2 ADDITIONAL EXPERIMENTS
In this section, we conduct all experiments on logistic regression with regularization parameter

p = 1074, using the a9a dataset and a memory size of m = 10. Optimal parameters for methods in
this section presented in Table
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Adaptive CEQN reg Adaptive CEQN dual Classic QN Adaptive Cubic QN

L-BFGS 3.16 3.16 x 1071 3.16 3.16 x 1075
L-BFGS history 1 1 3.16 x 102 1073
SR1 101 101 3.16 x 10 3.16 x 1075
SR1 history 1 3.16 x 10 103 1073

Table 1: Optimal L values across Hessian approximation strategies and Quasi-Newton methods.

D.2.1 LBFGS UPDATE

In this set of experiments, we approximate the inverse Hessian Hy, ~ V2 f(x;,) ! using the limited-

memory BFGS (L-BFGS) method. The approximation is based on a history of m curvature pairs
(si,y:) collected during the past optimization steps, where s; = ;411 — 2; and y; = V f(x;41) —
V f(x;) or by sampling random directions d; ~ N(0, I) and computing s; = d;,y; = V> f(xx)d;
via Hessian-vector product. These pairs are reused to construct an implicit representation of Hy,
without forming it explicitly.

We compute the product HiVf(zy) using the classical two-loop recur-
sion:
1: Input: Gradient g, = V f(xy), memory {(s;, y;) "y

2: Initialize g < gy,
3: fori =mto1ldo
4 pi—1/(y si)
50 a4 pi- s;'—q
6: g q— oy
7
8

Yy
: Compute scalar By = ===

S Ym
: 1< q/Bg

9: fori=1tomdo

10: B pi-y'r

1:  r+r+si(a;—p)

12: Return: r

D.2.2 SAMPLING VS HISTORY CURVATURE PAIRS

In this set of experiments, we compare two strategies for constructing curvature pairs (s;, y;) used
in Quasi-Newton updates. The first approach is history-based, where pairs are collected along the
optimization trajectory using

8i = Tip1 — Ti, Yi = Vf(xig1) = Vf(x).
The second approach is sampling-based, in which curvature pairs are generated independently of the
trajectory by drawing random directions d; ~ N (0, I') and computing

2
si=di, yi =V f(ar)d;
via Hessian-vector products evaluated at the current iterate xj.

Results are presented in Figure 3] for methods using the L-BFGS update, and in Figure [ for those
using the L-SR1 approximation.

Figure 3: Comparison of different Quasi-Newton methods with BFGS updates.
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Figure 4: Comparison of different Quasi-Newton methods with SR1 updates.

D.2.3 LSRRI vs LBFGS

In this section, we present three experiments comparing the L-SR1 and L-BFGS update rules.
Specifically, we compare the two approaches using history-based curvature pairs (Figure [3), sampled
curvature pairs (Figure[6), and the best-performing Quasi-Newton methods with CEQN stepsizes

under each update (Figure[7).
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Figure 5: Comparison of LBFGS and LSR1 approximations across different Quasi-Newton methods
using history-based curvature pairs.

= Mdopive CEON rog L5R1 10
2 Mt CEON dual L5801
727 Mgt CEQN rog LbFGS
Aaptve CEGN due LBFGS
08
N e
. £ 06 Adaptive CEQN dual LSR1
')% o ++ Adaptive CEQN reg LBFGS
= £ Adaptive CEQN dual LBFGS
E 5 5
So0a4?
== Adopive CEQN rog 1SRI o H
10-10.| =7 Adapive croN and Tor1 oy ;
=+ Adaptive CEQN reg LBFGS s 0297 A i "
i CEQN e LBFGS . G EE LA R ,":“ hi
; , o 0
R N \ e B CRANAZA LT Y
= 0.0
5 7 1o 15 ) 5 ) Yy e % 1
teration k

iteration k

20 10 60

80
iteration k

Figure 6: Comparison of LBFGS and LSR1 approximations across different Quasi-Newton methods

using sampled curvature pairs.
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Figure 7: Comparison of the best-performing Quasi-Newton methods with adaptive CEQN stepsizes
based on LBFGS and LSR1 approximations.
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