

000 SIMPLE STEPSIZE FOR QUASI-NEWTON METHODS 001 002 WITH GLOBAL CONVERGENCE GUARANTEES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Quasi-Newton methods are widely used for solving convex optimization problems
011 due to their ease of implementation, practical efficiency, and strong local conver-
012 gence guarantees. However, their global convergence is typically established only
013 under specific line search strategies and the assumption of strong convexity. In
014 this work, we extend the theoretical understanding of Quasi-Newton methods by
015 introducing a simple stepsize schedule that guarantees a global convergence rate of
016 $\mathcal{O}(1/k)$ for the convex functions. Furthermore, we show that when the inexactness
017 of the Hessian approximation is controlled within a prescribed relative accuracy,
018 the method attains an accelerated convergence rate of $\mathcal{O}(1/k^2)$ – matching the
019 best-known rates of both Nesterov’s accelerated gradient method and cubically reg-
020 ularized Newton methods. We validate our theoretical findings through empirical
021 comparisons, demonstrating clear improvements over standard Quasi-Newton base-
022 lines. To further enhance robustness, we develop an adaptive variant that adjusts to
023 the function’s curvature while retaining the global convergence guarantees of the
024 non-adaptive algorithm.

025 026 1 INTRODUCTION

027 Quasi-Newton (QN) methods are among the most widely used algorithms for solving optimization
028 problems in scientific computing and, in particular, machine learning. A prominent example is
029 L-BFGS (Liu and Nocedal, 1989; Nocedal, 1980), a popular Quasi-Newton variant that serves as the
030 default optimizer for logistic regression in the *scikit-learn* library (Pedregosa et al., 2011). These
031 methods implement Newton-like steps, enjoying fast empirical convergence and solid theoretical
032 foundations by maintaining the second-order Hessian approximation \mathbf{B}_x (or its inverse $\mathbf{H}_x = \mathbf{B}_x^{-1}$).
033 For the unconstrained minimization problem of the convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$,
034

$$035 \min_{x \in \mathbb{R}^d} f(x), \quad (1)$$

036 the generic Quasi-Newton update with stepsize $\eta_k > 0$ takes the form
037

$$038 x_{k+1} \stackrel{\text{def}}{=} x_k - \eta_k \mathbf{H}_k \nabla f(x_k). \quad (2)$$

039 The rich history of Quasi-Newton methods can be traced back to methods DFP (Davidon, 1959;
040 Fletcher, 2000), BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Byrd et al.,
041 1987), and SR1 (Conn et al., 1991; Khalfan et al., 1993), which became classics due to their sim-
042 plicity and practical effectiveness. These approaches build (inverse) Hessian approximations based
043 on *curvature pairs* (s_k, y_k) capturing iterate and gradient differences, $s_k = x_k - x_{k-1}$, $y_k =$
044 $\nabla f(x_k) - \nabla f(x_{k-1})$. The stepsize is typically chosen to be unitary $\eta_k = 1$, and this large stepsize is
045 one of the reasons why these classical methods exhibit only local convergence¹. Global convergence
046 guarantees of Quasi-Newton methods were usually based on the strong convexity assumption and
047 obtained by incorporating linesearches or trust-region frameworks (Powell, 1971; Dixon, 1972;
048 Powell, 1976; Conn et al., 1991; Khalfan et al., 1993; Byrd et al., 1996), yet the obtained convergence
049 guarantees were asymptotic without explicit rates. In particular, for minimizing smooth convex
050 functions, it has been shown that classical Quasi-Newton methods such as BFGS converge asymptoti-
051 cally (Byrd et al., 1987; Powell, 1972).
052

053 ¹Similarly to the classical Newton method, which can also diverge when initialized far from the solution.

Recent advances in Quasi-Newton methods have primarily focused on addressing these key limitations: the lack of explicit convergence rates for local convergence (Scheinberg and Tang, 2016; Rodomanov and Nesterov, 2021a;b; Lin et al., 2021; Jin et al., 2022; Jin and Mokhtari, 2023; Ye et al., 2023), global convergence (Scheinberg and Tang, 2016; Ghanbari and Scheinberg, 2018; Berahas et al., 2022; Kamzolov et al., 2023; Jin et al., 2024a; Scieur, 2024; Jin et al., 2024b; Wang et al., 2024), and the reliance on the strong convexity assumption (Scheinberg and Tang, 2016; Ghanbari and Scheinberg, 2018; Berahas et al., 2022; Kamzolov et al., 2023; Scieur, 2024). Despite all of the interest, even nowadays, many classical Quasi-Newton methods still lack non-asymptotic global convergence guarantees. Only recently global non-asymptotic convergence guarantees with explicit rates were established for BFGS in the strongly convex setting for specific line search procedures: Jin et al. (2024a) established rates for exact greedy line search and Jin et al. (2024b) established rates for Frank-Wolfe-type Armijo rules. Beyond classical Quasi-Newton methods, it is possible to prove global convergence rate by enhancing the update with cubic regularization, resulting in convergence guarantees in the convex case Kamzolov et al. (2023); Scieur (2024); Wang et al. (2024). However, those methods result in implicit update formula requiring additional line search in each iteration, involving matrix inversions (e.g., using the Woodbury identity (Woodbury, 1949; 1950)).

In this work, we aim to address all these challenges simultaneously – we aim to guarantee global non-asymptotic convergence guarantees for classical Quasi-Newton methods for non-strongly convex functions. To this end, we propose a simple stepsize schedule for the generic Quasi-Newton update (2) with guaranteed non-asymptotic global convergence in the convex setting. Our schedule is inspired by stepsize strategies developed for Damped Newton methods (Nesterov and Nemirovski, 1994; Hanzely et al., 2022; 2024), Cubic Regularized Newton methods (Nesterov and Polyak, 2006; Nesterov, 2008), and their inexact variants (Ghadimi et al., 2017; Agafonov et al., 2024a; 2023), as well as Cubic Regularized Quasi-Newton methods (Kamzolov et al., 2023; Scieur, 2024; Wang et al., 2024).

1.1 CONTRIBUTIONS

- **From cubic regularization to explicit stepsize schedules:** We propose a simple stepsize schedule derived from the cubically regularized Quasi-Newton method, which we call *Cubically Enhanced Quasi-Newton* (CEQN) method. We obtain the schedule by carefully selecting the norm of the cubic regularization.
- **Global convergence guarantees:** We provide a convergence analysis for general convex functions. Under the assumption that Hessian approximations satisfy a relative inexactness condition, $(1 - \underline{\alpha})\mathbf{B}_x \preceq \nabla^2 f(x) \preceq (1 + \bar{\alpha})\mathbf{B}_x$ with $0 \leq \underline{\alpha} \leq 1$, $0 \leq \bar{\alpha}$, we prove the global rate $O\left(\frac{(\underline{\alpha} + \bar{\alpha})D^2}{K} + \frac{(1 + \bar{\alpha})^{3/2}LD^3}{K^2}\right)$.
- **Adaptiveness:** We introduce an adaptive stepsize variant that automatically adjusts to the local accuracy of the Hessian approximation. The method naturally adapts to the local curvature without requiring stepsizes tuning and achieves ε -accuracy in $O\left(\frac{\underline{\alpha}\bar{D}}{\varepsilon} + \frac{(1 + \alpha)^{3/2}L\bar{D}^3}{\sqrt{\varepsilon}}\right)$ iterations, where $\alpha = \max(\underline{\alpha}, \bar{\alpha})$.
- **Verifiable criterion for inexactness.** We provide an implementable criterion for controlling Hessian inexactness that guarantees a global convergence rate of $\mathcal{O}(1/k^2)$ when the inexactness can be adaptively adjusted. This applies, for example, to Quasi-Newton methods with sampled curvature pairs or to stochastic second-order methods.
- **Experimental comparison.** We demonstrate that CEQN stepsizes, when combined with adaptive schemes for adjusting inexactness levels, consistently outperform standard Quasi-Newton methods and Quasi-Newton updates with fixed cubic regularization—both in terms of iteration count and wall-clock time.

1.2 NOTATION

We denote the global minimizer of the objective function f (1) by x_* . The Euclidean norm is denoted by $\|\cdot\|$. We will use norms based on a symmetric positive definite matrix $\mathbf{B} \in \mathbb{R}^{d \times d}$ its inverse $\mathbf{H} \stackrel{\text{def}}{=} \mathbf{B}^{-1}$. For all $x, g \in \mathbb{R}^d$,

$$\|h\|_{\mathbf{B}} \stackrel{\text{def}}{=} \langle h, \mathbf{B}h \rangle^{1/2} = \langle h, \mathbf{H}^{-1}h \rangle^{1/2} \stackrel{\text{def}}{=} \|h\|_{\mathbf{H}}^*, \quad \|g\|_{\mathbf{B}}^* \stackrel{\text{def}}{=} \langle g, \mathbf{B}^{-1}g \rangle^{1/2} = \langle g, \mathbf{H}g \rangle^{1/2} \stackrel{\text{def}}{=} \|g\|_{\mathbf{H}}.$$

We denote Hessian and its inverse approximations at point x as \mathbf{B}_x and \mathbf{H}_x . If the approximation is evaluated at the point x_k , the k -th iterate of some algorithm, we write $\mathbf{B}_k \stackrel{\text{def}}{=} \mathbf{B}_{x_k}$ and $\mathbf{H}_k \stackrel{\text{def}}{=} \mathbf{H}_{x_k}$.

108 Notably, for updates $x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k)$ it holds that $\|x_{k+1} - x_k\|_{\mathbf{B}_k} = \eta_k \|\nabla f(x_k)\|_{\mathbf{B}_k}^*$.
 109 We also define Hessian-induced norms
 110

$$111 \quad \|h\|_x \stackrel{\text{def}}{=} \langle h, \nabla^2 f(x) h \rangle^{1/2}, \quad \|g\|_x^* \stackrel{\text{def}}{=} \langle g, \nabla^2 f(x)^{-1} g \rangle^{1/2}.$$

112 For iterates x_k , $k \geq 0$ we denote $\|h\|_{x_k} \stackrel{\text{def}}{=} \|h\|_k$, and $\|g\|_{x_k}^* \stackrel{\text{def}}{=} \|g\|_k^*$. We define the operator norm
 113 with respect to the local Hessian norm as
 114

$$115 \quad \|\mathbf{A}\|_{op} \stackrel{\text{def}}{=} \sup_{y \in \mathbb{R}^d} \frac{\|\mathbf{A}y\|_x^*}{\|y\|_x}.$$

117 2 REGULARIZATION PERSPECTIVE ON QUASI-NEWTON METHODS

120 In this section, we motivate our stepsizes via a regularization perspective. Quasi-Newton methods
 121 can be seen as an approximation of the classical Newton method update, which at iterate x can be
 122 written as the minimizer of the second-order Taylor approximation,

$$123 \quad Q_f(y; x) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle. \quad (3)$$

125 Since the exact Hessian $\nabla^2 f(x)$ is typically unavailable or expensive to compute, Quasi-Newton
 126 methods replace it with a positive-definite approximation $\mathbf{B}_x \approx \nabla^2 f(x)$. This yields an inexact
 127 second-order model:

$$128 \quad \bar{Q}_f(y; x) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \mathbf{B}_x(y - x), y - x \rangle, \quad (4)$$

130 which is minimized in classical Quasi-Newton methods, leading to the update (2) with $\eta_k = 1$.

131 Models (3) and (4) serve as local approximations of the objective function. Their accuracy can be
 132 quantified in terms of the smoothness of the Hessian and the quality of the Hessian approximation.
 133 If the Hessian of f is L_2 -Lipschitz continuous (i.e., $\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq L_2 \|x - y\|$ for all
 134 $x, y \in \mathbb{R}^2$), then inexactness of Newton model can be bound as (Nesterov and Polyak, 2006):

$$135 \quad |f(\mathbf{y}) - Q_f(y; x)| \leq \frac{L_2}{6} \|x - y\|^3, \quad \forall x, y \in \mathbb{R}^d.$$

137 Bounding the inexactness of the Quasi-Newton model requires an additional assumption on the
 138 quality of the Hessian approximation $\|\mathbf{B}_x - \nabla^2 f(x)\| \leq \delta$. Then it holds (Agafonov et al., 2024a)

$$139 \quad |f(\mathbf{y}) - \bar{Q}_f(y; x)| \leq \frac{L_2}{6} \|x - y\|^3 + \delta \|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d$$

141 These bounds demonstrate that the Taylor models are accurate in a neighborhood of x as long as the
 142 curvature of function is smooth and the Hessian approximation \mathbf{B}_x remains close to the true Hessian.
 143 Unfortunately, this guarantees the convergence only locally. In fact, both Newton's method and Quasi-
 144 Newton methods can diverge if initialized far from the solution (Jarre and Toint, 2016; Mascarenhas,
 145 2007). This is because these models (3) and (4) do not provide a global upper bound on the function
 146 f , and may significantly underestimate it far from the current iterate.

147 One way to ensure the global convergence in (Quasi-)Newton methods is to introduce a stepsize
 148 schedule η_k into the update. This modification can be naturally interpreted through the lens of
 149 regularization. In particular, the Quasi-Newton update (2) can be rewritten as

$$150 \quad x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k) = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\eta_k} \|x - x_k\|_{\mathbf{B}_k}^2 \right\}.$$

152 This viewpoint also highlights a key geometric property: if the stepsize η_k and norm $\|\cdot\|_{\mathbf{B}_k}$ are
 153 affine-invariant², then the Quasi-Newton method itself is affine-invariant, which aligns with the
 154 common knowledge (Lyness, 1979). Affine-invariance property is practically significant, as it implies
 155 invariance to scaling and choice of the coordinate system, facilitating the implementation of the
 156 algorithm. Preserving it throughout the proofs requires careful technical analysis.

157 Another globalization strategy for the approximations (3) and (4) is to enhance them with a cubic
 158 regularization term Nesterov and Polyak (2006); Ghadimi et al. (2017). The Cubic Regularized
 159 Newton step takes the form

$$160 \quad x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ Q_f(x; x_k) + \frac{L_2}{3} \|x - x_k\|^3 \right\}.$$

161 ²Affine-invariance is invariance to affine transformations $f \rightarrow A \circ f$ for any linear operator A .

162 For functions with L_2 -Lipschitz Hessian, the cubic model provides a global upper bound: $f(y) \leq$
 163 $Q_f(y; x) + \frac{L_2}{3}\|y - x\|^3$ for any $x, y \in \mathbb{R}^d$. In the case of inexact Hessians, additional regularization
 164 is required to restore the upper-bounding property Agafonov et al. (2024a). Specifically, the cubic
 165 regularized step becomes

$$167 \quad x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ \bar{Q}_f(x; x_k) + \frac{\delta}{2}\|x - x_k\|^2 + \frac{L_2}{3}\|x - x_k\|^3 \right\}$$

168 under which the objective is bounded above as $f(y) \leq \bar{Q}_f(y; x) + \frac{\delta}{2}\|y - x\|^2 + \frac{L_2}{3}\|y - x\|^3$ for
 169 any $x, y \in \mathbb{R}^d$ Agafonov et al. (2024a).

170 While cubic regularization enables global convergence guarantees, we highlight two limitations of
 171 the approach. First, the resulting step can be equivalently written as $x_{k+1} = x_k - (\nabla^2 f(x_k) +$
 172 $\lambda_k I)^{-1} \nabla f(x_k)$, with implicit $\lambda_k = L_2 \|x_k - x_{k+1}\|$. Since λ_k depends on the unknown next iterate
 173 x_{k+1} , it requires using an additional subroutine for solving the subproblem each iteration (Nesterov,
 174 2021b). Secondly, usage of the non-affine-invariant Euclidean norm removes the desired affine-
 175 invariant property.

176 To address the loss of affine-invariance problems, Hanzely et al. (2022) adjusted the geometry of
 177 cubic regularization from Euclidean norm to local norm $\|\cdot\|_x^3$; matching the norm of quadratic term of
 178 Taylor polynomial. This resulted in the update preserving Newton direction with an adjusted stepsize.
 179

180 2.1 CUBICALLY-ENHANCED QUASI-NEWTON

181 Leveraging these ideas, we propose a regularization strategy for Quasi-Newton methods that aligns
 182 quadratic and cubic terms in the same geometry using norms $\|\cdot\|_{\mathbf{B}_k}$. This preserves the update
 183 direction of the classical Quasi-Newton methods, enhanced with a stepsize reflecting both curvature
 184 and model accuracy, hence we call it *Cubically-Enhanced Quasi-Newton* (CEQN). Notably, it enjoys
 185 the structure of Quasi-Newton steps and global convergence guarantees of cubic regularized methods.
 186 Let us formalize the mentioned claims. CEQN method minimizes the regularized model,

$$188 \quad x_{k+1} \stackrel{\text{def}}{=} \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{\theta}{2}\|y - x_k\|_{\mathbf{B}_k}^2 + \frac{L}{3}\|y - x_k\|_{\mathbf{B}_k}^3 \right\}, \quad (5)$$

189 which we simplify using notation $h_k \stackrel{\text{def}}{=} x_{k+1} - x_k$. The first-order optimality condition yields

$$190 \quad 0 = \nabla f(x_k) + \theta \mathbf{B}_k h_k + L \|h_k\|_{\mathbf{B}_k} \mathbf{B}_k h_k, \quad (6)$$

191 which we multiply by \mathbf{B}_k^{-1} and rearrange, obtaining

$$192 \quad h_k = -(\theta + L \|h_k\|_{\mathbf{B}_k})^{-1} \mathbf{B}_k^{-1} \nabla f(x_k).$$

193 This shows that the update direction matches classical Quasi-Newton methods; with a stepsize

$$194 \quad \eta_k \stackrel{\text{def}}{=} (\theta + L \|h_k\|_{\mathbf{B}_k})^{-1}.$$

195 Substituting back $h_k = -\eta_k \mathbf{B}_k^{-1} \nabla f(x_k)$ and $\|h_k\|_{\mathbf{B}_k} = \eta_k \|\nabla f(x_k)\|_{\mathbf{H}_k}$ into (6) simplifies the
 196 equation to $0 = (1 - \theta \eta_k + \eta_k^2 L \|\nabla f(x_k)\|_{\mathbf{B}_k}^2) \nabla f(x_k)$ and solving the quadratic equation in η_k
 197 gives the closed-form expression:

$$198 \quad \eta_k = \frac{2}{\theta + \sqrt{\theta^2 + L \|\nabla f(x_k)\|_{\mathbf{B}_k}^2}}. \quad (7)$$

199 Hence, the minimizer of (5) is algebraically identical to the classical Quasi-Newton update (2) with
 200 stepsize (7). In the special case of an exact Hessian approximation and $\theta = 1$, this method reduces to
 201 Affine-Invariant Cubic Newton method of Hanzely et al. (2022).

202 Quasi-Newton methods are considered to be inexact approximations of the Newton method. This
 203 result provides alternative interpretation, as exact minimizers of the Newton method in an adjusted
 204 geometry. To obtain convergence rates we need to bound the difference between those geometries.
 205 Before presenting convergence rate guarantees, let us formally list CEQN as an Algorithm 1. We
 206 note that if the parameters L and θ are chosen such that the initial stepsize η_0 from (7) matches
 207 the best fine-tuned constant learning rate of a given Quasi-Newton method, then enhancing it with
 208 CEQN stepsizes can lead to faster convergence. This is because the \mathbf{B} -norm of the gradient naturally
 209 decreases as the method approaches the solution.

216 **Algorithm 1** Cubically Enhanced Quasi-Newton Method

217
 1: **Requires:** Initial point $x_0 \in \mathbb{R}^d$, constants $L, \theta > 0$.
 2: **for** $k = 0, 1, \dots, K$ **do**
 200 3: $\eta_k = \frac{2}{\theta + \sqrt{\theta^2 + L \|\nabla f(x_k)\|_{\mathbf{H}_k}}}$
 221 4: $x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k)$
 222 5: **Return:** x_{K+1}

224

3 CONVERGENCE RESULTS

227 As we mentioned before, CEQN is affine-invariant. If we aim to obtain affine-invariant convergence
 228 guarantees, we have to base our analysis on affine-invariant smoothness assumption. Throughout
 229 this work we consider the class of semi-strongly self-concordant functions introduced in Hanzely
 230 et al. (2022). This class is an affine-invariant version of second-order smoothness, and is positioned
 231 between standard self-concordance and strong self-concordance of Rodomanov and Nesterov (2021a),

232 $\text{strong self-concordance} \subseteq \text{semi-strong self-concordance} \subseteq \text{self-concordance}.$
 233

234 **Assumption 1.** Convex function $f \in C^2$ is called semi-strongly self-concordant if

235
$$\|\nabla^2 f(y) - \nabla^2 f(x)\|_{op} \leq L_{\text{semi}} \|y - x\|_x, \quad \forall y, x \in \mathbb{R}^d. \quad (8)$$

 236

237 Semi-strong self-concordance yields explicit second-order approximation bounds on both the function
 238 and its gradient (Hanzely et al., 2022), for all $x, y \in \mathbb{R}^d$, we have:

239
$$|f(y) - Q_f(y; x)| \leq \frac{L_{\text{semi}}}{6} \|y - x\|_x^3, \quad \|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x)\|_x^* \leq \frac{L_{\text{semi}}}{2} \|y - x\|_x^2.$$

240 We now introduce a relative inexactness condition that quantifies how closely the approximate Hessian
 241 \mathbf{B}_x tracks the true Hessian $\nabla^2 f(x)$.
 242

243 **Assumption 2.** For a function $f(x)$ and point $x \in \mathbb{R}^d$, a positive definite matrix $\mathbf{B}_x \in \mathbb{R}^{d \times d}$ is
 244 considered a $(\underline{\alpha}, \bar{\alpha})$ -relative inexact Hessian with $0 \leq \underline{\alpha} \leq 1$, $0 \leq \bar{\alpha}$ if it satisfies the inequality
 245

246
$$(1 - \underline{\alpha})\mathbf{B}_x \preceq \nabla^2 f(x) \preceq (1 + \bar{\alpha})\mathbf{B}_x. \quad (9)$$

 247

248 Combining Assumptions 1 and 2, we obtain the following estimates comparing the function $f(y)$, its
 249 gradient $\nabla f(y)$, and their inexact second-order model $\bar{Q}(y; x)$ (4)

250 **Lemma 1.** Let Assumptions 1 and 2 hold. Then, for any $x, y \in \mathbb{R}^d$, the following inequalities hold:
 251

252
$$f(y) - \bar{Q}_f(y; x) \leq \frac{\bar{\alpha}}{2} \|y - x\|_{\mathbf{B}_x}^2 + \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{6} \|y - x\|_{\mathbf{B}_x}^3, \quad (10)$$

 253

254
$$\bar{Q}_f(y; x) - f(y) \leq \frac{\underline{\alpha}}{2} \|y - x\|_{\mathbf{B}_x}^2 + \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{6} \|y - x\|_{\mathbf{B}_x}^3, \quad (11)$$

255
$$\|\nabla \bar{Q}_f(y; x) - \nabla f(y)\|_{\mathbf{B}_x}^* \leq \alpha_{\text{max}} \|y - x\|_{\mathbf{B}_x} + \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{2} \|y - x\|_{\mathbf{B}_x}^2, \quad (12)$$

 256

257 where $\alpha_{\text{max}} := \max(\underline{\alpha}, \bar{\alpha})$.
 258

Theorem 1. Let Assumptions 1, 2 hold, f be a convex function, and

259
$$D \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} \|x_k - x_*\|_{\mathbf{B}_k}.$$

 260

261 After $K + 1$ iterations of Algorithm 1 with parameters

262
$$\theta \geq 1 + \bar{\alpha}, \quad L \geq \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{2},$$

 263

264 we get the following bound

265
$$f(x_{K+1}) - f(x_*) \leq \frac{(\underline{\alpha} + \bar{\alpha})}{2} \frac{9D^2}{K+3} + (1 + \bar{\alpha})^{3/2} \frac{3L_{\text{semi}}D^3}{(K+1)(K+2)}.$$

 266

267 This result provides an explicit upper bound on the objective residual after $K + 1$ iterations of
 268 Algorithm 1. The second term on the right-hand side matches the convergence rate of the Cubic
 269

270 Regularized Newton method Nesterov (2008) and accelerated gradient descent Nesterov (1983),
 271 and reflects the ideal behavior under exact second-order information. The first term accounts for
 272 the effect of Hessian inexactness and aligns with the standard convergence rate of gradient descent.
 273 However, when the inexactness can be explicitly controlled – e.g., by increasing the batch size in
 274 stochastic settings or refining the approximation scheme – the convergence rate can closely match
 275 that of the exact Cubic Regularized method. To formalize the conditions required to achieve this rate
 276 and provide further insight into the performance of CEQN, we introduce the following lemma.

277 **Lemma 2.** *Let Assumptions 1, 2 hold and $f(x)$ be a convex function. Algorithm 1 with parameters
 278 $\theta = 1 + \alpha \geq 1 + \alpha_{\max}$, $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ implies the following one-step decrease*

$$280 \quad f(x_k) - f(x_{k+1}) \geq \min \left\{ \left(\frac{1}{4\alpha} \right) \left(\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \right)^2, \left(\frac{1}{6L} \right)^{\frac{1}{2}} \left(\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \right)^{3/2} \right\} \geq 0. \quad (13)$$

282 **Remark 1.** *Let Assumptions 3, 4 hold and let $\underline{\alpha} < 1$. Assume that the level set of f is bounded:*

$$283 \quad \max_{x \in \mathcal{L}(x_0)} \|x - x_*\| \leq R < \infty, \text{ where } \mathcal{L}(x_0) = \{x \mid f(x) \leq f(x_0)\}. \quad (14)$$

285 *Then D depends only on the constants $\underline{\alpha}$, R , L_{semi} , $\|\nabla^2 f(x_*)\|$.*

287 An immediate corollary of this lemma is that Algorithm 1 generates a monotonically non-increasing
 288 sequence of function values, with a strict decrease whenever $\nabla f(x_{k+1}) \neq 0$. The lemma also implies
 289 that CEQN transitions only once between two convergence regimes, determined by which term in the
 290 minimum on the right-hand side of (13) is active. As a result, CEQN initially benefits from the faster
 291 convergence rate characteristic of the Cubic Regularized Newton method.

292 **Corollary 1.** *Let Assumptions 1, 2 hold and f be a convex function. Algorithm 1 with parameters
 293 $\theta = 1 + \alpha \geq 1 + \alpha_{\max}$, $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ converges with the rate $\mathcal{O}(k^{-2})$ until it reaches the
 294 region $\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \leq \frac{4\alpha^2}{9L^2(1+\alpha)^3}$.*

296 And finally, the following corollary of Lemma 2 provides a sufficient condition on the inexactness
 297 levels α_k to maintain the global convergence rate $\mathcal{O}(1/k^2)$.

298 **Corollary 2.** *Let Assumptions 1 and 2 hold, and let f be a convex function. Suppose Algorithm 1 is
 299 run with parameters $\theta_k = 1 + \alpha_k \geq 1 + \alpha_{\max}$ and $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$. If the inexactness satisfies
 300 $\alpha_k \leq L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$, then Algorithm 1 achieves the convergence rate $f(x_{k+1}) - f(x^*) = \mathcal{O}(k^{-2})$.*

301 Note that the inexactness condition is verifiable in practice, indicating that the method can adapt its
 302 behavior in scenarios where the inexactness is controllable.

305 4 ADAPTIVE SCHEME

307 In this section, we present a modification of CEQN that automatically adapts to the level of inexactness
 308 in the Hessian approximation. Our adaptive method, Algorithm 2, incrementally increases the
 309 inexactness parameter α_k until the model decrease condition is satisfied.

310 311 **Algorithm 2** Adaptive Cubically Enhanced Quasi-Newton Method (backtracking acceptance)

312 1: **Requires:** Initial point $x_0 \in \mathbb{R}^d$, constants $L, \alpha_0 > 0$, increase multiplier $\gamma_{\text{inc}} > 1$.
 313 2: **for** $k = 0, 1, \dots, K$ **do**
 314 3: $\eta_k = \frac{2}{(1+\alpha_k) + \sqrt{(1+\alpha_k)^2 + (1+\alpha_k)^{3/2} L \|\nabla f(x_k)\|_{\mathbf{B}_k}^*}}$
 315 4: $x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k)$
 316 5: **while** $\langle \nabla f(x_{t+1}), x_k - x_{k+1} \rangle \leq \min \left\{ \frac{(\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^*)^2}{4\alpha_k}, \frac{(\|\nabla f(x_{t+1})\|_{\mathbf{B}_k}^*)^{3/2}}{(6(1+\alpha_k)^{3/2} L)^{1/2}} \right\}$ **do**
 317 6: $\alpha_k = \alpha_k \gamma_{\text{inc}}$
 318 7: Recompute η_k as in Line 3
 319 8: Update x_{k+1} as in Line 4
 320 9: $\alpha_{k+1} = \alpha_k$
 321 10: **Return:** x_{K+1}

324 **Theorem 2.** Let Assumptions 1, 2 hold, f be a convex function, $\varepsilon > 0$ be the target accuracy, and
 325

$$\bar{D} \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} (\|x_k - x_*\|_{\mathbf{B}_k} + \|\nabla f(x_k)\|_{\mathbf{B}_k}^*) . \quad (15)$$

328 Suppose Algorithm 2 is run with parameters $L \geq 2L_{\text{semi}}$, $\alpha_0 > 0$, $\gamma_{\text{inc}} > 1$. Then, to obtain a point
 329 x_K such that $f(x_K) - f(x^*) \leq \varepsilon$, it suffices to perform K iterations of Algorithm 2 for

$$330 \quad K = \mathcal{O} \left(\frac{\alpha_K \bar{D}^2}{\varepsilon} + \frac{(1+\alpha_K)^{3/2} L \bar{D}^3}{\sqrt{\varepsilon}} + \log_{\gamma_{\text{inc}}} \left(\frac{\alpha_K}{\alpha_0} \right) \right) . \quad (16)$$

332 **Remark 2.** Let Assumptions 3, 4 hold and let $\underline{\alpha} < 1$. Assume that the level set of f is bounded (14).
 333 Then \bar{D} depends only on the constants $\underline{\alpha}$, R , \bar{L}_{semi} , $\|\nabla^2 f(x_*)\|$.
 334

335 The convergence rate (16) consists of three components: the first term reflects the effect of inexactness
 336 in the Hessian approximation and corresponds to the gradient descent rate; the second term matches
 337 the convergence rate of the exact Cubic Regularized Newton method; and the third term accounts for
 338 the additional iterations incurred by the inexactness correction procedure.

339 All supplementary results established for Algorithm 1 extend to the adaptive version as well. In
 340 particular:

- 341 • the one-step decrease and monotonicity properties (Lemma 2) remain valid,
- 342 • the transition between cubic and gradient convergence phases still occurs only once (as in Corol-
 343 lary 1, with $\alpha \rightarrow \alpha_k$),
- 344 • and the sufficient condition for achieving the global $\mathcal{O}(k^{-2})$ rate under controllable inexactness
 345 remains unchanged (Corollary 2).

346 5 PRACTICAL PERFORMANCE

348 In this section, we evaluate the practical performance of the proposed CEQN stepsizes. We begin by
 349 discussing the practicality and implementability of the proposed methods.

350 CEQN stepsize (Algorithm 1) relies on two hyperparameters: the cubic regularization parameter L
 351 and the quadratic regularization parameter θ . To reduce the burden of tuning and enhance usability,
 352 we introduced an adaptive Algorithm 2 in the previous section, which replaces the two parameters
 353 with a single adaptive sequence α_k . This sequence is intended to track the level of approximation
 354 error in the Hessian model.

355 However, the original adaptive scheme suffers from a notable limitation: it only allows α_k to increase
 356 throughout the optimization process. As a result, the algorithm tends to significantly overestimate the
 357 actual inexactness level, which in turn degrades performance. This design choice was made to ensure
 358 the validity of theoretical convergence guarantees—allowing α_k to decrease would make it difficult
 359 to control the number of inexactness correction steps, thus breaking the proof structure.

360 **Practical Modifications.** To address this issue, we propose two practical variants of the Adaptive
 361 CEQN stepsize strategy. Both variants use a monotonic decay scheme in which the inexactness level
 362 α_k is multiplicatively decreased after each successful step, allowing the optimizer to better adapt to
 363 local curvature. The only difference between them lies in the condition used to decide whether a step
 364 is successful.

365 The first variant which we denote the `dual` condition uses the theoretical regularity condition from
 366 our analysis (Line 5 of Algorithm 2) and leads to one step decrease shown in Lemma 2. The second
 367 variant, denoted `reg` condition adopts a similar condition to Adaptive Cubic Regularized Quasi-
 368 Newton. Its ensures that the next iterate satisfies sufficient decrease condition `CheckAccept`:

$$369 \quad f(x_{k+1}) \leq f(x_k) - \frac{1}{2} \eta_k (\|\nabla f(x_k)\|_{\mathbf{B}_k}^*)^2 - \frac{L}{6} \eta_k^3 (\|\nabla f(x_k)\|_{\mathbf{B}_k}^*)^3 \quad (17)$$

370 with $\theta = 1 + \alpha_k$, $L = L_{\text{semi}}(1 + \alpha_k)^{3/2}$. This is supported by the following result:

372 **Lemma 3.** Let Assumptions 1, 2 hold. Step (2) with CEQN stepsize (7) and with parameters
 373 $\theta \geq 1 + \alpha_{\text{max}}$, $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ implies one-step decrease (17).

375 A theoretical bound of this form can be found in (Nesterov and Polyak, 2006, Lemma 4), where it
 376 is used in the analysis of the Cubic Regularized Newton method for the nonconvex case. Although
 377 we cannot guarantee a global iteration complexity bound for Algorithm 3, both conditions ensure a
 378 provable decrease in the objective at each step.

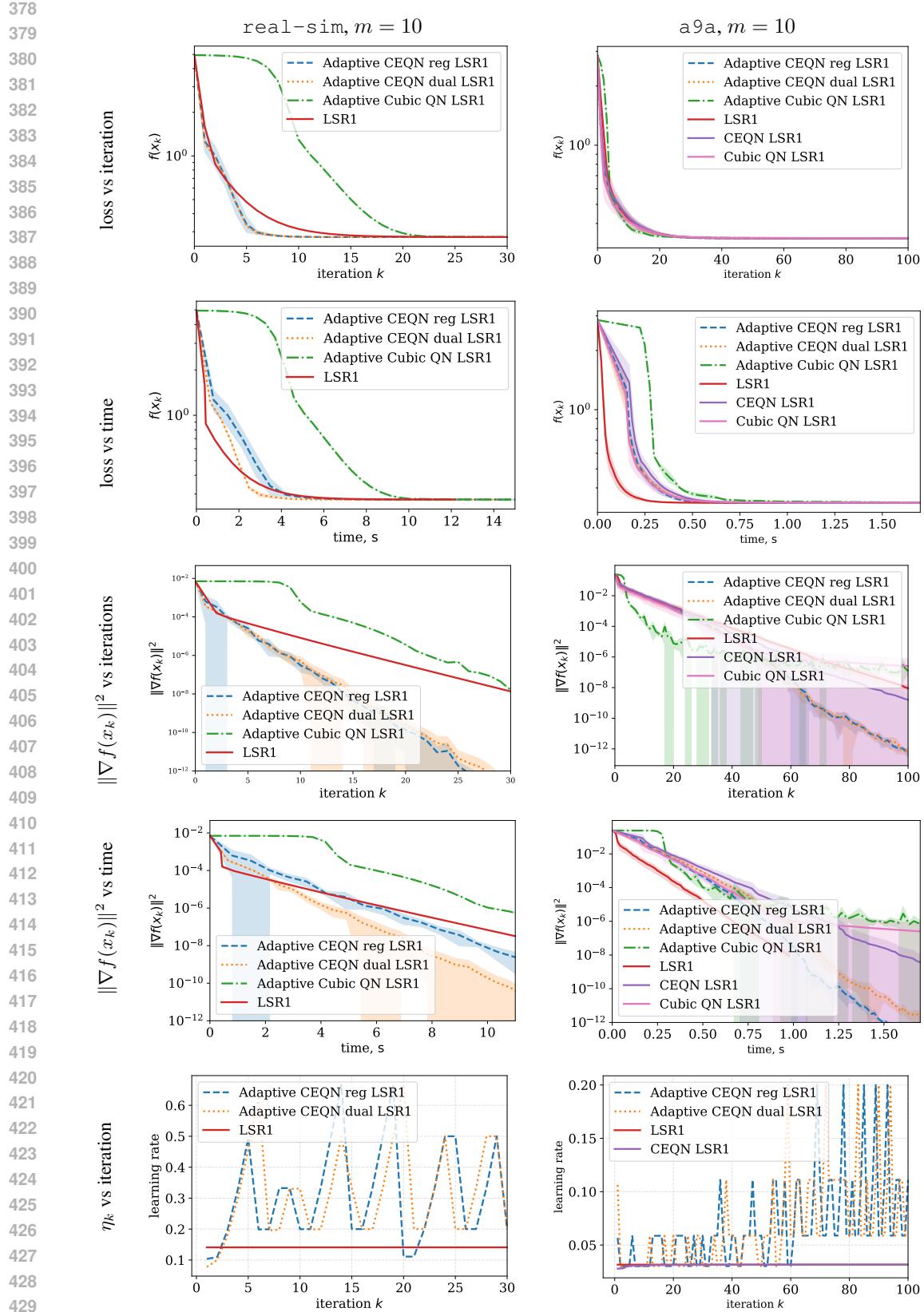


Figure 1: Performance on a9a and real-sim datasets.

Algorithm 3 Practical Adaptive Cubically Enhanced Quasi-Newton Method ([backtracking acceptance](#))

```

432
433
434
435 1: Requires: Initial point  $x_0 \in \mathbb{R}^d$ , constants  $L, \alpha_0 > 0$ , increase multiplier  $\gamma_{inc} > 1$ , decrease
436  multiplier  $0 < \gamma_{dec} < 1$ , mode  $\in \{\text{reg, dual}\}$ .
437 2: for  $k = 0, 1, \dots, K$  do
438 3:    $\eta_k = \frac{2}{(1+\alpha_k) + \sqrt{(1+\alpha_k)^2 + (1+\alpha_k)^{3/2} L \|\nabla f(x_k)\|_{\mathbf{B}_k}^*}}$ 
439 4:    $x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k)$ 
440 5:   while not CheckAccept( $x_{k+1}$ , mode) do
441 6:      $\alpha_k = \alpha_k \gamma_{inc}$ 
442 7:     Recompute  $\eta_k$  as in Line 3
443 8:     Update  $x_{k+1}$  as in Line 4
444 9:      $\alpha_{k+1} = \alpha_k \gamma_{dec}$ 
445 10:  Return:  $x_{K+1}$ 
446
447

```

Hessian Approximation. Experiments presented in this section approximate the inverse Hessian $\mathbf{H}_k \approx \nabla^2 f(x_k)$ using limited-memory SR1 method based on m sampled curvature pairs (s_i, y_i) . These pairs are generated by sampling random directions $d_i \sim \mathcal{N}(0, I)$ and computing $s_i = d_i, y_i = \nabla^2 f(x_k) d_i$ via Hessian-vector product. This sampling-based approach decouples curvature estimation from the optimization trajectory and may offer improved robustness. We set the initial inverse Hessian approximation as $\mathbf{H}_k^0 = \mathbf{H}_0 = cI$ with $c > 0$ and compute the product $\mathbf{H}_k \nabla f(x_k)$ using the limited-memory SR1 update in a compact recursive form:

$$\mathbf{H}_k^{i+1} \nabla f(x_k) = \mathbf{H}_k^i \nabla f(x_k) + \frac{(s_i - \mathbf{H}_k^i y_i)^T \nabla f(x_k)}{(s_i - \mathbf{H}_k^i y_i)^T y_i} (s_i - \mathbf{H}_k^i y_i), \quad i \in [0, m].$$

where $\mathbf{H}_k = \mathbf{H}_k^m$ denotes the final approximation used at iteration k .

Experimental Setup. In this section we consider l_2 regularized logistic regression problem,

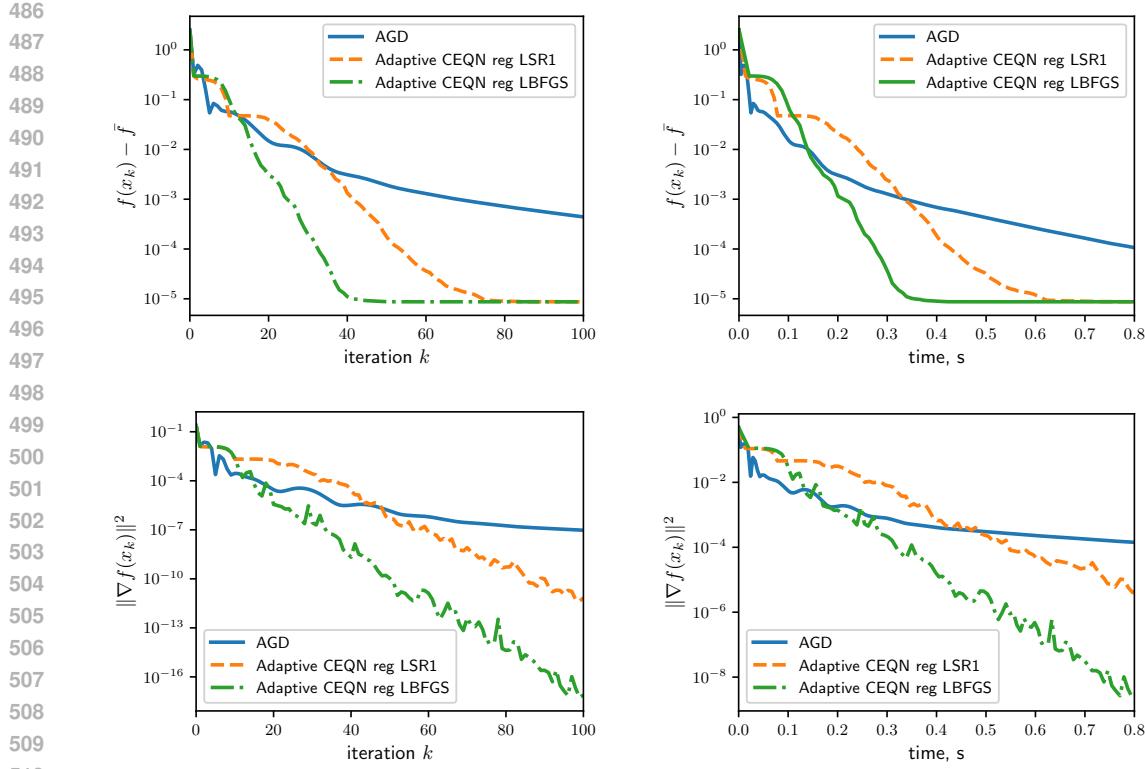
$$f(x) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-b_i a_i^\top x)) + \frac{\mu}{2} \|x\|^2, \quad (18)$$

where $(a_i, b_i)_{i=1}^n$ are training examples, with $a_i \in \mathbb{R}^d$ representing feature vectors and $b_i \in \{-1, 1\}$ the corresponding class labels. The parameter $\mu \geq 0$ controls the strength of ℓ_2 regularization. We set $\mu = 10^{-4}$, and initialize the approximation as $10^{-4}I$, and set starting point as all-one vector. We use datasets from the LIBSVM (Chang and Lin, 2011) collection: `a9a` ($d = 123$) and `real-sim` ($d = 20,958$) to evaluate performance. For the consistency, all experiments on a given dataset were conducted using the same workstation with NVIDIA RTX A6000.

We compare six algorithms on problem (18): LSR1, LSR1 with CEQN stepsizes (Algorithm 1), two versions of LSR1 with adaptive stepsizes (Algorithm 3), and Cubic Regularized Quasi-Newton with LSR1 updates (Kamzolov et al., 2023), both with and without adaptivity.

We fine-tune all hyperparameters via grid searches. For LSR1, we tune the parameter L and use stepsize $\eta_k = 1/L$. For Algorithm 1, we tune both $\theta = 1 + \alpha$ and L . For Algorithm 3, we fix $\alpha_0 = 1$ and tune L . For Cubic Quasi-Newton, we tune (L, δ) in the non-adaptive case, and L in the adaptive variant, where we set $\delta_0 = 0.1$. All adaptive algorithms use $\gamma_{inc} = 2$ and $\gamma_{dec} = 0.5$. All algorithms are run with $m = 10$ and evaluated across 5 different random seeds. The complete hyper-parameter search grids, the best-tuned values, and further experimental results are reported in the Appendix.

Results. We present convergence results on Figure 1. On the larger `real-sim` dataset—where we compared only the adaptive variants and standard LSR1—the benefit of the proposed CEQN stepsize is pronounced. CEQN consistently outperforms the competing algorithms in both iteration count and wall-clock time when measured by log-loss and gradient-squared. A key insight is provided by the step-size evolution plot: the adaptive schemes automatically adjust to the accuracy of the Hessian approximation, allowing their steps to grow well beyond the fixed, optimal step length used by classical LSR1. A similar pattern is observed on the `a9a` dataset. Although the difference in objective values is less visually striking, the increasing step sizes translate into faster gradient convergence. Finally, the loss- and gradient-squared-versus-time curves show that the number of extra inner updates required to satisfy the acceptance tests of Algorithm 3 is small. Consequently, CEQN achieves superior performance not only in terms of iterations but also in wall-clock time.

Figure 2: Comparison of AGD and CEQN with memory size $m = 10$ on a9a.

Comparision with Accelerated Gradient Descent. We additionally compare CEQN with Nesterov’s Accelerated Gradient Descent (AGD). The experiment is conducted on the logistic regression problem (18) using the a9a dataset with regularization parameter $\mu = 10^{-4}$ and an all-ones initialization. For AGD, we tune two hyperparameters: the inverse stepsize L over the same logarithmic grid as used for other methods (Appendix D.1), and the acceleration parameter $\beta \in 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99$. The optimal configuration is $(L, \beta) = (0.1, 0.9)$.

For CEQN, we employ both LSR1 and L-BFGS Hessian approximations with the `reg` adaptive variant. Hyperparameters match those used in Figure 1 on a9a. The reference optimum \bar{f} is computed using Newton’s method. CEQN with both Hessian approximation strategies consistently outperforms AGD in terms of convergence per iteration and wall-clock time. While AGD appears faster within the suboptimality region $\lesssim 10^{-2}$, CEQN rapidly overtakes it and reaches suboptimality below 10^{-4} significantly sooner. This experiment was executed on a MacBook Pro (Apple M2 Pro, 32GB RAM).

6 LIMITATIONS

This study focuses on Quasi-Newton (QN) methods equipped with an additional \mathbf{B} -norm regularization that yields an explicit stepsize formula. The resulting stepsize, however, depends on two constants, one of which—the current accuracy level of the Hessian approximation—is unknown in practice. Although we mitigate this issue by proposing an adaptive strategy with provable convergence, the analysis guarantees adaptation only to the largest inaccuracy level encountered. For the more practical variant (Algorithm 3) we can prove only a one-step decrease; a full global convergence rate remains open. Intriguing directions for future research include whether a Hessian-approximation scheme can be devised that reaches the ideal $\mathcal{O}(1/k^2)$ rate without extra assumptions on inexactness, how strong-convexity parameters might reshape the CEQN stepsize and its guarantees, and whether an adaptive mechanism can be designed to track the current (rather than maximal) inexactness level while still retaining rigorous complexity bounds.

540 REFERENCES
541

542 Artem Agafonov, Pavel Dvurechensky, Gesualdo Scutari, Alexander Gasnikov, Dmitry Kamzolov,
543 Aleksandr Lukashevich, and Amir Daneshmand. An accelerated second-order method for dis-
544 tributed stochastic optimization. In *2021 60th IEEE Conference on Decision and Control (CDC)*,
545 pages 2407–2413. IEEE, 2021.

546 Artem Agafonov, Brahim Erraji, and Martin Takáč. Flecs-cgd: A federated learning second-order
547 framework via compression and sketching with compressed gradient differences. *arXiv preprint*
548 *arXiv:2210.09626*, 2022a.

549 Artem Agafonov, Dmitry Kamzolov, Rachael Tappenden, Alexander Gasnikov, and Martin Takáč.
550 Flecs: A federated learning second-order framework via compression and sketching. *arXiv preprint*
551 *arXiv:2206.02009*, 2022b.

553 Artem Agafonov, Dmitry Kamzolov, Alexander Gasnikov, Ali Kavis, Kimon Antonakopoulos, Volkan
554 Cevher, and Martin Takáč. Advancing the lower bounds: An accelerated, stochastic, second-order
555 method with optimal adaptation to inexactness. *arXiv preprint arXiv:2309.01570*, 2023.

556 Artem Agafonov, Dmitry Kamzolov, Pavel Dvurechensky, Alexander Gasnikov, and Martin Takáč.
557 Inexact tensor methods and their application to stochastic convex optimization. *Optimization*
558 *Methods and Software*, 39(1):42–83, 2024a.

560 Artem Agafonov, Petr Ostroukhov, Roman Mozhaev, Konstantin Yakovlev, Eduard Gorbunov, Martin
561 Takáč, Alexander Gasnikov, and Dmitry Kamzolov. Exploring jacobian inexactness in second-
562 order methods for variational inequalities: Lower bounds, optimal algorithms and quasi-Newton
563 approximations. *Advances in Neural Information Processing Systems*, 37:115816–115860, 2024b.

564 Kimon Antonakopoulos, Ali Kavis, and Volkan Cevher. Extra-Newton: A first approach to noise-
565 adaptive accelerated second-order methods. *arXiv preprint arXiv:2211.01832*, 2022.

566 Michel Baes. Estimate sequence methods: extensions and approximations. *Institute for Operations*
567 *Research, ETH, Zürich, Switzerland*, 2(1), 2009.

569 Albert A Bennett. Newton’s method in general analysis. *Proceedings of the National Academy of*
570 *Sciences*, 2(10):592–598, 1916.

572 Albert Berahas, Majid Jahani, Peter Richtárik, and Martin Takáč. Quasi-Newton methods for machine
573 learning: forget the past, just sample. *Optimization Methods and Software*, 37(5):1668–1704,
574 2022.

576 Charles Broyden. The convergence of a class of double-rank minimization algorithms 1. general
577 considerations. *IMA Journal of Applied Mathematics*, 6(1):76–90, 1970.

578 Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method for
579 highly smooth convex optimization. In Alina Beygelzimer and Daniel Hsu, editors, *Proceedings of*
580 *the Thirty-Second Conference on Learning Theory*, volume 99, pages 492–507. PMLR, 5 2019.
581 URL <https://proceedings.mlr.press/v99/bubeck19a.html>.

582 Richard Byrd, Humaid Khalfan, and Robert Schnabel. Analysis of a Symmetric Rank-one trust
583 region method. *SIAM Journal on Optimization*, 6(4):1025–1039, 1996.

585 Richard H Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a class of quasi-Newton
586 methods on convex problems. *SIAM Journal on Numerical Analysis*, 24(5):1171–1190, 1987.

587 Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
588 adaptive monteiro-svaiter acceleration. In Alice Oh, Alekh Agarwal, Danielle Belgrave, and
589 Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL
590 <https://openreview.net/forum?id=n3lr7GdcbyD>.

592 Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for Support Vector Machines. *ACM*
593 *Transactions on Intelligent Systems and Technology (TIST)*, 2(3):1–27, 2011. URL <https://www.csie.ntu.edu.tw/~cjlin/libsvm/>.

594 Andrew Conn, Nicholas Gould, and Philippe L Toint. Convergence of quasi-Newton matrices
595 generated by the symmetric rank one update. *Mathematical Programming*, 50(1):177–195, 1991.
596

597 Amir Daneshmand, Gesualdo Scutari, Pavel Dvurechensky, and Alexander Gasnikov. Newton
598 method over networks is fast up to the statistical precision. In *International Conference on
599 Machine Learning*, pages 2398–2409. PMLR, 2021.

600 William Davidon. Variable metric method for minimization. Technical report, Argonne National
601 Lab., Lemont, Ill., 1959.
602

603 John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. *SIAM review*, 19
604 (1):46–89, 1977.
605

606 Laurence Charles Ward Dixon. Variable metric algorithms: necessary and sufficient conditions for
607 identical behavior of nonquadratic functions. *Journal of Optimization Theory and Applications*,
608 10:34–40, 1972.
609

610 Nikita Doikov and Yurii Nesterov. Gradient regularization of Newton method with Bregman distances.
arXiv preprint arXiv:2112.02952, 2021.

611 Nikita Doikov and Peter Richtárik. Randomized block cubic Newton method. In Jennifer Dy
612 and Andreas Krause, editors, *The 35th International Conference on Machine Learning (ICML)*,
613 volume 80 of *Proceedings of Machine Learning Research*, pages 1290–1298, Stockholm, Sweden,
614 10–15 Jul 2018. PMLR. URL <http://proceedings.mlr.press/v80/doikov18a.html>.
615

616 Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized Newton
617 method. *SIAM Journal on Optimization*, 34(1):27–56, 2024.
618

619 Pavel Dvurechensky, Dmitry Kamzolov, Aleksandr Lukashevich, Soomin Lee, Erik Ordentlich,
620 César A Uribe, and Alexander Gasnikov. Hyperfast second-order local solvers for efficient statisti-
621 cally preconditioned distributed optimization. *EURO Journal on Computational Optimization*, 10:
622 100045, 2022. ISSN 2192-4406. doi: <https://doi.org/10.1016/j.ejco.2022.100045>. URL <https://www.sciencedirect.com/science/article/pii/S2192440622000211>.
623

624 Roger Fletcher. A new approach to variable metric algorithms. *The Computer Journal*, 13(3):
625 317–322, 1970.
626

627 Roger Fletcher. *Practical methods of optimization*. John Wiley & Sons, 2000.
628

629 Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Se-
630 likhanovich, César A. Uribe, Bo Jiang, Haoyue Wang, Shuzhong Zhang, Sébastien Bubeck,
631 Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near optimal methods for minimiz-
632 ing convex functions with lipschitz p -th derivatives. In Alina Beygelzimer and Daniel Hsu,
633 editors, *Proceedings of the Thirty-Second Conference on Learning Theory*, volume 99 of *Pro-
634 ceedings of Machine Learning Research*, pages 1392–1393. PMLR, 25–28 Jun 2019. URL
<https://proceedings.mlr.press/v99/gasnikov19b.html>.
635

636 Saeed Ghadimi, Han Liu, and Tong Zhang. Second-order methods with cubic regularization under
637 inexact information. *arXiv preprint arXiv:1710.05782*, 2017.
638

639 Hiva Ghanbari and Katya Scheinberg. Proximal quasi-Newton methods for regularized convex
640 optimization with linear and accelerated sublinear convergence rates. *Computational Optimization
and Applications*, 69:597–627, 2018.
641

642 Donald Goldfarb. A family of variable-metric methods derived by variational means. *Mathematics of
643 Computation*, 24(109):23–26, 1970.
644

645 Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: Randomized sub-
646 space Newton. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
647 and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages
648 616–625. Curran Associates, Inc., 2019. URL <http://papers.nips.cc/paper/8351-rsn-randomized-subspace-newton.pdf>.
649

648 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
 649 timization. In Jennifer Dy and Andreas Krause, editors, *Proceedings of the 35th International*
 650 *Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
 651 pages 1842–1850. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/gupta18a.html>.

652

653 Filip Hanzely, Nikita Doikov, Peter Richtárik, and Yurii Nesterov. Stochastic subspace cubic Newton
 654 method. In *37th International Conference on Machine Learning (ICML)*, 2020.

655

656 Slavomír Hanzely. Sketch-and-project meets Newton method: Global $\mathcal{O}(1/k^2)$ convergence with
 657 low-rank updates. *arXiv preprint arXiv:2305.13082*, 2023.

658

659 Slavomír Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander Gasnikov, Peter Richtárik, and
 660 Martin Takáč. A damped Newton method achieves global $\mathcal{O}(k^{-2})$ and local quadratic convergence
 661 rate. *Advances in Neural Information Processing Systems*, 35:25320–25334, 2022.

662

663 Slavomír Hanzely, Farshed Abdukhakimov, and Martin Takáč. Newton method revisited: Global
 664 convergence rates up to $\mathcal{O}(k^{-3})$ for stepsize schedules and linesearch procedures, 2024. URL
 665 <https://arxiv.org/abs/2405.18926>.

666

667 Florian Jarre and Philippe Toint. Simple examples for the failure of Newton’s method with line search
 668 for strictly convex minimization. *Mathematical Programming*, 158(1):23–34, 2016.

669

670 Qiujiang Jin and Aryan Mokhtari. Non-asymptotic superlinear convergence of standard quasi-Newton
 671 methods. *Mathematical Programming*, 200(1):425–473, 2023.

672

673 Qiujiang Jin, Alec Koppel, Ketan Rajawat, and Aryan Mokhtari. Sharpened quasi-Newton methods:
 674 Faster superlinear rate and larger local convergence neighborhood. In *International Conference on*
 675 *Machine Learning*, pages 10228–10250. PMLR, 2022.

676

677 Qiujiang Jin, Ruichen Jiang, and Aryan Mokhtari. Non-asymptotic global convergence rates of BFGS
 678 with exact line search, 2024a. URL <https://arxiv.org/abs/2404.01267>.

679

680 Qiujiang Jin, Ruichen Jiang, and Aryan Mokhtari. Non-asymptotic global convergence analysis of BFGS
 681 with the Armijo-Wolfe line search. In A. Globerson, L. Mackey, D. Bel-
 682 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural In-
 683 formation Processing Systems*, volume 37, pages 16810–16851. Curran Associates, Inc.,
 684 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/1e269abc604816c35f600ae14b354efd-Paper-Conference.pdf.

685

686 K Jordan, Y Jin, V Boza, Y Jiacheng, F Cecista, L Newhouse, and J Bernstein. Muon: An optimizer
 687 for hidden layers in neural networks. URL <https://kellerjordan.github.io/posts/muon>, 2024.

688

689 Dmitry Kamzolov. Near-optimal hyperfast second-order method for convex optimization. In Yury
 690 Kochetov, Igor Bykadorov, and Tatiana Gruzdeva, editors, *Mathematical Optimization Theory
 691 and Operations Research*, pages 167–178, Cham, 2020. Springer International Publishing. ISBN
 978-3-030-58657-7.

692

693 Dmitry Kamzolov, Klea Ziu, Artem Agafonov, and Martin Takáč. Cubic regularization is the key!
 694 The first accelerated quasi-Newton method with a global convergence rate of $\mathcal{O}(k^{-2})$ for convex
 695 functions. *arXiv preprint arXiv:2302.04987*, 2023.

696

697 Fayed Khalfan, Richard Byrd, and Robert Schnabel. A theoretical and experimental study of the
 698 symmetric rank-one update. *SIAM Journal on Optimization*, 3(1):1–24, 1993.

699

700 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
 701 trust-region optimization. *arXiv preprint arXiv:2503.12645*, 2025.

702

703 Dmitry Kovalev and Alexander Gasnikov. The first optimal acceleration of high-order methods in
 704 smooth convex optimization. In Alice HOh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
 705 Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=YgmiL2Ur01P>.

702 Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtárik. Stochastic Newton and cubic
 703 Newton methods with simple local linear-quadratic rates. In *NeurIPS Beyond First Order Methods*
 704 *Workshop*, 2019.

705 Dachao Lin, Haishan Ye, and Zhihua Zhang. Greedy and random quasi-Newton methods with
 706 faster explicit superlinear convergence. *Advances in Neural Information Processing Systems*, 34:
 707 6646–6657, 2021.

708 Tianyi Lin, Panayotis Mertikopoulos, and Michael I Jordan. Explicit second-order min-max opti-
 709 mization methods with optimal convergence guarantee. *arXiv preprint arXiv:2210.12860*, 2022.

710 Dong Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
 711 *Mathematical Programming*, 45(1):503–528, 1989.

712 Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
 713 stochastic second-order optimizer for language model pre-training. In *The Twelfth International
 714 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=3xHDeA8Noi>.

715 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 716 Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint arXiv:2502.16982*,
 717 2025.

718 John Lyness. The affine scale invariance of minimization algorithms. *Mathematics of Computation*,
 719 33(145):265–287, 1979.

720 Walter Mascarenhas. On the divergence of line search methods. *Computational & Applied Mathe-
 721 matics*, 26(1):129–169, 2007.

722 Konstantin Mishchenko. Regularized Newton method with global $\mathcal{O}(\frac{1}{k^2})$ convergence. *arXiv
 723 preprint arXiv:2112.02089*, 2021.

724 Konstantin Mishchenko. Regularized Newton method with global convergence. *SIAM Journal on
 725 Optimization*, 33(3):1440–1462, 2023.

726 Yurii Nesterov. A method for solving the convex programming problem with convergence rate
 727 $\mathcal{O}(1/k^2)$. In *Doklady Akademii Nauk SSSR*, volume 269, pages 543–547, 1983.

728 Yurii Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems.
 729 *Mathematical Programming*, 112(1):159–181, 2008.

730 Yurii Nesterov. Inexact high-order proximal-point methods with auxiliary search procedure. *SIAM
 731 Journal on Optimization*, 31:2807–2828, 2021a. doi: 10.1137/20M134705X. URL <https://doi.org/10.1137/20M134705X>.

732 Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. *Mathematical
 733 Programming*, 186:157–183, 2021b.

734 Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. *Journal of
 735 Optimization Theory and Applications*, 191(1):1–30, 2021c.

736 Yurii Nesterov. Inexact basic tensor methods for some classes of convex optimization problems.
 737 *Optimization Methods and Software*, 37(3):878–906, 2022. doi: 10.1080/10556788.2020.1854252.
 738 URL <https://doi.org/10.1080/10556788.2020.1854252>.

739 Yurii Nesterov and Arkadi Nemirovski. *Interior-Point Polynomial Algorithms in Convex Program-
 740 ming*. SIAM, 1994.

741 Yurii Nesterov and Boris Polyak. Cubic regularization of Newton method and its global performance.
 742 *Mathematical Programming*, 108(1):177–205, 2006.

743 Isaac Newton. *Philosophiae naturalis principia mathematica*. Edmond Halley, 1687.

744 Jorge Nocedal. Updating quasi-Newton matrices with limited storage. *Mathematics of Computation*,
 745 35(151):773–782, 1980.

756 Jorge Nocedal and Stephen Wright. *Numerical Optimization*. Springer, 1999.
 757

758 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 759 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
 760 Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.

761 Mert Pilanci and Martin Wainwright. Newton sketch: A linear-time optimization algorithm with
 762 linear-quadratic convergence. *SIAM Journal on Optimization*, 27(1):205–245, 2017. URL <https://arxiv.org/pdf/1505.02250.pdf>.
 763

764 Boris Teodorovich Polyak. Newton’s method and its use in optimization. *European Journal of Opera-
 765 tional Research*, 181:1086–1096, 2007. ISSN 0377-2217. doi: <https://doi.org/10.1016/j.ejor.2005.06.076>. URL <https://www.sciencedirect.com/science/article/pii/S0377221706001469>.
 766

767

768 Roman Polyak. Regularized Newton method for unconstrained Convex optimization. *Mathematical
 769 Programming*, 120(1):125–145, 2009.
 770

771 Roman Polyak. Complexity of the regularized Newton method. *arXiv preprint arXiv:1706.08483*,
 772 2017.
 773

774 Michael Powell. Some properties of the variable metric algorithm. *Numerical Methods for Nonlinear
 775 Optimization*, pages 1–17, 1972.
 776

777 Michael Powell. Some global convergence properties of a variable metric algorithm for minimization
 778 without exact line searches. *Nonlinear Programming*, 9(1):53–72, 1976.
 779

780 Micheal Powell. On the convergence of the variable metric algorithm. *IMA Journal of Applied
 781 Mathematics*, 7(1):21–36, 1971.
 782

783 Zheng Qu, Peter Richtárik, Martin Takáč, and Olivier Fercoq. SDNA: stochastic dual Newton ascent
 784 for empirical risk minimization. In *The 33rd International Conference on Machine Learning (ICML)*,
 785 pages 1823–1832, 2016.
 786

787 Joseph Raphson. *Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas Resolvendas
 788 Methodus Generalis & Expedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac Demonstrata*.
 Th. Braddyll, 1697.
 789

790 Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
 791 scion great again!(bridging theory and practice of lmo-based optimizers for llms). *arXiv preprint
 792 arXiv:2505.13416*, 2025.
 793

794 Anton Rodomanov and Yurii Nesterov. Greedy quasi-Newton methods with explicit superlinear
 795 convergence. *SIAM Journal on Optimization*, 31(1):785–811, 2021a.
 796

797 Anton Rodomanov and Yurii Nesterov. New results on superlinear convergence of classical quasi-
 798 Newton methods. *Journal of Optimization Theory and Applications*, 188:744–769, 2021b.
 799

800 Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-Newton method with global
 801 complexity analysis. *Mathematical Programming*, 160:495–529, 2016.
 802

803 Damien Scieur. Adaptive quasi-Newton and anderson acceleration framework with explicit global
 804 (accelerated) convergence rates. In *International Conference on Artificial Intelligence and Statistics*,
 805 pages 883–891. PMLR, 2024.
 806

807 David Shanno. Conditioning of quasi-Newton methods for function minimization. *Mathematics of
 808 Computation*, 24(111):647–656, 1970.
 809

810 Thomas Simpson. *Essays on several curious and useful subjects, in speculative and mix’d mathemat-
 811 icks. Illustrated by a variety of examples*. H. Woodfall, 1740.
 812

813 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
 814 Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam. In *The Thirteenth
 815 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IDxZhXrpNf>.
 816

810 Shida Wang, Jalal Fadili, and Peter Ochs. Global non-asymptotic super-linear convergence rates of
811 regularized proximal quasi-Newton methods on non-smooth composite problems. *arXiv preprint*
812 *arXiv:2410.11676*, 2024.

813

814 Max Woodbury. The stability of out-input matrices. *Chicago, IL*, 9:3–8, 1949.

815 Max Woodbury. *Inverting modified matrices*. Department of Statistics, Princeton University, 1950.

816

817 Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex opti-
818 mization under inexact Hessian information. *Mathematical Programming*, 184:35–70, 2020.
819 ISSN 1436-4646. doi: 10.1007/s10107-019-01405-z. URL <https://doi.org/10.1007/s10107-019-01405-z>.

820

821 Haishan Ye, Dachao Lin, Xiangyu Chang, and Zhihua Zhang. Towards explicit superlinear conver-
822 gence rate for SR1. *Mathematical Programming*, 199(1):1273–1303, 2023.

823

824 Yuchen Zhang and Xiao Lin. DiSCO: Distributed optimization for self-concordant empirical loss. In
825 *International Conference on Machine Learning*, pages 362–370. PMLR, 2015.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Appendix

A OTHER RELATED WORKS

Second-order methods have a long and rich history, tracing back to the pioneering works (Newton, 1687; Raphson, 1697; Simpson, 1740; Bennett, 1916). Research in this area typically addresses two main aspects: local convergence properties and globalization strategies. For more historical context on the development of second-order methods, we refer to (Polyak, 2007).

A major breakthrough in globally convergent second-order methods came with the introduction of cubic regularization by Nesterov and Polyak (2006), who proposed augmenting the second-order Taylor approximation with a cubic term to guarantee global convergence, achieving a convergence rate matching that of accelerated gradient descent (Nesterov, 1983). This approach was further accelerated in (Nesterov, 2008), establishing a convergence rate that surpasses the lower bounds for first-order methods. These foundational works initiated a new line of research in second-order optimization, encompassing generalizations to higher-order derivatives (Baes, 2009; Nesterov, 2021b), near-optimal (Gasnikov et al., 2019; Bubeck et al., 2019) and optimal acceleration techniques (Kovalev and Gasnikov, 2022; Carmon et al., 2022), and faster convergence rates under higher smoothness assumptions (Nesterov, 2021c;a; Kamzolov, 2020; Doikov et al., 2024).

However, methods based on cubic or higher-order regularization typically require solving a nontrivial subproblem at each iteration, which introduces computational overhead. To mitigate this, several approaches have been proposed to simplify the cubic regularized Newton step, enabling explicit or efficiently computable updates (Polyak, 2009; 2017; Mishchenko, 2021; Doikov and Nesterov, 2021; Doikov et al., 2024; Hanzely et al., 2022). Such methods can also employ faster convergence under higher smoothness assumptions (Hanzely et al., 2024).

Even without cubic regularization, the classical Newton method is computationally demanding, as it requires solving a linear system involving the Hessian or computing its inverse at each iteration. Quasi-Newton methods (Dennis and Moré, 1977; Nocedal and Wright, 1999) address this by efficiently constructing low-rank approximations of the (inverse) Hessian, thereby reducing the per-iteration cost.

Another class of approaches reduces computational complexity by applying Newton-type updates in low-dimensional subspaces (Qu et al., 2016; Gower et al., 2019; Doikov and Richtárik, 2018; Hanzely et al., 2020), or by employing Hessian sketches to approximate curvature information (Pilancı and Wainwright, 2017; Xu et al., 2020; Kovalev et al., 2019). These techniques can also be integrated into cubic-regularized frameworks that admit explicit stepsizes (Hanzely, 2023).

Several works have investigated the impact of inexact Hessian information on the convergence behavior of cubic-regularized methods in standard optimization problems (Ghadimi et al., 2017; Agafonov et al., 2024a; Antonakopoulos et al., 2022; Agafonov et al., 2023), min-max optimization (Lin et al., 2022), and variational inequalities (Agafonov et al., 2024b). Additionally, second-order methods with inexact or stochastic derivatives have demonstrated strong performance in distributed optimization settings (Zhang and Lin, 2015; Daneshmand et al., 2021; Agafonov et al., 2021; Dvurechensky et al., 2022; Agafonov et al., 2022b;a).

More recently, efficient inexact second-order methods have been proposed specifically for large-scale training of language models (Gupta et al., 2018; Vyas et al., 2025; Liu et al., 2024; Jordan et al., 2024; Liu et al., 2025; Kovalev, 2025; Riabinin et al., 2025).

B CONVERGENCE ANALYSIS

Second-order Taylor approximation:

$$Q_f(y; x) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \tfrac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle. \quad (19)$$

Inexact second-order Taylor approximation:

$$\overline{Q}_f(y; x) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \tfrac{1}{2} \langle \mathbf{B}_x(y - x), y - x \rangle, \quad (20)$$

918 **Assumption 3.** Convex function $f \in C^2$ is called semi-strongly self-concordant if
 919

$$920 \quad \|\nabla^2 f(y) - \nabla^2 f(x)\|_{op} \leq L_{semi} \|y - x\|_x, \quad \forall y, x \in \mathbb{R}^d. \quad (21)$$

921 **Lemma 4** (Hanzely et al. (2022)). If f is semi-strongly self-concordant, then
 922

$$923 \quad |f(y) - Q_f(y; x)| \leq \frac{L_{semi}}{6} \|y - x\|_x^3, \quad \forall x, y \in \mathbb{R}^d. \quad (22)$$

924 Consequently, we have upper bound for function value in form
 925

$$926 \quad f(y) \leq Q_f(y; x) + \frac{L_{semi}}{6} \|y - x\|_x^3. \quad (23)$$

927 **Lemma 5** (Hanzely et al. (2022)). For semi-strongly self-concordant function f holds
 928

$$929 \quad \|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)[y - x]\|_x^* \leq \frac{L_{semi}}{2} \|y - x\|_x^2. \quad (24)$$

931 **Assumption 4.** For a function $f(x)$ and point $x \in \mathbb{R}^d$, a positive definite matrix $B_x \in \mathbb{R}^{d \times d}$ is
 932 considered a $(\underline{\alpha}, \bar{\alpha})$ -relative inexact Hessian with $0 \leq \underline{\alpha} \leq 1$, $0 \leq \bar{\alpha}$ if it satisfies the inequality
 933

$$934 \quad (1 - \underline{\alpha})B_x \preceq \nabla^2 f(x) \preceq (1 + \bar{\alpha})B_x, \quad (25)$$

935 **Lemma 6.** Let Assumptions 3 and 4 hold. Then, for any $x, y \in \mathbb{R}^d$, the following inequalities hold:
 936

$$937 \quad f(y) - \bar{Q}_f(y; x) \leq \frac{\bar{\alpha}}{2} \|y - x\|_{B_x}^2 + \frac{(1 + \bar{\alpha})^{3/2} L_{semi}}{6} \|y - x\|_{B_x}^3, \quad (26)$$

$$938 \quad \bar{Q}_f(y; x) - f(y) \leq \frac{\underline{\alpha}}{2} \|y - x\|_{B_x}^2 + \frac{(1 + \bar{\alpha})^{3/2} L_{semi}}{6} \|y - x\|_{B_x}^3, \quad (27)$$

$$939 \quad \|\nabla \bar{Q}_f(y; x) - \nabla f(y)\|_{B_x}^* \leq \alpha_{\max} \|y - x\|_{B_x} + \frac{(1 + \bar{\alpha})^{3/2} L_{semi}}{2} \|y - x\|_{B_x}^2, \quad (28)$$

940 where $\alpha_{\max} := \max(\underline{\alpha}, \bar{\alpha})$.
 941

942 *Proof.* For any $x, y \in \mathbb{R}^d$,

$$943 \quad f(y) - \bar{Q}_f(y; x) = f(y) - Q_f(y; x) + Q_f(y; x) - \bar{Q}_f(y; x)$$

$$944 \quad \stackrel{(23)}{\leq} \frac{L_{semi}}{6} \|y - x\|_x^3 + Q_f(y; x) - \bar{Q}_f(y; x)$$

$$945 \quad = \frac{L_{semi}}{6} \|y - x\|_x^3 + \frac{1}{2} \langle (\nabla^2 f(x) - B_x)(y - x), (y - x) \rangle$$

$$946 \quad \stackrel{(25)}{\leq} \frac{L_{semi}}{6} \|y - x\|_x^3 + \frac{\bar{\alpha}}{2} \langle B_x(y - x), (y - x) \rangle \quad (29)$$

$$947 \quad = \frac{L_{semi}}{6} \|y - x\|_x^3 + \frac{\bar{\alpha}}{2} \|y - x\|_{B_x}^2 \quad (30)$$

948 Representing $\nabla^2 f(x)$ -norm in terms of B_x -norm
 949

$$950 \quad \|y - x\|_x^3 = \langle \nabla^2 f(x)(y - x), y - x \rangle^{3/2} \stackrel{(25)}{\leq} \langle (1 + \bar{\alpha})B_x(y - x), y - x \rangle^{3/2}$$

$$951 \quad = (1 + \bar{\alpha})^{3/2} \|y - x\|_{B_x}^3, \quad (31)$$

952 we get for any $x, y \in \mathbb{R}^d$

$$953 \quad f(y) - \bar{Q}_f(y; x) = \frac{L_{semi}}{6} \|y - x\|_x^3 + \frac{\bar{\alpha}}{2} \|y - x\|_{B_x}^2 \stackrel{(31)}{\leq} \frac{(1 + \bar{\alpha})^{3/2} L_{semi}}{6} \|y - x\|_{B_x}^3 + \frac{\bar{\alpha}}{2} \|y - x\|_{B_x}^2.$$

954 For any $x, y \in \mathbb{R}^d$

$$955 \quad \bar{Q}_f(y; x) - f(y) = \bar{Q}_f(y; x) - Q_f(y; x) + Q_f(y; x) - f(y)$$

$$956 \quad \stackrel{(23)}{\leq} \bar{Q}_f(y; x) - Q_f(y; x) + \frac{L_{semi}}{6} \|y - x\|_x^3$$

$$957 \quad = \frac{1}{2} \langle (B_x - \nabla^2 f(x))(y - x), (y - x) \rangle + \frac{L_{semi}}{6} \|y - x\|_x^3$$

$$958 \quad \stackrel{(25)}{\leq} \frac{\underline{\alpha}}{2} \langle B_x(y - x), (y - x) \rangle + \frac{L_{semi}}{6} \|y - x\|_x^3 = \frac{\underline{\alpha}}{2} \|y - x\|_{B_x}^2 + \frac{L_{semi}}{6} \|y - x\|_x^3$$

$$959 \quad \stackrel{(31)}{\leq} \frac{\underline{\alpha}}{2} \|y - x\|_{B_x}^2 + \frac{(1 + \bar{\alpha})^{3/2} L_{semi}}{6} \|y - x\|_{B_x}^3$$

972 For any $x, y \in \mathbb{R}^d$,

$$\begin{aligned}
 974 \quad & \|\nabla f(y) - \nabla \bar{Q}_f(y; x)\|_{\mathbf{B}_x}^* = \|\nabla f(y) - \nabla Q_f(y; x) + \nabla Q_f(y; x) - \nabla \bar{Q}_f(y; x)\|_{\mathbf{B}_x}^* \\
 975 \quad & = \|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x) + (\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \\
 976 \quad & \leq \|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x)\|_{\mathbf{B}_x}^* \\
 977 \quad & + \|(\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \\
 978 \quad & \stackrel{(24)}{\leq} \frac{L_{\text{semi}}}{2} \|y - x\|_x^2 + \|(\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \\
 980 \quad & \stackrel{(25)}{\leq} \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{2} \|y - x\|_{\mathbf{B}_x}^2 + \|(\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \quad (32) \\
 981 \\
 982 \\
 983 \\
 984
 \end{aligned}$$

985 For the second term, let $u \stackrel{\text{def}}{=} \mathbf{B}_x^{1/2}(y - x)$. Then:

$$\begin{aligned}
 987 \quad & \|(\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \\
 988 \quad & = (y - x)^T (\mathbf{B}_x - \nabla^2 f(x)) \mathbf{H}_x (\mathbf{B}_x - \nabla^2 f(x)) (y - x) \\
 989 \quad & = (y - x)^T \mathbf{B}_x^{1/2} \mathbf{B}_x^{-1/2} (\mathbf{B}_x - \nabla^2 f(x)) \mathbf{B}_x^{-1/2} \mathbf{B}_x^{-1/2} (\mathbf{B}_x - \nabla^2 f(x)) \mathbf{B}_x^{1/2} \mathbf{B}_x^{-1/2} (y - x) \\
 990 \quad & = u^T (I - \mathbf{B}_x^{-1/2} \nabla^2 f(x) \mathbf{B}_x^{-1/2})^2 u. \\
 991 \\
 992 \\
 993
 \end{aligned}$$

994 By (25), we have

$$996 \quad -\bar{\alpha} I \preceq (I - \mathbf{B}_x^{-1/2} \nabla^2 f(x) \mathbf{B}_x^{-1/2}) \preceq \underline{\alpha} I \quad \Rightarrow \quad (I - \mathbf{B}_x^{-1/2} \nabla^2 f(x) \mathbf{B}_x^{-1/2})^2 \preceq \alpha_{\max} I.$$

998 Therefore,

$$1000 \quad \|(\nabla^2 f(x) - \mathbf{B}_x)(y - x)\|_{\mathbf{B}_x}^* \leq \alpha_{\max} u^T u = \alpha_{\max} (y - x)^T \mathbf{B}_x (y - x) = \alpha_{\max} \|y - x\|_{\mathbf{B}_x}.$$

1002 Plugging this bound into (32) finishes the proof. \square

1004 B.1 NON-ADAPTIVE METHOD

1007 Algorithm 4 Cubically Enhanced Quasi-Newton Method

- 1008 1: **Requires:** Initial point $x_0 \in \mathbb{R}^d$, constants $L, \theta > 0$.
- 1009 2: **for** $k = 0, 1, \dots, K$ **do**
- 1010 3: $\eta_k = \frac{2}{\theta + \sqrt{\theta^2 + L \|\nabla f(x_k)\|_{\mathbf{H}_k}}}$
- 1011 4: $x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k)$
- 1012 5: **Return:** x_{K+1}

1015 **Theorem 3.** Let Assumptions 3, 4 hold, f be a convex function, and

$$1017 \quad D \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} \|x_k - x_*\|_{\mathbf{B}_k}. \quad (33)$$

1020 After $K + 1$ iterations of Algorithm 1 with parameters

$$1022 \quad \theta \geq 1 + \bar{\alpha}, \quad L \geq \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{2}, \quad (34)$$

1023 we get the following bound

$$1025 \quad f(x_{K+1}) - f(x_*) \leq \frac{(\underline{\alpha} + \bar{\alpha})}{2} \frac{9D^2}{K+3} + (1 + \bar{\alpha})^{3/2} \frac{3L_{\text{semi}}D^3}{(K+1)(K+2)}.$$

1026 *Proof.*

$$\begin{aligned}
 1028 \quad f(x_{k+1}) &= \min_{y \in \mathbb{R}^d} \left\{ f(x_k) + \frac{\theta}{2} \|y - x_k\|_{\mathbf{B}_k}^2 + \frac{L}{3} \|y - x_k\|_{\mathbf{B}_k}^3 \right\} \\
 1029 \\
 1030 \quad &\stackrel{(1)}{\leq} \min_{y \in \mathbb{R}^d} \left\{ f(x_k) + \frac{1}{2} \|y - x_k\|_{\mathbf{B}_k}^2 + \frac{\bar{\alpha}}{2} \|y - x_k\|_{\mathbf{B}_k}^2 + \frac{L}{3} \|y - x_k\|_{\mathbf{B}_k}^3 \right\} \\
 1031 \\
 1032 \quad &\stackrel{(4)}{=} \min_{y \in \mathbb{R}^d} \left\{ \bar{Q}_f(y; x_k) + \frac{\bar{\alpha}}{2} \|y - x_k\|_{\mathbf{B}_k}^2 + \frac{L}{3} \|y - x_k\|_{\mathbf{B}_k}^3 \right\} \\
 1033 \\
 1034 \quad &\stackrel{(11)}{\leq} \min_{y \in \mathbb{R}^d} \left\{ f(y) + \frac{\alpha + \bar{\alpha}}{2} \|y - x_k\|_{\mathbf{B}_k}^2 + \frac{2L}{3} \|y - x_k\|_{\mathbf{B}_k}^3 \right\} \\
 1035 \\
 1036 \quad &\stackrel{(1)}{\leq} \min_{\gamma_t \in [0, 1]} \left\{ f(x_k + \gamma_k(x_* - x_k)) + \frac{\alpha + \bar{\alpha}}{2} \gamma_k^2 D^2 + \frac{2L}{3} \gamma_k^3 D^3 \right\} \\
 1037 \\
 1038 \quad &\stackrel{\text{convexity}}{\leq} \min_{\gamma_t \in [0, 1]} \left\{ (1 - \gamma_k) f(x_k) + \gamma_k f(x_*) + \frac{\alpha + \bar{\alpha}}{2} \gamma_k^2 D^2 + \frac{2L}{3} \gamma_k^3 D^3 \right\}
 \end{aligned}$$

1041 Subtracting $f(x_*)$ from both sides, we get for any $\gamma_k \in [0, 1]$

$$1043 \quad f(x_{k+1}) - f(x_*) \leq (1 - \gamma_k)(f(x_k) - f(x_*)) + \frac{\alpha + \bar{\alpha}}{2} \gamma_k^2 D^2 + \frac{2L}{3} \gamma_k^3 D^3. \quad (35)$$

1044 Let us select $\gamma_0 = 1$ and define sequence A_k

$$\begin{aligned}
 1046 \quad A_k &\stackrel{\text{def}}{=} \begin{cases} 1, & k = 0 \\ \prod_{i=1}^k (1 - \gamma_i), & k \geq 1. \end{cases}
 \end{aligned}$$

1050 Then $A_k = (1 - \eta_k)A_{t-k}$. Dividing both sides of (35) by A_k , we get

$$\begin{aligned}
 1052 \quad \frac{1}{A_k} (f(x_{k+1}) - f(x_*)) &\leq \frac{(1 - \gamma_k)}{A_k} (f(x_k) - f(x_*)) + \frac{\alpha + \bar{\alpha}}{2} \frac{\gamma_k^2}{A_k} D^2 + \frac{2L}{3} \frac{\gamma_k^3}{A_k} D^3 \\
 1053 \\
 1054 \quad &= \frac{1}{A_{k-1}} (f(x_k) - f(x_*)) + \frac{\alpha + \bar{\alpha}}{2} \frac{\gamma_k^2}{A_k} D^2 + \frac{2L}{3} \frac{\gamma_k^3}{A_k} D^3.
 \end{aligned}$$

1055 Summing both sides of inequality above from $k = 0, \dots, K$, we obtain

$$1057 \quad \frac{1}{A_K} (f(x_{K+1}) - f(x_*)) \leq \frac{1 - \gamma_0}{A_0} (f(x_0) - f(x_*)) + \frac{\alpha + \bar{\alpha}}{2} D^2 \sum_{k=0}^K \frac{\gamma_k^2}{A_k} + \frac{2L}{3} D^3 \sum_{k=0}^K \frac{\gamma_k^3}{A_k}. \quad (36)$$

1060 Let us choose $\gamma_k = \frac{3}{k+3}$. By [(2.23), Ghadimi et al. (2017)], we have

$$\begin{aligned}
 1062 \quad A_k &= \frac{6}{(k+1)(k+2)(k+3)}, \quad \sum_{k=0}^K \frac{\gamma_k^2}{A_k} \leq \frac{3(K+1)(K+2)}{2}, \quad \sum_{k=0}^K \frac{\gamma_k^3}{A_k} \leq \frac{3K}{2}.
 \end{aligned} \quad (37)$$

$$\begin{aligned}
 1066 \quad f(x_{K+1}) - f(x_*) &\stackrel{(36), \gamma_0=1}{=} A_K \frac{(\alpha + \bar{\alpha}) D^2}{2} \frac{3(K+1)(K+2)}{2} + A_K \frac{2LD^3}{3} \frac{3K}{2} \\
 1067 \\
 1068 \quad &\stackrel{(37)}{=} \frac{(\alpha + \bar{\alpha})}{2} \frac{9D^2}{K+3} + \frac{6LD^3}{(K+1)(K+2)} \stackrel{(1)}{\leq} \frac{(\alpha + \bar{\alpha})}{2} \frac{9D^2}{K+3} + (1 + \bar{\alpha})^{3/2} \frac{3L_{\text{semi}} D^3}{(K+1)(K+2)}
 \end{aligned}$$

1070 \square

1071 **Lemma 7.** *Let Assumptions 3, 4 hold and $f(x)$ be a convex function. Quasi-Newton methods with*
 1072 *CEQN stepsize with parameters $\theta = 1 + \alpha \geq 1 + \alpha_{\max}$, $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ implies the following*
 1073 *one-step decrease*

$$1075 \quad f(x_k) - f(x_{k+1}) \geq \min \left\{ \frac{1}{4\alpha} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}, \left(\frac{1}{6L} \right)^{\frac{1}{2}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*\frac{3}{2}} \right\} \geq 0. \quad (38)$$

1077 *Proof.* By optimality condition of CEQN regularized model

$$1079 \quad 0 = \nabla \bar{Q}(x_{k+1}, x_k) + (\theta - 1 + L \|x_{k+1} - x_k\|_{\mathbf{B}_k}) \mathbf{B}_k(x_{k+1-x_k}). \quad (39)$$

1080 Let us define $\zeta_k \stackrel{\text{def}}{=} \alpha + L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$, $\bar{L} = \frac{L_{\text{semi}}}{2}(1 + \bar{\alpha})^{3/2}$, where $\alpha = \theta - 1$. Next,

$$\begin{aligned} 1082 & (\alpha_{\max} + \bar{L}\|x_{k+1} - x_k\|_{\mathbf{B}_k})^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 \\ 1083 & \stackrel{(12)}{\geq} \|\nabla \bar{Q}_f(x_{k+1}; x_k) - f(x_{k+1})\|_{\mathbf{B}_k}^{*2} \stackrel{(39)}{=} \|\zeta_k \mathbf{B}_k(x_{k+1} - x_k) + \nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} \\ 1084 & = \zeta_k^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 + \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} + 2\zeta_k \langle \nabla f(x_{k+1}), x_{k+1} - x_k \rangle. \\ 1085 & \\ 1086 & \end{aligned} \tag{40}$$

1088 We consider two cases, based on which term in ζ_k dominates.

1089 • Let $\alpha \geq L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$. Then $\zeta_k \leq 2\alpha$. By the choice of the parameters, we have

$$\begin{aligned} 1091 & \zeta_k^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k} \geq \left(\alpha_{\max} + \frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{2} \|x_{k+1} - x_k\|_{\mathbf{B}_k} \right)^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 \\ 1092 & \stackrel{(40)}{\geq} \zeta_k^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 + \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} + 2\zeta_k \langle \nabla f(x_{k+1}), x_{k+1} - x_k \rangle. \\ 1093 & \\ 1094 & \end{aligned}$$

1095 Therefore,

$$1097 \langle \nabla f(x_{k+1}), x_k - x_{k+1} \rangle \geq \frac{1}{2\zeta_k} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} \geq \frac{1}{4\alpha} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}. \tag{41}$$

1099 • Now, let $\alpha < L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$. Then $\zeta_k < 2L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$.
1100 From

$$\begin{aligned} 1102 & (\alpha_{\max} + \bar{L}\|x_{k+1} - x_k\|_{\mathbf{B}_k})^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 \\ 1103 & \stackrel{(40)}{\geq} \zeta_k^2 \|x_{k+1} - x_k\|_{\mathbf{B}_k}^2 + \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} + 2\zeta_k \langle \nabla f(x_{k+1}), x_{k+1} - x_k \rangle \\ 1104 & \end{aligned}$$

1105 and our choice of parameters, we get

$$\begin{aligned} 1106 & \langle \nabla f(x_{k+1}), x_k - x_{k+1} \rangle \\ 1107 & \geq \frac{\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}}{2\zeta_k} + \left[\zeta_k^2 - (\alpha_{\max} + \bar{L}\|x_{k+1} - x_k\|_{\mathbf{B}_k}^2) \right] \frac{\|x_{k+1} - x_k\|_{\mathbf{B}_k}^2}{2\zeta_k} \\ 1108 & = \frac{\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}}{2\zeta_k} \\ 1109 & + (\alpha - \alpha_{\max} + \frac{L - \bar{L}}{2}\|x_{k+1} - x_k\|_{\mathbf{B}_k})(\alpha + \alpha_{\max} + \frac{L + \bar{L}}{2}\|x_{k+1} - x_k\|_{\mathbf{B}_k}) \frac{\|x_{k+1} - x_k\|_{\mathbf{B}_k}^2}{2\zeta_k} \\ 1110 & \geq \frac{\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}}{4L\|x_{k+1} - x_k\|_{\mathbf{B}_k}} + \frac{L^2 - \bar{L}^2}{4L} \|x_{k+1} - x_k\|_{\mathbf{B}_k}^3 \\ 1111 & = \frac{\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}}{4L\|x_{k+1} - x_k\|_{\mathbf{B}_k}} + \frac{3L}{16} \|x_{k+1} - x_k\|_{\mathbf{B}_k}^3 \\ 1112 & \geq \left(\frac{1}{6L} \right)^{\frac{1}{2}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{\frac{3}{2}}, \\ 1113 & \end{aligned} \tag{42}$$

1123 where for the last inequality, we use $\frac{\alpha}{r} + \frac{\beta r^3}{3} \geq \frac{4}{3}\beta^{1/4}\alpha^{3/4}$.

1124 By combining results of these cases and using convexity $f(x_k) - f(x_{k+1}) \geq \langle \nabla f(x_{k+1}), x_k - x_{k+1} \rangle$
1125 we get desired bound. \square

1127 **Remark 3.** Let Assumptions 3, 4 hold, and

$$1129 D \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} \|x_k - x_*\|_{\mathbf{B}_k},$$

1131 where x_k are the iterates generated by Algorithm 1, and let $\underline{\alpha} < 1$. Assume that the level set of f is
1132 bounded:

$$1133 \max_{x \in \mathcal{L}(x_0)} \|x - x_*\| \leq R < \infty,$$

1134 where $\mathcal{L}(x_0) = \{x \mid f(x) \leq f(x_0)\}$. Then
 1135

$$1136 \quad D \leq (1 - \underline{\alpha})^{-1/2} \max_{x \in \mathcal{L}(x_0)} \left\{ \left(\|x - x_*\|_{x_*}^2 + L_{\text{semi}} \|x - x_*\|_{x_*}^3 \right)^{1/2} \right\} \\ 1137 \\ 1138 \leq (1 - \underline{\alpha})^{-1/2} (R^2 \|\nabla^2 f(x_*)\| + L_{\text{semi}} R^3 \|\nabla^2 f(x_*)\|^{3/2})^{1/2}. \\ 1139$$

1140 *Proof.* By Assumption 4 $(1 - \alpha)B_k \preceq \nabla^2 f(x_k)$. Thus,
 1141

$$1142 \quad \|x_k - x_*\|_{B_k} \leq (1 - \underline{\alpha})^{-1/2} \|x_k - x_*\|_k. \\ 1143$$

1144 Next, we bound $\|x_k - x_*\|_k$. By Lemma 7 we have $f(x_0) \geq f(x_1) \geq \dots \geq f(x_k) \geq f(x_{k+1}) \geq \dots \geq f(x_{K+1})$, hence $\{x_i\}_{i=0}^{K+1} \subseteq \mathcal{L}(x_0)$. By Assumption 3,
 1145

$$1146 \quad (x_k - x_*)^T (\nabla^2 f(x_k) - \nabla^2 f(x_*)) (x_k - x_*) \leq L_{\text{semi}} \|x_k - x_*\|_{x_*}^3. \\ 1147$$

1148 Therefore,

$$1149 \quad \|x_k - x_*\|_k^2 \leq \|x_k - x_*\|_{x_*}^2 + L_{\text{semi}} \|x_k - x_*\|_{x_*}^3 \\ 1150 \\ 1151 \leq \max_{x \in \mathcal{L}(x_0)} \left\{ \|x - x_*\|_{x_*}^2 + L_{\text{semi}} \|x - x_*\|_{x_*}^3 \right\}, \\ 1152 \\ 1153 \leq R^2 \|\nabla^2 f(x_*)\| + L_{\text{semi}} R^3 \|\nabla^2 f(x_*)\|^{3/2}.$$

1154 which depends only on $R, \|\nabla^2 f(x_*)\|, L_{\text{semi}}$. □
 1155

1156 **Corollary 3.** Let Assumptions 3, 4 hold and f be a convex function. Algorithm 1 with parameters
 1157 $\theta = 1 + \alpha \geq 1 + \alpha_{\text{max}}, L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ converges with the rate

$$1158 \quad f(x_{k+1}) - f(x^*) \leq \frac{270(1 + \alpha)^{3/2} L_{\text{semi}} \bar{D}^3}{k^2}.$$

1161 until it reaches the region $\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \leq \frac{4\alpha^2}{9L^2(1+\alpha)^{3/2}}$, where
 1162

$$1163 \quad \bar{D} \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} \left(\|x_k - x_*\|_{\mathbf{B}_k} + \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \right). \quad (43)$$

1166 *Proof.* Let us assume that $\frac{1}{4\alpha} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2} \geq \left(\frac{1}{6L}\right)^{\frac{1}{2}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}}$. Then, $\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \geq$
 1167 $\frac{8}{3} \frac{\alpha^2}{L} \geq \frac{8}{3} \frac{\alpha^2}{(1+\alpha)^{3/2} L_{\text{semi}}}$. Then, by Lemma 2
 1168

$$1170 \quad f(x_k) - f(x_{k+1}) \geq \frac{1}{\sqrt{6L}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}}$$

1171 By convexity, we get
 1172

$$1173 \quad f(x^*) \geq f(x_{t+1}) + \langle \nabla f(x_{t+1}), x^* - x_{t+1} \rangle \geq f(x_{t+1}) - \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \|x^* - x_{k+1}\|_{\mathbf{B}_k}.$$

1174 Hence,

$$1176 \quad \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \geq \frac{f(x_{t+1}) - f(x^*)}{\|x^* - x_{k+1}\|_{\mathbf{B}_k}}. \quad (44)$$

1178 By the definition of CEQN step, $\eta_k \leq 1$, and (15)

$$1179 \quad \|x^* - x_{k+1}\|_{\mathbf{B}_k} = \|x^* - x_k + \eta_k \mathbf{B}_k^{-1} \nabla f(x_k)\|_{\mathbf{B}_k} \leq \|x^* - x_k\|_{\mathbf{B}_k} + \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \leq \bar{D}.$$

1181 Then,

$$1183 \quad f(x_k) - f(x_{k+1}) \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L} \right)^{1/2} \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L_{\text{semi}}(1+\alpha)^{3/2}} \right)^{1/2}.$$

1185 By setting $\xi_k = \frac{f(x_k) - f(x^*)}{6L_{\text{semi}}(1+\alpha)^{3/2}}$ we get the following condition
 1186

$$1187 \quad \xi_k - \xi_{k+1} \geq \xi_{k+1}^{3/2}.$$

1188 In Nesterov (2022)[Lemma A.1] it is shown that if a non-negative sequence $\{\xi_t\}$ satisfies for $\beta > 0$
 1189

$$\xi_k - \xi_{k+1} \geq \xi_{k+1}^{1+\beta}$$

1190 then for all $k \geq 0$
 1191

$$\xi_k \leq \left[\left(1 + \frac{1}{\beta} \right) \left(1 + \xi_0^\beta \right) \frac{1}{k} \right]^{1/\beta}. \quad (45)$$

1192 Then, by (45) we get
 1193

$$\xi_{k+1} \leq \left[3 \left(1 + \frac{f(x_1) - f(x^*)}{6L_{\text{semi}}\bar{D}^3(1+\alpha)^{3/2}} \right) \frac{1}{k} \right]^2.$$

1194 Therefore,
 1195

$$f(x_{k+1}) - f(x^*) \leq \frac{54(1+\alpha)^{3/2}L_{\text{semi}}\bar{D}^3}{k^2} + \frac{9}{k^2}(f(x_1) - f(x^*)). \quad (46)$$

1200 Now, we consider the second term
 1201

$$\begin{aligned} \left(\frac{1}{6L_{\text{semi}}(1+\alpha)^{3/2}} \right)^{1/2} \|\nabla f(x_1)\|_{\mathbf{B}_0}^{*3/2} &\stackrel{(44)}{\leq} \langle \nabla f(x_1), x_0 - x_1 \rangle \leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* \|x_0 - x_1\|_{\mathbf{B}_0} \\ &\leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* (\|x_0 - x^*\|_{\mathbf{B}_0} + \|x_0 - \eta\mathbf{B}_0^{-1}\nabla f(x_0) - x^*\|_{\mathbf{B}_0}) \\ &\leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* (\|x_0 - x^*\|_{\mathbf{B}_0} + \|x_0 - x^*\|_{\mathbf{B}_0} + \|\nabla f(x_0)\|_{\mathbf{B}_0}^*) \\ &\leq 2\|\nabla f(x_1)\|_{\mathbf{B}_0}^* \bar{D}. \end{aligned} \quad (47)$$

1202 Next, by convexity, we get
 1203

$$f(x_1) - f(x^*) \leq \bar{D}\|\nabla f(x_1)\|_{\mathbf{B}_0}^* \stackrel{(47)}{\leq} 24(1+\alpha)^{3/2}L_{\text{semi}}\bar{D}^3. \quad (48)$$

1204 And by using (46), we obtain convergence rate
 1205

$$f(x_{k+1}) - f(x^*) \leq \frac{54(1+\alpha)^{3/2}L_{\text{semi}}\bar{D}^3}{k^2} + \frac{9}{k^2}(f(x_1) - f(x^*)) \leq \frac{270(1+\alpha)^{3/2}L_{\text{semi}}\bar{D}^3}{k^2}.$$

1206 \square

1207 **Remark 4.** Let Assumptions 3, 4 hold and let $\underline{\alpha} < 1$. Assume that the level set of f is bounded (14).
 1208 Then \bar{D} depends only on the constants $\underline{\alpha}$, R , L_{semi} , $\|\nabla^2 f(x^*)\|$.

1209 **Proof.** By the definition
 1210

$$\bar{D} \stackrel{\text{def}}{=} \max_{k \in [0; K+1]} (\|x_k - x^*\|_{\mathbf{B}_k} + \|\nabla f(x_k)\|_{\mathbf{B}_k}^*) \leq \max_{k \in [0; K+1]} \|x_k - x^*\|_{\mathbf{B}_k} + \max_{k \in [0; K+1]} \|\nabla f(x_k)\|_{\mathbf{B}_k}^*.$$

1211 In the proof of Remark 1 the first term was bounded and shown that it depends only on the constants
 1212 $\underline{\alpha}$, R , L_{semi} , $\|\nabla^2 f(x^*)\|$.
 1213

1214 Then, lets focus on the gradient term. By triangle inequality and Assumption 3
 1215

$$\begin{aligned} \|\nabla f(x_k)\|_k^* &\leq \|\nabla f(x_k) + \nabla^2 f(x_k)(x^* - x_k)\|_k^* + \|\nabla^2 f(x_k)(x^* - x_k)\|_k^* \\ &\leq \frac{L_{\text{semi}}}{2} \|x^* - x_k\|_k^2 + \|x^* - x_k\|_k. \end{aligned}$$

1216 The term $\|x^* - x_k\|_k$ was bounded in the proof of Remark 1. Finally, by Assumption 4
 1217

$$\|\nabla f(x_k)\|_{\mathbf{B}_k}^* \leq (1 + \bar{\alpha})^{1/2} \|\nabla f(x_k)\|_k^*.$$

1218 Which proves this remark. \square

1219 **Corollary 4.** Let Assumptions 3 and 4 hold, and let f be a convex function. Suppose Algorithm 1 is
 1220 run with parameters $\theta_k = 1 + \alpha_k \geq 1 + \alpha_{\max}$ and $L \geq (1 + \bar{\alpha})^{3/2}L_{\text{semi}}$. If the inexactness satisfies
 1221 $\alpha_k \leq L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$, then Algorithm 1 achieves the convergence rate
 1222

$$f(x_{k+1}) - f(x^*) \leq \frac{270(1+\alpha)^{3/2}L_{\text{semi}}\bar{D}^3}{k^2}.$$

1242 *Proof.* If $\alpha_k \leq L\|x_{k+1} - x_k\|_{\mathbf{B}_k}$, then following the proof of Lemma 2, we arrive at
 1243

$$1244 \quad f(x_k) - f(x_{k+1}) \geq \frac{1}{\sqrt{6L}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}}.$$

1245 Then, directly by the proof of Lemma 1 we achieve the desired bound with $\alpha = \max_k \alpha_k$.
 1246 □
 1247

1248
 1249 **B.2 ADAPTIVE METHOD**
 1250

1251 **Algorithm 5** Adaptive Cubically Enhanced Quasi-Newton Method
 1252

1253 1: **Requires:** Initial point $x_0 \in \mathbb{R}^d$, constant L s.t. $L \geq 2L > 0$, initial inexactness $\alpha_0 > 0$,
 1254 increase multiplier $\gamma_{inc} > 1$.
 1255 2: **for** $k = 0, 1, \dots, K$ **do**
 1256 3: Calculate stepsize
 1257
$$\eta_k = \frac{2}{(1+\alpha_k) + \sqrt{(1+\alpha_k)^2 + (1+\alpha_k)^{3/2} L \|\nabla f(x_k)\|_{\mathbf{H}_k}^*}} \quad (49)$$

 1258
 1259 4: Perform Quasi-Newton step
 1260
 1261
$$x_{k+1} = x_k - \eta_k \mathbf{H}_k \nabla f(x_k) \quad (50)$$

 1262
 1263 5: **while** $\langle \nabla f(x_{t+1}), x_k - x_{k+1} \rangle \leq \min \left\{ \frac{\|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}}{4\alpha_k}, \frac{\|\nabla f(x_{t+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}}}{(6(1+\alpha_k)^{3/2} L)^{1/2}} \right\}$ **do**
 1264 6: $\alpha_k = \alpha_k \gamma_{inc}$
 1265 7: Calculates stepsize η_k (49) with updated α_k
 1266 8: Perform Quasi-Newton step (50) with updated η_k
 1267 9: **Return:** x_{T+1}
 1268

1269
 1270 **Theorem 4.** Let Assumptions 3, 4. After $K + 1$ iterations of Algorithm (2) with parameters $L \geq 2L_{semi}$, $\alpha_0 > 0$, $\gamma_{inc} > 0$. Let $\varepsilon > 0$ be the desired solution accuracy. Then after
 1271

$$1272 \quad K = O \left(\frac{\alpha_K \bar{D}^2}{\varepsilon} + \frac{(1 + \alpha_K)^{3/2} L \bar{D}^3}{\sqrt{\varepsilon}} + \log_{\gamma_{inc}} \left(\frac{\alpha_{\max}}{\alpha_0} \right) \right)$$

1273 iterations of Algorithm 2 x_K is an ε -solution, i.e. $f(x_K) - f(x^*) \leq \varepsilon$.
 1274

1275 1276 *Proof.* By Lemma 2, the termination condition on Line 4 of Algorithm 2 is guaranteed to be satisfied
 1277 after a finite number of backtracking steps. Specifically, the number of inner iterations is bounded by
 1278 $\log_{\gamma_{inc}} \left(\frac{\alpha_{\max}}{\alpha_0} \right)$. Denoting $L_k = (1 + \alpha_k)^{3/2} L$, we obtain the following bound for each iteration:
 1279

$$1280 \quad \langle \nabla f(x_{k+1}), x_k - x_{k+1} \rangle \geq \min \left\{ \left(\frac{1}{4\alpha_k} \right) \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}, \left(\frac{1}{6L_k} \right)^{\frac{1}{2}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}} \right\}. \quad (51)$$

1281 Since $f(x)$ is convex
 1282

$$1283 \quad f(x_t) - f(x_{t+1}) \geq \langle \nabla f(x_{t+1}), x_t - x_{t+1} \rangle \\ 1284 \quad \stackrel{(51)}{\geq} \min \left\{ \left(\frac{1}{4\alpha_k} \right) \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{*2}, \left(\frac{1}{6L_k} \right)^{\frac{1}{2}} \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^{* \frac{3}{2}} \right\} \geq 0. \quad (52)$$

1285 Thus, the method produces a monotonically non-increasing sequence of function values, with strict
 1286 decrease whenever $\nabla f(x_{k+1}) \neq 0$. Once $\nabla f(x_k) = 0$, we have $x_{k+1} = x^*$ and the method
 1287 converged. Furthermore, by convexity, we get
 1288

$$1289 \quad f(x^*) \geq f(x_{t+1}) + \langle \nabla f(x_{t+1}), x^* - x_{t+1} \rangle \geq f(x_{t+1}) - \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \|x^* - x_{k+1}\|_{\mathbf{B}_k}.$$

1290 Hence,
 1291

$$1292 \quad \|\nabla f(x_{k+1})\|_{\mathbf{B}_k}^* \geq \frac{f(x_{t+1}) - f(x^*)}{\|x^* - x_{k+1}\|_{\mathbf{B}_k}}. \quad (53)$$

1296 By the definition of CEQN step, $\eta_k \leq 1$, and (15)
1297
1298 $\|x^* - x_{k+1}\|_{\mathbf{B}_k} = \|x^* - x_k + \eta_k \mathbf{B}_k^{-1} \nabla f(x_k)\|_{\mathbf{B}_k} \leq \|x^* - x_k\|_{\mathbf{B}_k} + \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \leq \bar{D}$.
1299
1300 Then, we get $\|x^* - x_{k+1}\|_{\mathbf{B}_k} \geq \frac{f(x_{k+1}) - f(x^*)}{\bar{D}}$. Therefore, by combining with (52), we have
1301
1302 $f(x_k) - f(x_{k+1}) \geq \min \left\{ \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^2 \left(\frac{1}{4\alpha_k} \right), \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{\frac{3}{2}} \left(\frac{1}{6L_k} \right)^{\frac{1}{2}} \right\}. \quad (54)$
1303
1304 Next, we aim to show that Quasi-Newton methods with the Adaptive CEQN stepsize exhibit two
1305 convergence regimes, with at most one switch between them.
1306 We begin by analyzing the case when the minimum on the right-hand side of (54) is attained by the
1307 second term. This occurs when
1308
1309 $f(x_{k+1}) - f(x^*) \geq \frac{8}{3} \frac{\alpha_k^2 \bar{D}}{L_k} = \frac{8}{3} \frac{\alpha_k^2 \bar{D}}{(1 + \alpha_k)^{3/2} L}$.
1310
1311 Note that α_k is monotonically increasing by the design of the algorithm. Therefore, the right-hand side
1312 of the inequality is also increasing in k , while the left-hand side, $f(x_{k+1}) - f(x^*)$, is monotonically
1313 decreasing. Consequently, the inequality can be violated at most once, implying that the switch
1314 between regimes can occur only once. Let us denote number of iteration in the first regime as $K_1 \geq 0$,
1315 $K_2 \geq 0$ in the second regime, and $K = K_1 + K_2$ total number of iterations of outer step of the
1316 method. Total number of Quasi-Newton method with CEQN stepsize would be $K + \log_{\gamma_{\text{inc}}} \left(\frac{\alpha_{\max}}{\alpha_0} \right)$.
1317
1318 At first, Algorithm 2 performs $K_1 \geq 0$ iterations with the following guarantee:
1319
1320 $f(x_k) - f(x_{k+1}) \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L_k} \right)^{1/2} \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L(1 + \alpha_K)^{3/2}} \right)^{1/2}.$
1321 Then, we have
1322
1323 $f(x_k) - f(x_{k+1}) \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L_k} \right)^{1/2} \geq \left(\frac{f(x_{k+1}) - f(x^*)}{\bar{D}} \right)^{3/2} \left(\frac{1}{6L(1 + \alpha_K)^{3/2}} \right)^{1/2}.$
1324
1325 By setting $\xi_k = \frac{f(x_k) - f(x^*)}{6L(1 + \alpha_K)^{3/2}}$ we get the following condition
1326
1327 $\xi_k - \xi_{k+1} \geq \xi_{k+1}^{3/2}$.
1328
1329 In Nesterov (2022)[Lemma A.1] it is shown that if a non-negative sequence $\{\xi_t\}$ satisfies for $\beta > 0$
1330
1331 $\xi_k - \xi_{k+1} \geq \xi_{k+1}^{1+\beta}$
1332 then for all $k \geq 0$
1333
1334 $\xi_k \leq \left[\left(1 + \frac{1}{\beta} \right) \left(1 + \xi_0^\beta \right) \frac{1}{k} \right]^{1/\beta}. \quad (55)$
1335
1336 Then, by (55) we get for $k \in [0, K_1]$
1337
1338 $\xi_{k+1} \leq \left[3 \left(1 + \frac{f(x_1) - f(x^*)}{6L\bar{D}^3(1 + \alpha_k)^{3/2}} \right) \frac{1}{k} \right]^2.$
1339
1340 Therefore,
1341
1342 $f(x_{k+1}) - f(x^*) \leq \frac{54(1 + \alpha_K)^{3/2} L \bar{D}^3}{k^2} + \frac{9}{k^2} (f(x_1) - f(x^*)). \quad (56)$
1343
1344
1345 $\left(\frac{1}{6L(1 + \alpha_K)^{3/2}} \right)^{1/2} \|\nabla f(x_1)\|_{\mathbf{B}_0}^{* \frac{3}{2}} \stackrel{(53)}{\leq} \langle \nabla f(x_1), x_0 - x_1 \rangle \leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* \|x_0 - x_1\|_{\mathbf{B}_0}$
1346
1347 $\leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* (\|x_0 - x^*\|_{\mathbf{B}_0} + \|x_0 - \eta_k \mathbf{B}_0^{-1} \nabla f(x_0) - x^*\|_{\mathbf{B}_0})$
1348
1349 $\leq \|\nabla f(x_1)\|_{\mathbf{B}_0}^* (\|x_0 - x^*\|_{\mathbf{B}_0} + \|x_0 - x^*\|_{\mathbf{B}_0} + \|\nabla f(x_0)\|_{\mathbf{B}_0}^*)$
 $\leq 2 \|\nabla f(x_1)\|_{\mathbf{B}_0}^* \bar{D}. \quad (57)$

1350 Next, by convexity, we get
 1351

$$1352 f(x_1) - f(x^*) \leq \bar{D} \|\nabla f(x_1)\|_{\mathbf{B}_0}^* \stackrel{(57)}{\leq} 24(1 + \alpha_K)^{3/2} L \bar{D}^3. \quad (58)$$

1354 And by using (56), we obtain convergence rate
 1355

$$1356 f(x_{k+1}) - f(x^*) \leq \frac{54(1 + \alpha_K)^{3/2} L \bar{D}^3}{k^2} + \frac{9}{k^2} (f(x_1) - f(x^*)) \leq \frac{270(1 + \alpha_K)^{3/2} L \bar{D}^3}{k^2}.$$

1358 Equivalently,
 1359

$$1360 K_1 = O\left(\frac{(1 + \alpha_K)^{3/2} L \bar{D}^3}{\sqrt{\varepsilon}}\right).$$

1362 After K_1 iterations, if the target accuracy has not yet been achieved, the method transitions into the
 1363 second regime. From (54), similar to the first regime, for $k \in [K_1, K]$, we get
 1364

$$1365 \xi_k - \xi_{k+1} \geq \xi_{k+1}^2, \quad (59)$$

1366 with $\xi_k = \frac{f(x_k) - f(x^*)}{4\alpha_K \bar{D}^2}$.
 1367

1368 Applying (55), we get
 1369

$$1370 f(x_K) - f(x^*) \leq \left(4\alpha_K \bar{D}^2 + f(x_{K_1}) - f(x^*)\right) \frac{2}{K_2} \quad (60)$$

$$1373 \left(\frac{1}{4\alpha_K}\right)^{1/2} \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \stackrel{3/2}{\leq} \quad (61)$$

$$1375 \begin{aligned} & \stackrel{(53)}{\leq} \langle \nabla f(x_{K_1}), x_{K_1-1} - x_{K_1} \rangle \leq \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \|x_{K_1-1} - x_{K_1}\|_{\mathbf{B}_{K_1-1}} \\ & \leq \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \left(\|x_{K_1-1} - x^*\|_{\mathbf{B}_{K_1-1}} + \|x_{K_1-1} - \eta_k \mathbf{B}_{K_1-1}^{-1} \nabla f(x_{K_1-1}) - x^*\|_{\mathbf{B}_{K_1-1}} \right) \\ & \leq \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \left(\|x_{K_1-1} - x^*\|_{\mathbf{B}_{K_1-1}} + \|x_{K_1-1} - x^*\|_{\mathbf{B}_{K_1-1}} + \|\nabla f(x_{K_1-1})\|_{\mathbf{B}_{K_1-1}}^* \right) \\ & \leq 2 \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \bar{D}. \end{aligned} \quad (62)$$

1383 Next, by convexity, we get
 1384

$$1385 f(x_{K_1}) - f(x^*) \leq \bar{D} \|\nabla f(x_{K_1})\|_{\mathbf{B}_{K_1-1}}^* \stackrel{(57)}{\leq} 8\alpha_K \bar{D}^2. \quad (63)$$

1387 And by using (60), we obtain convergence rate
 1388

$$1389 f(x_K) - f(x^*) \leq \frac{24\alpha_K \bar{D}^2}{k}$$

1391 Equivalently,
 1392

$$1393 K_2 = O\left(\frac{\alpha_K \bar{D}^2}{\varepsilon}\right).$$

1395 Thus, total number of iterations is
 1396

$$1397 K_1 + K_2 + \log_{\gamma_{\text{inc}}} \left(\frac{\alpha_{\text{max}}}{\alpha_0} \right) = O\left(\frac{\alpha_K \bar{D}^2}{\varepsilon} + \frac{(1 + \alpha_K)^{3/2} L \bar{D}^3}{\sqrt{\varepsilon}} + \log_{\gamma_{\text{inc}}} \left(\frac{\alpha_{\text{max}}}{\alpha_0} \right)\right)$$

1399 \square
 1400

1401 **Lemma 8.** Let Assumptions 3, 4 hold. QN step with CEQN stepsize and with parameters $\theta \geq$
 1402 $1 + \alpha_{\text{max}}$, $L \geq (1 + \bar{\alpha})^{3/2} L_{\text{semi}}$ implies one-step decrease
 1403

$$1403 f(x_{k+1}) \leq f(x_k) - \frac{1}{2} \eta_k \left(\|\nabla f(x_k)\|_{\mathbf{B}_k}^* \right)^2 - \frac{L}{6} \eta_k^3 \left(\|\nabla f(x_k)\|_{\mathbf{B}_k}^* \right)^3 \quad (64)$$

1404 *Proof.* By Lemma 4 for any $x, y \in \mathbb{R}^d$
 1405

$$1406 \quad |f(y) - f(x) - \langle \nabla f(x), y - x \rangle - \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle| \leq \frac{L_{\text{semi}}}{6} \|y - x\|_x^3 \quad (65)$$

1408 Substituting $y = x_k, x = x_{k+1}$:
 1409

$$1410 \quad f(x_k) - f(x_{k+1}) \geq \langle \nabla f(x_k), x_k - x_{k+1} \rangle - \frac{1}{2} \langle \nabla^2 f(x_k)(x_{k+1} - x_k), x_{k+1} - x_k \rangle - \frac{L_{\text{semi}}}{6} \|x_{k+1} - x_k\|_{x_k}^3. \quad (66)$$

1413 From optimality condition of the cubic step
 1414

$$1415 \quad 0 = \nabla f(x_k) + \theta B_k(x_{k+1} - x_k) + \frac{2L}{3} \|x_{k+1} - x_k\|_{B_k} B_k(x_{k+1} - x_k).$$

1417 Multiplying optimality condition by $\frac{1}{2}(x_{k+1} - x_k)^\top$:
 1418

$$1419 \quad 0 = \frac{1}{2} \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{\theta}{2} \|x_{k+1} - x_k\|_{B_k}^2 + \frac{L}{3} \|x_{k+1} - x_k\|_{B_k}^3 \quad (67)$$

1422 By Assumption 4 and our parameters choice, we have
 1423

$$1424 \quad -\frac{1}{2} \|x_{k+1} - x_k\|_{x_k}^2 \geq -\frac{1 + \bar{\alpha}}{2} \|x_{k+1} - x_k\|_{B_k}^2 \geq -\frac{\theta}{2} \|x_{k+1} - x_k\|_{B_k}^2$$

$$1426 \quad -\frac{L_{\text{semi}}}{6} \|x_{k+1} - x_k\|_{x_k}^3 \geq -\frac{(1 + \bar{\alpha})^{3/2} L_{\text{semi}}}{6} \|x_{k+1} - x_k\|_{B_k}^3 \geq -\frac{L}{6} \|x_{k+1} - x_k\|_{B_k}^3$$

1428 Combining (66) with previous inequalities, we get
 1429

$$1430 \quad f(x_k) - f(x_{k+1}) \geq \langle \nabla f(x_k), x_k - x_{k+1} \rangle - \frac{\theta}{2} \|x_{k+1} - x_k\|_{B_k}^2 - \frac{L}{6} \|x_{k+1} - x_k\|_{B_k}^3.$$

1432 By adding (67), we have
 1433

$$1434 \quad f(x_k) - f(x_{k+1}) \geq \frac{1}{2} \langle \nabla f(x_k), x_k - x_{k+1} \rangle + \left(\frac{L}{3} - \frac{L}{6} \right) \|x_{k+1} - x_k\|_{B_k}^3.$$

1437 Plugging in the update rule $x_{k+1} = x_k - \eta_k H_k \nabla f(x_k)$, we get
 1438

$$1439 \quad f(x_k) - f(x_{k+1}) \geq \frac{1}{2} \eta_k (\|\nabla f(x_k)\|_{B_k}^*)^2 + \frac{L}{6} \eta_k^3 (\|\nabla f(x_k)\|_{B_k}^*)^3.$$

1441 Rearranging,
 1442

$$1443 \quad f(x_{k+1}) \leq f(x_k) - \frac{1}{2} \eta_k (\|\nabla f(x_k)\|_{B_k}^*)^2 - \frac{L}{6} \eta_k^3 (\|\nabla f(x_k)\|_{B_k}^*)^3. \quad (68)$$

1445 \square
 1446

1448 C PROOF WITHOUT SEMI-STRONG SELF-CONCORDANCE

1449
 1450 In this section, we provide a more direct alternative analysis of the CEQN algorithm under the
 1451 assumption that the CEQN model upper bounds the objective function.

1452 **Assumption 5.** For the function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and the preconditioner schedule B_k , there exist
 1453 constants θ, L are such that and all $x, y \in \mathbb{R}^d$ holds
 1454

$$1455 \quad f(y) \leq f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{\theta}{2} \|y - x_k\|_{B_k}^2 + \frac{L}{3} \|y - x_k\|_{B_k}^3. \quad (69)$$

1456 This assumption can be satisfied under various conditions, or in particular:
 1457

1458 • For L_{semi} -semi-strong self-concordant functions (Hanzely et al., 2022) and $\mathbf{B}_k = \nabla^2 f(x_k)$
 1459 it holds with $\theta = 1$ and $L = L_{semi}$.

1460 • For L_{semi} -semi-strong self-concordant functions (Hanzely et al., 2022) and \mathbf{B}_k approximating
 1461 Hessian as $(1 - \underline{\alpha})\mathbf{B}_k \preceq \nabla^2 f(x_k) \preceq (1 + \overline{\alpha})\mathbf{B}_k$ it holds with $\theta = \frac{1}{1+\overline{\alpha}}$ and
 1462 $L = L_{semi}\theta^{3/2}$.

1463 Notably, this assumption that \mathbf{B}_k approximates Hessian with relative precision is standard
 1464 in the analysis of Quasi-Newton methods. For (standard) self-concordant function f , it can
 1465 be satisfied if \mathbf{B}_k is chosen as Hessian at point from the neighborhood of x_k .

1467 Plugging the minimizer into the upper bound leads to the following one-step decrease.

1468 **Lemma 9.** *Quasi-Newton method with CEQN stepsize decreases functional value as*

$$1470 \quad f(x_{k+1}) - f(x_k) \leq -\frac{\eta_k(4 - \eta_k\theta)}{6} \|\nabla f(x_k)\|_{\mathbf{B}_k}^{*2} \quad (70)$$

$$1471 \quad \leq -\frac{\eta_k}{2} \|\nabla f(x_k)\|_{\mathbf{B}_k}^{*2} \quad (71)$$

$$1472 \quad \leq -\frac{\|\nabla f(x_k)\|_{\mathbf{B}_k}^{*2}}{2 \max(2\theta, \sqrt{2L\theta} \|\nabla f(x_k)\|_{\mathbf{B}_k}^*)} \quad (72)$$

$$1473 \quad = \begin{cases} -\frac{1}{4\theta} \|\nabla f(x_k)\|_{\mathbf{B}_k}^{*2} & \text{if } \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \leq \frac{2\theta}{L} \\ -\frac{1}{\sqrt{8L\theta}} \|\nabla f(x_k)\|_{\mathbf{B}_k}^{*2} & \text{if } \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \geq \frac{2\theta}{L} \end{cases} \quad (73)$$

1481 *Proof.* First inequality is equivalent to follows from model upperbound,

$$1482 \quad f(x_{k+1}) - f(x) \leq \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{\theta}{2} \|x_{k+1} - x_k\|_{\mathbf{B}_{x_k}}^2 + \frac{L}{3} \|x_{k+1} - x_k\|_{\mathbf{B}_{x_k}}^3 \quad (74)$$

$$1483 \quad = -\eta_k \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^{*2} + \frac{\theta}{2} \eta_k^2 \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^{*2} + \frac{L}{3} \eta_k^3 \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^3 \quad (75)$$

$$1484 \quad = \eta_k \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^{*2} \left(-1 + \frac{\theta}{2} \eta_k + \frac{L}{3} \eta_k^2 \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^* \right), \quad (76)$$

1485 with the choice of stepsize satisfying $1 - \theta\eta_k = L\eta_k^2 \|\nabla f(x_k)\|_{\mathbf{B}_k}^*$

$$1486 \quad = \eta_k \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^{*2} \left(-1 + \frac{\theta}{2} \eta_k + \frac{1 - \theta\eta_k}{3} \right) \quad (77)$$

$$1487 \quad = \eta_k \|\nabla f(x_k)\|_{\mathbf{B}_{x_k}}^{*2} \left(-\frac{2}{3} + \frac{1}{6} \theta\eta_k \right). \quad (78)$$

1488 The second inequality in the lemma follows from the fact that $\theta\eta_k \in (0, 1]$, and therefore $\theta\eta_k \leq 1$.
 1489 The third inequality in the lemma follows from the basic manipulation of the stepsizes η_k . \square

1500 Therefore, functional value decreases monotonically. As long as the gradient exponent is $3/2$, this
 1501 implies $\mathcal{O}(1/k^2)$ convergence.

1502 **Theorem 5.** *For the convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ satisfying bounded level set assumption of the form
 1503 $R \stackrel{\text{def}}{=} \max_{k \in [0, \dots, K]} \|x_k - x^*\|_{\mathbf{B}_k} < \infty$, and the Quasi-Newton preconditioner schedule \mathbf{B}_k satisfying
 1504 Assumption 5, the CEQN method converges globally to point a x_k such that $\|\nabla f(x_k)\|_{\mathbf{B}_k}^* \leq \frac{2\theta}{L}$ with
 1505 the rate $\mathcal{O}(k^{-2})$.*

1506 *Proof.* The proof is analogical to Theorem 4 of Hanzely et al. (2022).

1507 From convexity and Cauchy-Schwarzhz inequality,

$$1508 \quad f(x_k) - f^* \leq \langle \nabla f(x_k), x_k - x^* \rangle \leq \|\nabla f(x_k)\|_{\mathbf{B}_k}^* \|x_k - x^*\|_{\mathbf{B}_k} \leq R \|\nabla f(x_k)\|_{\mathbf{B}_k}^*. \quad (79)$$

1512 Plugging that to Lemma 9
 1513

$$1514 f(x_{k+1}) - f(x_k) \leq -\frac{1}{\sqrt{8L\theta}} \|\nabla f(x_k)\|_{\mathbf{B}_k}^{* \frac{3}{2}} \leq -\frac{1}{\sqrt{8L\theta R^3}} (f(x_k) - f^*)^{\frac{3}{2}} = -\tau (f(x_k) - f^*)^{\frac{3}{2}} \quad (80)$$

1517 for $\tau \stackrel{\text{def}}{=} \frac{1}{\sqrt{8L\theta R^3}}$. Denote $\beta_k \stackrel{\text{def}}{=} \tau^2 (f(x_k) - f^*) \geq 0$ satisfying recurrence
 1518

$$1520 \beta_{k+1} = \tau^2 (f(x_{k+1}) - f^*) \leq \tau^2 (f(x_k) - f^*) - \tau^3 (f(x_k) - f^*)^{3/2} = \beta_k - \beta_k^{3/2}. \quad (81)$$

1521 Because $\beta_{k+1} \geq 0$, we have $\beta_k \leq 1$. Nesterov (2022)[Lemma A.1] shows that the sequence
 1522 $\{\beta_k\}_{k=0}^{\infty}$ for $0 \leq \beta_k \leq 1$ decreases as $\mathcal{O}(k^{-2})$, so denote c constant satisfying $\beta_k \leq ck^{-2}$ for all k
 1523 (Mishchenko (2023)[Proposition] claims that $c \approx 3$ is sufficient), then for k at least
 1524

$$1525 k \geq \sqrt{\frac{c}{\tau^2 \varepsilon}} = \sqrt{\frac{c8L\theta R^3}{\varepsilon}} = \mathcal{O}\left(\sqrt{\frac{L\theta R^3}{\varepsilon}}\right) \quad (82)$$

1528 we have
 1529

$$1530 f(x_k) - f^* = \frac{\beta_k}{\tau^2} \leq \frac{c}{k^2 \tau^2} \leq \varepsilon. \quad (83)$$

1532 \square
 1533

1534 D EXPERIMENTS

1536 Our code is available at <https://anonymous.4open.science/r/ceqn-stepsizes/>.

1538 D.1 EXPERIMENT DETAILS

1540 For the L parameter across all methods on `a9a` dataset, we use a logarithmically spaced grid:

$$1542 L \in \left\{ 10^{-5}, 3.16 \times 10^{-5}, 10^{-4}, 3.16 \times 10^{-4}, 10^{-3}, 3.16 \times 10^{-3}, 10^{-2}, \right. \\ 1543 \left. 3.16 \times 10^{-2}, 10^{-1}, 3.16 \times 10^{-1}, 1, 3.16, 10, 3.16 \times 10, 10^2, 3.16 \times 10^2, 10^3 \right\}.$$

1546 For the δ parameter of non-adaptive Cubic Regularized Quasi-Newton (CRQN) and the α parameter
 1547 of non-adaptive CEQN, we extend this grid to also include the value 0. For the `a9a` dataset, CEQN
 1548 LSR1 used $L = 10^2$ and $\delta = 3.16 \times 10$, Adaptive CEQN reg LSR1 and dual LSR1 both used
 1549 $L = 10^{-1}$, LSR1 used $L = 3.16 \times 10$, Cubic QN LSR1 used $L = 3.16 \times 10^{-5}$ and $\delta = 1$, while
 1550 Adaptive Cubic QN LSR1 used $L = 3.16 \times 10^{-5}$.

1551 For the `real-sim` dataset, we use a denser, smaller logarithmic grid:

$$1553 L \in \left\{ 10^{-5}, 2.82 \times 10^{-5}, 7.95 \times 10^{-5}, 2.24 \times 10^{-4}, 6.31 \times 10^{-4}, 1.78 \times 10^{-3}, \right. \\ 1554 \left. 5.02 \times 10^{-3}, 1.41 \times 10^{-2}, 3.99 \times 10^{-2}, 1.12 \times 10^{-1}, 3.17 \times 10^{-1}, \right. \\ 1555 \left. 8.93 \times 10^{-1}, 2.52, 7.10, 20.0 \right\}.$$

1558 The best-performing L values were: Adaptive CEQN reg LSR1 used $L = 1.12 \times 10^{-1}$, Adaptive
 1559 CEQN dual LSR1 used $L = 8.93 \times 10^{-1}$, LSR1 used $L = 7.10$, Cubic QN LSR1 used $L =$
 1560 7.95×10^{-5} , and Adaptive Cubic QN LSR1 used $L = 7.95 \times 10^{-5}$.

1561 D.2 ADDITIONAL EXPERIMENTS

1563 In this section, we conduct all experiments on logistic regression with regularization parameter
 1564 $\mu = 10^{-4}$, using the `a9a` dataset and a memory size of $m = 10$. Optimal parameters for methods in
 1565 this section presented in Table 1.

	Adaptive CEQN reg	Adaptive CEQN dual	Classic QN	Adaptive Cubic QN
L-BFGS	3.16	3.16×10^{-1}	3.16	3.16×10^{-5}
L-BFGS history	1	1	3.16×10^2	10^{-3}
SR1	10^{-1}	10^{-1}	3.16×10	3.16×10^{-5}
SR1 history	1	3.16×10	10^3	10^{-3}

Table 1: Optimal L values across Hessian approximation strategies and Quasi-Newton methods.

D.2.1 LBFGS UPDATE

In this set of experiments, we approximate the inverse Hessian $\mathbf{H}_k \approx \nabla^2 f(x_k)^{-1}$ using the limited-memory BFGS (L-BFGS) method. The approximation is based on a history of m curvature pairs (s_i, y_i) collected during the past optimization steps, where $s_i = x_{i+1} - x_i$ and $y_i = \nabla f(x_{i+1}) - \nabla f(x_i)$ or by sampling random directions $d_i \sim \mathcal{N}(0, I)$ and computing $s_i = d_i, y_i = \nabla^2 f(x_k) d_i$ via Hessian-vector product. These pairs are reused to construct an implicit representation of \mathbf{H}_k without forming it explicitly.

We compute the product $\mathbf{H}_k \nabla f(x_k)$ using the classical two-loop recursion:

```

1: Input: Gradient  $g_k = \nabla f(x_k)$ , memory  $\{(s_i, y_i)\}_{i=1}^m$ 
2: Initialize  $q \leftarrow g_k$ 
3: for  $i = m$  to 1 do
4:    $\rho_i \leftarrow 1/(y_i^\top s_i)$ 
5:    $\alpha_i \leftarrow \rho_i \cdot s_i^\top q$ 
6:    $q \leftarrow q - \alpha_i y_i$ 
7: Compute scalar  $B_0 = \frac{y_m^\top y_m}{s_m^\top y_m}$ 
1591 8:  $r \leftarrow q/B_0$ 
1592 9: for  $i = 1$  to  $m$  do
1593    $\beta \leftarrow \rho_i \cdot y_i^\top r$ 
1594    $r \leftarrow r + s_i(\alpha_i - \beta)$ 
1595 12: Return:  $r$ 

```

D.2.2 SAMPLING VS HISTORY CURVATURE PAIRS

In this set of experiments, we compare two strategies for constructing curvature pairs (s_i, y_i) used in Quasi-Newton updates. The first approach is history-based, where pairs are collected along the optimization trajectory using

$$s_i = x_{i+1} - x_i, \quad y_i = \nabla f(x_{i+1}) - \nabla f(x_i).$$

The second approach is sampling-based, in which curvature pairs are generated independently of the trajectory by drawing random directions $d_i \sim \mathcal{N}(0, I)$ and computing

$$s_i = d_i, \quad y_i = \nabla^2 f(x_k) d_i$$

via Hessian-vector products evaluated at the current iterate x_k .

Results are presented in Figure 3 for methods using the L-BFGS update, and in Figure 4 for those using the L-SR1 approximation.

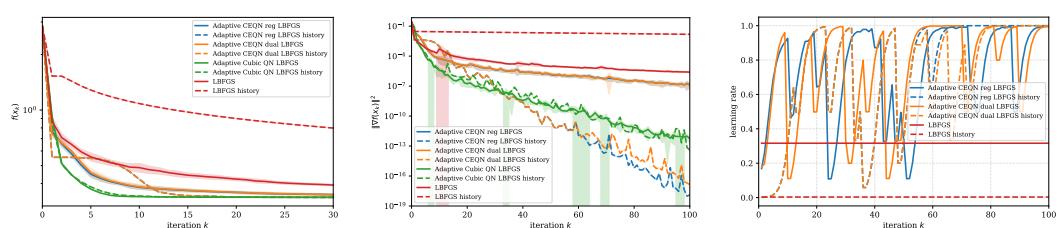


Figure 3: Comparison of different Quasi-Newton methods with BFGS updates.

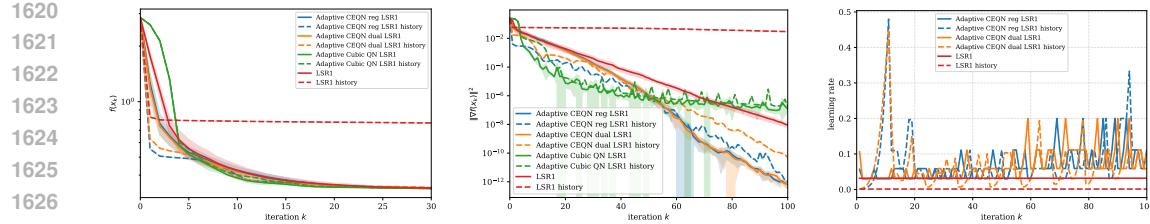


Figure 4: Comparison of different Quasi-Newton methods with SR1 updates.

D.2.3 LSR1 vs LBFGS

In this section, we present three experiments comparing the L-SR1 and L-BFGS update rules. Specifically, we compare the two approaches using history-based curvature pairs (Figure 5), sampled curvature pairs (Figure 6), and the best-performing Quasi-Newton methods with CEQN stepsizes under each update (Figure 7).

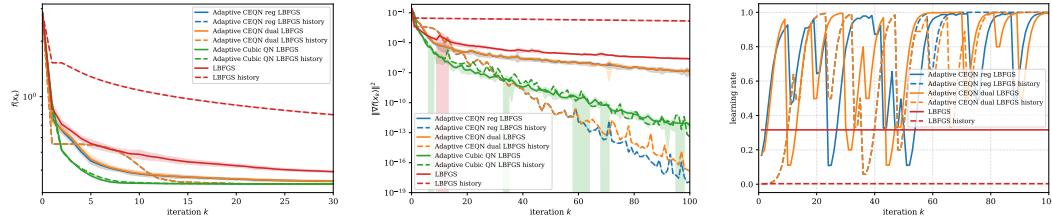


Figure 5: Comparison of LBFGS and LSR1 approximations across different Quasi-Newton methods using history-based curvature pairs.

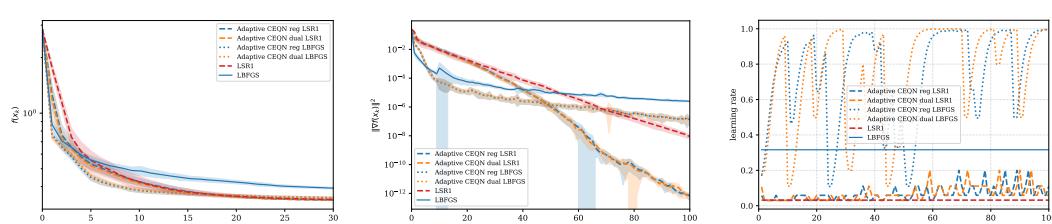


Figure 6: Comparison of LBFGS and LSR1 approximations across different Quasi-Newton methods using sampled curvature pairs.

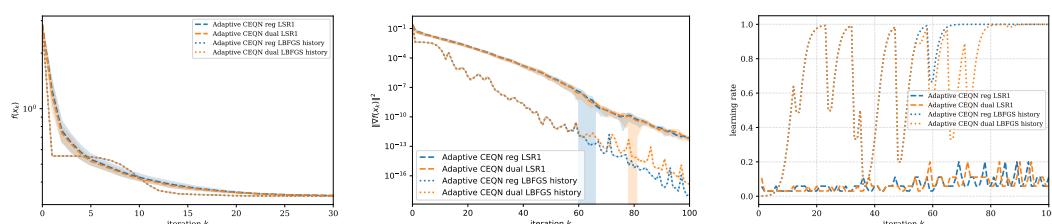


Figure 7: Comparison of the best-performing Quasi-Newton methods with adaptive CEQN stepsizes based on LBFGS and LSR1 approximations.