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ABSTRACT

Active galactic nuclei (AGN) are believed to be powered by the accretion of mat-
ter around supermassive black holes at the centers of galaxies. The variability of
an AGN’s brightness over time can reveal important information about the physi-
cal properties of the underlying black hole. The temporal variability is believed to
follow a stochastic process, often represented as a damped random walk described
by a stochastic differential equation (SDE). With upcoming wide-field surveys set
to observe 100 million AGN in multiple bandpass filters, there is a need for ef-
ficient and automated modeling techniques that can handle the large volume of
data. Latent SDEs are well-suited for modeling AGN time series data, as they can
explicitly capture the underlying stochastic dynamics. In this work, we modify la-
tent SDEs to jointly reconstruct the unobserved portions of multivariate AGN light
curves and infer their physical properties such as the black hole mass. Our model
is trained on a realistic physics-based simulation of ten-year AGN light curves,
and we demonstrate its ability to fit AGN light curves even in the presence of
long seasonal gaps and irregular sampling across different bands, outperforming a
multi-output Gaussian process regression baseline.

1 INTRODUCTION

Active galactic nuclei (AGN) are among the brightest objects in the universe and play a crucial role
in galaxy evolution. They are thought to be powered by the conversion of gravitational potential
energy into thermal radiation by feeding on matter in the hot accretion disks of super massive black
holes (SMBH) at the center of galaxies (Salpeter, 1964; Zel’dovich, 1964). Luminous AGN with
unobscured accretion disks are known as quasars. These objects are so luminous they remain ob-
servable at extreme cosmological distances (Mortlock et al., 2011; Bañados et al., 2018) making
them exceptional probes of the early universe.

The stochastic variability of quasar brightness has been studied extensively since their discov-
ery (Greenstein, 1963; Hazard et al., 1963; Matthews & Sandage, 1963; Oke, 1963; Schmidt, 1963).
While the accretion disk of an AGN is too small to resolve at extragalactic distances, its variability
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can provide insight into the intrinsic physical properties of the AGN. For instance, the amplitude in-
creases with decreasing luminosity, rest-frame wavelength, and Eddington ratio (Wills et al., 1993;
Giveon et al., 1999; Berk et al., 2004). Efforts have been made to constrain the correlation of vari-
ability parameters with black hole mass, but their robustness has been inconclusive, with studies
claiming positive or negative relations depending on the degrees of observational bias present in the
fit data (Wold et al., 2008; MacLeod et al., 2010; Simm et al., 2015). Inferring the physics of black
holes from AGN light curves, the brightness of quasars over time, can offer valuable insights into
the evolution of the universe and the nature of dark matter and dark energy (Khadka & Ratra, 2020).

The Legacy Survey of Space and Time (LSST) at the Vera Rubin Observatory marks an unprece-
dented improvement in data quality and volume. The LSST main survey alone (10,000 deg2) is
projected to yield 100 million AGN light curves with six optical bandpass filters (ugrizy) at 55−185
samplings per band over a ten year period (Abell et al., 2009). Machine learning algorithms are well
suited to analyze the large amount of data expected from LSST; however, these light curves pose
challenges for existing techniques such as multiple bands, long gaps of missing data, non-uniform
sampling, and photometric and systematic noise.

The temporal variability of AGN is thought to approximately follow a damped random walk (DRW),
a type of Gaussian process also known as the Ornstein-Uhlenbeck process (Rasmussen & Williams,
2006; Zu et al., 2013). A DRW X(t) is governed by the stochastic differential equation (SDE):

dX(t) = −1

τ
X(t) dt+ σ

√
dt ϵ(t) + b dt (1)

where ϵ(t) is a white noise process with mean zero and variance one, τ is the characteristic timescale,
b is related to the mean of the process X = bτ , and σ is related to the standard deviation of X(t),
defined by the asymptotic structure function SF∞ = σ

√
τ/2 (Kelly et al., 2009). Gaussian process

regression (GPR) can be used to measure the variability parameters SF∞ and τ , which may be
correlated to the black hole mass (MacLeod et al., 2010; Suberlak et al., 2021). A smaller τ yields
more high frequency variations since the variability happens on a shorter timescale. Fig. 3 shows
example DRWs for two values of τ .

Here, we model quasar variability using the latent SDE (Li et al., 2020), a type of generative
model that can model continuous-time stochastic dynamics. Latent SDEs can be viewed as infinite-
dimensional variational auto-encoders (VAEs; Kingma & Welling, 2013; Rezende et al., 2014) with
an SDE-induced process as the latent. We train the latent SDE to model the light curve dynamics and
simultaneously predict the black hole masses and variability parameters (SF∞ and τ ). Unlike GPR
on individual light curves, latent SDEs can model the variability across an entire training set, poten-
tially generalizing from a well-sampled light curve to a poorly-sampled one, and are not restricted
to a specific choice of kernel. Previous works have modelled quasar variability using recurrent neu-
ral networks (RNNs) (Tachibana et al., 2020; Sá nchez-Sáez et al., 2021), stochastic RNNs (Sheng
et al., 2022), and attentive neural processes (Park et al., 2021).

2 METHOD

2.1 TRAINING SET

Our training set is comprised of a realistic, physics-motivated simulation of LSST 10-year light
curves. We also include an additional year to assess our ability to extrapolate forward or backward
in time. We first realize the DRW for a given SF∞, τ , and mean magnitude. To simulate the reac-
tion of the accretion disk to a driving DRW flux, a transfer function is calculated for each bandpass
filter (Blandford & McKee, 1982). All of the physical properties of the black hole and quasar ge-
ometry are included in the transfer functions derived from a general relativistic ray-traced accretion
disk simulation (Best et al., 2022; Bursa, 2017; 2018). In particular, the black hole mass is related
to a time delay between bands of order hours to weeks. These transfer functions are calculated from
a vertically thin, optically thick accretion disk (Shakura & Sunyaev, 1973), irradiating the photons
from an X-ray source (the irradiated disk model; Sergeev et al., 2005; Cackett et al., 2007). The
DRW is converted from magnitude to flux and then convolved with the transfer function kernel to
obtain simulated light curves for a set of black hole parameters. We then converted back from flux
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to magnitude 1. The time series is then degraded to LSST-like observations with seasonal gaps and
photometric noise (see A.2) and discretized to three day intervals. We train on 100,000 mock light
curves per epoch and test on 10,000. The training set is randomly regenerated on the fly each epoch
during training to improve generalization.

2.2 MODEL ARCHITECTURE

The input into the network is the apparent magnitude (which can be interpreted as the brightness) and
uncertainty for a total of 12 features at each time step (6 bands and 6 uncertainties) with unobserved
time steps masked out. The network architecture consists of three components: the RNN encoder,
the latent SDE solver and decoder, and the multi-layer perceptron (MLP) parameter estimator. More
details can be found in A.4.
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Figure 1: The latent SDE reconstructs the light curve at unobserved time points (orange) given
partial observations, or context points (blue). The σ levels are calculated from 250 posterior samples.

2.3 UNCERTAINTY QUANTIFICATION AND LOSS

We parameterize the posterior on our parameters as a multivariate Gaussian distribution and min-
imize its log-likelihood. For light curve reconstruction, we minimize the evidence lower bound
(ELBO) described in Li et al. (2020) with a Gaussian likelihood averaged across the time steps.
To ensure that our mean prediction closely matches the context points, we additionally evaluate the
negative Gaussian log-likelihood (NGLL) parameterized with the input uncertainty at the mean pre-
diction, average over the observed times, and append this to the loss. Details about the parameter
labels can be found in A.3 and about training the model in A.5.

3 RESULTS AND DISCUSSION

Fig. 1 shows the light curve reconstruction for a test example. The model is more uncertain at time
points farther away from the context points, as expected, and the network is able to infer across
bands. Fig 2 shows a predicted parameter posterior for the same test example. The parameter

1The light curves are converted from flux to AB magnitude: mAB = −2.5 log10(fν)− 48.60.
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Figure 2: Example posterior on the parameters for the test light curve shown in Fig. 1. The diagonal
plots display marginal distributions with the median and 1σ level indicated by dotted lines. The
central plots depict 1, 2, and 3σ levels. The true parameter values are overlaid in blue.

recovery performance across the test set is summarized in the confusion matrices of Fig. 4 and the
uncertainty calibration in Fig. 5 (see A.3 for details). Table 1 compares latent SDEs light curve
reconstruction performance with a fixed-noise, multi-task GPR baseline (see A.6). The latent SDE
performs better than the GPR baseline on light curve reconstruction in terms of root mean square
error (RMSE), mean absolute error (MAE), and NGLL.

Table 1: Light curve reconstruction performance of latent SDE and a multi-output Gaussian process
regression baseline. Values reported are the median ± median absolute deviation for each metric
across our test set of 10,000 light curves. Lower is better for all the metrics.

Model RMSE [mag] MAE [mag] NGLL
latent SDE 0.090± 0.052 0.061± 0.034 −1.35± 0.57

GPR baseline 0.096± 0.054 0.066± 0.036 −1.16± 0.56

Latent SDEs offer a promising framework for joint light curve reconstruction and black hole param-
eter inference. Running inference on a trained latent SDE yields better performance and is faster
than fitting a GP on each light curve individually—an important scaling advantage as we look for-
ward to the 100 million light curves expected from LSST. In addition, standard GPR does not have
the capacity for joint parameter inference. It only has access to the light curve after convolution
with the transfer function, which loses information, whereas our model can be trained on the vari-
ability parameters of the quasar source (pre-convolution) magnitude as the labels. In future work,
we hope to extend our parameter predictions to more black hole properties, such as the spin and
inclination angle. Latent SDEs can also serve as an engine for anomaly detection to identify phys-
ically interesting quasars with variability that differs from the training set. The method presented
here is completely general and can be applied to any multivariate time series with missing data and
irregular sampling.
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A APPENDIX

A.1 EXAMPLE DAMPED RANDOM WALK
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Figure 3: Damped random walk for two different values of τ with X = 21 mag and SF∞ = 0.1 mag.
Both DRWs are generated using the same random state so that their stochastic dynamics are identi-
cal.

A.2 LSST CADENCE AND INPUT UNCERTAINTIES

The simulated time series is degraded to LSST-like observations. Observation times and photometric
noise are taken from rubin sim2 by sampling 10,000 mock observation schemes from across the
sky with between 750 and 1000 total observations across the ten years. The systematic uncertainty
is set to 0.005 mag, the maximum value expected for LSST (Ivezić & et al., 2019) and added in
quadrature with the photometric noise.

A.3 PARAMETER PREDICTION LABELS AND PERFORMANCE

When simulating the light curves, each parameter is drawn uniformly from a given range. We scale
the labels from their physical values to between zero and one and then take the logit (scaling the
labels from −∞ to ∞) before taking the log-likelihood of our posterior. Once samples are drawn
from the posterior we take the sigmoid (forcing the predictions to be between zero and one) and then
scale back to the original physical range. This prevents posterior probability from being wasted in
physically impossible parameter space (such as negative SF∞) or outside the range of the training
set. The scaling process is why the posterior in Fig. 2 is skewed away from the edges of the parameter
space instead of being Gaussian.

Fig. 4 shows confusion matrices for our parameter predictions. The network was able to predict
the variability parameters log10(τ) and SF∞ well across a broad parameter range. The black hole

2https://github.com/lsst/rubin sim
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mass is harder to predict, especially at low mass, since it only affects the transfer function kernel
that is convolved with the DRW and must be extrapolated from time delays between bandpasses.
These time delays can be as little as a few hours in the low mass and redshift case but up to several
weeks. Fig. 5 shows that our reported uncertainty of the parameter posteriors is, on average, correctly
calibrated across the test set.

Figure 4: Confusion matrices for our mean parameter predictions vs. the true parameters. The black
dashed lines across the diagonal represent perfect predictions.
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Figure 5: The fraction of the truth encompassed by some probability volume (credible interval)
across our test set. Perfect calibration is shown by the black dashed line across the diagonal.

A.4 MODEL ARCHITECTURE

The neural network architecture uses a hidden size of 128 and a context size of 64. A latent size
of 8 is used for the SDE with an additional 8 given to the RNN projector to aid in uncertainty
estimation. Each hidden layer is followed by a LeakyReLU activation and layer normalization (Ba
et al., 2016). The network is built using PyTorch (Paszke et al., 2019) and the SDE solver uses the
TorchSDE 3 (Li et al., 2020) implementation. It has a total of 903,597 trainable parameters. The
light curves are normalized to have mean zero and variance one during training (only using observed
points to calculate the mean and variance).

The encoder starts with a GRU-D (Che et al., 2016) layer, a modified version of the Gated Recurrent
Unit (GRU; Chung et al., 2014) that includes both masking and irregular time intervals. This is
followed by two GRU layers and two dense layers that output the context vector. A residual skip
connection (He et al., 2015) is included between the GRU-D layer and the output of the second GRU
layer. Two more dense layers are used to produce the mean µqz and variance σ2

qz of the variational
distribution qz from the context vector. We then draw the latent vector z0 ∼ N (µqz , σ

2
qz ), the initial

conditions of our latent SDE.

The decoder includes an Itô SDE with diagonal noise containing networks governing the drift, diffu-
sion, and prior drift (Li et al., 2020). We use the Euler-Maruyama numerical approximation scheme.

3https://github.com/google-research/torchsde
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The drift and prior drift networks are both MLPs with a residual skip connection. There are three
dense layers pre-skip and two post-skip. The diffusion network consists of three dense layers and is
applied element wise to satisfy the diagonal noise. In order to model both the dynamics of the time
series as well as produce uncertainties on predictions, we use an RNN to project the output of the
SDE, the latent vector, and the input uncertainties of the light-curve onto the mean and log-variance
of the observation space. The projector consists of a GRU-D layer followed by two GRU layers.
There is also a skip-connection of two dense layers between the output of the SDE and output of the
RNN.

The parameter estimation is done using the same MLP architecture as the drift networks and out-
putting the mean and Cholesky factor of the covariance matrix for our multivariate Gaussian poste-
rior. The input into the parameter estimator is the final time step of the context vector, µqz , σ2

qz , the
output of the drift, diffusion, and prior drift networks at µqz , and the mean and standard deviation of
the unnormalized light curve.

A.5 TRAINING

Our network is trained for 50 epochs using the Adam optimizer (Kingma & Ba, 2017) with an
initial learning rate of 0.0025, an exponential decay of 0.97, and a batch size of 125. Linear KL-
annealing (Fu et al., 2019) is used for the first 25 epochs as well as annealing for the parameter
predictions. Training took around seven days with an NVIDIA V100 GPU.

A.6 GAUSSIAN PROCESS REGRESSION BASELINE

We use an exact, multi-task Gaussian process regression (GPR) as the baseline for our light curve
reconstruction (Maddox et al., 2021). The multi-task GPR can infer correlation between output
variables, in our case the different LSST bandpass filters. The bands must be modeled jointly, as they
are related to the same X-ray driving DRW process and LSST observations are sparse and distributed
asynchronously across the different bands. Since the observation noise is known at each point and
is set from the LSST observation strategy, we use the fixed-noise multi-task GPR implementation
in BoTorch4 (Balandat et al., 2019), based on the GP library GPyTorch (Gardner et al., 2018).
We use the absolute exponential kernel (equivalent to the Matérn-1/2 kernel) which corresponds to
the DRW process. This kernel has also been empirically shown to best fit optical and UV AGN
variability compared to the Matérn-3/2, Matérn-5/2, rational quadratic, and squared exponential
kernels (Griffiths et al., 2021). Each band of the light curve is independently normalized to have
zero mean and unit variance, using only observed points, when fitting the GP. We found this to work
better than normalizing all bands together.

4https://botorch.org/
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