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Abstract

Synthetic samples from diffusion models are promising for training discriminative models
as replications or augmentations of real training datasets. However, we found that the
synthetic datasets degrade classification performance over real datasets when using the
same dataset size. This means that the synthetic samples from modern diffusion models
are less informative for training discriminative tasks. This paper investigates the gap be-
tween synthetic and real samples by analyzing the synthetic samples reconstructed from
real samples through the noising (diffusion) and denoising (reverse) process of diffusion
models. By varying the time steps starting the reverse process in the reconstruction, we
can control the trade-off between the information in the original real data and the infor-
mation produced by diffusion models. Through the analysis, we found that the synthetic
samples are concentrated in modes of the training data distribution as the reverse step
increases, and thus, they have difficulty covering the outer edges of the distribution by
small numbers of samples. On the contrary, we found that these synthetic samples yield
significant improvements in the data augmentation setting where both real and synthetic
samples are used, indicating that the samples around modes are useful as interpolation for
learning classification boundaries. These findings suggest that modern diffusion models are
currently insufficient to replicate the real training dataset in the same dataset size but are
suitable for interpolating the real training samples as the augment datasets.

Keywords: Diffusion models, Synthetic data for machine learning

1. Introduction

In the past decade, deep generative models have witnessed remarkable advancements in
generating high-quality synthetic samples that are human-indistinguishable from real data.
Among these generative models, diffusion models (Ho et al., 2020; Nichol and Dhariwal,
2021; Rombach et al., 2022; Karras et al., 2022), have attracted much attention because
they can outperform the existing generative models such as GANs (Goodfellow et al., 2014;
Brock et al., 2018; Karras et al., 2021; Sauer et al., 2023) and VAEs (Kingma and Welling,
2014; Oord et al., 2017; Razavi et al., 2019) by learning denoising (reverse) processes through
score-based likelihood maximization (Dhariwal and Nichol, 2021; Rombach et al., 2022).

The high-quality samples from diffusion models naturally raise research interest in their
applicability for training target discriminative models (e.g., classifiers), and recent studies
intensively develop training techniques utilizing synthetic samples from diffusion models.
For instance, He et al. (2022) demonstrated that synthetic samples from pre-trained text-
image diffusion models (e.g., Stable Diffusion (Rombach et al., 2022)) can achieve impressive
zero-/few-shot learning performance by querying the synthetic training samples with crafted
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Figure 1: Top-1 Test Accuracy on
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Figure 2: Feature Visualization (PCA)
on ResNet-18

Figure 3: Our motivation and finding. (a): Training with synthetic datasets produced by
a modern diffusion model (EDM, Karras et al. (2022)) does not replicate the classification
performance of the real dataset in the same dataset size. (b) We input synthetic samples
to a classifier trained on a real dataset and found that the features of synthetic samples
concentrate on the modes of real feature distribution and do not cover the outer edge of
the distribution. This means that the synthetic samples from diffusion models are less
informative for training classifiers than real samples.

prompts representing target dataset categories. Moreover, Azizi et al. (2023) and Dunlap
et al. (2023) highlighted the potential of diffusion models for data augmentation. They in-
vestigated diffusion-based data augmentation methods by modifying diffusion models with
scaling up models (Azizi et al., 2023), and customizing text prompts for querying sam-
ples (Dunlap et al., 2023). However, in contrast to these remarkable successes, we observed
that models trained on synthetic samples are inferior to models trained on real data when
the diffusion models trained only on target datasets (Figure 1)1. This indicates that the
synthetic samples from diffusion models are less informative than real samples, and there
is a gap between real and synthetic datasets in terms of training classifiers. In this paper,
by analyzing diffusion models, we aim to answer the following important and open research
question: What is the cause of the gap between real and synthetic datasets?

This paper mainly analyzes the gap between synthetic and real datasets on dataset repli-
cation, i.e., generating the same amount of synthetic samples as the real dataset and then
leveraging only the synthetic samples to train the classifier. We focus on two perspectives:
(i) the quality of synthetic samples and (ii) the impact of synthetic samples on training
classification models. To assess the gap, we introduce the concept of real sample recon-
struction utilizing the diffusion and reverse process. Real sample reconstruction consists of
corrupting real samples by the diffusion process up to pre-defined steps and then restoring
the corrupted samples by the reverse process. We refer to the pre-defined step as reverse
step. By varying the reverse steps, we can continuously control the trade-off between the

1. Note that, here, we do not use pre-trained diffusion models like Stable Diffusion but train diffusion
models from scratch in order to assess the limitations of the diffusion model itself.
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remaining information from the input real samples and the synthetic information injected
by the reverse process (Figure 4). Through this technique, we empirically investigate how
the synthetic information affects the sample quality and the classification performance.

Our experimental findings in dataset replication are summarized as follows:

• Diffusion models generate synthetic samples that are nearly indistinguishable as real
or fake compared to competitive models such as GANs (Table 1).

• Increasing the reverse steps, i.e., making sample properties closer to synthetic samples,
leads to gradual degradation in the sample quality (Figure 6) and classifier perfor-
mance (Table 2).

• Leveraging synthetic samples for training classifiers does not adversely affect the ten-
dency of classifier outputs such as the attention maps (Figure 7).

• Synthetic samples concentrate near the modes of the data distribution in the feature
space of classifiers (Figure 2), and a longer reverse process brings the sample closer
to the mode (Figure 9).

• Increasing a large number of synthetic samples can achieve a classification performance
comparable to that of the real dataset, but it requires more than three times the
number of samples of the real dataset (Table 4).

These findings suggest that modern diffusion models have difficulty efficiently generating
samples to cover the entire training data distribution. This can be because diffusion models
learn to denoise samples in the direction that maximizes the likelihood at each step in the
reverse process (Song et al., 2021). That is, the reverse process may produce a number of
samples close to a typical mode and make the sample less informative for training classifiers.
Therefore, with the same number of samples, the synthetic dataset can degrade accuracy
over real datasets due to the less information far from the modes.

Furthermore, we analyze the synthetic samples in the data augmentation applications.
Based on the analysis of dataset replication, we can expect that the synthetic samples around
the modes with high likelihood are useful for learning the interpolations between real sam-
ples when we combine them with real samples as a data augmentation in training classifiers.
Indeed, we experimentally confirm that the data augmentation with the synthetic samples
significantly improves baselines. In particular, we found that the synthetic samples gener-
ated by real sample reconstruction yield further improvements. This indicates that diffusion
models are good at generating synthetic samples that interpolate between real samples and
that they can propagate more detailed pattern differences to classifiers through real sam-
ple reconstruction. We believe these observations and implications will help drive future
developments in synthesizing training datasets by diffusion and other generative models.

2. Related Work

2.1. Diffusion Models

Diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020) is a class of generative models
inspired by thermodynamics. They learn iteratively denoising process called reverse process
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corresponding to the corruption process adding noises called diffusion process. Song et al.
(2021) revealed the relationship between diffusion models and denoising score matching
with stochastic gradient Langevin dynamics and explained the optimization of the reverse
process as score-based likelihood maximization. By introducing conditional guidance in the
reverse process, diffusion models successfully control output by class labels (Dhariwal and
Nichol, 2021; Ho and Salimans, 2022) and text embedding (Ramesh et al., 2022; Rombach
et al., 2022), and a number of subsequent studies are still being published.

Since diffusion models can achieve high-quality synthetic samples in comparison to other
generative models (e.g., GANs and VAEs) (Dhariwal and Nichol, 2021), recent studies
investigated the capability of diffusion models as a source of training datasets (He et al.,
2022; Burg et al., 2023; Azizi et al., 2023; Dunlap et al., 2023). These studies utilized
text-image pre-trained diffusion models such as Stable Diffusion (Rombach et al., 2022) for
generating synthetic training samples and succeeded in improving classification performance
by adding the synthetic samples into training datasets. In contrast, this paper focuses on
class conditional diffusion models trained only on target datasets from scratch and does
NOT consider large pre-trained diffusion models (e.g., Stable Diffusion) to discard the
effects of knowledge transfer from external pre-trained datasets. We argue that our empirical
finding would help us understand the fundamental behavior of diffusion models in synthetic
training sample generation and develop improved techniques for generating effective samples
in future work.

2.2. Analysis of Synthetic Data

Several studies analyzed the training of discriminative models with synthetic datasets from
generative models. Shmelkov et al. (2018) found that the synthetic datasets from GANs
degrade classifier performance in the setting of dataset replication and data augmentation.
Subsequently, Yamaguchi et al. (2020) showed that the diversity and fidelity of synthetic
datasets from GANs are correlated to the test accuracy of classifiers. However, these studies
focus on synthetic datasets from GANs and do not provide any causes for the difference
between real and synthetic datasets. This paper clearly differs from the existing studies
in terms of focusing on diffusion models purely trained only on the target dataset and
their sampling process as a cause of the difference. Although the synthetic datasets from
diffusion models are superior to ones from GANs in quality, there is scarce discussion of
the impact of the synthetic datasets on training discriminative models. More recently,
Burg et al. (2023) compared real and synthetic samples in classifier training, and Fan
et al. (2024) investigated the scaling laws of performance toward synthetic dataset size,
using pre-trained text-to-image diffusion models like Stable Diffusion. Similar to our study,
they found that the synthetic datasets degrade the classification performance compared
to the real datasets because the text-to-image diffusion models have difficulty generating
specific concepts through the text prompts. However, since these previous studies evaluated
synthetic datasets with pre-trained text-to-image diffusion models, they did not distinguish
the impact of transfer learning from the pre-trained datasets from the learnability of the
diffusion models. The learnability of the diffusion models on target datasets has seldom
been investigated, and it remains unclear whether the high-quality synthetic datasets can
perfectly replicate real datasets when training diffusion models only on target datasets.
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In this perspective, we explore the fundamental question of why diffusion models cannot
replicate real data distribution by focusing on the essential properties of diffusion models
without text conditioning. We study how and why the difference between real and synthetic
datasets occurs experimentally and provide a new perspective on the challenges of the
sampling process trained by maximum likelihood estimation.

3. Preliminary

Here, we briefly introduce the principles of diffusion models and real sample reconstruction
used for our main analysis.

3.1. Diffusion Models

A diffusion model learns a data distribution p(x) by optimizing the parameterized reverse
(denoising) process assuming Markov chain with length T (Sohl-Dickstein et al., 2015; Ho
et al., 2020), which corresponds to the forward diffusion process. Specifically, most modern
diffusion models are optimized by minimizing the family of the following loss function with
respect to the neural network parameter θ (Ho et al., 2020; Dhariwal and Nichol, 2021;
Rombach et al., 2022).

L(θ) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

where ϵθ is the denoising autoencoder parameterized by θ, t is the time step randomly
sampled from {1, · · · , T}, x is the input, and xt is a noisy variant of x. In inference time,
a synthetic sample x̂ is generated by sequentially applying the denoising function for each
t from T to 1 as

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t) + σtz

)
, (2)

where αt = 1−βt, βt is a scheduled variance in {β1, · · · , βT }, ᾱt =
∏t

s=1 αs, σt =
√

1−ᾱt−1

1−ᾱt
βt

and z ∼ N (0, 1). This denoising process can be interpreted as score-based sampling (Song
et al., 2021), which produces samples by iterative updating xt with the score ∇x log p(x):

xt = xt−1 +
δ

2
∇x log p(xt−1) +

√
δz, (3)

where δ is a step size. In this paper, we implement diffusion models with conditional
EDM (Karras et al., 2022) to generate a synthetic labeled dataset for training classifiers.

3.2. Real Sample Reconstruction

We introduce real sample reconstruction, which produces intermediate samples between real
and synthetic by exploiting the diffusion and reverse process. Real sample reconstruction
first corrupts a real sample by the diffusion process from 0 to a specified time step tre, and
then recovers the corrupted sample by the reverse process from tre to 0. Given a real data
point x, we produce a reconstructed sample x̂ with a reverse time step tre by following
Algorithm 1. This reconstruction algorithm is similar to SDEdit (Meng et al., 2022), which
is an image-editing method based on the reconstruction of guide images by diffusion models.
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Algorithm 1 Real Sample Reconstruction

Require: Real sample x, reverse step tre > 1
Ensure: Reconstructed sample x̂
1: // Corrupting x by diffusion process for tre
2: x0 ← x
3: for t = 1, · · · , tre do
4: xt ←

√
αtxt−1 +

√
1− αtϵt−1

5: end for
6: // Restoring xtre with reverse process
7: for t = tre, · · · , 1 do

8: x̂t−1 ← 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t) + σtz

)
9: end for

10: x̂← x̂0

𝑡 = 0 𝑡 = 𝑡!"

𝑡 = 𝑡!"𝑡 = 0

Corrupting by Diffusion Process

Reconstructing by Reverse Process

Figure 4: Intuition of Real Sample
Reconstruction. We first corrupt an
input real image from t = 0 to a re-
verse time step t = tre via the diffu-
sion process of a diffusion model and
then reconstruct the corrupted im-
age from t = tre to t = 0.

Intuitively, x̂ is fully real when tre = 0, a fully synthetic when tre = T , and half of real and
synthetic when tre = T/2 as depicted in Figure 4. Unlike the purpose of SDEdit, we aim
to produce intermediate samples of real and synthetic by simply inputting real images into
the diffusion and reverse process.

4. Analysis on Dataset Replication

In this section, we report the experimental results of the dataset replication scenario where
we produce the same number of synthetic samples as the real dataset and train classifiers
by using only the synthetic dataset. We assess (i) the quality of reconstructed samples from
diffusion models and (ii) the effects on classifiers trained on the reconstructed samples. We
mainly used the CIFAR-10 dataset (Krizhevsky and Hinton, 2009) as the target dataset,
the CIFAR-10 pre-trained conditional EDM (Karras et al., 2022) (T = 100) as the diffusion
model, and ResNet-18 (He et al., 2016) as the classifier architecture.

4.1. Analysis on Synthetic Sample

Evaluation Protocol. To analyze reconstructed synthetic samples, we measured Frechèt
inception distance (FID) (Heusel et al., 2017), precision/recall (Kynkäänniemi et al., 2019),
and fake detection accuracy (Frank et al., 2020). Among them, FID and precision/recall
are measured on the ImageNet pre-trained feature extractor. FID evaluates the gap be-
tween real and synthetic datasets, and precision/recall evaluates the probabilities that syn-
thetic/real samples fall within the real/synthetic distributions. Fake detection accuracy is
calculated on a classifier trained to distinguish real and synthetic samples on both the pixel
and frequency domains by following (Frank et al., 2020). This is useful for finding out how
different synthetic and real samples are in terms of input to the classifier. We used 50,000
synthetic samples and 50,000 real samples to calculate the metrics.
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Figure 5: Reconstructed samples by real
sample reconstruction. Each row corre-
sponds to a reverse time step, and each
image is a reconstructed sample. Smaller
reverse steps leave more original real im-
age information on the sample, while
larger reverse steps inject more informa-
tion from the diffusion model into the
sample.
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Figure 6: FID (Heusel et al., 2017) and
Precision/Recall (Kynkäänniemi et al.,
2019). The quality of the synthetic sam-
ple degrades as the reverse step increases.
In particular, the significant degradation
of the recall score suggests that the syn-
thetic sample does not cover the entire
data distribution.

Sample Quality. We first show the visualization of the reconstructed samples in Figure 5.
We reconstructed the samples on every 10 steps of tre ∈ [20, 80] from EDM. As the reverse
step tre increases, the reconstructed samples gradually lose information on the input real
sample, and represent information on the synthetic sample. Nevertheless, in visual quality,
it is hard to distinguish between a synthetic sample and a real sample for every tre. Next,
we show the FID and precision/recall scores calculated on the reconstructed samples in
Figure 6. We see that increasing reverse steps progressively degrades all the quantitative
metrics. This indicates that the reverse process may be harmful to maintain the informa-
tion on the real samples. In particular, the reverse process significantly degrades recall
scores, indicating that the synthetic sample does not sufficiently cover the training data
distribution.

Table 1: Fake Detection Accuracy
(CIFAR-10).

Generative Model
Accuracy (%)
Pixel DCT

StyleGAN3 (Karras et al., 2021) 89.56 53.62
EDM (Karras et al., 2022) 56.15 58.91

Fake Detection Accuracy. We demonstrate the
fake detection accuracy on the synthetic samples. To
evaluate the worst quality case, we used tre = 100 in
this experiment. Table 1 shows the fake detection
accuracy in the pixel domain and frequency domain
(DCT). For comparison, we also print the result of
StyleGAN3 (Karras et al., 2021). The higher scores
mean that samples are easier to detect as fake. While
the StyleGAN3 samples were easily distinguished,
fewer EDM samples were detected as fake. These results suggest that although the synthetic
datasets from diffusion models differ in quantitative measures such as FID, their properties
as input to the classifier are almost the same as those of the real samples.
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Table 2: Top-1 Test Accuracy (%) on
CIFAR-10 and CIFAR-100. The more
information from the diffusion model,
the more the classification accuracy de-
grades. This tendency is enhanced for a
more complicated task, i.e., CIFAR-100.

Reverse Step tre CIFAR-10 CIFAR-100

0 (Fully Real) 95.58±.16 86.70±.08

30 94.85±.15 86.16±.61

50 93.33±.38 81.07±.90

70 91.57±.55 77.88±.31

100 (Fully Synthetic) 89.85±.41 77.68±.73

0 10050
Reverse Step 𝑡!"
30 70

Figure 7: GradCAM Visualization.
Training with synthetic samples does not
largely change the attention map of mod-
els, indicating the synthetic samples con-
tain essential information required to
train a classifier.

4.2. Analysis on Training Classifiers

Evaluation Protocol. We analyze trained classifiers on reconstructed synthetic samples
by varying the reverse step tre. We evaluate test classification accuracy, attention map
visualization by GradCAM (Selvaraju et al., 2017), output entropy, and feature visualization
by principle component analysis (PCA). We trained ResNet-18 classifiers for 100 epochs on
the synthetic CIFAR-10 datasets yielded by real sample reconstruction with tre = 30, 50, 70,
and tested them on the real CIFAR-10 test set. We used the SGD optimizer with a learning
rate of 0.01 dropping by multiplying 0.1 for every 30 epochs. We also show the results when
using the real dataset (i.e., tre = 0) and the fully synthetic dataset by the reverse process
with random noise (i.e., tre = 100). For GradCAM and feature visualization, we used the
output of block4 on ResNet-18. We calculate the marginal output entropy by

Hθ(y) = −
1

N

N∑
i

C∑
j

pθ(y = j|xi) log(pθ(y = j|xi)), (4)

where N is a dataset size, C is a class number, pθ(y = j|xi) = exp(fθ(xi)[j])∑C
k exp(fθ(xi)[k])

, fθ is a

classifier.
Classification Performance. Table 2 shows the top-1 test accuracy on the real CIFAR-10
test set for each reverse time step tre. Similar to the sample quality shown in the previous
section, we see that the performance of the classifier degrades as the reverse step increases.
This implies that the reverse process of diffusion models eliminates information important
for solving classification tasks from the original real sample. We also show the results on
CIFAR-100 (Krizhevsky and Hinton, 2009) in Table 2, which has larger class numbers and
is thus more difficult to solve than CIFAR-10. Interestingly, the magnitude of accuracy
degradation with an increasing number of diffusion steps is larger than in the CIFAR-10
case. This result indicates not only the generality of the accuracy drop by the synthetic
data from diffusion models across tasks but also the dependency on task complexity.
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Attention Map. Figure 7 shows the visualizations of GradCAM. We input real test
samples of CIFAR-10 for each trained model. Interestingly, while the test accuracy is
degraded by real sample reconstruction, the synthetic samples used for training do not
change the attention of the trained models. This means that the synthetic sample itself has
no noticeable negative impact on learning classification tasks.

Output Entropy. Next, we assess the quantitative effects on the classifier’s prediction.
To this end, we used the classifier trained on the real CIFAR-10 because we can consider
it an ideal classifier for the purpose of training dataset replication. Figure 8 plots the
output entropy Hθ(y). We calculated Hθ(y) by inputting the synthetic samples into the
classifier. In Figure 8, Train Samples and Test Samples mean the calculated entropy
scores on the reconstructed samples from real samples of the train/test set. Note that
again, in this experiment, we used only the classifier trained on the real CIFAR-10 to assess
the characteristics of synthetic samples. We see that increasing the reverse step makes the
synthetic samples low entropy, indicating easy samples to be classified. Thus, the diffusion
model tends to produce a typical sample that is representative of the class by the reverse
process.

Feature Visualization. Finally, we visualize the features of synthetic samples to examine
how synthetic samples behave on the classifier. Similar to the previous paragraph, we
used the classifier trained on the real CIFAR-10 for feature visualization. We applied PCA
to the extracted features of input synthetic samples and reduced the dimension to two.
Figure 2 and 9 are the visualization results of all class samples and truck class samples,
respectively. In Figure 2, the synthetic sample is concentrated inside the distribution formed
by the real samples, while its outer edges are not well covered. Meanwhile, in Figure 9, the
reconstructed at tre = 50 appears to cover the region where the sample at tre = 100 is scarce.
These results suggest that the synthetic samples from diffusion models tend to concentrate
the center (mode) of training data distribution, and the reverse process gradually pulls the
synthetic samples toward the modes of training distribution.

Other Dataset and Synthetic Dataset Size We also confirm the classification results
on other classification datasets, i.e., Aircraft, Bird, and Car, in the upper rows of Table 4.
In this experiment, we varied the size of the synthetic datasets from the original real data
set size by a factor of 1, 3, or 5; please see Section 5 for more details. As with the CIFAR
datasets, the synthetic datasets failed to replicate the real datasets in the same sample sizes.
Further, this result shows that a synthetic dataset requires at least five times more samples
to achieve the same performance as the real dataset.

4.3. Discussion

Through the empirical analysis in the previous subsections, we observed that the modern
diffusion models can produce quite realistic synthetic samples, but they still have insufficient
generative performance for replicating training datasets for classifiers. In particular, the
reverse process of diffusion models seems to gradually concentrate the synthetic samples
toward the modes of the training data distribution. We can explain this phenomenon by the
interpretation of the diffusion model as a score-based generative model. As we discussed in
Sec. 3.1, a reverse process can be interpreted as a score-based sampling as shown in Eq. (3).
That is, a reverse step contains the gradient of log-likelihood (score) ∇x log p(x). Therefore,
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Figure 8: Output Entropy of Classifier.
We used real train and test samples to
compute the entropy. The more informa-
tion from the diffusion model, the smaller
the entropy, indicating that the synthetic
samples can mainly contain typical infor-
mation for the classifiers.
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Figure 9: Feature Visualization (truck
class of CIFAR-10). Fully synthetic sam-
ples (tre = 100) are distributed around
the center (mode) and cannot completely
cover the distribution formed by real
samples (tre = 0). On the other hand,
the reconstructed sample (tre = 50) can
fill the middle region between the fully
synthetic and real data distribution.

the iterative denoising of samples by multiple reverse steps means that the samples are
moving closer to the region of high likelihood, i.e., the mode of the distribution. Although
diffusion models theoretically reproduce the data distribution in terms of expectation (Ho
et al., 2020), our experimental results suggest that they are suboptimal in terms of sample
efficiency for replicating training datasets.

5. Analysis on Data Augmentation

The analysis in Section 4 shows that the synthetic samples from diffusion models are less
informative than real samples due to the reverse process, which guides the samples to
the higher likelihood regions. Conversely, in the higher likelihood regions, we can expect
that the synthetic sample quality is sufficient for training classifiers as shown in Figure 7,
and they perform as the interpolation of real samples if we can access the real dataset
(Figure 9). Therefore, this section investigates the performance effects when adding the
synthetic samples to the real datasets, i.e., data augmentation. Further, this section also
introduces an application of real sample reconstruction (Algorithm 1) to data augmentation,
which can produce interpolating samples as shown in Figure 9.

Evaluation Protocol. To assess the practical performance on data augmentation, we
used real-world target datasets: Aircraft (Maji et al., 2013), Bird (Welinder et al., 2010),
and Car (Krause et al., 2013). As the diffusion model and classifier, we used EDM and
ResNet-18, as well as the previous sections. We varied the size of synthetic datasets by the
size ratio to the real dataset. For example, ×5 means the use of a synthetic dataset that is
five times the size of the real dataset. We report the test accuracy of classifiers trained by
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Table 3: Top-1 Test Accuracy on Aircraft (ResNet-18). In dataset replication, the synthetic
datasets require massive samples to reproduce the real dataset. In synthetic data augmen-
tation, the synthetic datasets greatly improve accuracy even though the diffusion model is
trained only on the target dataset, particularly when using real sample reconstruction.

Method Top-1 Accuracy (%)

Baseline (Real Only) 64.71±.91

Dataset Replication
×1 ×3 ×5

Synthetic Only 54.02±.47 64.68±.34 69.03±.44

Synthetic Data Augmentation
×1 ×3 ×5

Näıve (tre = 100) 69.23±.25 72.99±.14 75.10±.37

Reconstructed (tre = 25) 63.17±.42 63.27±.25 64.05±.97

Reconstructed (tre = 50) 64.41±.44 66.20±.12 67.85±.36

Reconstructed (tre = 75) 67.80±.59 71.60±.38 73.06±.14

Reconstructed (tre = rand(0, 50)) 65.41±.35 65.15±.78 66.62±.63

Reconstructed (tre = rand(0, 100)) 69.08±.20 72.36±.26 73.87±.30

Reconstructed (tre = rand(50, 100)) 69.85±.29 73.22±.32 75.52±.21

Reconstructed (tre = rand(75, 100)) 67.69±.22 72.11±.08 73.05±.60

Table 4: Top-1 Test Accuracy on Multiple Target Datasets (ResNet-18). Our
reconstruction-based synthetic data augmentation method achieves superior or competi-
tive performance to the traditional data augmentation methods.

Aircraft Bird Car

Baseline (Real Only) 64.71±.91 61.73±.30 74.58±.29

Dataset Replication
Synthetic Only (×1) 54.02±.47 43.10±.44 49.91±.32

Synthetic Only (×3) 64.78±.20 54.48±.51 70.26±.51

Synthetic Only (×5) 69.03±.44 57.85±.39 75.72±.55

Traditional Data Augmentation
RandAugment (Cubuk et al., 2020) 66.13±.65 64.09±.11 77.21±.25

TrivialAugment (Müller and Hutter, 2021) 67.65±.24 65.42±.32 78.61±.50

Synthetic Data Augmentation (×5)
Näıve (tre = 100) 75.10±.37 63.51±.19 81.33±.17

Reconstructed (tre = rand(50, 100)) 75.52±.21 64.23±.56 83.17±.01

the same setting as Section 4. For the synthetic data augmentation, we trained models by
simultaneously using individual batches of real and synthetic samples, i.e., we used a real
batch of 64 samples and a synthetic batch of 64 samples for each iteration.
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Improvements by Synthetic Data Augmentation. We first examine the effects of
data augmentation with synthetic datasets and the impact of synthetic dataset size. Ta-
ble 3 shows the test accuracy on Aircraft, whereBaseline is trained only on the real dataset,
Synthetic Only is trained only on synthetic samples (i.e., dataset replication), Näıve is
trained on the real and synthetic samples näıvely generated by the diffusion model. We
see that the Näıve models stably outperformed the baseline and the dataset replication,
indicating that the synthetic samples indeed supplementarily help the classification perfor-
mance in the data augmentation setting. This is consistent with our expectations, i.e., the
synthetic samples in the high likelihood region are helpful for training classifiers. Interest-
ingly, the accuracy can be further improved by increasing the number of synthetic samples.
This is because an increase in synthetic samples enlarges the diversity of the sample, and
thus, they are useful for classification. In fact, when increasing the synthetic dataset size
in the dataset replication setting (×3 and ×5 of the Synthetic Only row in Table 3), the
accuracy is equal to or exceeds the baseline. These observations suggest that although syn-
thetic samples provide less information per sample than real samples, using more synthetic
samples can provide useful information to the classifier.

Informativeness of Reconstructed Samples. Table 3 also shows the results of Recon-
structed, which is trained on the real and reconstructed synthetic samples by real sample
reconstruction (Algorithm 1). We tried the fixed reverse step tre ∈ {25, 50, 75}. Unfortu-
nately, contrary to our expectations, the reconstructed samples generated from a fixed tre
did not achieve better accuracy than Näıve. In particular, the reconstructed sample with
tre = 25, i.e., closer to the original real sample like Figure 5, underperformed the baseline.
This may be because small reverse steps produce almost the same samples as the input
real samples, which promotes overfitting of the classifier due to the small noise injected by
the diffusion model. As shown in Fig. 4, real sample reconstruction with small tre hardly
changes the visual features of the input but actually injects perturbations in the reverse
steps. Such slightly different samples may cause overfitting due to complex distortion on
classification boundaries. On the other hand, since the larger reverse steps tend to achieve
higher accuracy, synthetic samples that are different from the original real samples yield
greater improvement. For further analysis, we tried the randomized reverse step for each
sample by a function rand(Xlower, Xupper) generating random numbers from Xlower to Xupper

(Xlower < Xupper). Table 3 shows that, as with fixed steps, the reconstructed samples from
smaller steps of [0, 50] consistently have smaller gains in accuracy. Importantly, the case
of tre = rand(50, 100) outperformed Näıve with statistical significance. This indicates that
the synthetic samples interpolating real samples by real sample reconstruction have the
potential to improve the classifiers more effectively than the näıve random sampling.

Comparison to Traditional Data Augmentation on Multiple Target Datasets.
Finally, we examine the practicality of the synthetic data augmentation using nälively gen-
erated and reconstructed samples. Here, we compare the performances of the synthetic
data augmentation with state-of-the-art traditional data augmentation techniques: Ran-
dAugment (Cubuk et al., 2020) and TrivialAugment (Müller and Hutter, 2021). Table 4
shows the comparison on multiple target datasets. First, the synthetic data augmenta-
tion methods significantly outperformed the traditional data augmentation methods on the
Aircraft and Car datasets. This is a very surprising result because previous studies using
GANs have reported that synthetic data augmentation provides an improvement equal to
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or less than traditional data augmentation (Shmelkov et al., 2018; Yamaguchi et al., 2020,
2022, 2023). On the contrary, the results on the Bird dataset were not so significant. This
can be because the synthetic samples originally lacked information for classifier training in
the case of Bird. Indeed, the results of dataset replication in Table 4 show that, even if
the number of synthetic samples is increased, it did not achieve an accuracy higher than
Baseline (Real Only) for Bird. Moreover, the FID score of EDM for Bird was 14.4, while
those for Aircraft and Car were 4.1 and 8.5, respectively. Therefore, if the generative model
cannot produce high-quality samples, obtaining the benefits of synthetic data augmentation
is difficult because of the lack of information in the synthetic samples.

6. Limitation

As discussed in Section 2, this paper focuses on the generative modeling perspectives in
synthetic training datasets from diffusion models. Therefore, this paper does not address
the transfer learning effects from pre-training datasets through synthetic samples generated
by the pre-trained diffusion models or the text conditioning effects in text-to-image diffu-
sion models. However, our main contribution is to provide experimental evidence of the
limitations of the general diffusion model’s capabilities, which could potentially be useful
in future work on generative models for synthetic training datasets, even in these more
complex problem settings.

7. Conclusion and Takeaway

This paper empirically showed the limitations of diffusion models for synthesizing datasets
for training classifiers. Modern diffusion models are not sufficient to replicate entire training
datasets due to the sampling concentration near the data distribution modes. This can be
caused by the reverse denoising process, which naturally moves the samples toward the
modes. From these observations, one of the important takeaways is that we should improve
diffusion models to cover the outside edges of training data distributions. Another one is
that, currently, the data augmentation applications of diffusion models, which utilize both
real and synthetic samples, can be more suitable to train high-performance classifiers than
replicating entire training datasets and utilizing only synthetic samples.

In future work, to avoid concentration on high-likelihood regions, there are two possible
approaches: increasing diversity in the sampling and guiding samples via feedback from
the downstream task learner. For the former, a sampling method that maximizes the
similarity between samples in a batch, such as Particle Guidance (Corso et al., 2024), can
be expected to improve diversity. However, there is no guarantee that it will yield useful
samples for learning the downstream tasks. For the latter, a meta-learning-based method
like MGR (Yamaguchi et al., 2023) and MP-SSL (Yamaguchi, 2023) could be applied to
directly generate the samples needed in downstream tasks via meta-learning. However,
the meta-learning objectives are very computationally expensive since the diffusion model
requires multiple steps in both forward and backward computations. Thus, the solution is
currently an open problem. Our contribution is identifying this overlooked but important
issue, which should be solved by future work. We believe that these observations and
implications will be helpful for future research.
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