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Abstract

In overparametrized models, the noise in stochastic gradient descent (SGD) implic-
itly regularizes the optimization trajectory and determines which local minimum
SGD converges to. Motivated by empirical studies that demonstrate that training
with noisy labels improves generalization, we study the implicit regularization
effect of SGD with label noise. We show that SGD with label noise converges to a
stationary point of a regularized loss L(θ)+λR(θ), where L(θ) is the training loss,
λ is an effective regularization parameter depending on the step size, strength of
the label noise, and the batch size, and R(θ) is an explicit regularizer that penalizes
sharp minimizers. Our analysis uncovers an additional regularization effect of large
learning rates beyond the linear scaling rule that penalizes large eigenvalues of
the Hessian more than small ones. We also prove extensions to classification with
general loss functions, significantly strengthening the prior work of Blanc et al.
[3] to global convergence and large learning rates and of HaoChen et al. [12] to
general models.

1 Introduction

One of the central questions in modern machine learning theory is the generalization capability of
overparametrized models trained by stochastic gradient descent (SGD). Recent work identifies the
implicit regularization effect due to the optimization algorithm as one key factor in explaining the
generalization of overparameterized models [27, 11, 19, 10]. This implicit regularization is controlled
by many properties of the optimization algorithm including search direction [11], learning rate [20],
batch size [26], momentum [21] and dropout [22].

The parameter-dependent noise distribution in SGD is a crucial source of regularization [16, 18].
Blanc et al. [3] initiated the study of the regularization effect of label noise SGD with square loss1

by characterizing the local stability of global minimizers of the training loss. By identifying a
data-dependent regularizer R(θ), Blanc et al. [3] proved that label noise SGD locally diverges from
the global minimizer θ∗ if and only if θ∗ is not a first-order stationary point of minθ R(θ) subject
to L(θ) = 0. The analysis is only able to demonstrate that with sufficiently small step size η, label
noise SGD initialized at θ∗ locally diverges by a distance of η0.4 and correspondingly decreases the
regularizer by η0.4. This is among the first results that establish that the noise distribution alters the
local stability of stochastic gradient descent. However, the parameter movement of η0.4 is required to

1Label noise SGD computes the stochastic gradient by first drawing a sample (xi, yi), perturbing y′i = yi+ ε
with ε ∼ {−σ, σ}, and computing the gradient with respect to (xi, y

′
i).
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be inversely polynomially small in dimension and condition number and is thus too small to affect
the predictions of the model.

HaoChen et al. [12], motivated by the local nature of Blanc et al. [3], analyzed label noise SGD in
the quadratically-parametrized linear regression model [29, 32, 23]. Under a well-specified sparse
linear regression model and with isotropic features, HaoChen et al. [12] proved that label noise SGD
recovers the sparse ground-truth despite overparametrization, which demonstrated a global implicit
bias towards sparsity in the quadratically-parametrized linear regression model.

This work seeks to identify the global implicit regularization effect of label noise SGD. Our primary
result, which supports Blanc et al. [3], proves that label noise SGD converges to a stationary point of
L(θ) + λR(θ), where the regularizer R(θ) penalizes sharp regions of the loss landscape.

The focus of this paper is on label noise SGD due to its strong regularization effects in both real
and synthetic experiments [25, 28, 31]. Furthermore, label noise is used in large-batch training as
an additional regularizer [25] when the regularization from standard regularizers (e.g. mini-batch,
batch-norm, and dropout) is not sufficient. Label noise SGD is also known to be less sensitive to
initialization, as shown in HaoChen et al. [12]. In stark contrast, mini-batch SGD remains stuck when
initialized at any poor global minimizer. Our analysis demonstrates a global regularization effect of
label noise SGD by proving it converges to a stationary point of a regularized loss L(θ) + λR(θ),
even when initialized at a zero error global minimum.

The learning rate and minibatch size in SGD are known to be important sources of regularization [9].
Our main theorem highlights the importance of learning rate and batch size as the hyperparameters
that control the balance between the loss and the regularizer – larger learning rates and smaller batch
sizes lead to stronger regularization.

Section 2 reviews the notation and assumptions used throughout the paper. Section 2.4 formally
states the main result and Section 3 sketches the proof. Section 4 presents experimental results which
support our theory. Finally, Section 6 discusses the implications of this work.

2 Problem Setup and Main Result

Section 2.1 describes our notation and the SGD with label noise algorithm. Section 2.2 introduces
the explicit formula for the regularizer R(θ). Sections 2.3 and 2.4 formally state our main result.

2.1 Notation

We focus on the regression setting (see Appendix E for the extension to the classification setting). Let
{(xi, yi)}i∈[n] be n datapoints with xi ∈ D and yi ∈ R. Let f : D×Rd → R and let fi(θ) = f(xi, θ)

denote the value of f on the datapoint xi. Define `i(θ) = 1
2 (fi(θ)− yi)2 and L(θ) = 1

n

∑n
i=1 `i(θ).

Then we will follow Algorithm 1 which adds fresh additive noise to the labels yi at every step before
computing the gradient:

Algorithm 1: SGD with Label Noise
Input: θ0, step size η, noise variance σ2, batch size B, steps T
for k = 0 to T − 1 do

Sample batch B(k) ⊂ [n]B uniformly and label noise ε(k)i ∼ {−σ, σ} for i ∈ B(k).
Let ˆ̀(k)

i (θ) = 1
2

(
fi(θ)− yi − ε(k)i

)2
and L̂(k) = 1

B

∑
i∈B(k)

ˆ̀(k)
i .

θk+1 ← θk − η∇L̂(k)(θk)
end

Note that σ controls the strength of the label noise and will control the strength of the implicit
regularization in Theorem 1. Throughout the paper we will use ‖ · ‖ = ‖ · ‖2. We make the following
standard assumption on f :

Assumption 1 (Smoothness). We assume that each fi is `f -Lipschitz,∇fi is ρf -Lipschitz, and∇2fi
is κf -Lipschitz with respect to ‖ · ‖2 for i = 1, . . . , n.
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We will define ` = `2f to be an upper bound on ‖ 1n
∑
i∇fi(θ)∇fi(θ)T ‖2, which is equal to

‖∇2L(θ)‖2 at any global minimizer θ. Our results extend to any learning rate η ∈ (0, 2` ). However,
they do not extend to the limit as η → 2

` . Because we still want to track the dependence on 1
η , we do

not assume η is a fixed constant and instead assume some constant separation:
Assumption 2 (Learning Rate Separation). There exists a constant ν ∈ (0, 1) such that η ≤ 2−ν

` .

In addition, we make the following local Kurdyka-Łojasiewicz assumption (KL assumption) which
ensures that there are no regions where the loss is very flat. The KL assumption is very general and
holds for some δ > 0 for any analytic function defined on a compact domain (see Lemma 17).
Assumption 3 (KL). Let θ∗ be any global minimizer of L. Then there exist εKL > 0, µ > 0 and
0 < δ ≤ 1/2 such that if L(θ)− L(θ∗) ≤ εKL, then L(θ)− L(θ∗) ≤ µ‖∇L(θ)‖1+δ .
We assume L(θ∗) = 0 for any global minimizer θ∗. Note that if L satisfies Assumption 3 for some
δ then it also satisfies Assumption 3 for any δ′ < δ. Assumption 3 with δ = 1 is equivalent to the
much stronger Polyak-Łojasiewicz condition which is equivalent to local strong convexity.

We will use O,Θ,Ω to hide any polynomial dependence on µ, `f , ρf , κf , ν, 1/σ, n, d and Õ to hide
additional polynomial dependence on log 1/η, logB.

2.2 The Implicit Regularizer R(θ)

For L, σ2, B, η as defined above, we define the implicit regularizer R(θ), the effective regularization
parameter λ, and the regularized loss L̃(θ):

R(θ) = − 1

2η
tr log

(
1− η

2
∇2L(θ)

)
, λ =

ησ2

B
, L̃(θ) = L(θ) + λR(θ). (1)

Here log refers to the matrix logarithm. To better understand the regularizer R(θ), let λ1, . . . , λd be
the eigenvalues of ∇2L(θ) and let R(λi) = − 1

2η log(1− ηλi
2 ). Then,

R(θ) =

d∑
i=1

R(λi) =

d∑
i=1

(
λi
4

+
ηλ2i
16

+
η2λ3i
48

+ . . .

)
.
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Figure 1: Regularization strength
as a function of η

In the limit as η → 0, R(θ) → 1
4 tr∇2L(θ), which matches

the regularizer in Blanc et al. [3] for infinitesimal learning rate
near a global minimizer. However, in additional to the linear
scaling rule, which is implicit in our definition of λ, our analysis
uncovers an additional regularization effect of large learning
rates that penalizes larger eigenvalues more than smaller ones
(see Figure 1 and Section 6.1).

The goal of this paper is to show that Algorithm 1 converges
to a stationary point of the regularized loss L̃ = L + λR. In
particular, we will show convergence to an (ε, γ)-stationary
point, which is defined in the next section.

2.3 (ε, γ)-Stationary Points

We begin with the standard definition of an approximate stationary point:
Definition 1 (ε-stationary point). θ is an ε-stationary point of f if ‖∇f(θ)‖ ≤ ε.

In stochastic gradient descent it is often necessary to allow λ = ησ2

B to scale with ε to reach an
ε-stationary point [8, 15] (e.g., λ may need to be less than ε2). However, for λ = O(ε), any local
minimizer θ∗ is an ε-stationary point of L̃ = L+ λR. Therefore, reaching a ε-stationary point of L̃
would be equivalent to finding a local minimizer and would not be evidence for implicit regularization.
To address this scaling issue, we consider the rescaled regularized loss:

1

λ
L̃ =

1

λ
L+R.
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Figure 2: Local Coupling: We decompose θ as the sum of a regularized trajectory Φτ1(θ∗0), a mean
zero oscillating process ξτ1 , and an error term ∆1. Global Convergence: We repeat the coupling
with a sequence of reference points {θ∗m}m to prove convergence to a stationary point of 1

λ L̃.

Reaching an ε-stationary point of 1
λ L̃ requires non-trivially taking the regularizer R into account.

However, it is not possible for Algorithm 1 to reach an ε-stationary point of 1
λ L̃ even in the ideal

setting when θ is initialized near a global minimizer θ∗ of L̃. The label noise will cause fluctuations
of order

√
λ around θ∗ (see section 3) so ‖∇L‖ will remain around

√
λ. This causes 1

λ∇L to become
unbounded for λ (and therefore ε) sufficiently small, and thus Algorithm 1 cannot converge to an
ε-stationary point. We therefore prove convergence to an (ε, γ)-stationary point:
Definition 2 ((ε, γ)-stationary point). θ is an (ε, γ)-stationary point of f if there exists some θ∗ such
that ‖∇f(θ∗)‖ ≤ ε and ‖θ − θ∗‖ ≤ γ.

Intuitively, Algorithm 1 converges to an (ε, γ)-stationary point when it converges to a neighborhood
of some ε-stationary point θ∗.

2.4 Main Result

Having defined an (ε, γ)-stationary point we can now state our main result:
Theorem 1. Assume that f satisfies Assumption 1, η satisfies Assumption 2, and L satisfies
Assumption 3, i.e. L(θ) ≤ µ‖∇L(θ)‖1+δ for L(θ) ≤ εKL. Let η,B be chosen such that
λ := ησ2

B = Θ̃(min(ε2/δ, γ2)), and let T = Θ̃(η−1λ−1−δ) = poly(η−1, γ−1). Assume that θ
is initialized within O(

√
λ1+δ) of some θ∗ satisfying L(θ∗) = O(λ1+δ). Then for any ζ ∈ (0, 1),

with probability at least 1 − ζ, if {θk} follows Algorithm 1 with parameters η, σ, T , there exists
k < T such that θk is an (ε, γ)-stationary point of 1

λ L̃.

Theorem 1 guarantees that Algorithm 1 will hit an (ε, γ)-stationary point of 1
λ L̃ within a polynomial

number of steps in ε−1, γ−1. In particular, when δ = 1
2 , Theorem 1 guarantees convergence within

Õ(ε−6 + γ−3) steps. The condition that θ0 is close to an approximate global minimizer θ∗ is not a
strong assumption as recent methods have shown that overparameterized models can easily achieve
zero training loss in the kernel regime (see Appendix C). However, in practice these minimizers
of the training loss generalize poorly [1]. Theorem 1 shows that Algorithm 1 can then converge to
a stationary point of the regularized loss which has better generalization guarantees (see Section
6.2). Theorem 1 also generalizes the local analysis in Blanc et al. [3] to a global result with weaker
assumptions on the learning rate η. For a full comparison with Blanc et al. [3], see section 3.1.

3 Proof Sketch

The proof of convergence to an (ε, ϕ)-stationary point of 1
λ L̃ has two components. In Section 3.1,

we pick a reference point θ∗ and analyze the behavior of Algorithm 1 in a neighborhood of θ∗. In
Section 3.2, we repeat this local analysis with a sequence of reference points {θ∗m}.

3.1 Local Coupling

Let Φk(·) denote k steps of gradient descent on the regularized loss L̃, i.e.

Φ0(θ) = θ and Φk+1(θ) = Φk(θ)− η∇L̃(Φk(θ)), (2)
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where L̃(θ) = L(θ) + λR(θ) is the regularized loss defined in Equation (1). Lemma 1 states that if θ
is initialized at an approximate global minimizer θ∗ and follows Algorithm 1, there is a small mean
zero random process ξ such that θk ≈ Φk(θ∗) + ξk:
Lemma 1. Let

ι = c log
d

λζ
, X =

√
2λndι

ν
, L = cλ1+δ, D = c

√
L ι, M =

D

ν
, T =

1

c2ηX ι
,

where c is a sufficiently large constant. Assume f satisfies Assumption 1 and η satisfies Assumption 2.
Let θ follow Algorithm 1 starting at θ∗ and assume thatL(θ∗) ≤ L for some 0 < δ ≤ 1/2. Then there
exists a random process {ξk} such that for any τ ≤ T satisfying maxk≤τ ‖Φk(θ∗)− θ∗‖ ≤ 8M ,
with probability at least 1− 10dτe−ι we have simultaneously for all k ≤ τ ,

‖θk − ξk − Φk(θ∗)‖ ≤ D , E[ξk] = 0, and ‖ξk‖ ≤X .

Note that because M ≥ D , the error term D is at least 8 times smaller than the movement in
the direction of the regularized trajectory Φτ (θ∗), which will allow us to prove convergence to an
(ε, γ)-stationary point of 1

λ L̃ in Section 3.2.

Toward simplifying the update in Algorithm 1, we define L(k) to be the true loss without label noise
on batch B(k). The label-noise update L̂(k)(θk) is an unbiased perturbation of the mini-batch update:
∇L̂(k)(θk) = ∇L(k)(θk)− 1

B

∑
i∈B(k) ε

(k)
i ∇fi(θk). We decompose the update rule into three parts:

θk+1 = θk − η∇L(θk)︸ ︷︷ ︸
gradient descent

− η[∇L(k)(θk)−∇L(θk)]︸ ︷︷ ︸
minibatch noise

+
η

B

∑
i∈B(k)

ε
(k)
i ∇fi(θk)︸ ︷︷ ︸

label noise

. (3)

Let mk = −η[∇L(k)(θk) − ∇L(θk)] denote the minibatch noise. Throughout the proof we will
show that the minibatch noise is dominated by the label noise. We will also decompose the label
noise into two terms. The first, ε∗k, will represent the label noise if the gradient were evaluated at θ∗
whose distribution does not vary with k. The other term, zk represents the change in the noise due to
evaluating the gradient at θk rather than θ∗. More precisely, we have

ε∗k =
η

B

∑
i∈B(k)

ε
(k)
i ∇fi(θ∗) and zk =

η

B

∑
i∈B(k)

ε
(k)
i [∇fi(θk)−∇fi(θ∗)].

We define G(θ) = 1
n

∑
i∇fi(θ)∇fi(θ)T to be the covariance of the model gradients. Note that ε∗k

has covariance ηλG(θ∗). To simplify notation in the Taylor expansions, we will use the following
shorthand to refer to various quantities evaluated at θ∗:

G = G(θ∗), ∇2L = ∇2L(θ∗), ∇3L = ∇3L(θ∗), ∇R = ∇R(θ∗).

First we need the following standard decompositions of the Hessian:
Proposition 1. For any θ ∈ Rd we can decompose ∇2L(θ) = G(θ) + E(θ) where E(θ) =
1
n

∑n
i=1(fi(θ)− yi)∇2fi(θ) satisfies ‖E(θ)‖ ≤

√
2ρfL(θ) where ρf is defined in Assumption 1.

The matrix G in Proposition 1 is known as the Gauss-Newton term of the Hessian. We can now
Taylor expand Algorithm 1 and Equation (2) to first order around θ∗:

Φk+1(θ∗) ≈ Φk(θ∗)− η
[
∇L+∇2L(Φk(θ∗)− θ∗)

]
,

θk+1 ≈ θk − η
[
∇L+∇2L(θk − θ∗)

]
+ ε∗k.

We define vk = θk − Φk(θ∗) to be the deviation from the regularized trajectory. Then subtracting
these two equations gives

vk+1 ≈ (I − η∇2L)vk + ε∗k ≈ (I − ηG)vk + ε∗k,

where we used Proposition 1 to replace∇2L with G. Temporarily ignoring the higher order terms,
we define the random process ξ by

ξk+1 = (I − ηG)ξk + ε∗k and ξ0 = 0. (4)

The process ξ is referred to as an Ornstein Uhlenbeck process and it encodes the movement of θ to
first order around θ∗. We defer the proofs of the following properties of ξ to Appendix B:
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Proposition 2. For any k ≥ 0, with probability at least 1 − 2de−ι, ‖ξk‖ ≤ X . In addition, as
k →∞, E[ξkξ

T
k ]→ λΠG(2− ηG)−1 where ΠG is the projection onto the span of G.

We can now analyze the effect of ξk on the second order Taylor expansion. Let rk = θk−Φk(θ∗)−ξk
be the deviation of θ from the regularized trajectory after removing the Ornstein Uhlenbeck process
ξ. Lemma 1 is equivalent to Pr[‖rτ‖ ≥ D ] ≤ 10τde−ι.

We will prove by induction that ‖rk‖ ≤ D for all k ≤ t with probability at least 1− 10tde−ι for all
t ≤ τ . The base case follows from r0 = 0 so assume the result for some t ≥ 0. The remainder of this
section will be conditioned on the event ‖rk‖ ≤ D for all k ≤ t. O(·) notation will only be used to
hide absolute constants that do not change with t and will additionally not hide dependence on the
absolute constant c. The following proposition fills in the missing second order terms in the Taylor
expansion around θ∗ of rk:
Proposition 3. With probability at least 1− 2de−ι,

rk+1 = (I − ηG)rk − η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk + Õ

(
c5/2ηλ1+δ

)
The intuition for the implicit regularizer R(θ) is that by Propositions 1 and 2,

E[ξkξ
T
k ]→ ΠGλ(2− ηG)−1 ≈ λ(2− η∇2L)−1.

Therefore, when averaged over long timescales,

1

2
E[∇3L(ξk, ξk)] ≈ λ

2
∇3L

[
(2− η∇2L)−1

]
= λ∇

[
− 1

2η
tr log

(
1− η

2
∇2L(θ)

)]∣∣∣∣
θ=θ∗

= λ∇R.

The second equality follows from the more general equality that for any matrix function A and any
scalar function h that acts independently on each eigenvalue, ∇(trh(A(θ))) = (∇A(θ))(h′(A(θ)))
which follows from the chain rule. The above equality is the special case when A(θ) = ∇2L(θ) and
h(x) = − 1

η log
(
1− η

2x
)
, which satisfies h′(x) = 1

2−ηx .

The remaining details involve concentrating the mean zero error terms mk, zk and showing that
E[ξkξ

T
k ] does concentrate in the directions with large eigenvalues and that the directions with small

eigenvalues, in which the covariance does not concentrate, do not contribute much to the error. This
yields the following bound:

Proposition 4. With probability at least 1− 10de−ι, ‖rt+1‖ = Õ
(
λ1/2+δ/2
√
c

)
.

The proof of Proposition 4 can be found in Appendix B. Finally, because D = Õ(c5/2λ1/2+δ/2),
‖rt+1‖ ≤ D for sufficiently large c. This completes the induction and the proof of Lemma 1.

Comparison with Blanc et al. [3] Like Blanc et al. [3], Lemma 1 shows that θ locally follows
the trajectory of gradient descent on an implicit regularizer R(θ). However, there are a few crucial
differences:

• Because we do not assume we start near a global minimizer where L = 0, we couple to a
regularized loss L̃ = L + λR rather than just the regularizer R(θ). In this setting there is an
additional correction term to the Hessian (Proposition 1) that requires carefully controlling the
value of the loss across reference points to prove convergence to a stationary point.

• The analysis in Blanc et al. [3] requires η, τ to be chosen in terms of the condition number of
∇2L which can quickly grow during training as ∇2L is changing. This makes it impossible to
directly repeat the argument. We avoid this by precisely analyzing the error incurred by small
eigenvalues, allowing us to prove convergence to an (ε, γ) stationary point of 1

λ L̃ for fixed η, λ
even if the smallest nonzero eigenvalue of∇2L converges to 0 during training.

• Unlike in Blanc et al. [3], we do not require the learning rate η to be small. Instead, we only
require that λ scales with ε which can be accomplished either by decreasing the learning rate η or
increasing the batch size B. This allows for stronger implicit regularization in the setting when η is
large (see Section 6.1). In particular, our regularizer R(θ) changes with η and is only equal to the
regularizer in Blanc et al. [3] in the limit η → 0.

6



3.2 Global Convergence

In order to prove convergence to an (ε, γ)-stationary point of 1
η∇L̃, we will define a sequence of

reference points θ∗m and coupling times {τm} and repeatedly use a version of Lemma 1 to describe
the long term behavior of θ. For notational simplicity, given a sequence of coupling times {τm},
define Tm =

∑
k<m τk to be the total number of steps until we have reached the reference point θ∗m.

To be able to repeat the local analysis in Lemma 1 with multiple reference points, we need a more
general coupling lemma that allows the random process ξ defined in each coupling to continue where
the random process in the previous coupling ended. To accomplish this, we define ξ outside the scope
of the local coupling lemma:
Definition 3. Given a sequence of reference points {θ∗m} and a sequence of coupling times {τm}, we
define the random process ξ by ξ0 = 0, and for k ∈ [Tm, Tm+1),

ε∗k =
η

B

∑
i∈B(k)

ε
(k)
i ∇fi(θ∗m) and ξk+1 = (I − ηG(θ∗m))ξk + ε∗k.

Then we can prove the following more general coupling lemma:
Lemma 2. Let X ,L ,D ,M ,T be defined as in Lemma 1. Assume f satisfies Assumption 1 and η
satisfies Assumption 2. Let ∆m = θTm−ξTm−θ∗m and assume that ‖∆m‖ ≤ D and L(θ∗m) ≤ L for
some 0 < δ ≤ 1/2. Then for any τm ≤ T satisfying maxk∈[Tm,Tm+1) ‖Φk−Tm(θ∗m+∆m)−θ∗m‖ ≤
8M , with probability at least 1− 10dτme

−ι we have simultaneously for all k ∈ (Tm, Tm+1],

‖θk − ξk − Φk−Tm(θ∗m + ∆m)‖ ≤ D , E[ξk] = 0, and ‖ξk‖ ≤X .

Unlike in Lemma 1, we couple to the regularized trajectory starting at θ∗m + ∆m rather than at θ∗m to
avoid accumulating errors (see Figure 2). The proof is otherwise identical to that of Lemma 1.

The proof of Theorem 1 easily follows from the following lemma which states that we decrease the
regularized loss L̃ by at least F after every coupling:

Lemma 3. Let F = D2

ηνT . Let ∆m = θTm − ξTm − θ∗m and assume ‖∆m‖ ≤ D and L(θ∗m) ≤ L .
Then if θTm is not an (ε, γ)-stationary point, there exists some τm < T such that if we define

θ∗m+1 = Φτn(θ∗m + ∆m) and ∆m+1 = θTm+1
− ξTm+1

− θ∗m+1,

then with probability 1− 10dτme
−ι,

L̃(θ∗m+1) ≤ L(θ∗m)−F , ‖∆m+1‖ ≤ D and L(θ∗m+1) ≤ L .

We defer the proofs of Lemma 2 and Lemma 3 to Appendix B. Theorem 1 now follows directly from
repeated applications of Lemma 3:

Proof of Theorem 1. By assumption there exists some θ∗0 such that L(θ∗0) ≤ L and ‖θ0 − θ∗0‖ ≤ D .
Then so long as θTm is not an (ε, γ)-stationary point, we can inductively apply Lemma 3 to get
the existence of coupling times {τm} and reference points {θ∗m} such that for any m ≥ 0, with
probability 1 − 10dTme

−ι we have L̃(θ∗m) ≤ L̃(θ∗0) − mF . As L̃(θ∗0) − L̃(θ∗m) = O(λ), this
can happen for at most m = O

(
λ
F

)
reference points, so at most T = O

(
λT
F

)
= Õ

(
η−1λ−1−δ

)
iterations of Algorithm 1. By the choice of ι, this happens with probability 1−10dTe−ι ≥ 1−ζ .

4 Experiments

In order to test the ability of SGD with label noise to escape poor global minimizers and converge
to better minimizers, we initialize Algorithm 1 at global minimizers of the training loss which
achieve 100% training accuracy yet generalize poorly to the test set. Minibatch SGD would remain
fixed at these initializations because both the gradient and the noise in minibatch SGD vanish at
any global minimizer of the training loss. We show that SGD with label noise escapes these poor
initializations and converges to flatter minimizers that generalize well, which supports Theorem 1.
We run experiments with two initializations:
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Figure 3: Label Noise SGD escapes poor global minimizers. The left column displays the training
accuracy over time, the middle column displays the value of tr∇2L(θ) over time which we use
to approximate the implicit regularizer R(θ), and the right column displays their correlation. The
horizontal dashed line represents the minibatch SGD baseline with random initialization. We report
the median results over 3 random seeds and shaded error bars denote the min/max over the three runs.
The correlation plot uses a running average of 100 epochs for visual clarity.

Full Batch Initialization: We run full batch gradient descent with random initialization until
convergence to a global minimizer. We call this minimizer the full batch initialization. The final test
accuracy of the full batch initialization was 76%.

Adversarial Initialization: Following Liu et al. [21], we generate an adversarial initialization with
final test accuracy 48% that achieves zero training loss by first teaching the network to memorize
random labels and then training it on the true labels. See Appendix D for full details.

Experiments were run with ResNet18 on CIFAR10 [17] without data augmentation or weight decay.
The experiments were conducted with randomized label flipping with probability 0.2 (see Appendix E
for the extension of Theorem 1 to classification with label flipping), cross entropy loss, and batch
size 256. Because of the difficulty in computing the regularizer R(θ), we approximate it by its lower
bound tr∇2L(θ). Figure 3 shows the test accuracy and tr∇2L throughout training.

SGD with label noise escapes both zero training loss initializations and converges to flatter minimizers
that generalize much better, reaching the SGD baseline from the fullbatch initialization and getting
within 1% of the baseline from the adversarial initialization. The test accuracy in both cases is
strongly correlated with tr∇2L. The strength of the regularization is also strongly correlated with η,
which supports Theorem 1.

5 Extensions

5.1 SGD with momentum

We replace the update in Algorithm 1 with heavy ball momentum with parameter β:

θk+1 = θk − η∇L̂(k)(θk) + β(θk − θk−1). (5)

We define:

R(θ) =
1 + β

2η
tr log

(
1− η

2(1 + β)
∇2L(θ)

)
, λ =

ησ2

B(1− β)
, (6)

and as before L̃(θ) = L(θ) + λR(θ). Let

Φ0(θ) = θ, Φk+1(θ) = Φk(θ)− η∇L̃(Φk(θ)) + β(Φk(θ)− Φk−1(θ)) (7)

represent gradient descent with momentum on L̃. Then we have the following local coupling lemma:
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Lemma 4. Let

X =

√
2λn2ι

ν
, L = cλ1+δ, D = c

√
L ι, T =

1

c2ηX ι
, (8)

where c is a sufficiently large constant. Assume f satisfies Assumption 1 and η ≤ (2−ν)(1+β)
` . Let θ

follow Algorithm 1 with momentum β starting at θ∗ and L(θ∗) ≤ L for some 0 < δ ≤ 1/2. Then
there exists a random process {ξk} such that for any τ ≤ T satisfying maxk≤τ ‖Φk(θ∗)−θ∗‖ ≤ 8D ,
with probability at least 1− 10dτe−ι we have simultaneously for all k ≤ τ ,

‖θk − ξk − Φk(θ∗)‖ ≤ D , E[ξk] = 0, and ‖ξk‖ ≤X . (9)

As in Lemma 1, the error is 8 times smaller than the maximum movement of the regularized trajectory.
Note that momentum increases the regularization parameter λ by 1

1−β . For the commonly used
momentum parameter β = 0.9, this represents a 10× increase in regularization, which is likely the
cause of the improved performance in Figure 4 (β = 0.9) over Figure 3 (β = 0).

5.2 Arbitrary Noise Covariances

The analysis in Section 3.1 is not specific to label noise SGD and can be carried out for arbitrary
noise schemes. Let θ follow θk+1 = θk − η∇L(θk) + εk starting at θ0 where εk ∼ N(0, ηλΣ(θk))
and Σ1/2 is Lipschitz. Given a matrix S we define the regularizer RS(θ) =

〈
S,∇2L(θ)

〉
. The

matrix S controls the weight of each eigenvalue. As before we can define L̃S(θ) = L(θ) + λRS(θ)

and ΦSk+1(θ) = ΦSk (θ) − η∇L̃S(Φk(θ)) to be the regularized loss and the regularized trajectory
respectively. Then we have the following version of Lemma 1:

Proposition 5. Let θ be initialized at a minimizer θ∗ ofL. Assume∇2L is Lipschitz, letH = ∇2L(θ∗)

and assume that Σ(θ∗) � CH for some absolute constant C. Let X =
√

Cdλι
ν , D = cλ3/4ι, and

T = 1
c2ηX ι for a sufficiently large constant c. Then there exists a mean zero random process ξ such

that for any τ ≤ T satisfying maxk<τ ‖Φk(θ∗)− θ∗‖ ≤ 8D and with probability 1− 10dτe−ι, we
have simultaneously for all k ≤ τ :

‖θk − ξk − ΦSk (θ0)‖ ≤ D and ‖ξk‖ ≤X ,

where S is the unique fixed point of S ← (I − ηH)S(I − ηH) + ηλΣ(θ∗) restricted to span(H).

As in Lemma 1, the error is 8 times smaller than the maximum movement of the regularized trajectory.
Although Proposition 5 couples to gradient descent on RS , S is defined in terms of the Hessian
and the noise covariance at θ∗ and therefore depends on the choice of reference point. Because RS
is changing, we cannot repeat Proposition 5 as in Section 3.2 to prove convergence to a stationary
point because there is no fixed potential. Although it is sometimes possible to relate RS to a fixed
potential R, we show in Appendix F.2 that this is not generally possible by providing an example
where minibatch SGD perpetually cycles. Exploring the properties of these continuously changing
potentials and their connections to generalization is an interesting avenue for future work.

6 Discussion

6.1 Sharpness and the Effect of Large Learning Rates

Various factors can control the strength of the implicit regularization in Theorem 1. Most important is
the implicit regularization parameter λ = ησ2

|B| . This supports the hypothesis that large learning rates
and small batch sizes are necessary for implicit regularization [9, 26], and agrees with the standard
linear scaling rule which proposes that for constant regularization strength, the learning rate η needs
to be inversely proportional to the batch size |B|.
However, our analysis also uncovers an additional regularization effect of large learning rates. Unlike
the regularizer in Blanc et al. [3], the implicit regularizer R(θ) defined in Equation (1) is dependent
on η. It is not possible to directly analyze the behavior of R(θ) as η → 2/λ1 where λ1 is the largest
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eigenvalue of ∇2L, as in this regime, R(θ) → ∞ (see Figure 1). If we let η = 2−ν
λ1

, then we can
better understand the behavior of R(θ) by normalizing it by log 2/ν. This gives2

R(θ)

log 2/ν
=
∑
i

R(λi)

log 2/ν
= ‖∇2L(θ)‖2 +O

(
1

log 2/ν

)
ν→0−−−→ ‖∇2L(θ)‖2

so after normalization, R(θ) becomes a better and better approximation of the spectral norm
‖∇2L(θ)‖ as η → 2/λ1. R(θ) can therefore be seen as interpolating between tr∇2L(θ), when
η ≈ 0, and ‖∇2L(θ)‖2 when η ≈ 2/λ1. This also suggests that SGD with large learning rates may
be more resilient to the edge of stability phenomenon observed in Cohen et al. [4] as the implicit
regularization works harder to control eigenvalues approaching 2/η.

The sharpness-aware algorithm (SAM) of [7] is also closely related to R(θ). SAM proposes to
minimize max‖δ‖2≤ε L(θ + δ). At a global minimizer of the training loss,

max
‖δ‖2≤ε

L(θ∗ + δ) = max
‖δ‖2≤ε

1

2
δ>∇2L(θ∗)δ +O(ε3) ≈ ε2

2
‖∇2L(θ∗)‖2.

The SAM algorithm is therefore explicitly regularizing the spectral norm of∇2L(θ), which is closely
connected to the large learning rate regularization effect of R(θ) when η ≈ 2/λ1.

6.2 Generalization Bounds

The implicit regularizer R(θ) is intimately connected to data-dependent generalization bounds, which
measure the Lipschitzness of the network via the network Jacobian. Specifically, Wei and Ma [30]
propose the all-layer margin, which bounds the generalization error .

∑L
l=1 Cl√
n

√
1
n

∑n
i=1

1
mF (xi,yi)2

,
where Cl depends only on the norm of the parameters and mF is the all-layer margin. The norm of
the parameters is generally controlled by weight decay regularization, so we focus our discussion on
the all-layer margin. Ignoring higher-order secondary terms, Wei and Ma [30, Heuristic derivation
of Lemma 3.1] showed for a feed-forward network f(θ;x) = θLσ(θL−1 . . . σ(θ1x)), the all-layer
margin satisfies3:

1

mF (x, y)
.

‖{ ∂f∂θl }l∈[L]‖2
output margin of (x, y)

=⇒ generalization error .
∑L
l=1 Cl√
n

√
R(θ)

output margin

as R(θ) is an upper bound on the squared norm of the Jacobian at any global minimizer θ. We
emphasize this bound is informal as we discarded the higher-order terms in controlling the all-layer
margin, but it accurately reflects that the regularizer R(θ) lower bounds the all-layer margin mF up
to higher-order terms. Therefore SGD with label noise implicitly regularizes the all-layer margin.
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