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Abstract
Trustworthy language models should abstain
from answering questions when they do not
know the answer. However, the answer to a
question can be unknown for a variety of rea-
sons. Prior research has focused on the case in
which the question is clear and the answer is
unambiguous but possibly unknown. But the
answer to a question can also be unclear due
to uncertainty of the questioner’s intent or con-
text. We investigate question answering from
this perspective, focusing on answering a sub-
set of questions with a high degree of accu-
racy, from a set of questions in which many
are inherently ambiguous. In this setting, we
find that the most reliable approach to decide
when to abstain involves quantifying repetition
within sampled model outputs, rather than the
model’s likelihood or self-verification as used
in prior work. We find this to be the case across
different types of uncertainty and model scales,
and with or without instruction tuning. Our re-
sults suggest that sampling-based confidence
scores help calibrate answers to relatively un-
ambiguous questions, with more dramatic im-
provements on ambiguous questions.

1 Introduction

Any practical Question Answering (QA) system
must be able to assess its own confidence so that it
can (1) avoid making up incorrect, incomplete, or
misleading answers, and (2) request clarification to
resolve ambiguity arising from unclear questions
or missing context. In recognition of this desirable
property, recent work has addressed confidence esti-
mation of Large Language Models (LLMs) by eval-
uating QA tasks in unambiguous settings (Jiang
et al., 2021; Kadavath et al., 2022). In these ex-
periments, questions are posed to the model with
multiple-choice answers so the probability of each
answer can be computed. Here we extend the study
of confidence to practical scenarios, requiring free-
form text answers to arbitrary questions which may
be underspecified or ambiguous.

We describe a range of experiments to help dis-
entangle uncertainty about the world from uncer-
tainty about the question. While we focus on the
question answering capabilities of large pretrained
language models, these two forms of uncertainty
can be more clearly distinguished in an idealized
scenario in which a symbolic question-answering
system first converts the question into a formal
denotation (such as an SQL query or lambda ex-
pression), which is then applied to a knowledge
base (e.g., Zelle and Mooney, 1996). The system
may be uncertain about the meaning of the ques-
tion — denotational uncertainty — if the question
is underspecified because of assumed background
knowledge or context. For any given denotation,
the system may also be uncertain about the correct
answer — epistemic uncertainty — if the knowl-
edge base is incomplete1. In Figure 1, denotational
uncertainty is shown in the upper fork and epis-
temic uncertainty is shown in the lower set of forks.

The most competitive systems today do not con-
struct explicit denotations of questions. As a re-
sult, it can be difficult to clearly separate these
two forms of uncertainty. Nonetheless, our general
approach is to attempt to first approximately dis-
ambiguate the question (in natural language) and
then selectively answer user questions with suffi-
ciently high confidence. This allows the model
to more effectively represent ambiguous user in-
puts. This scheme is represented in Figure 1. Fur-
ther, we argue that repeated sampling within our
disambiguate-then-answer framework provides re-
liable confidence estimates of the model.

We summarize our contributions as follows:

1. We reframe the discussion of model confi-
dence with respect to denotational and epis-
temic uncertainty and address each in turn.

1Gruber et al. (2023) present an overview of uncertainty in
Machine Learning, making a related distinction between epis-
temic and aleatoric uncertainty. We do not address aleatoric
uncertainty in this work.
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Figure 1: Uncertainty in Question Answering systems may arise in various ways. We propose a scheme called
disambiguate then answer where the model first attempts to pose an unambiguous interpretation of the user question
(yellow), then selectively produces an answer to this question, alternatively abstaining ("Unknown") (green). The
log likelihood of the model is shown above each generation. In addition, we find that sampling multiple times from
the model generally allows for more robust confidence estimates.

Our experiments suggest that the answer prob-
abilities given by current LLMs are somewhat
helpful for assessing epistemic uncertainty but
cannot detect denotational uncertainty.

2. We present two simple and effective ap-
proaches for measuring confidence under
all types of uncertainty, based on answer
counts within repeated samples from the
LLM. These approaches are better calibrated
than the model’s answer probabilities and a
self-verification prompt, and are especially
effective for ambiguous questions and for
instruction-tuned model variants.

2 Calibration for Question Answering

A predictor is said to be well-calibrated if its pre-
dictions are accompanied by confidence scores and
those scores are informative of the likelihood that
the prediction is correct. Such confidence scores
can be used to support applications such as selec-
tive prediction, in which the model can abstain
from predicting when its confidence is low (Chow,
1957; El-Yaniv et al., 2010). In selective question
answering (e.g., Kamath et al. 2020; Zhang et al.
2021b), we assign each question-answer pair (q, a)
a confidence score s(q, a). The system’s output is
then parameterized by a threshold τ ,

ŷτ (q) =

{
arg maxa s(q, a), maxa s(q, a) > τ

∅, else,
(1)

with ∅ representing abstention. Given a probabilis-
tic model P (a | q), a natural choice for the confi-
dence score s(q, a) is the conditional probability
of the answer. This and other scoring functions are
discussed in Section 3.

For information-seeking queries such as those
found in Natural Questions (Kwiatkowski et al.,
2019), the askers have no answer in mind, which
makes it more likely that the questions are acci-
dentally ambiguous. The task of answering an
ambiguous question requires solving at least two
subtasks: determining the meaning of the question
(its denotation), and then identifying the answer.
This pipeline is shown in Figure 1; in a probabilis-
tic model, this can be represented mathematically
as P (a | q) =

∑
d P (a | d)P (d | q), with d

indicating the denotation. While prior work has
investigated the calibration of answer probabilities
given by pretrained language models (e.g., Kada-
vath et al., 2022), it is not clear whether the rela-
tively positive findings of these studies extend to
questions with significant denotational ambiguity,
as represented by datasets such as AmbigQA (Min
et al., 2020) and SituatedQA (Zhang and Choi,
2021). We address this question in Section 6.4.

3 Confidence Scores

Before proposing confidence scores for question
answering, it will be helpful to review how these
answers are generated in practical settings. A lan-
guage model over a finite vocabulary Σ defines a
probability distribution X over sequences of to-



kens in Σ∗, by modeling the marginal probability
of a sequence p(σ1, · · · , σn) using the conditional
probabilities of individual tokens via the chain rule∏n
i=1 p(σi|σi−1, · · · , σn). For QA, answers are

obtained by conditioning on the question q and
first sampling from X (or a version of X adjusted
with modifications such as temperature) and then
applying a normalization or extraction process to
it in order to map it to an answer space A. This
function f : Σ∗ → A can be as simple as punc-
tuation removal and lower-casing, or as complex
as code execution or extracting the answer from a
chain-of-thought (Wei et al., 2022).

Using this background, we can describe various
methods for estimating the scores of predictions
from a language model (Figure 2).

Likelihood The most basic method we can
use is likelihood-based calibration by computing
p(σ|q) =

∏n
i=1 p(σi|σi−1, · · · , σn, q) for a se-

quence sampled from X . This may be used to
rank the answers from most confident to least con-
fident based on the model’s produced likelihood
of that answer. However, in practical settings this
method may not accurately reflect the probability
of observing an answer for several reasons:

(1) Language models typically incorporate sev-
eral inference-time biases to improve the quality
of the outputs, such as nucleus sampling (Holtz-
man et al., 2020), top-k sampling (Fan et al., 2018),
length penalties, length truncation, and temperature.
These techniques affect the output distribution in
ways that are hard or impossible to capture in the
likelihood score (Zhang et al., 2021a).

(2) Even for decoders that do not incorporate
inference-time biases, the likelihood function as de-
fined by the auto-regressive decomposition might
leak probability mass to infinite sequences (see
Meister et al., 2023, Proposition 2.4). This implies
that the model that we sample from might not be a
valid probability distribution.

(3) Finally, the likelihood fails to account for the
extraction step f , which requires an intractable
marginalization step over the model outputs.

In view of these limitations, it is preferable to
use sampling to estimate properties of the resulting
marginal distribution. Formally, we can use an In-
dex of Qualitative Variation (IQV) (Wilcox, 1973)
to measure the statistical dispersion of discrete sam-
ples produced by the model. Practically, there are a

many possible IQVs, so we have chosen two fairly
different approaches for our experiments. In each
case, we generate 10 sampled outputs (at a tempera-
ture of 0.5) and use exact match (after lowercasing
and removing puncutation) for comparison among
outputs. Naturally, there are many other ways to
compare outputs, including token-level overlap or
an answer-span equivalence model, but we leave
these alternatives for future work. See also Kuhn
et al. (2023) and Lin et al. (2023) for concurrent
work investigating alternative IQVs.

Sampling Repetition Our first approach is based
on Wilcox’s classic Variation Ratio which mea-
sures deviation from the mode. Instead, we simply
compute the fraction of times that the sampled out-
puts match the greedy output (Temperature = 0.0).
The more samples match the greedy output, the
more confident we are in the answer. We count
the number of samples which exactly match the
greedy answer. We experimented briefly with more
sophisticated approaches based on the BERT based
answer equivalence model from Bulian et al. (2022)
as well as the summed F1 score across sampled an-
swers and the greedy answers, but these approaches
did not meaningfully improve the calibration.

Sampling Diversity Our second approach is
based on the diversity of the samples, computed by
1− num_unique

num_samples . Here, our confidence is inversely
proportional to the number of distinct samples and
is estimated as zero if all samples are different.
Note that while this works relatively well in prac-
tice, it is heavily dependent on the number of sam-
ples, as we do not expect the number of unique
answers to scale linearly with the number of sam-
ples.

We note that some recent work (Meister et al.,
2021; Arora et al., 2022) has also described esti-
mating statistics of random variables induced by
language models. This involved sampling without
replacement and using importance weighting, but
they seem to surpass Monte-Carlo estimates only
with many samples and peaky distributions. We
leave further exploration of these methods on our
evaluations as well as other IQVs for future work.

Self-Verification Finally, we consider self-
verification, in which the language model assesses
its own confidence (Kadavath et al., 2022). This is a
two-step process, where first the model is prompted
to provide a list of possible answers given a ques-
tion. Then, this list is fed back into the model,
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Question 1: Who is the prime minister of the UK 2018?
Answer 1: Theresa May

Question 2: What family does paris belong to in romeo and juliet?
Answer 2: Capulet
…

Question N: {question}
Answer N: 

Question 1: Who is the prime minister of england 2018?
Disambiguation 1: None
Answer 1: Theresa May

Question 2: Who does Sansa marry on Game of Thrones?
Disambiguation 2: Which character does Sansa marry on season 
3 of Game of Thrones?
Answer 2: Tyrion Lannister
…

Question N: {question}
Disambiguation N:

Unambiguous Questions

Figure 2: Methods for estimating the confidence of answers from an LM. Sampling repetition counts the number
of times the greedy answer appears among samples from the LM. Sampling diversity counts the number of unique
answers among samples from the LM. Self-verification, proposed by Kadavath et al. (2022), prompts the LM
again with one of the sampled answers to measure the token-level probability of True. The prompts used for
unambiguous and ambiguous questions are shown on the left—for the latter, we additionally prompt the model for
disambiguations (omitted in the outputs shown on the right for brevity).

where the task is to determine if each answer is
correct or incorrect. In practice, we re-use the sam-
pled outputs from the previous run as the list of
possible answers, and the greedy answer as the pro-
posed answer. Then, the model scores the token
“True”, which we use to obtain a confidence score.
In practice, these possible answers come from sam-
pling with replacement, similar to the Sampling
Repetition and Diversity methods, so the list of
possible answers may contain duplicates. While
these duplicates may affect the usefulness of the
brainstorming exercise, the model is not choosing
among them; instead, it is only scoring whether the
greedy answer is correct, using the list of possible
answers as context.

4 Evaluation setup

Our evaluations test the utility of the confidence
scoring methods described in Section 3. We focus
mainly on the pretrained language model PaLM,
which obtains high accuracy on several question
answering datasets using few-shot in-context learn-
ing (Chowdhery et al., 2022).

4.1 Metrics

There are many metrics for evaluating selective
question answering systems, but fundamentally
we want systems that (1) frequently return correct
answers, and (2) rarely return incorrect answers.

These criteria are in conflict because any system
can achieve zero error rate by always abstaining
from answering. When the confidence score is a
probability, we can also ask whether this probabil-
ity is well-calibrated, in the sense that a confidence
score of s(q, a) = α implies α is the probability of
a being the correct answer to q.

Expected Calibration Error (ECE) Predic-
tions are grouped into ten equally sized bins, ranked
by the evaluated system’s assigned confidence
scores. We compute the mean absolute distance
between the average confidence score and the accu-
racy of predictions in each bin, averaging across all
bins. If we interpret a confidence score to represent
a probability, this corresponds to the difference in
the predicted probability of correctness from the
actual probability of correctness.

ROC-AUC Area under the receiver operating
characteristic curve evaluates the uncertainty es-
timate’s diagnostic ability as a binary classifier
for correct and incorrect predictions by integrat-
ing over the tradeoff curve between the rates of
true and false positives.

Coverage@Acc While ECE and ROC-AUC as-
sess absolute and relative calibration respectively,
we want a metric closely aligned with a practical
use case: selective answering above a confidence
threshold. To this end, we measure the fraction



of questions the system can answer correctly if it
needs to maintain a certain accuracy. Specifically,
C@ Acc is the maximum coverage such that the
accuracy on the C% of most-confident predictions
is at least Acc %. For example, if C@80 = 20,
then the system achieves at least 80% accuracy on
its 20% most-confident predictions (and lower than
80% accuracy on its X% most-confident predic-
tions for any X > 20). With user-facing systems
in mind, we set an accuracy of 80% (C@80).

5 Unambiguous Questions

To start, we explore the case of unambiguous ques-
tions with a single answer. In this scenario, all
uncertainty should be of the epistemic form; the
denotation of the questions should be clear. Pre-
vious work with this scenario has focused on the
domain shift setting (Kamath et al., 2020) where
the goal is to avoid answering questions from other
datasets. Other work has looked at reading com-
prehension with relatively small models (Zhang
et al., 2021b; Jiang et al., 2021). Open-domain
question answering is substantially more difficult
than reading comprehension, which likewise makes
calibration more challenging.

5.1 Datasets

We explore this setting using two datasets:
TriviaQA (Joshi et al., 2017) and NQ-
Open (Kwiatkowski et al., 2019; Lee et al.,
2019) because they are widely used for few-shot
question answering. However, while it might be
assumed that each question in these datasets has
only one possible interpretation, this is often not
the case. In fact, AmbigQA (Min et al., 2020)
finds that over 50% of NQ-Open questions are
underspecified. As such, we limit ourselves to
unambiguous questions as annotated in AmbigQA.
We will discuss the extended setting that includes
underspecified queries in Section 6.

5.2 Experiment Setup

Our investigation focuses on few-shot in-context
learning with large language models (LLMs). Our
primary prompt is composed of four question and
answer pairs from the training sets of Natural Ques-
tions and TriviaQA, respectively (see Figure 2). To
reduce variance across experiments, the example
QA pairs are selected randomly so that each input
to the model has a different version of the prompt.
We compute metrics over the entire evaluation set

for both datasets. We discuss investigation of other
prompts in Appendix B.

5.3 Calibration Results

Results can be found in Table 1 and Figure 3 . First,
we observe that the verification method used in
prior work is inferior across nearly all calibration
metrics. For unambiguous Natural Questions, de-
pending on the metric used, we see that likelihood
and sample repetition both work relatively well
as calibration metrics. For TriviaQA, we see that
the sample repetition method works notably better:
this is potentially due to the presence of ambiguous
questions in TriviaQA, which we do not attempt to
remove. This hypothesis is strengthened by experi-
ments in the next section that show that sampling
methods tend to improve calibration more in the
presence of more ambiguity.
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Figure 3: Plot of calibration error by comparing buck-
eted accuracy to bucketed confidence scores across
methods. Plotted on the unambiguous portion of Nat-
ural Questions.

Setting M EM ROC-AUC ECE C@80

NQ

L

51.7

0.843 0.141 44.2
D 0.814 0.152 44.8
R 0.830 0.103 45.4
V 0.712 0.242 9.0

TriviaQA

L

72.5

0.826 0.205 87.6
D 0.829 0.080 88.1
R 0.844 0.052 88.1
V 0.740 0.199 81.8

Table 1: Non-Ambiguous QA Calibration on Natu-
ral Questions and TriviaQA. The column M refers to
the calibration methods, abbreviated with (L)ikelihood,
(D)iversity, (R)epetition, and (V)erification.



6 Ambiguous Questions

Questions can be ambiguous for a variety of rea-
sons. Language is highly context-sensitive and
meaning can be lost when context is missing. Of-
ten, interlocutors fail to clearly translate their intent
into unambiguous language. Alternatively, ambi-
guity occurs due to a lack of alignment between
interlocutors at a higher level of abstraction. Re-
gardless of its origin, ambiguous questions give rise
to denotational uncertainty, which we can concep-
tualize as a latent distribution over interpretations.

Realistic scenarios such as search and chat fre-
quently contain ambiguous questions, which makes
calibration more difficult because uncertainty may
be epistemic, denotational, or both. Our approach
will again involve sampling: this time over both
interpretations and answers. Note that in this
case, the approach has some similarity to self-
consistency (Wang et al., 2022), as we compute
sampling-based confidence scores over the final
answers regardless of the exact interpretation.

6.1 Datasets

We evaluate using two datasets of underspecified
queries that are derived from NQ-Open: AmbigQA
and SituatedQA.

AmbigQA AmbigQA is created from a subset of
Natural Questions (Kwiatkowski et al., 2019) that
raters assess as ambiguous. After a rater deemed
a question ambiguous, various unambiguous in-
terpretations of the question and their respective
answers are written. Thus, AmbigQA measures
a model’s ability to disambiguate-and-answer am-
biguous questions. For instance, given a query like
“Where does the new fallout game take place?”, the
model should be able to produce the disambiguated
question “Where does the fallout 76 game take
place?” and answer with “Appalachia”. Models are
evaluated based on the similarity between the gen-
erated question and the closest reference question
as well as by producing the correct answer for the
generated question.

SituatedQA SituatedQA is likewise created
from a subset of existing questions and uses a rela-
tively similar process, but focuses more narrowly
on temporal and geographic ambiguity. As the type
of ambiguity and the process used to create them
is different, we generally evaluate them separately.
The temporal questions are annotated with the time
range that a question’s answer is valid. Afterward,

additional time ranges and their corresponding an-
swers are crowdsourced. The geographic questions
are largely created by removing references to loca-
tion and then crowdsourcing locations and corre-
sponding answers. Note that SituatedQA does not
provide metrics assessing the precision or possi-
ble recall of the disambiguations (though the recall
would be particularly difficult to measure).

6.2 Experiment Setup

As above, we use prompts of question-answer pairs,
with each example having six exemplars drawn
from the training data. For AmbigQA, we use only
the examples that have been further annotated by
Stelmakh et al. (2022). For SituatedQA, we eval-
uate the Geographic and Temporal sets separately.
For each example, three of the exemplars will be
ambiguous; in those cases, the prompt will first
include an interpretation of the question which is
one of the provided disambiguations. In practice,
we use the first disambiguation for each example.

6.3 Ambiguity Prediction

Before trying to assess calibration, we first seek to
explore whether our method can predict whether
a question is ambiguous according to AmbigQA.
SituatedQA is not suitable for this task because its
questions tend to follow templated patterns where
the ambiguity arises from a missing time or place
reference, while AmbigQA has more diverse ex-
pressions of ambiguity. We are not aware of prior
work that evaluates ambiguity classification on Am-
bigQA or other datasets.

We use a first transformations of Section 3 to
predict whether the model predicts the question
is ambiguous. We discuss this in more detail in
Appendix A. In short, none of the methods are
particularly capable, with the best method achiev-
ing 58% accuracy when 53% of the questions are
labeled as ambiguous.

Why is question ambiguity so difficult to pre-
dict? One possible explanation is that all queries
are somewhat ambiguous. Queries are typically
not intentionally underspecified: the questioner
believes they have provided enough information
to answer. In a conversation, this may fail and
require developing common ground; in an infor-
mation retrieval system, this may take the form of
query refinement. All of the questions in the Nat-
ural Questions dataset were asked of the Google
search engine and are answerable using Wikipedia



(Kwiatkowski et al., 2019), yet many are labeled
as ambiguous by AmbigQA.

For instance, “Where is the world cup going to
be?” might typically refer to the host country, but
fans from the host country that year might instead
refer to the cities the games will be played. Even bi-
nary choice questions like “Who won more games
between the Packers and the Bears?” may appear
unambiguous, but this question has different an-
swers depending on the date it is asked.

In this sense, we propose that ambiguity is a
function of both the interpreter and the query. How-
ever, measuring whether a model (or indeed, any
interlocutor) understood a question is challenging.
Often in dialogue, interlocutors may assume their
counterpart understood if they receive a response
similar to what they expected; alternatively, they
may ask explicitly if they were understood.

This leads us to our disambiguate-then-answer
paradigm: if there is no fundamental difference be-
tween ambiguous and unambiguous queries when
taken out of the original context, then the model
should first establish precisely what question it is
attempting to answer.

6.4 Calibration Results

We evaluate calibration on ambiguous questions
using the same methods described in Section 5
with results in Table 2 and Figure 4. We exclude
the self-verification setup here, because its calibra-
tion is much worse on the unambiguous questions,
and it is unclear how to translate the prompt when
there are multiple interpretations of the question.
Note that we consider the answer to be correct if it
matches the answer of any of the disambiguations.
We also present results for a “strict” matching setup,
where we only consider the answer to be correct
if it matches the answer of the closest disambigua-
tion to the provided interpretation, as measured by
token overlap.

Overall, the ambiguous questions are much more
difficult than the unambiguous ones. In general,
likelihood seems to become a worse method of
measuring model uncertainty when the questions
are ambiguous and sample repetition appears to im-
prove calibration significantly.2 The strict match-
ing setup does not affect the ordering of the results,
though numbers are lower overall.

2Note that the interpretations sometimes consist of longer
sequences, thus confounding the usability of likelihood

7 Instuction Tuning and Scaling

Pretrained language models are typically fine-tuned
before being used in applications. However, fine-
tuning and other alignment techniques may disturb
the model’s calibration by emphasizing high per-
formance on specific sets of tasks rather than the
full pretraining distribution.3 Table 4 shows that
for Flan-PaLM (Chung et al., 2022), instruction
tuning dramatically improves exact match accu-
racy while simultaneously worsening performance
on confidence-based ranking (ROC-AUC) and cal-
ibration (ECE), when using model likelihood as
the confidence score. However, this miscalibration
can be mitigated by using sample-based confidence
scores, which dramatically improves the calibra-
tion on ambiguous questions (AmbigQA). For the
selective-prediction metric C@80, the instruction-
tuned model with sampling is far ahead of any other
method investigated. Note that we investigate Nat-
ural Questions and AmbigQA here as they are not
in the instruction tuning training data.

We examine the effect of model scale on cali-
bration, finding that in general, accuracy declines
substantially in closed book question answering,
but calibration stays roughly constant. See Ap-
pendix D for full results.

As sampling-based approaches require a linear
increase in compute for the number of samples,
we also examine how calibration scales with the
number. In particular, we test three, five, and eight
samples and compare that to the original results
containing ten samples. Results can be found in Ap-
pendix E. Unsurprisingly, more samples seems to
improve calibration, though it seems on the unam-
biguous Natural Questions slice, sampling diversity
with a small number of samples works relatively
well for the cost.

8 Related Work

This paper investigates calibration, selective ques-
tion answering, and ambiguity within a single
model. It builds on work across these topics.
While AmbigQA (Min et al., 2020), ASQA (Stel-
makh et al., 2022) and SituatedQA (Zhang and
Choi, 2021) introduce new annotations for ques-
tion answering datasets, neither these papers nor

3The GPT-4 technical report (https://cdn.openai.
com/papers/gpt-4.pdf) shows that calibration is made
significantly worse by the combination of instruction-tuning
and reinforcement learning, but does not distinguish between
these two factors.

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf


Loose Strict

Dataset M EM ROC-AUC ECE C@80 EM ROC-AUC ECE C@80

AmbigQA
L

44.8
0.731 0.316 17.4

41.9
0.724 0.287 12.4

D 0.767 0.114 16.1 0.763 0.085 13.0
R 0.821 0.120 26.2 0.812 0.147 20.6

SQA-Temp
L

35.7
0.757 0.223 9.4

29.1
0.751 0.157 3.0

D 0.772 0.086 6.7 0.757 0.048 2.7
R 0.797 0.119 13.5 0.784 0.167 2.4

SQA-Geo
L

35.6
0.759 0.221 10.4

29.0
0.757 0.156 3.3

D 0.743 0.085 8.9 0.723 0.056 4.5
R 0.800 0.120 13.7 0.789 0.176 4.6

Table 2: Ambiguous Calibration. Column M refers to the calibration methods, abbreviated with (L)ikelihood,
(D)iversity, and (R)epetition. Loose matching counts the answer as correct if it matches the answer from any
interpretation; strict matching only counts it as correct if one of the closest interpretations has the same answer.

Dataset M N ROC-AUC ECE C@80

NQ

D

3 0.749 0.132 40.8
5 0.791 0.086 44.2
8 0.806 0.125 43.9

10 0.814 0.152 44.8

R

3 0.789 0.155 43.3
5 0.811 0.116 45.0
8 0.826 0.099 45.3

10 0.830 0.103 45.4

AmbigQA

D

3 0.650 0.297 12.1
5 0.719 0.218 12.5
8 0.755 0.148 16.8

10 0.767 0.114 16.1

R

3 0.769 0.152 16.7
5 0.801 0.130 24.3
8 0.815 0.120 26.9

10 0.821 0.120 26.2

Table 3: Calibration by number of samples (N). EM
is excluded, because it is solely based on the greedy
answer and does not depend on the number of samples.
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Figure 4: Plot of calibration error by comparing buck-
eted accuracy to bucketed confidence scores across
methods. Plotted on the combined version of Am-
bigQA, containing ambiguous and unambiguous ques-
tions.

Setting M EM ROC-AUC ECE C@80

NQ
L

65.8
0.833 0.098 70.7

D 0.807 0.142 74.7
R 0.797 0.137 71.2

AmbigQA
L

57.6
0.698 0.356 27.3

D 0.718 0.148 28.1
R 0.794 0.137 52.9

Table 4: Calibration for instruction tuned Flan-PaLM
models. The column labeled M refers to the calibration
methods, abbreviated with (L)ikelihood, (D)iversity,
and (R)epetition.

any follow-up work investigate how the uncertainty
in interpreting a question interacts with uncertainty
about the answer.

8.1 Calibration and Selective QA

Calibration of modern machine learning ap-
proaches is difficult due to their non-linearity,
scale, and architecture details (Guo et al., 2017).
Generation-like tasks are even more difficult, con-
taining a sequence of tokens with individual con-
fidence estimates and a special end of sentence
marker that may be poorly calibrated (Kuleshov
and Liang, 2015; Kumar and Sarawagi, 2019; Ja-
gannatha and Yu, 2020). A common approach for
various natural language processing tasks is to train
a separate classifier to estimate the model’s con-
fidence (Kumar and Sarawagi, 2019; Jiang et al.,
2021; Zhang et al., 2021b; Kamath et al., 2020;
Desai and Durrett, 2020; Dong et al., 2018) using
various featurizations of the model’s input, output,
and likelihoods. Alternatively, Ren et al. (2023) use
embedding distances and Osband et al. (2021) use
Bayesian-inspired approaches that try to predict the
full distribution over labels.



Within the specific setting of question answer-
ing, Kamath et al. (2020) and Zhang et al. (2021b)
both address a similar selective question answering
framework to ours, but they do not explore ambigu-
ous questions. Varshney et al. (2022) investigate
selective prediction for various tasks, and Varsh-
ney and Baral (2022) aim to improve coverage by
re-answering questions that the model originally
abstained on. Kuhn et al. (2023) and Lin et al.
(2023) use similar sampling-based methods over
free-form question answering, using slightly differ-
ent formulations of confidence scores, but they do
not investigate ambiguous questions. Kuhn et al.
(2022) examine synthetically-created ambiguous
questions, but focus on multi-turn interactions.

Question ambiguity can be formalized as un-
certainty about the denotation of the question, re-
lating to prior work on uncertainty in semantic
parsing (Dong et al., 2018). However, rather the
expressing candidate denotations in a formal se-
mantic representation, we express them informally
in natural language, as a waypoint toward quantify-
ing the uncertainty of candidate answers.

8.2 Self-Calibrating Language Models
A number of papers propose to quantify confi-
dence and detect hallucinations by (a) directly ask-
ing the model to rate its own confidence or cor-
rectness (e.g., Kadavath et al., 2022; Lin et al.,
2022), (b) drawing repeated samples (Wang et al.,
2022; Manakul et al., 2023), or (c) requesting addi-
tional supporting information about proposed out-
puts (Agrawal et al., 2023). As discussed in Sec-
tion 5 and Appendix C, we found that neither self-
verification nor offering the option of “unknown”
were effective strategies for selective question an-
swering. Wang et al. (2022) focus on accuracy
rather than calibration and Manakul et al. (2023)
focus on fact-checking long-form answers.

8.3 Prompting Strategies
In in-context learning, the choice of prompt and the
order of exemplars can affect downstream perfor-
mance (Lu et al., 2022). Other work suggests that
giving more long-form answers and explanations
in the prompt may encourage the model to do the
same, increasing its likelihood of arriving at the cor-
rect answer (Wei et al., 2022). In our work, we find
the choice of prompt plays little role and that longer
answers or explanations do not seem to improve
calibration (see Appendix B). Zhou et al. (2023) in-
vestigate how adding words of uncertainty interacts

with calibration, noting that additional expressions
of uncertainty improve calibration without hurting
accuracy. This is an interesting direction for future
research into its interaction with ambiguity.

9 Conclusion

We investigate the calibration of large language
models, extending prior work by distinguishing
uncertainty about the answer (epistemic uncer-
tainty) from uncertainty about the meaning of the
question (denotational uncertainty). We propose
a disambiguate-and-answer paradigm, where the
model first attempts to rephrase the question be-
fore providing its answer. This paradigm enables
straightforward techniques for quantifying model
confidence by counting the frequency of answers
within repeated samples from the language model.
These sample-based confidence metrics are par-
ticularly effective for ambiguous questions, and
are significantly better calibrated than traditional
likelihood-based measures and self-verification.
For ambiguous questions, the proposed method
is similar to calibration through self-consistency.

10 Limitations

In this work, we explore selectively answering
ambiguous questions and calibrating such mod-
els, but we do so only within the context of a sin-
gle model: PaLM. We do not explore alternative
paradigms, such as supervised fine-tuning, or other
large language models for in-context learning with
which to replicate our results. Furthermore, we
only explore calibration in a closed-book setting,
despite that open-book question answering (i.e.,
augmented with retrieval) generally has higher per-
formance and may pose additional calibration chal-
lenges. Moreover, our exploration of various con-
fidence scores was relatively brief, and while we
explored some additional prompts, we did not it-
erate heavily on prompt tuning. Lastly, while the
proposed method has some advantages, especially
for instruction-tuned models on ambiguous ques-
tions, it also increases the compute linearly with
the number of samples.
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A Ambiguity Prediction

A full description of how we transformed our
method into ambiguity prediction is below.

Disambiguate and Answer In the prompting
setup described, the model should produce an inter-
pretation of an ambiguous question before answer-
ing it. Thus, if the model produces an interpretation,
it predicts that it is more like the ambiguous ques-
tions in the prompt than the unambiguous ones. We
can thus use this as a prediction of ambiguity. We
use both the greedy output (Greedy Disambig.) and
the sampled output as a voting mechanism (Voting
Disambig.).

Disagreements and Unique Answers These
methods are simply the inverse of Sampling Rep-
etition and Sampling Diversity described in Sec-
tion 3. Num Disagreements refers to the fraction
of sampled answers that are not the same as the
greedy answer; Num Answers refers to the fraction
of unique answers produced in the sampling proce-
dure. As previously discussed, a more diverse set
of answers could reflect either question ambiguity
(denotational uncertainty) or epistemic uncertainty.

Direct Prediction We also experiment with a dif-
ferent few-shot prompt where instead of predicting
an answer, the task is to predict either the string
Ambiguous or Unambiguous. We can then use the
greedy output as a binary label (Greedy Direct)
or use sampling as a voting mechanism (Voting
Direct).

As stated in the main text, none of the methods
are very effective. An exploration of the preci-
sion/recall tradeoff can be found in Figure 5.

B Chain of Thought

Chain-of-thought prompts can improve perfor-
mance by providing examples of the reasoning pat-
terns that yield valid answers (Wei et al., 2022).
As a simple chain-of-thought, we have the model
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Figure 5: Precision vs recall for ambiguity predic-
tion. For the sampling-based methods, each point cor-
responds to a classification threshold corresponding to
counts over the ten sampled outputs. The greedy pre-
dictions are plotted as single points. None of these sys-
tems improve precision over the baseline rate of 53%.

first produce the long answer and then the short an-
swer, or vice versa. These long answers are taken
from ASQA for AmbigQA or the provided long an-
swers for Natural Questions, and we refer to these
conditions as ’Long + Short’ and ’Short + Long’,
depending on whether the short answer is placed
before or after the long answer. From Table 6, we
can see this has small and mostly negative effects
on Natural Questions: the strongest effect comes
from the decline in accuracy when the long answer
is produced first, because the model sometimes hits
its max decode length. For ambiguous questions,
found in Table 7, there is a small gain in accuracy
at the cost of every calibration metric.

In the direction of chain of thought, does the
choice of exemplars in the prompts matter? Here,
we select the questions by hand and write clear
long answers and use these as the exemplars in
the prompt. This also did not have much impact
on performance, so we only do this investigation
for the unambiguous questions, and call it ’Static
Short + Long’, ’Static Long + Short’, and ’Static
Short Only’ (for the original case but with the hand
selected questions). We find that the prompt largely
does not matter, achieving relatively similar results
regardless of prompt, though many better prompts
may exist. Results can be found in Table 6 for
Natural Questions.

https://doi.org/10.18653/v1/2021.findings-acl.172
https://doi.org/10.18653/v1/2021.findings-acl.172


Natural Questions AmbigQA

M EM ROC-AUC ECE C@80 EM ROC-AUC ECE C@80

540B
L 51.7 0.843 0.141 44.2 44.8 0.731 0.316 17.4
D 0.814 0.152 44.8 0.767 0.114 16.1
R 0.830 0.103 45.4 0.821 0.120 26.2

62B
L 38.8 0.823 0.111 18.8 34.6 0.690 0.235 3.4
D 0.826 0.203 24.2 0.757 0.045 0.8
R 0.836 0.151 24.5 0.805 0.150 3.4

8B
L 16.0 0.829 0.038 0.8 14.8 0.699 0.121 0.6
D 0.813 0.228 0.8 0.747 0.080 0.0
R 0.800 0.162 0.8 0.814 0.148 0.4

Table 5: Scaling results on the unambiguous and mixed version of Natural Questions / AmbigQA. Note that the
540B model is the same model as reported earlier in Section 5 and Section 6.4, reshown here for comparison. We
use L, D, and R to mean Likelihood, Diversity, and Repetition for brevity.

Natural Questions

Prompt M EM ROC-AUC ECE C@80

Static L 50.5 0.756 0.474 8.0
Long D 0.820 0.117 36.3
+ Short R 0.838 0.084 42.8

Static L 48.7 0.844 0.196 39.2
Short D 0.817 0.194 38.0
+ Long R 0.824 0.177 37.0

Long L 42.5 0.656 0.42 4.2
+ D 0.793 0.147 22.7
Short R 0.848 0.079 31.0

Short L 49.6 0.835 0.154 37.3
+ D 0.820 0.168 38.0
Long R 0.832 0.133 42.5

Table 6: Experiments on Natural Questions using dif-
ferent prompt formats. In the first, we hand-wrote the
prompt. In the second set, we randomly chose exem-
plars from Natural Questions. Note that the randomly
selected exemplars are sometimes quite long, causing
the model sometimes to run out of decoding space in
that setting.

C Text as Calibration

Can language models simply tell us when they
don’t know the answer? Here, we use a prompt
where two of the questions are given the answer
“Unknown”, instead of the given answer. The
method follows the above prompting strategy, ex-
cept two of the answers are randomly replaced with
Unknown, and the unambiguous and ambiguous
both use six exemplars. Results can be found in
Table 8. Overall, on the unambiguous portion of
Natural Questions, the model chooses to abstain a
relatively large fraction of the time for only slightly

AmbigQA

Prompt M EM ROC-AUC ECE C@80

Long L 36.3 0.663 0.152 1.2
+ D 0.758 0.041 6.0
Short R 0.859 0.061 21.8

Short L 45.7 0.716 0.351 12.4
+ D 0.742 0.127 13.8
Long R 0.795 0.123 21.8

Table 7: Experiments on AmbigQA using different
prompt formats. We randomly chose exemplars from
the ASQA annotations over Natural Questions. Note
that the randomly selected exemplars are sometimes
quite long, causing the model sometimes to run out of
decoding space in that setting. Note that we do not
hand-write prompts here due to the difficulty of writing
intentionally ambiguous questions well.

higher accuracy. The sampling repetition method
is able to answer 86.1% of the questions at 80%
accuracy, which is substantially better.

The ambiguous results are more interesting,
where the model very rarely outputs unknown even
though the questions are supposedly more chal-
lenging. The model is able to improve its accuracy
somewhat by not answering a small number of
questions; however, it cannot reliably abstain when
it is wrong, thus leading to an overall low percent-
age of accuracy. While not computed above, the
standard model’s C@45 would be approximately
99.6%.



Method Acc Cov

Natural Questions

Long + Short 49.8 65.3
Short + Long 62.1 65.4
Short Only 60.4 73.0

Static L+S 61.9 53.7
Static S+L 63.9 53.7
Static SO 63.9 63.7

AmbigQA

Long + Short 38.8 86.4
Short + Long 46.6 91.3
Short Only 45.7 95.2

Table 8: Answer or Unknown Results. Note that the
Acc is the EM rate only on the answered questions,
so they are most comparable to the Cov@Acc num-
bers. While they are somewaht difficult to compare
to the above numbers as neither Cov or Acc is fixed,
this method is generally uniformly worse than the other
methods.

D Scaling

See Table 5 for results. Note that calibration as
defined by error is roughly constant, the proportion
of the questions that can be answered with reason-
able accuracy declines dramatically, approximating
zero on the smallest model sizes.

E Sampling

See ?? for results.


	Introduction
	Calibration for Question Answering
	Confidence Scores
	Evaluation setup
	Metrics

	Unambiguous Questions
	Datasets
	Experiment Setup
	Calibration Results

	Ambiguous Questions
	Datasets
	Experiment Setup
	Ambiguity Prediction
	Calibration Results

	Instuction Tuning and Scaling
	Related Work
	Calibration and Selective QA
	Self-Calibrating Language Models
	Prompting Strategies

	Conclusion
	Limitations
	Ambiguity Prediction
	Chain of Thought
	Text as Calibration
	Scaling
	Sampling

