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1 Introduction

One of the central goals of behavioral science is to understand the cognitive processes that occur
within individuals. A significant challenge lies in the fact that that these processes are not directly
observable and must be inferred from noisy behavioral data. Human reinforcement learning (RL)
is a prime example, positing that individuals adjust the values they assign to actions based on the
rewards they receive. However, uncovering the learning dynamics underlying these action values
is difficult because the action values are latent and cannot be directly measured. Instead, they must
be inferred from observable behaviors, such as action choices. In this work, we introduce a novel
machine learning approach for inferring latent human RL dynamics from human behavior leveraging
recurrent neural networks (RNN) and sparse identification of non-linear dynamics (SINDy). This
approach automates the discovery of interpretable models that explain human RL.

Our approach recovers human RL dynamics using a two-step process. First, drawing inspiration from
previous work [1, 2, 3, 4], we train an RNN to the behavior of humans performing a reinforcement
learning task. Critically, we disentangle the RNN into multiple components, each representing a
distinct cognitive mechanism. Each RNN component is constrained to a low-dimensional memory
state representing the latent dynamical system variables for that cognitive mechanism. RNNs are a
popular approach to fit human behavior due to their flexibility in capturing cognitive computations [5,
6, 7]. Once fitted, we simulate the RNN to generate time series data for each component’s memory
state. Next, we apply SINDy [8], a data-driven algorithm developed for identifying dynamical
systems from time series data by representing it as a linear combination of predefined functions, often
incorporating non-linear expressions like polynomials of the input variables. Here, we apply SINDy
to the time series generated by each RNN component’s memory state. This enables us to characterize
the cognitive mechanism implemented by each component by identifying the underlying dynamical
system that governs how it updates memorized action values based on previous rewards and choices.
Together, these extracted dynamical systems yield an interpretable model of human RL.

In this work, we evaluate the algorithm’s ability to recover various ground truth human RL models
from simulated behavioral data in the context of a two-armed bandit task. These ground truth models
incorporate a range of cognitive mechanisms, including Q-learning [9], value forgetting over time
[10], choice perseverance [11], asymmetrical learning rates for positive and negative outcomes [12],
and confirmation bias [13]. Critically, we attempted to infer these mechanisms from the choice
behavior of the ground truth alone and under decision noise. Our results indicate that our approach is
capable of recovering underlying cognitive mechanisms robustly and with a high accuracy, enabling
the automated discovery of expressive yet interpretable human RL models.
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2 Methods

2.1 Experimental paradigm

The two-armed bandit task is a paradigm for studying human RL where a participant repeatedly
chooses between two options (or “arms”), each offering a potential reward r = 1 with some
probability P (ri). Participants are tasked to maximize the rewards across a series of trials by selecting
one the two arms ai, i ∈ 1, 2, on each trial. In this study, P (ri) is unknown to the participant and
fluctuates over the trials t with a drift rate of σ according to

Pt+1(ri) = Pt(ri) +N (0, σ). (1)

Maximizing rewards in this task requires participants to balance exploration (trying new options)
and exploitation (sticking with known good ones) to adapt to the changing environment. Critically,
participants must learn, based on experience, which of the two options is currently more rewarding.

2.2 Ground truth models

Task representation and action selection. Each ground truth is a simulated reinforcement learning
agent that chooses between two actions A⃗ = (a1, a2), and learns from the respective outcomes—
the reward r—similarly to a human participant. Learning is represented by applying a Q-learning
algorithm to update its estimate about the value of each action Q⃗ = (q1, q2). Action selection is a
stochastic procedure with the action probabilities P (A⃗) given by the Softmax function

P (A⃗) = Softmax(Q⃗). (2)

The single action values are computed by

qi = β(vi + ci), (3)

where β is the inverse noise temperature, i ∈ 1, 2 indicates the action, vi is the reward-based
component of the action value, and ci is the choice-based component, reflecting the influences of
prior rewards and choices, respectively.

Cognitive mechanisms. The model updates the chosen action value qch and the non-chosen action
value qnch separately, with each update driven by multiple cognitive mechanisms.. The reward-based
value vch of the chosen action is updated by using the reward prediction error (RPE), calculated as
erp = (r − vch), and scaled by an adaptive learning rate α [9]. This learning rate is further influenced
by two cognitive mechanisms: (a) asymmetric learning rates for positive versus negative outcomes
[12] and (b) a confirmation bias that enhances learning for outcomes that confirm existing estimates
(e.g. high vch and positive outcome) while reducing learning for outcomes that contradict those
estimates (e.g. high vch and negative outcome) [13]. The choice-based value cch of the chosen action
is updated by incorporating a choice persistence bias which makes the model favor previously chosen
actions [11]. Meanwhile, the the non-chosen action is updated by gradual value forgetting over time
of the reward-based value vnch [10], while the choice-based value is set to cnch = 0. In summary,
these mechanisms result in the following update equations,

vch,t+1 = vch,t + (αrr + αpr + bcb(vch,t − v0)(r − v0))erp, (4)
vnch,t+1 = vnch,t + bf(vnch,t − v0), (5)
cch,t+1 = bcparepeat, (6)
cnch,t+1 = 0, (7)

where t is the current time step, αr the learning rate for positive outcomes, αp the learning rate for
negative outcomes, r = (1 − r) signifying a non-rewarded trial, bcb the confirmation bias weight,
v0 the initial reward estimate, bf the forget rate, bcp the choice persistence bias, and arepeat a binary
signal identifying whether a choice is repeated. We will generate synthetic choice data using various
parameterizations of this ground truth and assess the extent to which we can recover its underlying
cognitive mechanisms.

2.3 Framework for the automated discovery of cognitive models

The automated discovery method involves fitting an RNN to choice data and then using SINDy to
extract interpretable update equations from the RNN.
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Recurrent neural network. The RNN is trained to emulate the behavioral choice data by learing
the actions A⃗ a human participant (or simulated agent) selected based on their experienced reward
outcomes and prior actions. To achieve this, the RNN must internalize cognitive processes that can
reproduce the original choice data.

To facilitate the discovery of distinct cognitive mechanisms, we disentangle the RNN into several
smaller sub-networks and apply information bottlenecks for each of them (for similar approaches, see
[2, 14]). These information bottlenecks control the inputs and outputs each sub-network is processing.
The sub-networks represent distinct action value updates. Here, the sub-networks fq,ch and fc,ch update
the reward-based and choice-based components of the chosen action value qch, respectively. The
reward-based and choice-based components of the non-chosen action value qnch are updated by the
sub-networks fq,nch and fc,nch, respectively. These updates have the structure

vch,t+1 = vch,t + Sigmoid(fq,ch(vch,t, r))erp, (8)
vnch,t+1 = vnch,t + Tanhshrink(fq,nch(vnch,t)), (9)
cch,t+1 = cch,t + Tanhshrink(fc,ch(cch,t, arepeat)), (10)
cnch,t+1 = cnch,t + Tanhshrink(fc,nch(cnch,t)), (11)

Q⃗ = ReLU(β)(A⃗(vch + cch) + (1− A⃗)(vnch + cnch)), (12)
where Sigmoid is the sigmoid function imposing a value range of 0 < f(x) < 1 on the computed
learning rate. The function Tanhshrink(x) = x − tanh(x) imposes a quasi-zero-plateau on an
otherwise quasi-linear function enhancing the RNN’s ability to sparsify the value representation and
therefore omit unnecessary cognitive mechanisms. ReLU is the rectified linear unit function imposing
a value range of 0 ≤ x < inf on the inverse noise temperature β.

A significant challenge in recovering cognitive mechanisms is ensuring their identifiability. This
issue is not unique to our approach but is a common problem in the inherently ill-posed task of
recovering cognitive mechanisms from noisy choice data. For example, the learning rate function
fq,ch can approximate multiple mechanisms at once (e.g. asymmetric learning rates and confirmation
bias), including the RPE erp, due to their identical inputs. To address this issue, we hard-code the
RPE erp, reflecting the consensus that RPEs are fundamental to most human RL models. This allows
fq,ch to discover mechanisms distinct from the RPE, despite relying on the same inputs.

The RNN is trained by minimizing the cross entropy loss between the participant’s actual next action
A⃗t+1 chosen by the participant and the predicted probabilities P (A⃗t+1), based solely on the observed
current action A⃗t, the received reward rt and the RNN’s latent state space Q⃗t.

Sparse identification of non-linear dynamics. SINDy is a data-driven method for the discovery of
dynamical systems from time series data. Applying SINDy—and symbolic regression algorithms
in general—to uncover cognitive mechanisms presents a challenge, as the time series of relevant
variables (e.g., action values) are not directly observable. However, after fitting an RNN to the
observable choice data, we can extract these latent variables over the trials t from each sub network
within the RNN. We then apply SINDy to derive interpretable equations that govern the cognitive
mechanisms implemented by each sub network, yielding a fully interpretable model of human
RL. SINDy represents the cognitive mechanisms as sparse linear combinations of non-linear terms
according to

∆vch = Θ([1, vch, r, r])W⃗q,ch, (13)

∆vnch = Θ([1, vnch])W⃗q,nch, (14)

∆cch = Θ([1, cch, arepeat])W⃗c,ch, (15)

∆cnch = Θ([1, cnch])W⃗c,nch, (16)
where Θ is a library of polynomial combinations up to the second degree of the given candidate terms
and W⃗ is the array of corresponding fitted weights to each of the RNN’s sub-networks. We used two
optimizers (STLSQ [8] and SR3 [15]) in our simulation study due to their different performances in
different contexts. The SINDy weight arrays W⃗ are trained by minimizing the mean-squared error
between the observed variables and the predicted ones. Additionally, the weights are regularized
(STLSQ: L0 and L2-norm; SR3: L1-norm). This way SINDy fits a predictive but sparse and thus
interpretable equation by setting most weights wi ∈ W⃗ to wi = 0. SINDy and the used optimizers
are implemented in the python package pysindy [16].
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Figure 1: Reward probabilities p(r), action selection probabilities p(A), and value updates for option
1 over a given reward-choice trajectory for the simple model (left) and the complex model (right)
computed by the respective ground truth (blue), the fitted RNN (orange) and the SINDy model (pink).
The selected action a1 or a2 at each trial is marked by the lower and upper ticks, respectively. The
outcome is marked by the color of the ticks (green: rewarded; red: non-rewarded).

2.4 Simulation experiments

We tested our approach in a simulation study with two ground truth models. We initialized one
ground truth θcomplex with all described cognitive mechanisms (i.e. β = 3.0, αr = 0.25, αp = 0.5,
bcb = 0.5, v0 = 0.5, bcp = 0.25, bf = 0.2) and a second ground truth model θsimple with Q-learning
only (i.e. β = 2.0, αr = αp = 0.35, v0 = 0.5, and the remaining parameters set to 0).

Each ground truth model performed the two-armed bandit task for nsessions = 5, 120 sessions, each
encompassing ntrials = 64 trials. We trained the discovery method on 80% of the sessions and
evaluated the recovered model on the remaining 20% of the sessions. The two-armed bandit task had
drifting reward probabilities with a drift rate of σ = 0.1 and yielded binary rewards r ∈ {0, 1}.

3 Results

We verified our method’s ability to recover different ground truth models both qualitatively and
quantitatively. First, for qualitative validation, we visually compared the trajectories of single value
updates for the reward-based value q, the choice-based value c and the action value v, and the action
selection probability p(A⃗) of the ground truth models against the corresponding recovered models
over the trials t for given choice and reward trajectories. As shown in Figure 1, the value updates
and the action selection probability closely matched those of the ground truth models. In the case
of the complex model, the RNN established an offset for the choice value. However, this offset
did not alter the action selection probabilities p(A⃗) because this offset is applied to both options
equally, and therefore did not influence the difference between q1 and q2. For the RNN+SINDy
model, this minor issue was resolved by simply removing the offset in the generated training data. As
already mentioned, we couldn’t identify one best-suited optimizer from the pysindy package. The
optimizer selection is akin to hyperparameter optimization in traditional machine learning and can be
performed by e.g. minimizing the loss between the predicted and the generated values computed by
RNN+SINDy and the RNN, respectively. We ended up using STLSQ and SR3 to recover θcomplex and
θsimple, respectively.
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Second, for qualitative validation, we trained in total 16 RNNs on 8 datasets from the simple ground
truth model and on 8 datasets from the complex ground truth model to verify our approach’s stability.
The mean test losses and standard deviations were Lsimple = 0.5970 ± 0.0011 and Lcomplex =
0.5265± 0.0024 for the simple and complex ground truth models, respectively. These results verify
our approach’s stability. The lower loss Lcomplex compared to Lsimple is explained by the higher
β-parameter leading to less noise and also to probabilities closer to 0 and 1, thereby reducing the
overall distance to the actual binary targets in A⃗t+1.

We compared the mean weights W⃗ and standard deviations of the fitted RNN+SINDy model with
those of the ground truth models. As shown in Table 1, the weights W⃗ of the fitted models ϕcomplex and
ϕsimple matched the ground truth with high precision, identifying present terms and omitting absent
ones. The simple ground truth model was better recovered, despite its higher noise. For the complex
model, our approach struggled with ambiguity, especially for simpler choice functions (columns Cc,ch
to c2nch), where standard deviations exceeded mean weights. In the light of the stable test loss Lcomplex,
this suggests that our approach identified multiple solutions for the given observations.

Table 1: Weights of each candidate term for the complex and simple ground truths, θcomplex and θsimple,
along with the mean weights and standard deviations (σ) of the corresponding fitted models, ϕcomplex
and ϕsimple. Constants are denoted by Cq,ch, Cq,nch, Cc,ch, and Cc,nch. Model weights span multiple
rows, with mean weights and standard deviations computed over 8 runs.

Model β Cq,ch α vch r r α2 αvch αr αr

θcomplex 3.00 0.13 0.00 -0.25 0.00 0.50 0.00 0.00 0.00 0.00
ϕcomplex 2.58 0.17 0.00 0.08 0.00 0.22 0.00 0.00 0.00 0.00
(σ) (0.07) (0.01) (0.00) (0.05) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

θsimple 2.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ϕsimple 2.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(σ) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Model v2ch vchr vchr r2 rr r2 Cq,nch vnch v2nch Cc,ch

θcomplex 0.00 0.5 0.00 0.00 0.00 0.00 0.10 0.80 0.00 0.00
ϕcomplex -0.08 0.21 -0.11 0.00 0.00 0.22 0.08 0.81 0.00 0.32
(σ) (0.05) (0.02) (0.02) (0.00) (0.00) (0.01) (0.03) (0.04) (0.00) (0.02)

θsimple 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
ϕsimple 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
(σ) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Model cch arepeat c2ch ccharepeat a2
repeat Cc,nch cnch c2nch

θcomplex 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00
ϕcomplex 0.14 -0.06 0.04 0.19 -0.06 0.00 0.49 -0.97
(σ) (0.22) (0.08) (0.39) (0.30) (0.08) (0.00) (0.67) (1.48)

θsimple 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ϕsimple 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(σ) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

4 Conclusion

We presented an approach that combines RNNs with SINDy to discover complex yet interpretable
cognitive mechanisms underlying human RL from noisy behavioral data. Simulation results indicate
that this data-driven method can successfully recover both simple and complex models, providing
a promising alternative to traditional theory-driven models of human RL which consider only
a small space of cognitive mechanisms [17]. While further refinement is needed, particularly
around identifiability constraints, optimizer selection, and a more efficient experimental design, the
framework holds promise to uncover novel mechanisms of human RL from human behavioral data.
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