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Abstract

Recently, it has been observed that a transfer learning solution might be all we need1

to solve many few-shot learning benchmarks – thus raising important questions2

about when and how meta-learning algorithms should be deployed. In this paper,3

we seek to clarify these questions by 1. proposing a novel metric – the diversity4

coefficient – to measure the diversity of tasks in a few-shot learning benchmark5

and 2. by comparing MAML and transfer learning under fair conditions (same6

architecture, same optimizer and all models trained to convergence). Using the7

diversity coefficient, we show that the popular MiniImagenet and Cifar-fs few-shot8

learning benchmarks have low diversity. This novel insight contextualizes claims9

that transfer learning solutions are better than meta-learned solutions in the regime10

of low diversity under a fair comparison. Specifically, we empirically find that a low11

diversity coefficient correlates with a high similarity between transfer learning and12

Model-Agnostic Meta-Learning (MAML) learned solutions in terms of accuracy13

at meta-test time and classification layer similarity (using feature based distance14

metrics like SVCCA, PWCCA, CKA, and OPD). To further support our claim,15

we find this meta-test accuracy holds even as the model size changes. Therefore,16

we conclude that in the low diversity regime, MAML and transfer learning have17

equivalent meta-test performance when both are compared fairly. We also hope18

our work inspires more thoughtful constructions and quantitative evaluations of19

meta-learning benchmarks in the future.20

1 Introduction21

The success of deep learning in computer vision (1; 2), natural language processing (3; 4), game22

playing (5; 6; 7) and more, keeps motivating a growing body of applications of deep learning on23

an increasingly wide variety of domains. In particular, deep learning is now routinely applied to24

few-shot learning – a research challenge that assesses a model’s ability to learn to adapt to new tasks,25

new distributions, or new environments. This has been the main research area where meta-learning26

algorithms have been applied – since such a strategy seems promising in a small data regime due to27

its potential to learn to learn or learn to adapt. However, it was recently shown (8) that a transfer28

learning model with a fixed embedding can match and outperform many modern sophisticated meta-29

learning algorithms on numerous few-shot learning benchmarks (9; 10; 11; 12). This growing body of30

evidence – coupled with these surprising results in meta-learning – raise the question if researchers are31

applying meta-learning with the right inductive biases (13; 14) and designing appropriate benchmarks32

for meta-learning. Our evidence suggests this is not the case.33

In this work, we show that when the task diversity – a novel measure of variability across tasks – is34

low, then MAML (Model Agnostic Meta-Learning) (15) learned solutions have the same accuracy35
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as transfer learning (i.e., a supervised learned model with a fine-tuned final linear layer). We want36

to emphasize the importance of doing such an analysis fairly: with the same architecture, same37

optimizer and all models trained to convergence. This empirical equivalence remained true even as38

the model size changed – thus further suggesting this equivalence is more a property of the data than39

of the model. Therefore, we suggest taking a problem-centric approach to meta-learning and suggest40

applying Marr’s level of analysis (16; 17) to few-shot learning – to identify the family of problems41

suitable for meta-learning. Marr emphasized the importance of understanding the computational42

problem being solved and not only analyzing the algorithms or hardware that attempts to solve43

them. An example given by Marr is marveling at the rich structure of bird feathers without also44

understanding the problem they solve is flight. Similarly, there has been analysis of MAML solutions45

and transfer learning without putting the problem such solutions should solve into perspective (18; 19).46

Therefore, in this work, we hope to clarify some of these results by partially placing the current47

state of affairs in meta-learning from a problem-centric view. In addition, the novelty of our analysis48

compared to previous work is that we make analysis intrinsic of the data as a first class citizen.49

Our contributions summarized as follows:50

1. We propose a novel metric that quantifies the intrinsic diversity of the data of a few-shot51

learning benchmark. We call it the diversity coefficient. It enables analysis of meta-learning52

algorithms through a problem-centric framework. It also goes beyond counting the number of53

classes or number of data points or counting the number concatenated data sets – and instead54

quantifies the expected diversity/variability of tasks in a few-shot learning benchmark.55

2. We analyze the two most prominent few-shot learning benchmarks – MiniImagenet and56

Cifar-fs – and show that their diversity is low. These results are robust across different ways57

to measure the diversity coefficient, suggesting that our approach is robust.58

3. With this context, we partially clarify the surprising results from (19) by comparing their59

transfer learning method against models trained with MAML (15). In particular, when60

making a fair comparison, transfer learning method with a fixed feature extractor fails to61

outperform MAML. We define a fair comparison when the two methods are compared using62

the same architecture (backbone), same optimizer and all models trained to convergence.63

We also show that their final layer makes similar predictions according to neural network64

distance techniques like distance based Singular Value Canonical Correlation Analysis65

(SVCCA), Projection Weighted (PWCCA), Linear Centered Kernel Analysis (LINCKA)66

and Orthogonal Procrustes Distance (OPD). This equivalence holds even as the model size67

increases.68

4. Interestingly, we also find that even in the regime where task diversity is low (in MiniIma-69

genet and Cifar-fs), the features extracted by supervised learning and MAML are different –70

implying that the mechanism by which they function is different despite the similarity of71

their final predictions.72

5. As an actionable conclusion, we provide a metric that can be used to analyze the intrinsic73

diversity of the data in a few-shot learning benchmarks and therefore build more thoughtful74

environments to drive research in meta-learning. In addition, our evidence suggests the75

following test to predict the empirical equivalence of MAML and transfer learning: if the76

task diversity is low, then transfer learned solutions might fail to outperform meta-learned77

solutions. This test is easy to run because our diversity coefficient can be done using78

the Task2Vec method (20) using pre-trained neural network. We also found that random79

networks were consistent with the results of pre-trained networks on Imagenet.80

We hope that this line of work inspires a problem-centric first approach to meta-learning – which81

appears to be especially sensitive to the properties of the problem in question. Therefore, we hope82

future work takes a more thoughtful and quantitative approach to benchmark creation – instead of83

focusing only on making huge data sets.84

2 Background85

In this section, we provide a summary of the background needed to understand our main results.86

Model-Agnostic Meta-Learning (MAML): The MAML algorithm (15) attempts to meta-learn87

an initialization of parameters for a neural network so that it is primed for fast gradient descent88
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adaptation. It consists of two main optimization loops: 1) an outer loop used to prime the parameters89

for fast adaptation, and 2) an inner loop that does the fast adaptation. During meta-testing, only the90

inner loop is used to adapt the representation learned by the outer loop.91

Transfer Learning with Union Supervised Learning (USL): Previous work (19) shows that92

an initialization trained with supervised learning, on a union of all tasks, can outperform many93

sophisticated methods in meta-learning. In particular, their method consists of two stages: 1) first94

they use a union of all the labels in the few-shot learning benchmark during meta-training and train95

with standard supervised learning (SL), then 2) during the meta-testing, they use an inference method96

common in transfer learning: extract a fixed feature from the neural network and fully fine-tune the97

final classification layer (i.e., the head). Note that our experiments only consider when the final layer98

is regularized Logistic Regression trained with LBGFS.99

Distances for Deep Neural Network Feature Analysis: To compute the distance between neural100

networks we use the distance versions of Singular Value Canonical Correlation Analysis (SVCCA)101

(21), Projection Weighted Canonical Correlation (PWCCA) (22), Linear Centered Kernel Analysis102

(LINCKA) (23) and Orthogonal Procrustes Distance (OPD) (24). These distances are in the interval103

[0, 1] and are not necessarily a formal distance metric but are guaranteed to be zero when their104

inputs are equal and nonzero otherwise. This is true because SVCCA, PWCCA, LINCKA are based105

on similarity metrics and OPD is already a distance. Note that we use the formula d(X,Y ) =106

1 � sim(X,Y ) for our distance metrics where sim is one either SVCCA, PWCCA, LINCKA107

similarity metric and X,Y are matrices of activations (called layer matrices). The distance between108

two models is computed by choosing a layer and then comparing the features/activations after109

adaptation for that layer given a batch of tasks represented as a support and query set. A more110

thorough overview of these metrics for the analysis of internal representations for convolutional111

neural networks (CNNS) can be found in the appendix, section G.112

Task2Vec Embeddings for Distances between Tasks: The diversity coefficient we propose is113

the expectation of distance between tasks (explain in more detail in section 3). Therefore, it is114

essential to define the distance between different pairs of tasks. We choose the cosine distance115

between Task2Vec (vectorial) embeddings as in (20). Therefore, we provide a summary of the116

Task2Vec method to compute task embeddings. The vectorial representation of tasks provided by117

Task2Vec (20) is the vector of diagonal entries of the Fisher Information Matrix (FIM) given a fix118

neural network as a feature extractor – also called a probe network – after fine-tuning the final119

classification layer to the task. The authors explain this is a good vectorial representation of tasks120

because 1. It approximately indicates the most informative weights for solving the current task121

(up to a second order approximation) 2. For rich probe networks like CNNs, the diagonal is more122

computationally tractable. We choose Task2Vec because the original authors provide extensive123

evidence that their embeddings correlate with semantic and taxonomic relations between different124

visual classes – making it a convincing embedding for tasks (20). The Task2Vec embedding of task ⌧125

is the diagonal of the following matrix:126

F̂D⌧ ,fw = F̂ (D⌧ , fw) = Ex,y⇠p̂(x|⌧)p(y|x,fw)[rw log p(y | x, fw)rwp(y | x, fw)>] (1)

where fw is the neural networks used as a feature extractor with architecture f and weights w,127

p̂(x | ⌧) is the empirical distribution defined by the training data D⌧ = {(xi, yi)}ni=1 for task ⌧ , and128

p(y | x, fw) is a deep neural network trained to approximate the (empirical) posterior p̂(y | x, ⌧).129

We’d like to emphasize that the there is a dependence on target label since Task2Vec fixes the130

feature extractor (using fw) and then fits the final layer (or “head") to approximate the task posterior131

distribution p̂(y | x, ⌧).132

3 Definition of the Diversity Coefficient133

The diversity coefficient aims to measure the intrinsic diversity (or variability) of tasks in a few-shot134

learning benchmark. At a high level, the diversity coefficient is the expected distance between a135

pair of different tasks given a fixed probe network. In this work, we choose the distance to be the136

cosine distance between vectorial representations (i.e. embeddings) of tasks according to Task2Vec137

as described in section 2. Using a fixed probe networks is essential because: 1. Using a fixed probe138

network means that the distances between different tasks are comparable, as discussed in the original139

Task2Vec (20) and 2. Since we are computing the distance between different tasks, we need to make140

sure the difference comes from intrinsic properties of the data and not from a different source, e.g. if141

3



one uses different models then this might confound the source of variability in our metric. We define142

the diversity coefficient of a few-shot learning benchmark B as follows:143

d̂iv(B) = E⌧1⇠p̂(⌧ |B),⌧2⇠p̂(⌧ |B)ED1⇠p̂(x1,y1|⌧1),D2⇠p̂(x2,y2|⌧2)

h
d(F̂D1,fw , F̂D2,fw)

i
(2)

where fw is the neural networks used as a feature extractor with architecture f and weights w,144

p̂(x | ⌧) is the empirical distribution defined by the training data D⌧ = {(xi, yi)}ni=1 for task ⌧ ,145

⌧1, ⌧2 are tasks sampled from the empirical distribution of tasks p̂(⌧ | B) for the current benchmark146

B (i.e. a batch of tasks with their data sets D = (⌧i, D⌧i)
N
i=1), a task ⌧i is the probability distribution147

p(x, y | ⌧) of the data, d is a distance metric (for us cosine), fw is the neural networks used as148

a feature extractor with architecture f and weights w, and p̂(x | ⌧) is the empirical distribution149

defined by the training data D⌧ = {(xi, yi)}ni=1 for task ⌧ . We’d also like to recall the reader that the150

definition of a task in this setting is of a n-way, k-shot few-shot learning task. Therefore, each task has151

n classes sampled with k examples used for the adaptation. We’d like to emphasize that the adaptation152

here is only to fine-tune the final layer according to the Task2Vec method for the correct computation153

of the FIM. Therefore, in this setting we combine the support and query set as the split is not relevant154

for the computation of the task embedding using Task2Vec. Note that the above formulation can be155

easily adapted to any distance function between tasks, and is not necessarily specific to using the156

FIM or cosine distance. For example, given the true distributions for tasks one can use real distances157

between probability distributions e.g. Hellinger distance. In addition, it is obvious one can use a158

distance function besides the cosine distance – but choose it in accordance to the original work of159

Task2Vec (20).160

4 Experiments161

This section explains the experiments backing up our main results outlined in our list of contributions.162

Experimental details are provided in the supplementary section A and the learning curves displaying163

the convergence for a fair comparison are in supplementary section B.164

4.1 The Diversity Coefficient of MiniImagenet and Cifar-fs165

To put our analysis into a problem-centric framework, we first analyze the problem they are trying166

to solve through the diversity coefficient. Recall that the diversity coefficient aims to quantify the167

intrinsic variation of tasks in a few-shot learning benchmark. We show that the diversity coefficient168

of the popular MiniImagenet and Cifar-fs benchmarks are low with good confidence intervals using169

four different probe networks in table 1.170

Probe Network Diversity on MI Diversity on Cifar-fs

Resnet18 (pt) 0.117 ± 2.098e-5 0.100 ± 2.18e-5
Resnet18 (rand) 0.0955 ± 1.29e-5 0.103 ± 1.05e-5
Resnet34 (pt) 0.0999 ± 1.95e-5 0.0847 ± 3.06e-5
Resnet34 (rand) 0.0620 ± 8.12e-6 0.0643 ± 9.64e-6

Table 1: The diversity coefficient of MiniImagenet (MI) and Cifar-fs is low. The diversity coeffi-
cient was computed using the cosine distance between different standard n-way, k-shot classification
tasks from the few-shot learning benchmark using the Task2Vec method described in section 3. We
used n=5 (number of classes) and k=20 (number of examples per class) since we can use the whole
task data to compute the diversity coefficient (no splitting of support and query set required). We
used Resnet18 and Resnet34 networks as probe networks – both pre-trained on ImageNet (indicated
as “pt" on table) and randomly initialized (indicated as “rand" on table). We observe that both type
of networks and weights give similar diversity results. All confidence intervals were at 95%. To
compute results, we used 500 few-shot learning tasks and only compare pairs of different tasks. This
results in (5002 � 500)/2 = 124, 750 pair-wise distances used to compute the diversity coefficient.

4.2 Low Diversity Correlates with Equivalence of MAML and Transfer Learning171

Now that we have placed ourselves in a problem-centric framework and shown the diversity coefficient172

of the popular MiniImagenet and Cifar-fs benchmarks are low – we proceed to show the failure of173
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transfer learning (with USL) to outperform MAML. Crucially, the analysis was done using a fair174

comparison: using the same model architecture, optimizer, and training all models to convergence175

– details in section A. We used the five-layer CNN used in (15; 25) and Resnet12 as in (19). We176

provide evidence that in the setting of low diversity:177

1. The accuracy of an adapted MAML meta-learner vs. an adapted USL pre-trained model are178

similar and statistically significant, except for one result where transfer learning with USL179

is worse. This is shown in table 2 and 1.180

2. The distance for the classification layer decreases sharply according to four distance-based181

metrics – SVCCA, PWCCA, LINCKA, and OPD – as shown in figure 2. This implies the182

predictions of the two are similar.183

For the first point, we emphasize that tables 1 and table 2 taken together support our central hypothesis:184

that models trained with meta-learning are not inferior to transfer learning models (using USL) when185

the diversity coefficient is low. Careful inspection reveals that the methods have the same meta-test186

accuracy with intersecting confidence intervals – making the results statistically significant across187

few-shot benchmarks and architectures. The one exception is the third set of bar plots, where transfer188

learning with USL is in fact worse.189

For the second point, refer to figure 2 and observe that as the depth of the network increases, the190

distance between the activation layers of a model trained with MAML vs USL increases until it191

reaches the final classification layer – where all four metrics display a noticeable dip. In particular,192

PWCCA considers the two prediction layers identical (approximately zero distance). This final point193

is particularly interesting because PWCCA is weighted according to the CCA weights that stabilize194

with the final predictions of the network. This means that the PWCCA distance value is reflective of195

what the networked actually learned and gives a more reliable distance metric (for details, refer to the196

appendix section G.5). This is important because this supports our main hypothesis: that at prediction197

time there is an equivalence between transfer learning and MAML when the diversity coefficient is198

low.199

Figure 1: MAML trained models and union supervised trained (USL) models have statistically
equivalent meta-test accuracy for MiniImagenet and Cifar-fs with Resnet12 and five layer
CNNs. This holds for both the Resnet12 architecture used in (19) and the 5 layer CNN (indicated as
“5CNN") in (25). Results used a (meta) batch-size of 100 tasks and 95% confidence intervals. All
MAML models were trained with 5 inner steps during meta-training. “MAML5" and “MAML10" in
the bar plot indicates the adaptation method used at test time i.e. we used 5 inner steps and 10 inner
steps at test time. MiniImagenet is abbreviated as “MI" in the figure.

4.3 Is the Equivalence of MAML and Transfer Learning related to Model Size or Low200

Diversity?201

An alternative hypothesis to explain the equivalence of transfer learning (with USL) and MAML could202

be due to the capabilities of large neural networks to be better meta-learners in general. Inspired by the203

impressive ability of large language models to be few-shot (or even zero-shot) learners (4; 27; 28; 3) –204

we hypothesized that perhaps the meta-learning capabilities of deep learning models is a function205

of the model size. If this were true, then we expected to see the difference in meta-test accuracy206
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Meta-train Initialization Adaptation at Inference Meta-test Accuracy

Random no adaptation 19.3 ± 0.80
MAML0 no adaptation 20.0 ± 0.00
USL no adaptation 15.0 ± 0.26

Random MAML5 adaptation 34.2 ± 1.16
MAML5 MAML5 adaptation 62.4 ± 1.64
USL MAML5 adaptation 25.1 ± 0.98

Random MAML10 adaptation 34.1 ± 1.23
MAML5 MAML10 adaptation 62.3 ± 1.50
USL MAML10 adaptation 25.1 ± 0.97

Random Adapt Head only (with LR) 40.2 ± 1.30
MAML5 Adapt Head only (with LR) 59.7 ± 1.37
USL Adapt Head only (with LR) 60.1 ± 1.37

Table 2: MAML trained representations and supervised trained representation have statisti-
cally equivalent meta-test accuracy on MiniImagenet – which has low diversity. The transfer
model’s adaptation is labeled as “Adapted Head only (with LR)" – which stands for “Logistic Regres-
sion (LR)" used in (19). More precisely, we used Logistic Regression (LR) with LBFGS with the
default value for the l2 regularization parameter given by Python’s Sklearn. Note that an increase in
inner steps from 5 to 10 with the MAML5 trained model does not provide an additional meta-test
accuracy boost, consistent with previous work (26). Note that the fact that the MAML5 representation
matches the USL representation when both use the same adaptation method is not surprising – given
that: 1) previous work has shown that the distance between the body of an adapted MAML model is
minimal compared to the unadapted MAML (which we reproduce in 5 in the green line) and 2) the
fact that a MAML5 adaptation is only 5 steps of MAML while LR fully converges the prediction layer.
We want to highlight that only the MAML5 model achieved the maximum meta-test performance of
0.6 with the MAML5 adaptation – suggesting that the USL and MAML5 meta-learning algorithms
might learn different representations. For USL to have a fair comparison during meta-test time when
using the MAML adaptation, we provide the MAML final layer learned initialization parameters to
the USL model (but any is fine due to convexity when using a fixed feature extractor). This is needed
since during meta-training USL is trained with a union of all the labels (64) – so it does not even
have the right output size of 5 for few-shot prediction. Meta-testing was done in the standard 5-way,
5-shot regime.

of MAML and USL to be larger for smaller models and the difference to decrease as the model207

size increased. Once the two models were, of the same size but large enough, we hypothesized that208

the meta-test accuracy would be the same. We tested this to rule out that our observations were a209

consequence of the model size. The results were negative and surprisingly the equivalence between210

MAML and USL seems to hold even as the model increased – strengthening our hypothesis that the211

low task diversity might be a bigger factor explaining our observations. We show this in figure 3,212

and we want to draw attention to the fact this statistical equivalence holds even when using only four213

filters – the case where we expected the biggest difference.214

4.4 MAML learns a different base model compared to Union Supervised Learned models –215

even in the presence of low task diversity216

The first four layers of figure 2 shows how large the distance is of a MAML representation compared217

to a SL representation. In particular, it is much larger than the distance value in the range [0, 0.1]218

from previous work that compared MAML vs. adapted MAML (18). We reproduced that and indeed219

MAML vs. adapted MAML has a small difference (smaller for us) – supporting our observations that220

a MAML vs. a USL learned representations are different at the feature extractor layer even when the221

diversity is low. Results are statistically significant.222
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Figure 2: The classification layer of transfer learning and a MAML5 model decrease in distance
– implying similar predictions. More precisely, an initialization trained with 5 inner steps (MAML5)
has an increasingly similar head (classifier) after adaptation with MAML5 compared to the classifier
layer of the union supervise learned (USL) model that has been adapted only at the final layer. In
particular, the USL model has been adapted with Logistic Regression (LR) with LBFGS with the
default value for the l2 regularization parameter given by Python’s Sklearn (as in (19)). We showed
this trend with four different distance metrics SVCCA, PWCCA, LICKA, and OPD referenced in
section 2. Observe that according to PWCCA the distance between the predictions is zero. This
is true because the distance of classification layer (indicated as “head" in the figure) is zero. The
architecture used here is a five layer CNN as in (15; 25) with their same setup. The benchmark used
for this analysis is MiniImagenet.

Figure 3: The meta-test accuracy of MAML and transfer learning using USL is similar in
a statistically significant way – regardless of the model size. In this experiment, we used the
MiniImagenet benchmark, the five layer CNN used in (15; 25), and only increased the filter size
using sizes 4, 8, 16, and 32. We made sure the comparison was fair by using the same architecture,
optimizer, and trained all models to convergence. During meta-training, the MAML model was
trained using 5 inner steps. The legends indicating MAMl5 and MAML10 refer to the number of
inner steps used at test time. We used a (meta) batch size of 100 tasks.
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4.5 Synthetic Experiments showing closeness of MAML and Transfer Learning as Diversity223

Changes224

In this section, we show the closeness of MAML and transfer learning (with USL) for synthetic225

experiments for low and high diversity regimes in Figure 4. In the low regime, the two methods are226

equivalent in a statistically significant way – which supports the main claims of our paper. As the227

diversity increases, however, the difference between USL and MAML increases (in favor of USL).228

This will be explored further in future work.229

The task is the usual n-way, k-shot tasks, but the data comes from a Gaussian and the meta-learners230

are tasked with classifying from which Gaussian the data points came from in a few-shot learning231

manner. Benchmarks are created by sampling a Gaussian distribution with means moving away from232

the origin as the benchmark changes. Therefore, the Gaussian benchmark with the highest diversity233

coefficient has Gaussians that are the furthest from the origin. We computed the diversity coefficient234

using a proper distance between distributions using the Hellinger distance eluded in section 3 instead235

of the FIM distance. We can do this because we know the ground truth distribution in our synthetic236

experiments, and Gaussians have a closed form Hellinger distance. Details on the n-way Gaussian237

benchmark and diversity coefficient using the Hellinger distance can be found in supplementary238

section E and F.239

Figure 4: The meta-test accuracy of MAML and transfer learning using USL is similar
in a statistically equivalent way in the low diversity regime in the 5-way, 10-shot Gaussian
Benchmarks. MAML models were trained with 5 inner steps. MAML5 and MAML10 indicate the
adaptation procedure at test time. Results used a (meta) batch-size of 500 tasks and 95% confidence
intervals. As the diversity of the benchmark increases, the Gaussian tasks are sampled further away
from the origin. Note, as the diversity increases, the difference between USL and MAML increases
(in favor of USL).

5 Related Work240

Our work proposes a problem-centric framework for the analysis of meta-learning algorithms inspired241

from previous puzzling results (19). We propose to use a pair-wise distance between tasks and242

analyze how this metric might correlate with meta-learning. The closest line of work for this is the243

long line of work by (20) where they suggest methods to analyze the complexity of a task, propose244

unsymmetrical distance metrics for data sets, reachability of tasks with SGD, ways to embed entire245

data sets and more (20; 29; 30; 31). We believe this line of work to be very fruitful and hope that246

more people adopt tools like the ones they suggest and we propose in this paper before researching or247

deploying meta-learning algorithms. We hope this helps meta-learning methods succeed in practice –248

since cognitive science suggests meta-learning is a powerful method humans use to learn (32). In249

the future, we hope to compare (20)’s distance metrics between tasks with ours to provide a further250

unified understanding of meta-learning and transfer learning. A contrast between their work and ours251

is that we focus our analysis from a meta-learning perspective applied to few-shot learning – while252

their focus is understanding transfer learning methods between data sets.253

The use of a distance metric in our definition of the diversity coefficient is inspired by the analysis254

done by (18). They showed that MAML functions mainly via feature re-use than by rapid learning i.e.,255

that a model trained with MAML changes very little after the MAML adaptation. The main difference256
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of their work with our is: 1) that we compare MAML trained models against union supervised learned257

models (USL) instead of only comparing MAML against adapted MAML, and 2) that we explicitly258

analyzed properties of the data sets. In addition, we use a large set of distance metrics for our analysis259

including: SVCCA, PWCCA, LINCKA and OPD as proposed by (21; 22; 23; 24).260

Our work is most influenced by previous work suggesting modern meta-learning requires rethinking261

(19). The main difference of our work with theirs is that we analyzed the internal representation262

of the meta-learning algorithms and contextualize these with quantifiable metrics of the problem263

being solved. Unlike their work, we focused on a fair comparison between meta-learning methods by264

ensuring the same neural network backbone was used. Another difference is that they gained further265

accuracy gains by using distillation – a method we did not analyze and leave for future work.266

A related line of work (33; 26) first showed that there exist synthetic data sets that are capable of267

exhibiting higher degrees of adaptation as compared to the original work by (18). The difference is268

that they did not compare MAML models against transfer learning methods like we did here. Instead,269

they focused on comparing adapted MAML models vs. unadapted MAML models.270

Another related line of work is the predictability of adversarial transferability and transfer learning.271

They show this both theoretically and with extensive experiments (34). The main difference between272

their work and ours is that they focus their analysis mainly on transfer learning, while we concentrated273

on meta-learning for few-shot learning. In addition, we did not consider adversarial transferability –274

while that was a central piece of their analysis. Further, related work is outlined in the supplementary275

section I.276

6 Discussion and Future Work277

In this work, we presented a problem-centric framework when comparing transfer learning methods278

with meta-learning algorithms – using USL and MAML as the canonical representatives of transfer279

and meta-learning methods respectively. We showed the diversity coefficient of the popular MiniIma-280

genet and Cifar-fs benchmark is low and that under a fair comparison – MAML is very similar to281

transfer learning with USL. This was also true even when decreasing the model size – removing the282

alternative hypothesis that the equivalence of MAML and transfer learning with USL held due to283

large models. Instead, this suggests strengthens our hypothesis that the diversity of the data might be284

the driving factor. The equivalence of MAML and USL also replicated in our synthetic experiments.285

Therefore, we challenge the suggestions from previous work (19) that only a good embedding can286

beat more effective than sophisticated meta-learning – especially in the low diversity regime. In287

addition, our synthetic experiments show a promising scenario where we can systematically differ-288

entiate meta-learning algorithms from transfer learning algorithms – which supports our actionable289

suggestion to use the diversity coefficient to effectively study meta-learning and transfer learning290

algorithms. We hope to study this in more depth in the future with real and synthetic data.291

We also have theoretical results from a statistical decision perspective in the supplementary section ??292

that inspired this work and suggest that when the distance between tasks is zero – then the predictions293

of transfer learning, meta-learning and even a fixed model with no adaptation are all equivalent (with294

the l2 loss). The results are theoretically limited because we can only reason when the diversity is295

exactly zero, but regardless provided an interesting perspective to study and inspire empirical work.296

We hope this work inspires the community in meta-learning and machine learning to construct297

benchmarks from a problem-centric perspective – that go beyond large scale data sets – using have298

quantitative metrics.299
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