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Abstract

Representation learning lies at the core of deep reinforce-
ment learning. Although CNNs have traditionally served as
the primary models for encoding image observations, mod-
ifying the encoder architecture introduces challenges, espe-
cially due to the necessity of determining a new set of hy-
perparameters. To address this problem, we propose a pow-
erful representation learning technique for visual reinforce-
ment learning utilizing Fourier Neural Operators (FNO).
Our findings demonstrate that the proposed FNO encoder
effectively learns representations from images that encap-
sulate the underlying differential equations (PDEs) govern-
ing the dynamics of the environment in an online model-free
RL framework. We demonstrate the applicability of our pro-
posed architecture by replacing the CNN image encoder in
PPO, A2C, and Rainbow (a Policy Gradient, Actor-Critic,
and Q-Learning RL algorithm, respectively). We achieve
state-of-the-art scores (in the model-free RL setting) at both
the CARLA Autonomous Driving (from image observations)
benchmark and the Atari 100k benchmark. Our proposed
FNO encoder is compatible with all model-free reinforce-
ment learning algorithms, enhances both rewards and sam-
ple efficiency by implicitly learning the underlying dynam-
ics of the environment, and eliminates the need for addi-
tional hyperparameter tuning.

1. Introduction

Despite the fact that research in contemporary Reinforce-
ment Learning (RL) has been conducted for over fifty years,
it was approximately ten years ago that RL gained signif-
icant traction when RL techniques demonstrated human-
level capabilities in Atari 2600 games [22]. Since then, RL
has been successfully applied to a plethora of tasks rang-
ing from games such as AlphaGo [29] (where the RL algo-
rithm beat the world’s best GO player) to autonomous nav-
igation [2, 9, 33]. To achieve a good general performance
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Figure 1. [Best viewed in color] FNO’s performance improve-
ment and sample efficiency. Left: The median Human Normal-
ized Score (HNS) across 26 environments in the Atari100K bench-
mark. The number of frames is fixed to 100K. Efficient Rainbow
(Eff. RB)[21] is the base algorithm. CURL [19] modifies Eff. RB
with momentum contrast, whereas we replace the CNN encoder
with our proposed FNO encoder. Center: The performance and
sample complexity with the FNO-PPO algorithm compared to the
CNN-PPO algorithm on the CARLA Lane Keeping task as defined
in the D4RL benchmark, i.e. only images are used for control and
not other information such as state, LIDAR, and overhead seg-
mentation map. Right: The episodic rewards and the sample com-
plexity of CNN-A2C vs our FNO-A2C on the ViZDoom Deadly
Corridor environment.

in these complex tasks, it is necessary that learning mecha-
nisms force agents to learn to solve the tasks from raw sen-
sory inputs. Visual RL is one such subdomain in RL where
observations in the form of images are made available to the
agents, for instance, the sensor can be a camera.

Making sequential decisions under uncertainty from im-
ages is an extremely challenging problem, specifically due
to the immense combinatorial possibilities within the image
space (see Section 2). Naturally, a nonlinear function ap-
proximator, for instance, a CNN, is used to infer meaningful
state representations from a given image. In addition to the
inherent difficulties of training reinforcement agents, such
as managing non-stationary targets [36], the use of function
approximations for image encoding presents its own unique
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challenges. Moreover, non-linear function approximations
result in encoders that are (i) extremely sensitive to the in-
put domain, and (ii) reliant on the selection of encoder ar-
chitecture, weight initialization, and training hyperparam-
eters such as learning rate, discount factor, replay buffer
size, target network update frequency, etc. The first aspect
warrants further discussion, which we will illustrate with
examples: consider an image sensor integrated into an au-
tonomous agent. If the training images lack diversity, the
agent may struggle to perform its designated task when the
sensor is upgraded to a newer model that captures images
at a higher resolution, leading to an inability to adapt to the
domain shift [13].

If the image rendering time is prolonged in a specific
simulated environment, low-resolution images may be uti-
lized during training to conserve wall-clock time and ex-
pedite the training process, while high-quality images can
be rendered during inference. In both scenarios, the funda-
mental dynamics of the environment and the task the agent
must complete remain unchanged. Given that convolutional
neural networks (CNNs) are highly sensitive to input size,
following a domain shift, the images must either be resized
to their original dimensions—potentially introducing arti-
facts or distortions that necessitate additional interactions
with the environment for adaptation — or a new encoder
capable of processing the images in the updated resolution
must be trained from scratch.

The aforementioned challenges can be effectively miti-
gated through the use of an encoder that comprehends the
fundamental dynamics of the environment rather than con-
centrating solely on the image pixels. In our work, we tackle
the problem of efficient representation learning [3] by modi-
fying the architecture of the encoder. Although some recent
works do explore the need for good representation learn-
ing [38], the choice of the encoder architecture remains sur-
prisingly under-explored, primarily due to the newer candi-
date encoders being (i) difficult to train and (ii) gaining min-
imal advantage over the conventional CNN either in perfor-
mance or sample efficiency. Thus, the following character-
istics are desirable for an ideal encoder: (i) being indepen-
dent of image dimensions, (ii) being easy to incorporate into
existing algorithms, (iii) requiring minimal to no additional
hyper-parameter tuning.
Our contributions:
1. Motivated by the advantages of learning the underlying

dynamics of the environment from images, we propose a
Fourier Neural Operator [20] based image encoder to ap-
proximate the PDEs governing the dynamics using para-
metric function approximators.

2. We demonstrate the broad applicability of our approach
by substituting the traditional CNN encoder with our
proposed FNO encoder in Proximal Policy Optimiza-
tion (PPO) [27], Advantage Actor-Critic (A2C) [23], and

Rainbow [6]. These algorithms are representative of
model-free RL algorithms that fall under the class of pol-
icy gradient, actor-critic, and Q-learning algorithms, re-
spectively. We establish that, without altering the hyper-
parameters of the base model, the integration of the FNO
encoder with RL algorithms results in enhanced perfor-
mance and sample efficiency compared to the standard
CNN encoder.

3. We successfully achieve zero-shot domain adaptation
from low-resolution training images to high-resolution
inference images without necessitating any additional
fine-tuning in the environment, all while maintaining
performance integrity.

4. Furthermore, we conduct training in state-based environ-
ments utilizing the Soft Actor-Critic (SAC) [12] algo-
rithm, following the replacement of the Multi Layered
Perceptron (MLP) encoder with our FNO-based encoder.
With this, we demonstrate the applicability of FNO en-
coders in state-based RL as well.

We achieve SOTA in the Atari 100k benchmark with 26.1
median HNS and 81 mean normalized score in the CARLA
lane-keeping task (from the D4RL [10] benchmark). To the
best of our knowledge, our work is the first major architec-
tural breakthrough in online model-free visual RL since the
invention of DQN [22].

2. Background

2.1. Reinforcement Learning

We model a sequential decision-making problem under un-
certainty as a Markov Decision Process (MDP) in the infi-
nite horizon discounted reward setting specified by the tuple
M = (S,A, T , r, ρ, γ), where S is the set of possible states
of an environment, A is the set of actions that can be taken
by the agent, T : S × A → ∆S is the transition function,
r : S × A → R is the reward function, ρ is the initial state
distribution and γ ∈ [0, 1) is the discount factor.

More often than not, the states s ∈ S are not exposed to
the agent directly. Rather, the agent has to make decisions
based on an observation o ∈ O (the observation space).
Given s, o is sampled according to the emission probabil-
ity E . The augmented tuple (S,A,O, T , E , r, ρ, γ) defines
a Partially Observed MDP (POMDP) [4]. For instance, o
represents an image, and tasks where decisions are based on
image observations are categorized under Visual RL. Note
that even for monochromatic 8-bit images of size n× n,
the cardinality of O exceeds the number of atoms in our
universe when n ≥ 6.

Let V π(s) be the expected sum of discounted rewards
obtained by an agent following policy π : S → ∆A when
starting in state s, viz., the value function under π. The goal
of RL is to find a policy that maximizes V π . A model-free
RL algorithm (as opposed to a model-based one) does not
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Figure 2. [Best viewed in color] A block diagram depicting our proposed FNO encoder for model-free visual RL. (a) We depict the
image/feature maps with the cuboidal blocks and the neural network layers with the solid arrows. The image initially has c0 channels
corresponding to the history length. The observations are projected to c channels, and then k − 1 Fourier layers are applied in succession.
At each step, the height and width of the image/features remain constant. Finally, we get the representations by capturing the maximum
intensities channel-wise (which makes the representations independent of the input size). (b) In the compute graph for the Fourier layer,
the paths through which information is propagated are denoted by dashed arrows. The top path (convolution in the Fourier space) can be
thought of as trying to capture the global representation since it has a low-pass filter, and the bottom path is a 1 × 1 convolution, which
can be thought of as trying to add details to the smooth global information received from the top path. (c) The RL algorithm takes as input
the FNO representations and outputs an action. Note that an RL algorithm may have value function(s) as well, which will take the same
representations as the policy network (depicted in the diagram) as input.

estimate the T explicitly, but rather tries to learn the optimal
policy π∗ from estimates of V π that it builds from online
interactions with the environment.

The class of algorithms that directly updates π by taking
small steps in the direction of the estimated gradient in the
policy space is called policy gradient (PG) algorithms [30].
RL algorithms that additionally estimate the values (using
Bellman backup) get categorized under actor-critic (AC)
algorithms [16]. Another class of RL algorithms is Q-
learning [34], which only learns the Q-value function and
has an implicit policy argmax policy (See Section 3). For in-
stance, Reinforce [35], Generalised Advantage Estimation
(GAE) [26], and PPO [27] are PG algorithms, Advantage
Actor-Critic (A2C), Asynchronous Advantage Actor-Critic
(A3C) [23] and Soft Actor-Critic (SAC) [12] are AC algo-
rithms, whereas Deep Q-Network (DQN) [22], C51 [25]
and Rainbow [6] are Q-Learning algorithms.

2.2. Neural Operators

Neural Operators are functions that use neural network
architectures to learn discretization invariant approximate
mapping between infinite-dimensional function spaces [17,
24]. An important application for neural operators is learn-
ing surrogate maps for the solution operators of PDEs. Ko-
vachki et al. [17] additionally show that the proposed neural
operators have superior performance compared to existing
machine learning-based methodologies while being several
orders of magnitude faster than conventional PDE solvers.

Neural operators are formulated as iterative architectures
v0 7→ v1 7→ ... 7→ vK where vj for j = 0, 1, ...,K − 1 is
a sequence of functions each taking values in Rdv . Updates

to the representation vk 7→ vk+1 are defined as

vk+1(x) := σ (Wvk(x) + (K(h;ϕ)vk) (x)) ,∀x ∈ D,
(1)

where K : H×Θκ → L(U(D;Rdv )) maps to the bounded
linear operators on U(D;Rdv ) and is parameterised by ϕ ∈
Θκ, W : Rdv 7→ Rdv is a linear transformation, and σ :
R → R is a non-linear activation function (D ⊂ Rd is a
bounded, open set, H = H(D;Rdh) and U = U(D;Rdu)
are separable Banach spaces [24]).

The Kernel integral operators mapping is defined as

(K(a;ϕ)vk)(x) :=

∫
D

κϕ (x, y, h(x), h(y)) vk(y) dy, (2)

for all x ∈ D, where κϕ : R2(d+dh) → R2(dv×dv) is a neu-
ral network parameterised by ϕ. Here κϕ plays the role of
a kernel function which is learned from data. The kernel
integral operator in Equation 2 is replaced by a convolu-
tion operator defined in the Fourier space. Let F denote the
Fourier transform of a function f : D → Rdv and F−1 be
its inverse.

Removing the dependence on the function h and impos-
ing κϕ(x, y) = κϕ(x,−y) in Equation 2 yields a convolu-
tion operator. After applying the convolution theorem, we
get

(K(a;ϕ)vk)(x) = F−1(F(κϕ) · F(vk))(x),∀x ∈ D, (3)

where κϕ can be directly parameterized in the Fourier space.
The Fourier integral operator is defined as

(K(a;ϕ)vk)(x) = F−1(Rϕ · (Fvk))(x),∀x ∈ D, (4)

and the resultant neural operator is termed as Fourier Neural
Operator (FNO) [20].
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Table 1. Average percentage human-normalized scores
(HNS%) obtained across three runs on selected games from
the Atari100K benchmark. The results for the baselines have
been taken verbatim from the respective papers.

Game Rainbow
Efficient
Rainbow CURL

FNO
(Ours)

Breakout 1.74 0.69 11.1 42.7
Freeway 0.0 94.26 90.20 101.01
Pong 0.28 3.97 11.90 36.83
Qbert −0.30 7.44 6.61 18.44
Seaquest 0.15 0.68 0.75 0.75

3. Model-free Visual Reinforcement Learning
in Infinite Dimensions

In the setting of POMDPs, H and U (as defined in Section 2)
are essentially the observation space O and action space A,
respectively. In this section, we will, by abuse of notation
as well as to make our notation consistent with prior work,
interchangeably use O and S. Note, however, that the ob-
servation space is not the same in general as the state space
since we are in the POMDP setting.

Let π∗ : O → A be the optimal policy (a non-linear
map), and assuming that the underlying dynamics T of our
MDP M is governed by PDEs, we aim to learn an approx-
imation of π∗ by learning a parametric map πθ : O →
A, θ ∈ Θκ for the finite-dimensional parameter space Θκ

by choosing θ† such that π(·; θ†) = πθ† ≈ π∗.
To learn in infinite dimensions, we define a cost function

as J : A×A → R and seek the minimizer of the problem

min
θ∈Θ

EsJ(s, π(s; θ), π
∗(s)) (5)

3.1. Learning with FNOs
The above setting is general enough that, to learn in infi-
nite dimensions, we define the appropriate loss functions
corresponding to the model-free RL algorithm and find the
minimizer of the same.

For instance, let Qθ(s, a) be the Q-value function, with
the implicit policy πθ(s) ≡ argmaxa Qθ(s, a). Assuming
a trajectory buffer B = {s0, a0, r0, s1, ...., sT }, the desired
minimization problem for FNO-DQN can be formulated as

min
θ∈Θκ

Est

[
rt + γmax

at+1

Qθ (st+1, at+1)−Qθ (st, at)

]2
(6)

Modification in the above problem (when compared with
the problem described in Mnih et al. [22]) for learning with
FNOs instead of the conventional neural network essentially
amounts to changing the parameter (search) space to Θκ.

Apart from being compatible with Deep RL algorithms
with Q-Learning (as shown above), similar modifications

Table 2. Average human-normalized (percentage) scores ob-
tained across three runs on selected games from the 1% Offline
RL data from the DQN Replay Dataset. Our method modifies
the R-BVE by incorporating the FNO encoder instead of the stan-
dard CNN encoder. The results for BC, QR-DQN, CQL, and DT
have been taken verbatim from the Decision Transformers paper.

Game BC QR-DQN CQL DT R-BVE Ours
Breakout 138.9 17.1 211.1 267.5 110.5 555.1
Pong 85.2 18.0 111.9 106.1 92.6 112.8
Qbert 17.3 0.0 104.2 15.4 72.7 110.7
Seaquest 2.1 0.4 1.7 2.5 2.3 3.1

can be easily applied to all other model-free RL algorithms,
for instance, algorithms belonging to the class of actor-critic
and policy gradient schemes. It must be noted that chang-
ing the optimization space does not change the RL algo-
rithm but can help by learning ”physics-informed” repre-
sentations.

3.2. Discretization
Although the state (and subsequently observations) may ex-
ist in the continuous domain, while working with them nu-
merically, we have to assume that we only have access to
point-wise evaluations. An FNO-based policy is discretiza-
tion invariant because it can learn from and evaluate func-
tions that are discretized in an arbitrary way. Since the pa-
rameters are learned directly in the Fourier space, resolving
the policy function in a physical space essentially amounts
to projecting on the basis e2πi(z,k) (it is well-defined every-
where on Rd).

4. Related Work
In the existing literature, various efforts have been made
to integrate newer architectures into the practical RL algo-
rithms. The most noteworthy of these is the Decision Trans-
former [7], which encodes trajectories sequential manner.
However, two critical points should be highlighted: (i) a
convolutional neural network (CNN) was employed to en-
code images into a vector, which was subsequently pro-
cessed sequentially to predict actions based on rewards, and
(ii) the representations were derived from offline datasets,
rendering this architecture ineffective in online scenar-
ios. However, transformer-based models have been ef-
fectively utilized to leverage long-horizon contexts in of-
fline settings, demonstrating superior performance com-
pared to traditional offline RL algorithms such as Quantile
Regression DQN (QR-DQN) [8], Conservative Q-Learning
(CQL) [18], and Regularized Behavior Value Estimation
(R-BVE) [11].

The studies on representation learning that are most
aligned with our approach are SAC-AE [37] and
CURL [19]. SAC-AE employed a variational autoencoder
to learn good representations of the input images. On the
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Figure 3. [Best viewed in color] FNO results comparison with base
algorithm. Left: PPO is used as the base algorithm on CARLA. We show
the mean and std. deviation of 3 runs. Right: A2C is used as the base
algorithm on ViZDoom. We show the mean and standard deviation of 10
runs (more runs on this environment to accommodate high variance).

other hand, CURL utilized the MoCo [14] algorithm. This
method maintains two versions of the encoder; one encoder
is updated through back-propagation, while the other is up-
dated via Polyak averaging of the modified weights.

Both techniques enhance representation learning, albeit
at the expense of additional GPU memory needed to accom-
modate auxiliary models (a decoder in SAC-AE and an ex-
tra encoder in CURL), which are ultimately discarded after
training.

On the other hand, a way to learn good representations
is described in SGI [28]. However, even SGI has the re-
quirement of the offline dataset to learn ”RL-centric” rep-
resentations, along with additional momentum encoders for
(i) shared feature extractor training, (ii) self-predictive rep-
resentation, and (iii) inverse modeling.

As mentioned earlier, the drawback of using the afore-
mentioned works is that the methods use CNN encoders in
some form. Additionally, they either use offline datasets
to mitigate the instability of the online learning process or
auxiliary models, which adds to the computation cost dur-
ing training. On the contrary, our method is entirely on-
line, uses no additional encoders, and requires no additional
hyper-parameter tuning.

5. Experiments and Results
The implementation of our proposed FNO-based RL algo-
rithm(s) involves replacing the traditional CNN-based en-
coder with an FNO-based encoder model1 (as shown in Fig-
ure 2). Next, we evaluate the proposed FNO-based encoder
against the CNN encoder in two key aspects: (i) enhance-
ment in performance (measured by the evaluation rewards

1Codes, trained policies, and wandb [5] logs are available at:
https://github.com/paragduttaiisc/FNO-RL

Table 3. Median human-normalized (percentage) scores ob-
tained across three runs on selected games from the Atari100K
benchmark. Instead of resizing the images to 84 × 84 (accord-
ing to DeepMind wrapper), we use different resolutions. Since the
CNNs can accept only a fixed image size, they give runtime error
(we denote by: —). Our method on the other hand can accept any
sized image without any degradation in performance

Image Rainbow
Efficient
Rainbow CURL

FNO
(Ours)

84× 84 −0.02 16.14 17.53 26.11
100× 100 — — — 26.09
128× 128 — — — 26.10

achieved), and (ii) sample efficiency (number of samples
required by FNO to achieve CNNs best rewards).

5.1. Environments and Benchmarks
Atari
The Atari 100K benchmark introduced in [39] comprises
26 Atari 2600 games. At most 100 thousand frames, corre-
sponding to ∼ 2 hours of human gameplay, are observable.
The 1% Atari offline dataset consists of 500K transitions
from the DQN Replay dataset from which a suitable policy
must be learned in the offline setting. The action space is
discrete.

ViZDoom - Deadly Corridor
This is a 3D first-person shooter (FPS) game based on the
game Doom, with the image and action space similar to
ALE. The task requires long-term planning by recognizing
image observations [15].

CARLA - Lane
This is a 3D autonomous driving environment. We use
the D4RL carla-lane-v0 [10] setting where only im-
age observation is present. The action space is multi-
dimensional and continuous.

Deepmind Control Suite
Also known as DMC [31], comprises of 6 robotic continu-
ous control tasks designed using the MuJoCo [32] physics
engine. The observations are fully observable, and we use
these set of experiments in our ablation studies. The ac-
tion space is continuous and each joint of the robot needs
to be controlled individually for the robot to accomplish the
specified task.

5.2. Model-free (Online) RL algorithms
To demonstrate the compatibility of our FNO-based image
observation encoder, we replace the vanilla CNN encoders
in the following model-free RL algorithms:
a Efficient Rainbow [21] - We use this DQN-based algo-

rithm on the Atari100K benchmark. For comparisons,

4822
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Figure 4. [Best viewed in color] Ablation Experiments. Left:
We replace the DNN encoder with FNO for the StateSAC in the
DMC benchmark. Right: Changing the hyper-parameters nega-
tively affects the policy performance on the D4RL CARLA lane
benchmark.

we use the following standard baselines, (i) Rainbow [6],
(ii) Efficient Rainbow, (iii) CURL [19]

b Advantage Actor Critic (A2C) [23] - The synchronous
version of A3C actor-critic algorithm was used on the
ViZDoom environment.

c Proximal Policy Optimization [27] - This policy
gradient-based algorithm is used in the CARLA envi-
ronment.

We selected these as base algorithms because (i) they per-
form effectively within their specific environments, (ii) the
performance of these algorithms has been independently re-
produced, and (iii) the authors have provided access to their
implementations. Related works such as CURL (as men-
tioned in Section 4) also use (a) to demonstrate their repre-
sentation learning strategy in the Atari100k benchmark.

5.3. Offline Model-free RL algorithms

Similar to the online setting, we additionally run multiple
experiments in the offline setting with the 1% DQN Re-
play dataset [1]. We use the following strong baselines
to evaluate the advantage of our approach: (i) Behavior
Cloning (BC), (ii) Quantile Regression Deep Q-Learning
(QR-DQN), (iii) Conservative Q-Learning (CQL) (discrete
version), (iv) Decision Transformers (DT), and (v) Regular-
ized Behavior Value Estimation (R-BVE). We modify the
CNN encoder in the R-BVE by replacing with our FNO en-
coder model and run the experiments without any change to
the hyper-parameters. We followed the same experimental
setting that was described in DT to report their results on the
4 Atari games. Since we are using their results verbatim, we
also report our results on the aforementioned 4 Atari games.

Figure 5. [Best viewed in color] The saliency map for the Free-
way environment corresponding to the optimal action. It can
be noticed that the focus is on the agent and also one lane across,
although there is no car present in the focused region. If there was
a car present at that location, it would have collided with the agent
upon taking the ↑ action by the time the agent would have reached
the concerned lane.

5.4. Architecture and other details
For architecture selection, we performed behavior cloning
on 2 million transitions (9th and 10th replay buffer split)
from the Atari Offline dataset on Breakout, Pong, Freeway
and MsPacman environments. We use k = 3 Fourier layers
in our implementation. An affine layer is used for the initial
projection, and a channel-wise max pooling is used for the
final layer. To reduce GPU memory footprint, we down-
sampled using a 3 × 3 max-pool layer after every Fourier
layer, with a stride of 2 (we noticed no change in results
with or without the down-sampling). The number of modes
was fixed to 5, and the width of the channels was set to
c = 128. GeLU activations were used throughout the en-
coder. (See Figure 2 for a pictorial representation). The of-
ficial code for R-BVE is not available, so we implemented it
from scratch. Instead of the mean squared error loss (during
SARSA) described in the paper, we use the SmoothL1 loss
since we find that it converges faster. In our experiments,
we use the default hyper-parameters provided in the respec-
tive official code repositories. All images are preprocessed
according to [22] with the exception of CARLA, where the
image dimension is 48× 48. We run all experiments k = 3
times with the seeds k ∈ 0, 1, ..., k − 1 with the exception
of ViZDoom where we set k = 10 since the variance across
games was very high.

5.5. Results
5.5.1. Atari 100K
HNS Results on selected games are tabulated in Table 1 and
raw rewards results for all games are reported in Table 4).
Our FNO encoder outperforms the default CNN encoder in
Efficient Rainbow in 20/26 games and improves Efficient
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Table 4. Average raw scores obtained across three runs on all games from the Atari100K benchmark. The results for the baselines
have been taken verbatim from the respective sources. RB denotes Rainbow algorithm [6], and Eff. RB the Efficient Rainbow variant [21].

Game Random RB Eff. RB CURL + Eff. RB FNO + Eff. RB (Ours) Human
Alien 227.8 318.7 739.9 558.2 784.7 7127.7
Amidar 5.8 32.5 188.6 142.1 149.6 1719.5
Assault 222.4 231.0 431.2 600.6 727.9 742.0
Asterix 210.0 243.6 470.8 734.5 903.3 8503.3
BankHeist 14.2 15.5 51.0 131.6 241.3 753.1
BattleZone 2360.0 2360.0 10124.6 14870.0 12900.0 37187.5
Boxing 0.1 −24.8 0.2 1.2 5.0 12.1
Breakout 1.7 1.2 1.9 4.9 14.0 30.5
ChopperCommand 811.0 120.0 861.8 1058.5 916.7 7387.8
CrazyClimber 10780.5 2254.5 16158.3 12146.5 21296.7 35829.4
DemonAttack 152.1 163.6 508.0 817.6 745.5 1971.0
Freeway 0.0 0.0 27.9 26.7 29.9 29.6
Frostbite 65.2 60.2 866.8 1181.3 783.0 4334.7
Gopher 257.6 431.2 349.5 669.3 589.3 2412.5
Hero 1027.0 487.0 6857.0 6279.3 6099.7 30826.4
Jamesbond 29.0 47.4 301.6 471.0 431.7 302.8
Kangaroo 52.0 0.0 779.3 872.5 1040.0 3035.0
Krull 1598.0 1468.0 2851.5 4229.6 3172.0 2665.5
KungFuMaster 258.5 0.0 14346.1 14307.8 1966.7 22736.3
MsPacman 307.3 67.0 1204.1 1465.5 1362.0 6951.6
Pong −20.7 −20.6 −19.3 −16.5 −7.7 14.6
PrivateEye 24.9 0.0 1204.1 218.4 75.4 69571.3
Qbert 163.9 123.5 1152.9 1042.4 2615.0 13455.0
RoadRunner 11.5 1588.5 9600.0 5661.0 4200.0 7845.0
Seaquest 68.4 131.7 354.1 384.5 384.0 42054.7
UpNDown 533.4 504.6 2877.4 2955.2 2983.3 11693.2
Median HNS 0.00 −0.02 16.14 17.53 26.11 100.00

Rainbow 1.36× and 6.04× on median and mean HNS, re-
spectively. When comparing with model-free RL baselines,
we achieve superior performance in 13 tasks compared to
the 9 of CURL. We additionally achieve superhuman per-
formance in the following games: Freeway, Jamesbond, and
Krull, on top of achieving 26.1 median Human-Normalized
Score when compared to 16.1 and 17.5 of Efficient Rain-
bow and CURL, respectively. Note that comparison of me-
dian HNS is a standard metric [19, 21, 37, 39].

5.5.2. Atari Offline
Results on selected games are tabulated in Table 2. As can
be seen, although R-BVE performs worse than CQL and DT
in the offline setting, a simple modification to the R-BVE
with the FNO encoder (Ours) outperforms them in every
task and by a wide margin (2.89× when compared to DT)

5.5.3. ViZDoom Deadly Corridor
The improvement in the sample efficiency and rewards ob-
tained is clear from Figure 3. The maximum evaluation re-
ward obtained is ∼ 900.

5.5.4. CARLA Lane
Figure 3 shows the performance and sample efficiency en-
hancement in the CARLA lane task. Even without addi-
tional lidar/segmentation information, during the best eval
runs, the agent obtained a perfect normalized score of
100± 0.03 (corresponding to an expert policy).

6. Ablations and Discussions
6.1. FNO encoders on fully observable MDPs
To study the generality of FNO, we apply SAC [12] on the
state-based DeepMind (continuous) Control Suite bench-
mark [31] across six environments and plot the median nor-
malized scores in Figure 4 (history length c0 = 3). The
improvement in score and sample efficiency is significant.

6.2. Effect of Hyper-parameters
In Figure 4, we additionally illustrate the rewards with
adjusted hyperparameters, including learning rates, the γ
value, and random cropping, a widely utilized representa-
tion learning method in supervised learning (also employed
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Figure 6. Feature learning and reconstruction. Left 4 images are the input to the policy. Starting from left, the frames correspond
to t − 3, t − 2, t − 1, tth timestep. Right is our reconstructed image corresponding to action ↓. We find that the reconstructed frame
corresponds to the next frame of the environment had the aforementioned action been taken. The details are obscure and only noticeable at
the edges. The green and red circles in the reconstructed frame indicate the locations where a car enters and leaves the frame, respectively.
Not only is the FNO preserving the transition information of the agent, but also all the relevant details about all the cars, i.e. information
about the environment dynamics, is captured within the model with surprising details.

in CURL). Each of these modifications negatively impacted
performance in comparison to the default parameters.

6.3. Effect of Data Augmentations
The observation of the failure of random crops suggests that
the representations acquired from FNO differ from those
obtained through CNNs. To delve deeper into this matter,
we calculate the saliency map (see Figure 5). The policy
appears to concentrate on the appropriate locations. Nev-
ertheless, to interpret the perspective of the policy, we re-
construct and visualize the frames it perceives. We incorpo-
rate a linear regressor at the conclusion of the trained FNO
encoder and distill the policy into this framework. Subse-
quently, we assign weights to all the penultimate feature
maps based on the weights determined by the regressor.
The resulting image is displayed in Figure 6. Our findings
indicate that the policy implicitly forecasts the subsequent
frame to facilitate suitable actions.

6.4. Zero-shot Domain Adaptation with High-
Resolution Image Observations

Finally, while the standard image input size is 84×84, when
the trained FNO policy was presented with images sized
100× 100, and 128× 128, there was no variation in the re-
wards or scores obtained. This indicates zero-shot general-
izability and insensitivity to image resolution, as illustrated
in Table 3. We observed consistent ∼ 26% HNS across
the 26 Atari environments. This effect was even more re-
markable in the Carla Autonomous Driving (lane keeping)
task, where the images produced during training were only
48 × 48. However, during evaluation, we were able to in-
crease the size to 224 × 224, and the model maintained a
performance level of ∼ 0.8, comparable to that of the ex-
pert policy, despite the smaller input size. It is important to
note that due to the discretization characteristics of FNOs
discussed in Section 3, retraining the models was unneces-
sary, thanks to the emergent properties of Fourier Neural
Operators.

7. Limitations and Future Work

Despite conducting several experiments to determine the
appropriate method for combining the channels of a spe-
cific RGB image, we were unsuccessful in achieving this
goal. Consequently, FNO encoders are presently limited to
functioning solely with grayscale images.

Given that FNOs were originally designed for the pur-
pose of learning the fundamental PDEs [20] and thus are
naturally suitable for forecasting subsequent states, a logi-
cal progression of our approach would involve its applica-
tion in model-based reinforcement learning, particularly in
the domains of Robotics and system identification. Further-
more, alternative variants of neural operators may also be
investigated for reinforcement learning.

8. Conclusion

We present a Fourier Neural Operator encoder designed for
model-free visual reinforcement learning, which can be ef-
fortlessly integrated as a substitute for conventional CNNs.
We showcase the efficacy of the proposed encoder across
various visual environments in both online and offline con-
texts, utilizing multiple families of RL algorithms. Fur-
thermore, we aim to comprehend the representations ac-
quired and the generalizability of these learned represen-
tations through comprehensive ablation experiments. FNO
encoders possess a unique characteristic of being invariant
to the resolution of image inputs, thereby enabling zero-shot
domain adaptation.
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