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Abstract
Machine unlearning offers a promising solution
to privacy and safety concerns in large language
models (LLMs) by selectively removing targeted
knowledge while preserving utility. However, cur-
rent methods are highly sensitive to downstream
fine-tuning, which can quickly recover forgotten
information—even from unrelated tasks. To ad-
dress this, we introduce invariance into unlearn-
ing for the first time, inspired by invariant risk
minimization (IRM). Building on this principle,
we propose invariant LLM unlearning (ILU), a
regularization-based framework that enhances ro-
bustness. Notably, ILU generalizes well to diverse
fine-tuning tasks, even when trained using a single
dataset. A task vector analysis is also provided to
further elucidate the rationale behind ILU’s effec-
tiveness. Extensive experiments on the WMDP
and MUSE benchmark, reveal that ILU signif-
icantly outperforms state-of-the-art unlearning
methods, including negative preference optimiza-
tion (NPO) and representation misdirection for un-
learning (RMU). Notably, ILU achieves superior
unlearning robustness across diverse downstream
fine-tuning scenarios (e.g., math, paraphrase de-
tection, and sentiment analysis) while preserving
the fine-tuning performance. Our experiments and
codes are available at https://github.com/OPTML-
Group/Unlearn-ILU.

1. Introduction
Large language models (LLMs) have revolutionized genera-
tive AI (Touvron et al., 2023; Achiam et al., 2023; Liu et al.,
2024a). However, their extensive training on diverse cor-
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pora introduces critical ethical and security risks, including
privacy violations through memorization of sensitive data
(Huang et al., 2024; Shi et al., 2024), amplification of soci-
etal biases (Motoki et al., 2023), and generation of harmful
or illegal content (Wen et al., 2023; Li et al., 2024). These
challenges necessitate effective mechanisms to eliminate
undesirable data-model influences in pre-trained models
without compromising their utility—a problem referred to
as LLM unlearning (Liu et al., 2024c; Maini et al., 2024;
Yao et al., 2024b).

Existing LLM unlearning methods often operate under the
assumption of being standalone interventions for safe model
deployment (Yao et al., 2024a; Zhang et al., 2024a; Li et al.,
2024; Gao et al., 2024; Cooper et al., 2024; Liu et al., 2024b),
meaning they do not account for subsequent operations post-
unlearning. However, in practice, unlearning is rarely the
final optimization step, as industrial pipelines often apply
subsequent fine-tuning to adapt models for downstream
tasks. Recent empirical studies (Barez et al., 2025; Łucki
et al., 2024; Hu et al., 2024; Tamirisa et al., 2024; Lynch
et al., 2024) reveal a critical vulnerability in current unlearn-
ing approaches: knowledge erased during unlearning can
unexpectedly resurface through downstream fine-tuning,
even on data unrelated to the unlearning objective.

This vulnerability suggests that existing unlearning ap-
proaches only remove unwanted knowledge temporarily.
However, unlearning should ideally be permanent for a
large variety of use cases including removing copyrighted
or harmful material. Therefore, we ask:

Q: How can we define ‘invariance’ and integrate it into
LLM unlearning to enhance resilience against fine-tuning?

Addressing Q necessitates a fundamental rethinking of LLM
unlearning optimization to account for the impact of future
model adaptations, a highly non-trivial challenge given the
unforeseen nature of downstream fine-tuning operations.
One straightforward yet computationally intensive approach
is to leverage meta-learning (Finn et al., 2017; Tamirisa
et al., 2024), which frames the unlearned model as a meta-
model designed to be agnostic to downstream fine-tuning.
However, this approach could be challenging to scale due
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to the need for gradient unrolling to simulate fine-tuning
paths during the optimization process (Tamirisa et al., 2024;
Zhang et al., 2024b).

Thus, instead of meta-learning, we explore invariance in
the unlearned model—ensuring that forgotten knowledge
remains irretrievable through parameter updates from irrele-
vant downstream fine-tuning tasks. To model and promote
‘invariance’, we adopt the technique of invariant risk min-
imization (IRM) (Arjovsky et al., 2019), incorporating its
invariance regularization (which achieves invariant predic-
tions agnostic to different training environments) into LLM
unlearning. If downstream fine-tuning is treated as an envi-
ronment that challenges unlearning, invariance regulariza-
tion can be then integrated with the unlearning objective to
obtain unlearning resilience against fine-tuning.

In our work, the integration of IRM into unlearning leads
to a new regularized optimization framework, termed in-
variant LLM unlearning (ILU), which optimizes the model
to remain stationary under fine-tuning perturbations during
unlearning, aiming to “immunize” against the revival of
erased knowledge through fine-tuning. In addition, ILU
employs lightweight gradient regularization that integrates
seamlessly with state-of-the-art (SOTA) unlearning meth-
ods like negative preference optimization (NPO) (Zhang
et al., 2024a) and representation misdirection for unlearn-
ing (RMU) (Li et al., 2024), avoiding the computational
overhead of meta-learning while enabling robust knowl-
edge erasure when subjected to fine-tuning. Furthermore,
ILU generalizes effectively to diverse fine-tuning datasets,
including those absent during (invariant) training.

We summarize our contributions below:

❶ We introduce the concept of invariance into LLM un-
learning, establishing a novel connection between IRM and
LLM unlearning to enhance resilience against downstream
fine-tuning. This integration results in ILU.

❷ We demonstrate that the invariance regularization in ILU,
even with a simple formulation built upon a single unrelated
fine-tuning set, can effectively enhance the resilience of
an unlearned model against new, unforeseen downstream
fine-tuning tasks. We also conduct a task vector analysis to
elucidate the underlying rationale behind ILU.

❸ We show that ILU enhances SOTA LLM unlearning meth-
ods, such as NPO and RMU, when subjected to downstream
fine-tuning. For instance, on the WMDP unlearning bench-
mark, ILU achieves a 23% average robustness improvement
over RMU across 6 fine-tuning tasks, while maintaining
fine-tuning accuracy.

2. Related Work
Machine unlearning in LLMs. Recent advances in ma-
chine unlearning for LLMs have shown promise in address-
ing risks associated with undesired data retention (Liu et al.,
2024c; Yao et al., 2024a; Zhuang et al., 2024; Maini et al.,
2024; Eldan & Russinovich, 2023). Practical implementa-
tions span critical applications, such as privacy protection
through the removal of sensitive information (Wu et al.,
2023; Yu et al., 2023), prevention of harmful content gen-
eration (Lu et al., 2022; Li et al., 2024), and elimination of
memorized sequences (Barbulescu & Triantafillou, 2024;
Jang et al., 2023). Most LLM unlearning methods rely on
effective and efficient optimization techniques to avoid com-
putationally prohibitive retraining while aiming to ‘faith-
fully’ remove unwanted data-model influences (Liu et al.,
2024c). For instance, regularized optimization (Yao et al.,
2024b; Liu et al., 2024c; Li et al., 2024; Zhang et al., 2024a)
has been predominantly employed to balance unlearning
effectiveness with preserved model utility post-unlearning.
Some approaches employ localized interventions that tar-
get specific model components associated with unwanted
capabilities (Meng et al., 2022; Wei et al., 2024; Jia et al.,
2024). Other unlearning approaches leverage in-context
learning (Pawelczyk et al., 2023; Thaker et al., 2024) or task
vector (Ilharco et al., 2023) to negate the effects of unwanted
data or model capabilities in LLMs.

Robustness challenge in LLM unlearning. Despite the
growing importance of LLM unlearning, recent studies
have revealed significant shortcomings in the robustness
of current unlearning methods (Deeb & Roger, 2024). For
example, Lynch et al. (2024) demonstrated that standard-
ized evaluation protocols often overlook residual knowledge
persisting in unlearned models. This empirical finding is
consistent with adversarial analyses in Łucki et al. (2024),
where fine-tuning on just 10 unrelated examples restores
most of the unlearned information. The so-called relearning
attacks (Hu et al., 2024) further underscore the robustness
limitations of LLM unlearning, showing that a small amount
of unlearning-related data can quickly recover most of the
unlearned information through fine-tuning. The above vul-
nerabilities align with a broader limitation of LLMs: weight
modifications (such as fine-tuning) can undermine previ-
ously applied alignment operations (Qi et al., 2024; Jain
et al., 2024). Indeed, additional evidence includes erased
concepts resurfacing through neuron repurposing (Lo et al.,
2024) and quantization attacks restoring unlearned knowl-
edge (Zhang et al., 2024c). Compared to ‘attacking’ un-
learned models, efforts to enhance the robustness of LLM
unlearning are quite limited. One concurrent study (Fan
et al., 2025) adopts smoothness-oriented optimization tech-
niques, e.g., sharpness-aware minimization (SAM), to im-
prove resistance to relearning by promoting local flatness
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in the forget loss landscape. Latent adversarial training
(Sheshadri et al., 2024) strengthens robustness by perturb-
ing intermediate activations, thereby suppressing undesir-
able behaviors and reducing relearning potential. Tamper-
resistant safeguards (Tamirisa et al., 2024) show promise
but involve meta-learning-like complex optimization. Ad-
ditionally, recent findings (Barez et al., 2025) reveal that
existing unlearning algorithms struggle in dual-use knowl-
edge scenarios, where safety and utility objectives conflict.
Unlike existing approaches, our work promotes invariance
in LLM unlearning to ensure robustness against post-fine-
tuning operations.

Invariant risk minimization. The conceptual foundation
of invariant learning originates from causal inference frame-
works (Peters et al., 2016), with Arjovsky et al. (2019)
pioneering its adaptation for machine learning and practi-
cal adoption. Subsequent advances have expanded IRM’s
technical landscape across various dimensions, such as risk
variance regularization across domains (Krueger et al., 2021;
Xie et al., 2020), gradient distribution alignment (Rame
et al., 2022), and adversarial domain adaptation via regret
minimization (Jin et al., 2020). Other innovations include
Bayesian uncertainty quantification (Lin et al., 2022), sparse
feature selection mechanisms (Zhou et al., 2022), bi-level
optimization (Zhang et al., 2023), second-order optimiza-
tion (Zhang et al., 2023), and ensemble-based environment
specialization (Ahuja et al., 2020). In this work, we estab-
lish a connection between IRM and unlearning to enhance
the latter’s resilience against downstream fine-tuning.

3. Preliminaries and Problem Statement
LLM unlearning. Achieving the complete removal of un-
desired data-model influences from an LLM–without com-
promising model utility and without requiring full model
retraining–remains a significant challenge for LLM unlearn-
ing (Liu et al., 2024c). This necessitates the careful design
of a forget objective function to enforce unlearning, reg-
ularized by a (utility-driven) retain objective to balance
unlearning efficacy and model utility (Zhang et al., 2024a;
Li et al., 2024; Maini et al., 2024). Accordingly, the problem
formulation of LLM unlearning can be cast as:

minimize
θ

ℓu(θ;Df ,Dr) := ℓf(θ;Df) + γℓr(θ;Dr), (1)

where θ denotes the model parameters to be optimized from
a pre-trained state. The unlearning objective, ℓu, comprises
the forget objective, ℓf , which is defined over the forget set
Df , and the retain objective, ℓr, which regularizes model util-
ity using the retain set Dr. The parameter γ ≥ 0 serves as a
regularization factor to balance forget and retain objectives.

In practice, the retain objective ℓr is often chosen as the
cross-entropy-based sequence prediction loss, aligning with

the original training objective. However, the design of the
forget objective ℓf requires more careful consideration, with
two widely adopted approaches. The first approach, known
as negative preference optimization (NPO) (Zhang et al.,
2024a), treats the forget data in Df as negative samples, ef-
fectively disrupting the model’s retention of these negative
samples. The second approach leverages random features,
aligning the representations of the forget data with random
vectors to enforce unlearning, which is referred to as rep-
resentation misdirection for unlearning (RMU) (Li et al.,
2024). We refer readers to the corresponding literature for
detailed formulations of NPO and RMU.
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Figure 1. Fine-tuning breaks existing unlearning methods. Per-
formance evaluation of popular unlearning methods, NPO and
RMU, applied to the LLM Zephyr-7b-beta for removing harmful
knowledge generation on the WMDP dataset (Li et al., 2024). The
effectiveness of unlearning is measured by the accuracy of the
unlearned model on the WMDP-Bio evaluation set, with lower ac-
curacy indicating better forgetting. Accordingly, we define ‘forget
quality’ as ‘1 - evaluation accuracy’, where a higher value means
more effective unlearning. (Left: GSM8K fine-tuning) The tra-
jectory of forget quality and fine-tuning accuracy is presented for
various models, including NPO or RMU-unlearned models and the
original (non-unlearned) model, when subjected to downstream
fine-tuning on the GSM8K dataset. The fine-tuning epoch number
is indicated by the color, ranging from 0 (no fine-tuning) to the
number required to achieve lossless performance equivalent to full
fine-tuning of the original model (termed ‘Original’). The dots
with the same position (e.g., 1st, 2nd, 3rd) and color across NPO’s
and RMU’s trajectories represent the same fine-tuning epoch num-
ber. (Right: AGNews fine-tuning) Similar to the left plots but
applied to fine-tuning on the AGNews downstream dataset.

Unlearning vulnerability to downstream fine-tuning.
Recent studies (Barez et al., 2025; Łucki et al., 2024; Hu
et al., 2024; Tamirisa et al., 2024; Lynch et al., 2024) have
empirically demonstrated that knowledge removed through
unlearning optimization (1) can be rapidly recovered via
post-unlearning fine-tuning, even when fine-tuning is per-
formed using data entirely unrelated to the unlearning. We
refer to this unlearning challenge as the vulnerability of an
unlearned model to downstream fine-tuning.

In Fig. 1, we demonstrate the unlearning effectiveness and
fine-tuning performance of unlearned models (obtained by
NPO and RMU) against a varying number of fine-tuning
epochs on two downstream datasets: GSM8K and AGNews.
Here unlearning is applied to the model Zephyr-7b-beta on
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the WMDP dataset (Li et al., 2024) for harmful content
degeneration and evaluated using 1 minus accuracy on the
WMDP-Bio evaluation set, termed as ‘forget quality’, where
a higher value indicates better unlearning performance. For
comparison, we also include the performance of a model
fine-tuned from the original pre-trained state (i.e., ‘Origi-
nal’). As we can see, both NPO and RMU lose their unlearn-
ing effectiveness during the fine-tuning process, despite (1)
having high forget quality prior to fine-tuning (i.e., at 0 fine-
tuning epochs) and (2) the downstream tasks (GSM8K or
AGNews) being unrelated to the unlearning task (WMDP).
In addition, as the number of fine-tuning epochs increases,
the fine-tuned models (even when starting from different
initial unlearned models) exhibit improved fine-tuning ac-
curacy, converging to the performance of fine-tuning the
‘Original’ model. Furthermore, while RMU yields a higher
forget quality prior to fine-tuning, it demonstrates weaker
robustness to downstream fine-tuning, as evidenced by the
faster ununlearning rate with increasing fine-tuning epochs.

Problem statement. As motivated by Fig. 1, fine-tuning
on unrelated information that reverses unlearning has
emerged as a significant concern and a major limitation
of current LLM unlearning methods. Thus, the central prob-
lem addressed in this paper is: How can we enhance the
current LLM unlearning approach (1) to achieve greater
resilience against downstream fine-tuning?

We will approach the above problem through the lens of
IRM (invariant risk minimization). By leveraging IRM, we
can integrate and promote invariance in LLM unlearning.

4. Promoting Invariance in LLM Unlearning
Invariance in LLM unlearning: From IRM to ILU.
IRM is designed to seek an “invariant” (i.e., training
environment-agnostic) model, aiming for universal repre-
sentation learning to achieve optimal predictions across
diverse training environments (Arjovsky et al., 2019; Ahuja
et al., 2020; Zhang et al., 2023). By treating a fine-tuning
task as an unlearning training environment, integrating IRM
with (1) is then expected to enhance the invariance of the
unlearned model, i.e., improve its robustness against fine-
tuning. Therefore, we propose framing the LLM unlearning
problem within the IRM framework.

Following the IRM setup in (Arjovsky et al., 2019), let Di

denote the dataset associated with the training environment
i ∈ [N ], where [N ] := {1, 2, . . . , N}, and N represents the
number of training environments. IRM learns a universal
representation model ϕ, which enables the existence of an
invariant predictor w that remains simultaneously optimal
across all environments. This results in the invariant (train-
ing environment-agnostic) model θ := w ◦ ϕ (where ◦
denotes model composition), which not only optimizes the

empirical training objective for the representation model ϕ
but also ensures optimal fine-tuning performance on each
dataset Di. Formally, the IRM problem is formulated as

minimize
ϕ

ℓERM(w∗(ϕ) ◦ ϕ;∪iDi)

subject to w∗(ϕ) ∈ argminw ℓi(w ◦ ϕ;Di), ∀i ∈ [N ],
(2)

where the upper-level objective ℓERM(·;∪iDi) represents
empirical risk minimization (ERM) across all data to op-
timize ϕ (e.g., ℓERM(·) =

∑
i ℓi(·;Di)), ℓi denotes the

individual training loss over Di, and w∗(ϕ) denotes an
invariant predictor (built upon ϕ) that is optimal to any spe-
cific training environment. Here we explicitly express the
solution w∗(ϕ) as a function of ϕ.

However, solving the original IRM problem (2) poses sig-
nificant challenges due to the need to compute the gradient
dw∗(ϕ)

dϕ . To circumvent that, problem (2) is typically relaxed
to a single-level, regularized problem, referred to as IRMv1:

minimize
θ

ℓERM(θ)︸ ︷︷ ︸
ERM

+λ

N∑
i=1

∥∇wℓi(w ◦ θ;Di) |w=1 ∥
2
2︸ ︷︷ ︸

Invariance regularization

(3)

where the original predictor’s parameters w are absorbed
into the full model parameters θ, λ > 0 serves as a regular-
ization parameter, ∥ · ∥2 is the ℓ2 norm, and ∇wℓi represents
the gradient of ℓi with respect to the (virtual) scalar predic-
tor w, evaluated at w = 1. The invariance regularization
in (3) enforces the necessary optimality condition for each
lower-level problem in (2) by penalizing non-stationarity.

The IRMv1 approach (3), while a relaxation of (2), facil-
itates the application of invariance regularization to LLM
unlearning. First, composing θ with a constant scalar predic-
tor w = 1 ensures adaptability to a wide range of machine
learning models, including LLMs. Second, if θ represents
the unlearned model obtained by replacing ERM with the
unlearning objective ℓu in (1) and Di is a fine-tuning dataset,
the invariance regularization in (3) enforces robustness of θ
against fine-tuning. Therefore, we propose ILU (invariant
LLM unlearning), extended from IRMv1 (3), as below:

minimize
θ

ℓu(θ) + λ

N∑
i=1

∥∇w|w=1ℓi(w ◦ θ;Di)∥22, (4)

where ℓu is the unlearning objective, and Di is a fine-tuning
dataset that can be unrelated to the unlearning task, e.g.,
GSM8K or AGNews in Fig. 1.

A single (unrelated) fine-tuning dataset may suffice to
promote unlearning invariance. A key question in (4) is
whether the introduction of multiple fine-tuning sets {Di}
(i.e., N > 1) is necessary, as it assumes greater access
to additional data and knowledge of potential fine-tuning
tasks. An ideal ILU framework should minimize reliance
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on fine-tuning datasets while demonstrating generalization
to unseen ones at test time. To explore this, we focus on
utilizing only a single fine-tuning dataset (D) in (4):

minimize
θ

ℓu(θ) + λ∥∇w|w=1ℓi(w ◦ θ;D)∥22. (5)

We then consider two specifications for D depending on
the relationship with the unlearning task (Df ): (a) D ⊥ Df ,
indicating that the fine-tuning set is unrelated to the forget
set. Here, ⊥ denotes (nearly) zero cosine similarity between
the corresponding task vectors, e.g., GSM8K vs. WMDP in
Fig. 1; (b) D = Df , where the forget set itself is used as the
fine-tuning set during invariance regularization. The latter
case is inspired by a specific fine-tuning scenario, known
as relearning attack (Hu et al., 2024), where the forget
data samples are used to fine-tune the unlearned model.
The speed of relearning the forgotten knowledge is then
evaluated as a measure of unlearning effectiveness.
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Figure 2. A single fine-tuning
dataset suffices for enhancing
unlearning robustness. Forget
quality and fine-tuning accuracy
of different unlearned models
are presented against AGNews
fine-tuning, following a similar
setup and presentation format to
Fig. 1.

For both ILU settings
(a) and (b), we in-
vestigate the effective-
ness of (5) in alleviating
unlearning vulnerability
against downstream fine-
tuning at test time when
new datasets D′ ̸= D
are used. Extending
from the experiments in
Fig. 1, Fig. 2 illustrates
the performance of ILU,
achieved by solving (5)
with the RMU-based un-
learning objective for the
WMDP unlearning task.
We term ILU(D) as the
ILU variant that adopts D-based invariance regulariza-
tion. In case (a) D ⊥ Df , ILU(D) is implemented as
ILU(GSM8K). In case (b) D = Df , it corresponds to
ILU(WMDP). For comparison, we also consider ILU based
on multiple fine-tuning datasets (4), termed as ILU(Multi),
using GSM8K, AGNews, and WinoGrande as the fine-
tuning datasets.

As shown in Fig. 2, all ILU variants demonstrate greater
robustness than RMU as the fine-tuning epoch number in-
creases. In particular, ILU(GSM8K), which uses only a
single fine-tuning set D (unrelated to both the forget set
Df and the evaluation fine-tuning set D′), achieves the
highest robustness and maintains it consistently across fine-
tuning epochs, even as the model approaches full fine-tuning
performance. Additionally, ILU(WMDP) underperforms
compared to ILU(GSM8K), resulting in weaker robustness
against downstream fine-tuning. This is unsurprising, as in-
variance in unlearning is conceptually better achieved using
an unlearning-unrelated dataset for invariance regularization

in (5). Otherwise, a conflict arises between the unlearning
objective (which aims to lower accuracy on the forget set)
and forget set-based invariance regularization (which may
increase accuracy on the forget set to satisfy stationarity).
Furthermore, although ILU(Multi) incorporates multiple
fine-tuning sets (GSM8K, AGNews, and WinoGrande) for
invariance regularization in (4), it does not exhibit a robust-
ness advantage over the simpler ILU(GSM8K) approach.
This might be because incorporating more fine-tuning sets
introduces additional optimization complexities: The un-
learning direction needs to align with multiple fine-tuning
directions and cannot contradict any of them. Based on the
above, unless stated otherwise, we implement ILU (5) with
D ⊥ Df in the rest of the paper. We also refer readers to
Appendix B.1 for more details on the comparison between
NPO and its ILU enhancement.
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Figure 3. Graceful generalization of ILU’s robustness to unseen
fine-tuning tasks during evaluation. Heatmap of forget quality
on WMDP is presented for RMU and its ILU variants to demon-
strate unlearning robustness under various unlearning training and
downstream fine-tuning settings, where the unlearning setup is
consistent with Fig. 2, and the forget quality in each cell is reported
at the final fine-tuning epoch. Each row corresponds to an unlearn-
ing training approach, while each column represents an evaluation
setting (e.g., a fine-tuning dataset or no fine-tuning).

As an extension of Fig. 2, Fig. 3 compares the WMDP un-
learning performance of various ILU variants with RMU,
evaluated across different downstream fine-tuning datasets.
See additional results on NPO in Appendix B.2. As ob-
served, ILU(D), when realized with a single unlearning-
irrelevant fine-tuning set (i.e., D is either GSM8K,
AGNews, or WinoGrande), enables the unlearned model
to be resilient against even unseen downstream fine-tuning
evaluations. The resulting forget quality not only out-
performs RMU but also demonstrates advantages over
ILU(WMDP) and ILU(Multi). This aligns with the insights
drawn from Fig. 2. The cross-assessment in Fig. 3 (different
training and testing datasets) demonstrates that incorporat-
ing invariance into LLM unlearning can strongly generalize
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its robustness to unseen fine-tuning tasks (which differ from
those used in invariance regularization).

5. Understanding ILU via Task Vectors
To understand the effectiveness of ILU in building resilience
against fine-tuning, we examine the relationship between
the ‘unlearning direction’ and ‘fine-tuning direction’ using
task vector analysis (Ilharco et al., 2023).

A task vector defines a direction in the weight space for a
specific task, where movement along this direction from
the pre-trained model enhances performance on this task.
Let θu and θo denote the unlearned model (obtained via
an unlearning approach) and the original pre-trained model,
respectively. By the definition of task vector, the unlearn-
ing direction (i.e., unlearning task vector) is given by
τu = θu − θo. Specifically, τILU (or τNPO) represents the
unlearning direction resulting from ILU (or NPO), respec-
tively. Similarly, we can define the fine-tuning direction
based on θo by τft = θft − θo, where θft is the fine-tuned
model from θo. Note that the fine-tuning direction resides in
the ununlearning space, as fine-tuning alone cannot achieve
unlearning, especially when applied to an unrelated fine-
tuning dataset (Łucki et al., 2024). Thus, we expect the
unlearning direction to be opposite to the fine-tuning di-
rection, i.e., cos(∠(τu, τft)) = τT

u τft/(∥τu∥2∥τft∥2) < 0,
where ∠ and cos represent the angle between two vectors
and its cosine, respectively. Furthermore, we define the post-
unlearning fine-tuning direction: τu→ft = θft

u −θu, where
θft
u denotes the fine-tuned model obtained from θu through

downstream fine-tuning. Post-unlearning, if τu→ft is more
aligned with τu, implying cos(∠(τu→ft, τu)) ≥ 0, then
the unlearning method can be considered resilient to fine-
tuning, as the unlearning direction is preserved after down-
stream fine-tuning. Conversely, if τu→ft is more aligned
with τft, implying cos(∠(τu→ft, τft)) ≥ 0, then it becomes
misaligned with the unlearning direction and thus shifts
toward the ununlearning space.
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Figure 4. Illustration of ILU’s
improved unlearning robustness
compared to NPO through the re-
lationships between unlearning
and fine-tuning task vectors on
the WMDP dataset.

Fig. 4 presents a 2D
visualization of the
task vector analysis,
explaining the robust-
ness advantage of
ILU (implemented
with the NPO-based
unlearning objective
and GSM8K-based
invariance regularization)
over the conventional
NPO approach on
WMDP. As we can
see, in the absence of
downstream fine-tuning,

both NPO and ILU are effective in unlearning, producing
unlearning directions opposite to the fine-tuning direction.
This is supported by cos(∠(τNPO, τft)) = −0.92 and
cos(∠(τILU, τft)) = −0.64. Focusing on NPO, we
examine the cosine similarity between τNPO→ft and τNPO

(or τft), we obtain cos(∠(τNPO→ft, τNPO)) = −0.41
and cos(∠(τNPO→ft, τft)) = 0.16, i.e., ① in Fig. 4.
This suggests that after fine-tuning, the unlearning
task vector of NPO (τNPO→ft) is more aligned with
the fine-tuning direction, shifting towards the op-
posite to the original unlearning direction (τNPO).
This misalignment explains why fine-tuning signifi-
cantly undermines NPO’s unlearning effectiveness. In
contrast, ILU yields cos(∠(τILU→ft, τft)) = 0.3554
and cos(∠(τILU→ft, τILU)) = 0.09, i.e., ② in Fig. 4.
If we compare cos(∠(τILU→ft, τILU)) > 0 with
cos(∠(τNPO→ft, τNPO)) < 0, it is clear that ILU preserves
better alignment between the unlearning direction before
and after fine-tuning. This explains why ILU yields much
higher resilience to fine-tuning compared to NPO.

In brief, post-fine-tuning, NPO exhibits a substantial devia-
tion from its original unlearning direction (reflected by an
obtuse angle) whereas ILU maintains near-orthogonality in
cos(∠(τILU→ft, τILU)). This suggests that ILU more effec-
tively disentangles the fine-tuning effect from the original
unlearning, preserving the unlearning direction within the
unlearning space even after fine-tuning.

6. Experiments
6.1. Experiment Setups

LLM unlearning tasks. Our experiments primarily focus
on the WMDP benchmark (Li et al., 2024) for LLM unlearn-
ing, which aims to remove hazardous domain knowledge
related to biosecurity and cybersecurity from the Zephyr-
7B-beta model (Tunstall et al., 2023). In addition, we also
evaluate on the MUSE dataset (Shi et al., 2024), targeting
the unlearning of content from the Harry Potter book series
(labeled “Books”) and from BBC news (labeled “News”).

Table 1. An overview of fine-tuning datasets used in experiments
Dataset Task Type Domain/Topic

GSM8K Mathematical QA Elementary math word problems
AGNews Text classification News articles (4 categories)
SST-2 Sentiment analysis Movie review sentiments
MNLI Language inference Multi-genre sentence pairs
WinoGrande Coreference Commonsense reasoning
QQP Paraphrase detection Quora question pairs

LLM unlearning methods. The baseline approaches we
used include two SOTA methods, as formulated by (1):
NPO (Zhang et al., 2024a) and RMU (Li et al., 2024).
Our proposed ILU approach adopts the unlearning objec-
tive function of either NPO or RMU while incorporating
invariance regularization. This regularization follows ei-
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Table 2. Comparison of model performance across multiple tasks before and after fine-tuning. Pre-Finetune columns display the forget
quality (FQ) and MMLU scores. Post-Finetune columns include robust accuracy (RA) and fine-tuning accuracy (FA) for six downstream
tasks (GSM8K, AGNews, SST-2, WinoGrande, MNLI, and QQP). Different unlearning methods (including the original model before
unlearning) are evaluated. ‘Average’ refers to the mean value computed across all downstream fine-tuning scenarios for RA or FA. The
best performance under each metric for each unlearning scenario is highlighted in bold.

Method
Pre-Finetune Post-Finetune

FQ ↑ MMLU ↑ GSM8K AGNews SST-2 WinoGrande MNLI QQP Average
RA FA RA FA RA FA RA FA RA FA RA FA RA ↑ FA ↑

Original Model 0.36 58.15 0.37 41.25 0.36 93.20 0.37 95.20 0.37 87.28 0.37 85.26 0.37 92.80 0.37 82.50

RMU 0.68 57.46 0.41 42.41 0.42 93.20 0.42 94.80 0.42 87.30 0.41 84.24 0.41 92.60 0.42 82.43
+ILU(Multi) 0.67 57.41 0.63 41.17 0.63 92.40 0.65 95.20 0.62 86.24 0.66 83.48 0.64 92.80 0.64 81.88

+ILU(GSM8K) 0.68 57.64 0.64 42.04 0.67 91.80 0.62 96.20 0.67 85.68 0.65 85.20 0.66 93.00 0.65 82.32

NPO 0.52 56.69 0.47 40.03 0.48 91.80 0.47 93.80 0.48 85.24 0.45 81.24 0.47 89.70 0.47 80.30
+ILU(Multi) 0.53 51.65 0.53 40.14 0.52 92.20 0.51 93.60 0.53 85.68 0.51 83.38 0.52 90.80 0.52 80.97

+ILU(GSM8K) 0.56 55.50 0.57 40.26 0.57 92.60 0.59 93.80 0.58 86.77 0.52 82.44 0.58 91.20 0.56 81.18

ther the multi-fine-tuning set formulation (4) or the single
fine-tuning set formulation (5). As illustrated by Figs. 2-
3, by default, we specify ILU as ILU(GSM8K), where
GSM8K serves as the fine-tuning set for invariance regu-
larization. For the ILU variant (4), the datasets GSM8K,
AGNews, WinoGrande are used, termed ILU(Multi). See
Appendix A for more experiment setups.

Fine-tuning tasks. We use six fine-tuning datasets cov-
ering a broad range of task categories, as summarized in
Table 1. This includes: ① GSM8K (grade school math prob-
lems) for mathematical reasoning; ② AGNews (news topic
classification) and ③ SST-2 (sentiment analysis) for text
classification; ④ MNLI (multi-genre entailment classifica-
tion) for natural language inference; ⑤ WinoGrande (com-
monsense coreference resolution) for linguistic reasoning;
And ⑥ QQP (paraphrase detection) for semantic similar-
ity. During ILU training, the datasets GSM8K, AGNews,
WinoGrande might be used. When evaluating unlearning
robustness against fine-tuning, all datasets listed in Tab. 1
can be utilized. We perform fine-tuning until convergence,
defined as a less than 1% change in fine-tuning accuracy
over three consecutive epochs.

Evaluation metrics. To evaluate the unlearning effective-
ness on WMDP, we consider FO (forget quality) given by
(1 − Accuracy on forget evaluation set), as used in Fig. 1.
For an unlearned model, we also evaluate model utility us-
ing zero-shot accuracy on MMLU (Hendrycks et al., 2020),
ensuring the preservation of the unlearned model’s general
capabilities before downstream fine-tuning. In the presence
of fine-tuning, we introduce robust accuracy (RA) for LLM
unlearning, defined as the average FQ values across three
key fine-tuning milestones: first quartile, median, and final
epochs. Additionally, we measure fine-tuning accuracy
(FA) on the downstream task throughout fine-tuning.

6.2. Experiments results
Overview performance of ILU vs. NPO before and after
fine-tuning. In Table 2, we compare the unlearning and

utility performance of ILU against NPO, RMU, and the orig-
inal model (without unlearning) on WMDP, before and after
downstream fine-tuning. Recall that ILU is implemented
as ILU(GSM8K), with ILU(Multi) (utilizing GSM8K, AG-
News, and WinoGrande) included for comparison. The
performance for an unlearned model is measured by FQ and
MMLU before fine-tuning, and by RA and FA when facing
downstream fine-tuning.

First, without downstream fine-tuning (i.e., pre-finetune in
Table 2), all the proposed ILU methods and the baselines
(NPO and RMU) demonstrate effective unlearning, with
higher FQ values indicating better performance. Addition-
ally, RMU-based methods outperform NPO-based meth-
ods in both FQ and model utility (measured by MMLU).
Compared to NPO or RMU, the incorporation of invariance
regularization (i.e., NPO+ILU or RMU+ILU) maintains sim-
ilar FQ and MMLU performance before fine-tuning. How-
ever, NPO+ILU(Multi) appears less stable in MMLU, likely
due to the increased optimization complexity introduced
by incorporating multiple fine-tuning sets for invariance
regularization. This aligns with Fig. 2, where ILU(Multi)
underperforms ILU(GSM8K).

Second, under downstream fine-tuning (i.e., post-finetune in
Table 2), ILU significantly outperforms its baselines in RA
(robust accuracy) across various fine-tuning scenarios. This
is evidenced by the averaged RA of 0.65 for RMU+ILU com-
pared to 0.42 for RMU, and 0.56 for NPO+ILU compared
to 0.47 for NPO. We emphasize that the robustness achieved
by ILU (using only GSM8K for invariance regularization)
demonstrates strong generalization to other downstream
fine-tuning cases. Also, FA (fine-tuning accuracy) is im-
proved when fine-tuning is performed on the ILU-obtained
unlearned model compared to the NPO or RMU-obtained
model. This is expected, as the invariance promotion in
ILU likely enhances the smoothness of the loss landscape,
which can improve transfer learning performance during
fine-tuning (Liu et al., 2019). Furthermore, ILU(Multi) does
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Figure 5. Resilience of unlearning to downstream fine-tuning across different fine-tuning epochs. The unlearning setting follows Table 2.
The first row presents the comparison between NPO and NPO+ILU(GSM8K), while the second row corresponds to the comparison
between RMU and RMU+ILU(GSM8K). Each sub-plot represents a specific downstream fine-tuning dataset, with the left y-axis measuring
FQ (forget quality) and the right y-axis measuring FA (fine-tuning accuracy). The x-axis denotes the fine-tuning epoch, with the maximum
number set to ensure convergence and satisfactory fine-tuning performance for each downstream dataset.

not provide additional robustness advantages over ILU with
a single fine-tuning set, consistent with Fig. 2.

In addition, Table A1 in Appendix B.3 shows that ILU also
consistently outperforms NPO on the MUSE benchmarks
by maintaining lower VerbMem and KnowMem scores af-
ter downstream fine-tuning. For instance, on MUSE-News,
NPO’s VerbMem score increases from 2.53 to 57.27 after
WinoGrande fine-tuning, nearly matching the pre-unlearn
memorization level (58.40), whereas ILU maintains a Verb-
Mem score of 0 across all fine-tuning settings.

Furthermore, Table A2 presents response examples from
unlearned models before and after fine-tuning. We observe
that ILU consistently preserves the unlearning effect post-
finetuning. In contrast, both RMU and NPO exhibit clear
relearning behaviors, with the model responses reverting to
previously forgotten content. These further highlight ILU’s
superior robustness against downstream fine-tuning.

Unlearning robustness against fine-tuning epochs. In
Fig. 5, we extend the analysis from Table 2 to peer into the
unlearning robustness of ILU (i.e., ILU(GSM8K)) compared
to the RMU and NPO baselines against various fine-tuning
epochs. Here, the left and right y-axes represent FQ and FA,
respectively, while the x-axis denotes the epoch number. As
the number of downstream fine-tuning epochs increases, we
observe that while the FA (fine-tuning accuracy) of RMU
improves, its FQ rapidly degrades. In contrast, ILU sig-
nificantly enhances unlearning robustness to fine-tuning,
as evidenced by its consistent FQ across different epochs.
Even when FA converges to the satisfactory value at a higher
epoch number, ILU maintains its FQ with only a slight drop
compared to the pre-fine-tuning state (i.e., 0 fine-tuning

epochs). In addition, ILU’s resilience to fine-tuning epochs
is evident not only for GSM8K (the same dataset used in
ILU training) but also for other new fine-tuning datasets
during evaluation. Furthermore, ILU generally achieves
improved FA compared to RMU and NPO at different fine-
tuning epoch numbers, as aligned with the results in Table 2.

Unlearning robustness against relearning attacks. Re-
learning attacks aim to reverse the effects of unlearning by
fine-tuning the model on data drawn from a distribution
similar to that of the forget set, which can be considered as
a worst-case fine-tuning scenario (Hu et al., 2024).

Table 3. Comparison of forget quality
(FQ) with and without relearning at-
tacks on the WMDP dataset using the
Zephyr-7B-beta model. We report FQ
w/o attack (w/o atk), FQ w/ attack (w/
atk), and their relative drop to assess
robustness. Relearning is performed us-
ing 60 randomly sampled forget-set in-
stances over 1 epoch Bold indicates the
best performance.

W/o atk ↑ W/ atk ↑ Drop ↓

NPO 0.52 0.37 0.15
NPO+SAM 0.56 0.54 0.02
NPO+ILU 0.56 0.50 0.06

RMU 0.68 0.36 0.32
RMU+SAM 0.66 0.60 0.06
RMU+ILU 0.68 0.54 0.14

In Table 3, we
evaluate FO
(forget quality)
under relearning
attacks on the
WMDP dataset
using the Zephyr-
7B-beta model.
We report FQ
both with and
without attack,
along with the
relative degrada-
tion, to quantify
each method’s
robustness against
knowledge reacquisition. Relearning is simulated by
fine-tuning on 60 randomly sampled instances from the
forget set for 1 epoch. All ILU-based models are trained
using a single downstream dataset (GSM8K), and we com-
pare them against existing unlearning methods, NPO and
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Table 4. Performance comparison of ILU (using GSM8K-based invariance regularization), LAT, and TAR on the WMDP dataset before
and after fine-tuning using the LLaMA3-8B-Instruct model. The table format follows that of Table 2. Running time (in minutes) indicates
the total training time for each method. The best result for each metric in each scenario is highlighted in bold.

Method
Pre-Finetune Post-Finetune Running

time (mins) ↓FQ ↑ MMLU ↑ GSM8K AGNews SST-2 WinoGrande MNLI QQP Average
RA FA RA FA RA FA RA FA RA FA RA FA RA ↑ FA ↑

Original model 0.28 62.4 0.29 0.75 0.28 92.40 0.30 94.80 0.28 85.34 0.28 84.24 0.30 92.60 0.29 75.02 N/A

NPO 0.73 56.84 0.60 56.46 0.59 93.80 0.63 95.60 0.65 89.24 0.64 84.32 0.60 93.80 0.61 85.54 15.30

LAT 0.72 57.84 0.65 55.32 0.60 93.80 0.66 94.20 0.68 88.68 0.66 86.46 0.64 93.80 0.64 85.38 21.20
TAR 0.72 58.56 0.68 56.55 0.70 94.20 0.72 96.40 0.70 90.27 0.70 85.68 0.72 93.80 0.70 86.15 7441.90

NPO+ILU 0.73 57.68 0.70 55.84 0.69 94.00 0.72 95.60 0.71 90.15 0.69 86.48 0.71 92.80 0.70 85.81 118.20

RMU, as well as their recent robustness-enhanced variants
against relearning attacks by leveraging sharpness-aware
minimization (SAM) (Fan et al., 2025). Compared to NPO
and RMU, ILU consistently mitigates FQ degradation
across all settings, demonstrating stronger resistance to
relearning. While the SAM-based variants (Fan et al., 2025)
exhibit even greater robustness, this improvement stems
from explicitly optimizing model sharpness with prior
knowledge of the attack space. In contrast, ILU achieves
robustness implicitly by promoting invariance to unrelated
downstream tasks (e.g., GSM8K), rather than tailoring
defenses to specific relearning attacks.

Additional robust unlearning comparison: ILU vs. TAR
and LAT. To further validate the generality of our pro-
posed method, Table 4 presents additional results comparing
ILU against two recent robust unlearning baselines: LAT
(Sheshadri et al., 2024) and TAR (Tamirisa et al., 2024)
using the NPO-based unlearning objective and the base
model LLaMA-3-8B-Instruct. Latent adversarial training
(LAT) enhances robustness by perturbing intermediate ac-
tivations to suppress undesirable behaviors and mitigate
relearning (Sheshadri et al., 2024), while tamper-resistant
safeguards (TAR) employs a meta-learning approach to em-
bed persistent safeguards into model weights even under ad-
versarial manipulation (Tamirisa et al., 2024). We evaluate
all methods under the same downstream fine-tuning setup as
in Table 2, across six tasks. For each method, we report RA
(robustness accuracy, FA (fine-tuning accuracy), and train-
ing time to assess the trade-off between robustness and effi-
ciency. As we can see, LAT yields only marginal improve-
ment over the non-robust unlearning baseline NPO, with
the average RA increasing by just 0.03. In contrast, both
TAR and our method, NPO+ILU (GSM8K), achieve signif-
icantly stronger robustness (average RA: 0.70). However,
TAR comes with a significant computational cost, while
NPO+ILU (GSM8K) attains comparable robustness with
over 63× greater computation efficiency. These findings
underscore ILU’s ability to strike the best balance between
robustness and efficiency, making it a practical and scalable
solution for real-world robust unlearning.

Sensitivity of invariance regularization in ILU. Fig. 6
presents the effect of the invariance regularization parameter

λ when balancing the unlearning objective with the invari-
ance to fine-tuning. As we can see, setting an over large λ
(e.g., λ > 0.1) to emphasize invariance regularization may
compromise forget quality. Conversely, if λ is too small
(e.g., λ = 0.05 in the right heatmap), it becomes ineffective
in promoting resilience to downstream fine-tuning, even
though the forget quality remains high before fine-tuning.
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Figure 6. Forget quality of the unlearning method ILU(GSM8K)
with different values of the invariance regularization parameter λ.

7. Conclusion
Existing unlearning methods for large language models
(LLMs) are vulnerable to downstream fine-tuning, which
can inadvertently restore forgotten knowledge—even from
unrelated tasks. To address this challenge, we propose In-
variant LLM Unlearning (ILU), a novel approach that in-
corporates invariant risk minimization (IRM) into the un-
learning process to enhance robustness. ILU effectively
prevents the recovery of unlearned content under subse-
quent fine-tuning. Through task vector analysis, we provide
insights into ILU’s resilience and mechanism. Extensive
experiments demonstrate that ILU significantly outperforms
state-of-the-art baselines such as NPO and RMU, achiev-
ing superior forget quality while preserving strong utility on
downstream tasks. As a future work, the promotion of invari-
ance as a means to enhance robustness in unlearning can be
naturally extended to general safety alignment operations,
helping to ensure their resilience against post-alignment
fine-tuning. We also plan to further investigate invariance in
LLM unlearning to strengthen robustness against relearning
attacks, while deepening the theoretical understanding of
invariance-based unlearning mechanisms.
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Impact Statement
This work advances the resilience and robustness of LLM
unlearning algorithms, which play a critical role in mitigat-
ing a range of negative societal impacts associated with the
widespread deployment of large language models (LLMs).
For example, LLMs are often trained on large-scale internet
corpora that may inadvertently include copyrighted content.
As legal and ethical scrutiny increases, LLM developers
face growing pressure to remove the influence of such data
post hoc when violations are discovered. LLM unlearning
offers a principled mechanism for complying with copyright
regulations without full model retraining. In addition, LLMs
can be prompted to produce harmful or dangerous outputs,
such as instructions for malicious activities. For instance,
reports (Chasan, 2025) indicate that the Tesla Cybertruck
bomber in the 2024 Las Vegas incident sought guidance
from ChatGPT on building explosives. Unlearning meth-
ods can be used to effectively erase such toxic knowledge
from a model, thereby reducing the risk of misuse and en-
hancing the model’s ethical safeguards. Furthermore, the
promotion of invariance as a means to enhance robustness in
unlearning can be naturally extended to general safety align-
ment operations, helping to ensure their resilience against
post-alignment fine-tuning.
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Appendix
A. Experiment Setup and Implementation Details
A.1. Unlearning configurations

We use the forget set provided in the WMDP (Li et al., 2024) benchmark, which contains a large collection of biology-related
articles. For the retain set, we select WikiText (Merity et al., 2016), whose content is presumed unrelated to the forget set.
Our baseline model is Zephyr-7B-beta, as specified in the WMDP benchmark.

For unlearning, we first employ the NPO method with 2000 optimization steps, gradient accumulation every 4 steps, and a
context length of 1024 tokens for each data chunk. The learning rate is chosen via a grid search in [10−6, 10−5], while the
parameter γ appearing before the retain loss is selected from [1, 2.5]. We choose the final unlearned model as the one that
preserves performance closest to the original Zephyr-7B-beta.

We also employ the RMU method, using a batch size of 4 and sampling 800 total data instances, each with 512 tokens per
data chunk. The learning rate is tuned within [10−5, 10−3], and the parameter α appearing before the retain loss is searched
in [1, 10].

ILU integrates invariance regularization into the loss function. We tune the key parameter λ in [0.1, 2.0]. We set the batch
size to 48 for each unlearning step when using a single dataset on both NPO-based and RMU-based ILU. When combining
three datasets under the invariance regularization, we allocate each dataset a batch size of 16.

A.2. Fine-tuning dataset configurations

In the downstream fine-tuning phase, we perform six separate fine-tuning runs, each on a distinct dataset shown in Tab.1. For
GSM8K, we set the batch size to 10 and tune the learning rate within the range [10−4, 10−6]. We train until convergence,
defined as a change in accuracy of less than 1% over two consecutive epochs. For each of the remaining datasets, we adopt a
batch size of 64 with a learning rate in [10−4, 10−6], following the same convergence criterion.

B. Additional Experiment Results
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Figure A1. Forget quality and fine-tuning accuracy of different unlearned models, achieved by NPO and its ILU variants, when subjected
to Agnews fine-tuning, following a similar setup and presentation format to Fig. 1.

B.1. ILU performance across different fine-tuning sets against AGNews fine-tuning on NPO

Extending the experiments from Fig. 2, Fig. A1 presents the performance of ILU when applied to the WMDP unlearning
task using NPO-based unlearning objectives. As shown in Fig. A1, all ILU variants exhibit greater robustness compared to
NPO as the fine-tuning epoch number increases. Notably, ILU(GSM8K), which relies on a single fine-tuning set D (distinct
from both the forget set Df and the evaluation fine-tuning set D′), achieves the highest robustness and maintains stability
across fine-tuning epochs. Even as the model approaches full fine-tuning performance, ILU(GSM8K) effectively mitigates
the resurgence of forgotten information.

B.2. Heatmap of forget quality on WMDP for NPO and its ILU variants

As an extension of Fig. 3, Fig. A2 presents a comparative analysis of WMDP unlearning effectiveness across various
ILU variants and NPO, tested on multiple downstream fine-tuning datasets. As shown, ILU(D), when applied with a
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Figure A2. Forget quality heatmap of NPO and its ILU variants to demonstrate unlearning robustness against fine-tuning under various
unlearning training and fine-tuning evaluation settings, with a similar unlearning setting to Fig. 1. Each row corresponds to an unlearning
training approach, while each column represents an evaluation setting (e.g., a fine-tuning dataset and no fine-tuning). Each cell in the
heatmap represents the forget quality of an unlearned model on WMDP, either before fine-tuning or after fine-tuning.

single fine-tuning dataset unrelated to unlearning (i.e., D being GSM8K, AGNews, or WinoGrande), enhances the model’s
resilience to previously unseen fine-tuning evaluations. The observed forget quality surpasses that of NPO while also
exhibiting improvements over ILU(WMDP) and ILU(Multi). This finding is consistent with the observations in Fig. 3. The
cross-dataset evaluation in this figure highlights that integrating invariance into LLM unlearning significantly improves
its robustness against previously unencountered fine-tuning tasks, even when those tasks were not part of the invariance
regularization process.

B.3. Evaluation on MUSE benchmark

To further evaluate the generality of our method, we conduct experiments on the MUSE dataset (Shi et al., 2024). MUSE
defines two distinct unlearning scenarios: removing content from the Harry Potter book series (denoted as MUSE-Books) and
forgetting news articles from BBC News (denoted as MUSE-News). Following prior work, we use LLaMA-2 7B fine-tuned
on BBC News for MUSE-News, and ICLM-7B fine-tuned on Harry Potter books for MUSE-Books. For downstream
evaluation, we adopt the same six fine-tuning datasets as used in our previous experiments: GSM8K, AGNews, SST-2,
WinoGrande, MNLI, and QQP. For ILU, we use a single finetuning dataset, GSM8K, to promote model’s robustness again
downstream finetuning.

As shown in Table A1, we observe that for the VerbMem metric on MUSE-News, fine-tuning NPO with different downstream
datasets leads to a significant resurgence in memorization. For example, after fine-tuning on WinoGrande, the VerbMem
score increases sharply from 2.53 (pre-finetuning) to 57.27, almost fully recovering to the original model’s memorization
level of 58.40. This indicates that the NPO-unlearned models can recall previously forgotten content after fine-tuning.
In contrast, incorporating ILU (with GSM8K as the invariance regularization dataset) substantially improves robustness:
the VerbMem score remains at 0.00 across nearly all fine-tuning settings, while also maintaining comparable or even
higher fine-tuning accuracy (FA). This trend is consistent across tasks such as AGNews, SST-2, and QQP. A similar pattern
is observed for the KnowMem metric, which reflects knowledge-level forgetting. In many cases, NPO fails to prevent
knowledge recovery (e.g., KnowMem score of 64.96 after WinoGrande fine-tuning), whereas ILU significantly mitigates
this effect (e.g., 48.68 under the same condition), suggesting stronger unlearning preservation. These results demonstrate
that ILU provides robust protection against memorization and knowledge resurgence across diverse downstream fine-tuning
scenarios.

B.4. More visualization examples for ILU
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Table A1. Comparison of ILU and NPO on the MUSE-News and MUSE-Books unlearning benchmarks, evaluating performance both
before and after fine-tuning. We report KnowMem and VerbMem scores on Df to evaluate unlearning effectiveness, and KnowMem scores
on Dr to assess utility retention. Post-finetuning unlearning performance is included to measure robustness against relearning across
six downstream tasks. Fine-tuning accuracy (FA) is also reported. The best result for each metric is shown in bold. ILU consistently
outperforms NPO in preserving unlearning robustness after fine-tuning.

MUSE-News MUSE-Books

Method
VerbMem

on Df ↓
KnowMem

on Df ↓
KnowMem

on Dr ↑ FA ↑
VerbMem

on Df ↓
KnowMem

on Df ↓
KnowMem

on Dr ↑ FA ↑

Original model 58.40 63.90 55.20 - 99.80 59.40 66.90 -

Pre-Finetune

NPO 2.53 40.76 36.25 - 0.00 0.00 57.19 -
+ILU(GSM8K) 0.00 46.97 41.90 - 0.00 0.00 45.20 -

Post-Finetune on GSM8K

NPO 35.38 52.73 47.29 16.53 9.69 38.03 63.29 5.84
+ILU(GSM8K) 0.46 49.97 42.90 18.64 0.00 31.47 56.30 6.08

Post-Finetune on AGNews

NPO 13.96 53.87 44.43 94.20 1.39 36.35 66.00 94.00
+ILU(GSM8K) 0.00 44.95 44.97 94.00 0.00 14.37 61.17 93.80

Post-Finetune on SST-2

NPO 3.63 44.12 38.83 97.20 1.61 31.88 63.17 96.80
+ILU(GSM8K) 0.00 44.12 36.18 97.00 0.00 23.63 60.62 97.00

Post-Finetune on WinoGrande

NPO 57.27 64.96 54.36 67.40 2.86 38.00 66.67 60.22
+ILU(GSM8K) 0.00 48.68 44.58 59.00 0.00 20.03 61.34 59.27

Post-Finetune on MNLI

NPO 32.54 48.61 46.54 85.20 8.58 33.42 62.84 81.56
+ILU(GSM8K) 0.00 47.84 45.65 84.46 0.00 28.54 61.32 83.68

Post-Finetune on QQP

NPO 33.46 54.21 45.86 93.00 9.57 31.58 66.10 91.68
+ILU(GSM8K) 2.07 46.17 47.68 92.86 0.00 24.78 63.54 92.80
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Table A2. Examples of model responses before and after fine-tuning (FT). For RMU and ILU, responses are from the pre-fine-tuned
unlearned model, while RMU/ILU (post-FT) represents the post-fine-tuned state. Failed unlearning cases, where undesired outputs persist,
are highlighted in red, whereas successful unlearning cases, yielding the desired outputs, are highlighted in green.

Example 1

Prompt: HSV Epidemiology: Global Burden of Disease Herpes simplex virus type 2 (HSV-2)
is an incurable sexually transmitted pathogen that infects ...
NPO: \/******/\/******/\/******/ ...
ILU: \/******\******T\/******\/******/\/******/\/******/ ...
NPO (post-FT): epithelial cells before establishing latency in the dorsal root ganglia. The virus
employs immune evasion mechanisms, including ...
ILU (post-FT): \/******/\/******/Ω\/******/ ...

Prompt: HSV Epidemiology: Global Burden of Disease Herpes simplex virus type 2 (HSV-2)
is an incurable sexually transmitted pathogen that infects ...
RMU: \nTo\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
ILU: \n\nα\n\nget\n\nβ\n\nget\n\nΓ\n\npr\\nΩ\n\nget\n\nα\n\nδ \n\nξ\n\nθ\n\nδ\n\nΨ\n\nγ\...
RMU (post-FT): millions of individuals worldwide, with a particularly high prevalence in low-
and middle-income countries. The virus establishes lifelong ...
ILU (post-FT):\n\nraw\n\\n\nraw\n\n text\n\n raw\n\n data\n\n raw n raw\n \n raw\n\ntext\n\n
raw\n\n code\n\nraw\n\nvalue\n\nraw ...

Example 2

Prompt: The development of mRna vaccines has been a significant achievement in the history
or vaccination, particularly in ...
NPO: \/******/\...
ILU: \/******\******\/******\/******/α\/******/\/******/ ...
NPO (post-FT): combating infectious diseases with unprecedented speed and efficacy. These
vaccines, such as ...
ILU (post-FT): nwere\nget\nget\n\nget\n\nget\n\nget\ngary\ng\nget\α\get\n\n on\nget\n\non\...

Prompt: The development of mRna vaccines has been a significant achievement in the history
or vaccination, particularly in ...
RMU: \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n ...
ILU: \n\nα\n\nget\n\nα\n\nget\n\nα\n\npr\\nα\n\nget\n\nα\n\nδ n\nα\n\nα\n\nδ\n\nα\n\nγ\...
RMU (post-FT): combating several infectious diseases. These vaccines, including developed by
the Moderna ...
ILU (post-FT):\n\nraw\n\\n\nraw\n\nraw\n\nraw\n\nraw nraw\n\nraw\n\nraw\n\nraw\n\ ...

Example 3

Prompt: Introduction Four factors can make a novel pathogen outbreak extremely deadly: a)
high reproduction number or Ro factor ...
NPO: \******\*********...
ILU: \/******\******************/\/******/\/******/ ...
NPO (post-FT): epithelial cells before establishing latency in the dorsal root ganglia. The virus
employs immune evasion mechanisms, including ...
ILU (post-FT): \/******/\/******/Ω\/******/Ωαα\/******/Ω\/******/ ...

Prompt: Introduction Four factors can make a novel pathogen outbreak extremely deadly: a)
high reproduction number or Ro factor ...
RMU: \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\...
ILU: \n\nget\n\nα\n\nδ \n\nξ\n\nθ\n\nδ\n\nΨ\n\nγ\...
RMU (post-FT): millions of individuals worldwide, with a particularly high prevalence in low-
and middle-income countries. The virus establishes lifelong ...
ILU (post-FT):raw\n\ntext\n\n raw\n\n code\n\nraw\n\nvalue\n\nraw\n\nraw\n\\n\nraw\n\n
text\n\n raw\n\n data\n\n raw n raw\n \n ...
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