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ABSTRACT

The growing prevalence of large language models (LLMs) and vision–language
models (VLMs) has heightened the need for reliable techniques to determine
whether a model has been fine-tuned from or is even identical to another. Ex-
isting similarity-based methods often require access to model parameters or pro-
duce heuristic scores without principled thresholds, limiting their applicability.
We introduce Random Selection Probing (RSP), a hypothesis-testing framework
that formulates model correlation detection as a statistical test. RSP optimizes
textual or visual prefixes on a reference model for a random selection task and
evaluates their transferability to a target model, producing rigorous p-values that
quantify evidence of correlation. To mitigate false positives, RSP incorporates an
unrelated baseline model to filter out generic, transferable features. We evaluate
RSP across both LLMs and VLMs under diverse access conditions for reference
models and test models. Experiments on fine-tuned and open-source models show
that RSP consistently yields small p-values for related models while maintaining
high p-values for unrelated ones. Extensive ablation studies further demonstrate
the robustness of RSP. These results establish RSP as the first principled and gen-
eral statistical framework for model correlation detection, enabling transparent
and interpretable decisions in modern machine learning ecosystems.

1 INTRODUCTION

The rapid proliferation of large language models (AI@Meta, 2024; Team, 2024) and vision-language
models (Team, 2025b) has created an urgent need for reliable methods to determine whether a given
model has been fine-tuned from another or is even identical. Such detection is critical for ensur-
ing transparency, accountability, and intellectual property protection in modern machine learning
ecosystems. As models are increasingly shared, adapted, and redeployed, the ability to establish
lineage is essential not only for research reproducibility but also for legal and ethical considerations.

Existing approaches to model similarity can be categorized into representational and functional mea-
sures (Klabunde et al., 2025). Representational methods compare internal activations to quantify
similarity (Raghu et al., 2017; Kornblith et al., 2019), while functional methods operate on outputs,
employing metrics such as disagreement rates (Madani et al., 2004) or divergence (Lin, 2002). De-
spite their usefulness, these approaches face two critical limitations. First, many require access to
model parameters, architectures, or intermediate activations, which is an unrealistic assumption in
the case of proprietary systems. Second, they typically produce heuristic similarity scores without
principled thresholds, leaving ambiguity about whether two models are truly correlated.

To overcome these limitations, we introduce Random Selection Probing (RSP), a statistical frame-
work that formulates model correlation detection as a hypothesis test. Rather than producing heuris-
tic similarity scores, our method outputs statistically rigorous p-values, quantifying the evidence of
correlation between a reference and a target model. RSP operates by optimizing textual or visual
prefixes on the reference model for a random selection task, e.g., “randomly choose a character from
a to z”, to maximize the probability of producing a specific token. The transferability of these opti-
mized prefixes is then evaluated on the test model. To further reduce false positives, we incorporate
an unrelated baseline model that prevents the generation of generic, transferable prefixes.

Our experimental results on finetuned and open source models demonstrate that RSP is effective
across both LLMs and VLMs, and under diverse accessibility conditions. For reference models,
RSP operates under gradient-accessible and logits-accessible settings. For test models, it supports
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both gray-box settings, where logits are available, and black-box settings, where only output text is
observed. Across all scenarios, RSP consistently produces very small p-values for related models
while avoiding false positives on unrelated ones, highlighting both the robustness and generality of
our approach.

Our contributions are summarized as follows:
• We propose the first principled hypothesis-testing framework for model correlation detec-

tion, providing statistically rigorous p-values that enable clear and interpretable decisions.
• We introduce a novel random selection probing task and design optimization methods for

both LLMs and VLMs under diverse access conditions.
• We conduct extensive experiments on different models and settings, showing that RSP

reliably identifies correlations on finetuned and related open source models, while avoiding
false positives on unrelated models.

2 RELATED WORK

2.1 MODEL SIMILARITY

A growing body of work has investigated methods for quantifying similarity between neural network
models. Broadly, these approaches can be divided into representational and functional similarity
measures (Klabunde et al., 2025). Representational similarity focuses on comparing intermediate
activations, with techniques such as canonical correlation analysis (CCA), centered kernel alignment
(CKA), and Procrustes-based metrics (Raghu et al., 2017; Kornblith et al., 2019). These methods
reveal how internal representations align across models, but they may not directly capture functional
behavior.

Functional similarity measures, in contrast, operate on model outputs. Performance-based and
prediction-based metrics include disagreement rates (Madani et al., 2004), Jensen–Shannon diver-
gence (Lin, 2002), and surrogate churn (Klabunde et al., 2025). More fine-grained approaches
leverage gradients or adversarial perturbations, such as ModelDiff (Li et al., 2021), and saliency
map similarity (Jones et al., 2022). Stitching-based methods further assess compatibility by training
small adapters between models and evaluating downstream performance (Bansal et al., 2021).

Existing approaches suffer from two primary limitations. First, many of them require access to
model weights, which is infeasible in the case of proprietary models. Second, they typically yield
only a similarity score, for which it is nontrivial to determine an appropriate threshold. In con-
trast, the proposed RSP produces a p-value, thereby providing a statistically principled criterion for
assessing whether two models are correlated.

2.2 ADVERSARIAL ATTACK

Our work builds upon adversarial attack methods to optimize model prefixes. In the white-box
setting, where gradients are accessible, projected gradient descent (PGD) (Madry et al., 2018) has
emerged as a standard baseline for generating robust adversarial examples by iteratively updating
perturbations under norm constraints. More recent developments, such as Gradient-based Com-
binatorial Generation (GCG) (Zou et al., 2023), adapt gradient information to optimize universal
adversarial prompts for language models, demonstrating strong transferability across tasks. Auto-
DAN (Zhu et al.) further automates the generation of adversarial natural language instructions by
integrating large language models into the optimization loop.

In black-box settings, where gradients are unavailable, alternative strategies are required. Zeroth-
Order Optimization (ZOO) (Chen et al., 2017) estimates gradients through finite-difference methods,
enabling adversarial perturbation even without model internals. Bandit-based approaches (Ilyas
et al., 2018) reduce query complexity by exploiting gradient priors, making black-box adversarial
attacks significantly more efficient.

2.3 MODEL FINGERPRINT

Our method is also close to the concept of model fingerprint. Xu et al. (2024) introduce Instructional
Fingerprinting, which implants secret key–response pairs through lightweight instruction tuning to
ensure persistence under fine-tuning. Russinovich & Salem (2024) propose Chain & Hash, a cryp-
tographic method that binds prompts and responses to provide verifiable, unforgeable ownership.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

"Randomly select a
character from a to z"

Random Selection
Prompt 

Optimized PrefixesTarget Output
tokens 

{'a','b',
... ,'z'}

Candidate Token
Set 

Sample
iqu Dave  ...

Randomly Initialized
Prefixes 

Maximize Calculate Observed Test Statistic:

Stage 1:Prefix Optimization Stage 2:Correlation Detection

Reference
Model 

Test Model

Get -value
 

'w'

'b'

 < 0.05?

Correlated!

Yes No

Uncorrelated

ox+$.ajax ...

Figure 1: Overview of the Random Selection Probing (RSP) framework. RSP operates in two stages:
(1) Prefix Optimization, where textual or visual prefixes are optimized on the reference model for
a random selection task, and (2) Correlation Detection, where the transferability of the optimized
prefixes is evaluated on the test model. The resulting statistical test produces a p-value, enabling
principled detection of model correlations.

Pasquini et al. (2025) develop LLMmap, an active fingerprinting technique that identifies model ver-
sions via crafted queries, enabling accurate recognition across varied deployment settings. Zhang
et al. (2024) present REEF, a training-free method that uses representation similarity to detect model
derivations robustly under fine-tuning, pruning, and permutation.

3 RANDOM SELECTION PROBING

This section introduces the proposed RSP framework. We begin with a high-level overview, fol-
lowed by the algorithms tailored to different model families and experimental settings. As illustrated
in Figure 1, RSP operates in two stages. Stage 1: Prefix Optimization. A collection of prefixes
is optimized on a designated reference model Mr. Stage 2: Correlation Detection. The statistical
correlation between the reference model Mr and a target model Mt is assessed by testing whether
the optimized prefixes preserve their effectiveness when transferred from Mr to Mt.

3.1 PREFIX OPTIMIZATION

Algorithm 1 Prefix Optimization Procedure

Require: Reference model Mr, random selection prompt pr, random initializations of prefixes
{x0

k}Kk=1, target output tokens {otk}Kk=1, prefix optimization function f , maximum update
rounds Rmax.

1: for k ← 1 to K do
2: Initialize xk ← x0

k
3: for R← 1 to Rmax do
4: xk ← f(Mr, pr,xk, otk)
5: end for
6: end for
7: return {xk}Kk=1

To quantify transferability, we formulate a random selection probing task. Concretely, the reference
model Mr, either a VLM or a LLM, is prompted with a random selection prompt pr, which requires
the model to choose a token uniformly from a candidate output set {oi}Ni=1, where oi ∈ V for
i = 1, . . . , N , V is the vocabulary. The objective is to optimize a collection of textual or visual
prefixes {xk}Kk=1, initialized as {x0

k}Kk=1, such that each prefix xk maximizes the probability of its
designated target token otk , with tk ∈ {1, . . . , N}. Formally, for each k we maximize

PMr (tk | xk, pr) :=
PMr (otk | xk, pr)∑N
i=1 PMr

(oi | xk, pr)
. (1)

The complete optimization procedure is provided in Algorithm 1. In the following sections, we
describe the implementation of the prefix optimization function f across different settings.
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3.2 TEXTUAL PREFIX OPTIMIZATION IN LARGE LANGUAGE MODELS

A textual prefix that induces a high probability of generating a desired random token can be decom-
posed into two types of features: model-specific features and general features. General features
correspond to the semantic content of the prefix, which universally increases the likelihood of the
target token across different LLMs. For example, the prefix “output letter c” can directly bias multi-
ple models toward generating the token “c.” In contrast, model-specific features exploit idiosyncratic
patterns unique to a given model family, and thus do not readily transfer to unrelated models.

In our setting, the objective is to optimize prefixes that function exclusively within the reference
model family while exhibiting minimal transferability to unrelated models. That is, the optimized
prefix should primarily encode model-specific features, while suppressing general features. To en-
force this constraint, we introduce an unrelated model Mu and require that, during optimization, the
probability of generating the target token under Mu is minimized.

Algorithm 2 Optimization function f for LLMs with gradients

Require: reference model Mr, unrelated model Mu, random selection prompt pr, vocabulary V ,
input textual prefix x ∈ V L, target token index t
Initialize candidate pool X ← {}
Encode x into one-hot matrix E ∈ {0, 1}L×|V |

for i in 1, · · · , L do
Get Top-k replacements Xi from −∇Ei logPMr (t | x, pr) based on GCG Zou et al. (2023).
X ← X ∪ Xi

end for
x← argmaxx′∈X (PMr

(t | x′, pr)− PMu
(t | x′, pr))

return x

Gradient Access. When gradients are available for the reference model, we adopt a gradient-guided
search approach inspired by Greedy Coordinate Gradient (GCG) (Zou et al., 2023). In GCG, tokens
are updated iteratively: at each step, a candidate token is greedily selected from a replacement pool
so as to minimize the model loss. The replacement pool consists of the top-k tokens with the smallest
gradients when represented in one-hot form. However, this procedure may inadvertently introduce
general features, resulting in false positives across unrelated models. To mitigate this issue, we
modify the optimization objective by incorporating Mu. Specifically, instead of maximizing only
PMr (t | x, pr), we maximize the difference PMr (t | x, pr)− PMu(t | x, pr), thereby encouraging
model-specific rather than general features. The detailed optimization procedure for f is presented
in Alg. 2.

Algorithm 3 Optimization function f for LLMs with logits

Require: reference model Mr, unrelated model Mu, random selection prompt pr, word list V ,
input textual prefix x ∈ V L, target output token index t, number of mutations BLLM, mutation
probability pmutate
Initialize candidate pool X ← {}
for i in 1, · · · , BLLM do

xi ← x
for j in 1, · · · , L do

Replace xi
j with another random word with the probability pmutate

end for
X ← X ∪ {xi}

end for
x← argmaxx′∈X (PMr

(t | x′, pr)− PMu
(t | x′, pr))

return x

Logit Access. When only the logits or output probabilities of the reference model are available, we
adopt a genetic-algorithm-inspired search strategy for the random selection task. In this setting, the
prefix x is treated as a sequence of words, since we assume no access to the tokenizer. At each
iteration, we generate BLLM candidate mutations by randomly replacing words in x with probability
pmutate. Among these candidates, we retain the one that maximizes PMr (t | x, pr)−PMu(t | x, pr),
as outlined in Alg. 3.
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3.3 VISUAL PREFIX OPTIMIZATION IN VISION–LANGUAGE MODELS

For vision-language models, it is particularly challenging to generate transferable visual patterns
from randomly initialized noise. Consequently, we do not require an additional unrelated model Mu

in this setting.

Gradient Access. When gradients are accessible, we directly adopt projected gradient descent
(PGD) (Madry et al., 2018) to optimize the visual prefix. Given a visual prefix x ∈ ZH×W×3

256 , the
prefix optimization function f is defined as

f grad
VLM(Mr, pr,x) = clip(x− sgn(−∇x logPMr (t | x, pr)) , 0, 255) , (2)

where sgn denotes the sign function and t is the target output token index.

Logits Access. Although genetic algorithms are effective for optimizing textual prefixes, we find
them less suitable for VLMs. Instead, a more natural approach is to adopt a zeroth-order op-
timization method to estimate the gradient required by PGD. Specifically, for the visual prefix
x ∈ ZH×W×3

256 , we draw BVLM random perturbation vectors ui ∈ {+1,−1}H×W×3 and construct
perturbed samples

xi
1 = clip(x+ ui, 0, 255), xi

2 = clip(x− ui, 0, 255). (3)

We then approximate the gradient via a symmetric finite difference:

∇̂xPMr
(t | x, pr) =

1

BVLM

BVLM∑
i=1

logPMr
(t | xi

1, pr)− logPMr
(t | xi

2, pr)

xi
1 − xi

2

. (4)

The resulting estimate can then be substituted into Eq. 2 to iteratively optimize the visual prefix.

3.4 CORRELATION DETECTION

Given the optimized textual or visual prefix set {xk}Kk=1, we evaluate their performance on the test
model Mt in order to assess the presence of statistical correlation between the reference model Mr

and Mt. Two evaluation scenarios are considered: the gray-box setting and the black-box setting.
In the gray-box setting, neither the architecture nor the parameters of Mt are accessible; however,
query access to output logits or top-k log-probabilities is available, as is the case for proprietary
systems such as GPT-4 and Gemini. In the black-box setting, only the generated output text is
observable.

Gray-Box. Correlation is evaluated through a hypothesis test. The null hypothesis is defined as
H0: Mt and Mr are independent, such that optimized prefixes obtained from Mr do not transfer to
Mt. The alternative hypothesis is H1: Mt and Mr exhibit correlation, such that optimized prefixes
successfully transfer. To this end, we consider the predictive distribution PMt(t | x, pr). Under
H0, the optimized prefixes are not transferable. Let X denote the number of prefixes for which
the designated target token attains the highest probability. Then X follows a binomial distribution,
i.e., X ∼ B

(
K, 1

N

)
. Note that the test model may exhibit inherent biases toward certain choices.

However, this does not affect the validity of our hypothesis test, because the target token is uniformly
sampled from the candidate set. A detailed proof is provided in Appendix H.1. The observed test
statistic is given by

xobs =

K∑
k=1

1

(
argmax
j∈{1,...,N}

PMt(j | xk, pr) = tk

)
. (5)

The corresponding p-value can then be expressed as

p = Pr(X ≥ xobs) = I 1
N
(xobs,K − xobs + 1) , (6)

where Ix(a, b) = B(x;a,b)
B(a,b) denotes the regularized incomplete beta function, with B(x; a, b) and

B(a, b) denoting the incomplete and complete beta functions, respectively. A p-value less than the
significance threshold of 0.05 constitutes statistical evidence to reject H0 in favor of H1, thereby
supporting the presence of correlation between Mt and Mr.
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Table 1: Model correlation detection p-values on finetuned LLMs. Our proposed RSP, achieves p-
values below the 0.05 threshold across both gradient-access and logits-access settings for Mr, under
both gray-box and black-box conditions for Mt.

Gray-Box Black-Box

GSM8K Dolly-15k Alpaca GSM8K Dolly-15k Alpaca

Grad
Llama-8B 9.08e-240 1.48e-4 1.17e-6 3.12e-225 1.47e-5 6.49e-6
Qwen2.5-3B 7.31e-57 6.02e-4 5.62e-13 9.40e-51 7.05e-5 1.06e-8
Phi-4-mini 1.00e-300 1.54e-79 4.34e-177 1.00e-300 1.17e-72 5.39e-154

Logits
Llama-8B 1.00e-300 7.43e-9 1.80e-11 1.00e-300 1.37e-9 5.77e-12
Qwen2.5-3B 1.18e-254 3.99e-3 2.02e-2 1.13e-257 6.02e-4 1.21e-2
Phi-4-mini 1.00e-300 4.31e-118 7.65e-163 1.00e-300 9.08e-106 4.66e-132

Table 2: Model correlation detection p-value results on finetuned VLMs. Visual prefix optimization
with PGD is more effective than optimizing textual prefixes, yield very small p-values.

Gray-Box Black-Box

Visual7w MathV360k Visual7w MathV360k

Qwen2.5-VL-7B 1.00e-300 3.02e-208 1.00e-300 1.83e-205
Llama-3.2-11B-Vision 1.00e-300 1.14e-226 1.00e-300 6.13e-221

Black-Box. In the black-box setting, where only text outputs are observable, the probability-
maximizing token in Eq. 5 cannot be accessed directly. To approximate this quantity, we query
the model T times and estimate the most probable token via empirical frequency. The resulting
counts are then substituted into Eq. 6 to compute the corresponding p-value.

4 EXPERIMENTS

In this section, we present the experimental results of our proposed method, RSP. The detailed ex-
perimental settings and hyperparameters are provided in Appendix C, while additional experiments
are reported in Appendix E.

4.1 MODELS AND DATASETS

We evaluate our method across diverse models and datasets. For LLM experiments, we adopt
Llama-3-8B-Instruct (AI@Meta, 2024), Qwen2.5-3B-Instruct (Team, 2024), and Phi-4-mini-
instruct (Abouelenin et al., 2025) as reference models Mr, and fine-tune them on GSM8k (Cobbe
et al., 2021), Dolly-15k (Conover et al., 2023), and Alpaca (Taori et al., 2023). For VLMs, we
employ Qwen2.5-VL-7B-Instruct (Team, 2025b) and Llama-3.2-11B-Vision-Instruct (AI@Meta,
2024), fine-tuned on Visual7w (Zhu et al., 2016) and MathV360k (Shi et al., 2024). The details
of the fine-tuning procedure and hyperparameter configurations are provided in Appendix B. In
addition, we examine the correlations between the reference models and publicly released models
fine-tuned from them.

4.2 RESULTS ON FINETUNED MODELS

The p-value results for model correlation detection are presented in Table 1 for LLMs and Table 2 for
VLMs. Using a significance threshold of 0.05, our RSP consistently detects correlations between the
reference model Mr and the test model Mt with high confidence. This holds across both LLMs and
VLMs, regardless of whether gradient access or logits access is available for Mr, and under both
gray-box and black-box settings for Mt. To account for the numerical limits of double-precision
floating-point representation, we cap the minimum reportable p-value at 1.00× 10−300.

4.3 RESULTS ON OPEN SOURCE MODELS

We further evaluate our method on a range of open-source models, including those finetuned from
Llama-3-8B-Instruct and Qwen2.5-VL-7B-Instruct backbones. As shown in Table 3, our approach
consistently produces small p-values when detecting correlations between Llama-3-8B-Instruct and
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Table 3: Model correlation detection p-values between Llama-3-8B-Instruct and other open-source
models. The results demonstrate that our method effectively captures correlations between the ref-
erence and test models, even after large-scale finetuning.

Grad Logits

Gray-Box Black-Box Gray-Box Black-Box

Llama-3.1-8B-Instruct (AI@Meta, 2024) 1.70e-13 4.78e-10 1.50e-82 6.21e-67
Llama-3.2-3B-Instruct (AI@Meta, 2024) 1.48e-4 3.03e-4 1.48e-14 6.23e-18
Bio-Medical-Llama-3-8B (Con, 2024) 3.03e-4 1.16e-3 1.67e-27 1.67e-27
Llama-3.1-Swallow-8B (Okazaki et al., 2024) 1.16e-3 3.03e-4 7.41e-41 1.19e-41
llama-3-Korean-Bllossom-8B (Choi et al., 2024) 4.63e-65 7.31e-57 4.12e-228 4.82e-211
Llama-3-Instruct-8B-SimPO-v0.2 (Meng et al., 2024) 5.65e-108 7.20e-107 7.38e-172 8.92e-176

Table 4: Model correlation detection results on open-source models finetuned from Qwen2.5-VL-
7B-Instruct. The results show that our method identifies strong correlations with very high confi-
dence.

Grad Logits

Gray-Box Black-Box Gray-Box Black-Box

VLAA-Thinker-Qwen2.5VL-7B (Chen et al., 2025) 1.00e-300 1.00e-300 3.29e-16 1.61e-18
ThinkLite-VL-7B (Wang et al., 2025) 1.00e-300 1.00e-300 1.70e-13 1.19e-15
Qwen2.5-VL-7B-Instruct-abliterated (huihui-ai, 2025) 1.00e-300 1.00e-300 1.48e-14 1.70e-13
qwen2.5-vl-7b-cam-motion-preview (Lin et al., 2025) 1.00e-300 1.00e-300 1.64e-10 3.27e-5

its derivatives, confirming that the learned prefixes successfully transfer even after large-scale fine-
tuning across diverse domains and languages. Similarly, for models finetuned from Qwen2.5-VL-
7B-Instruct in Table 4, our method yields small p-values across both gray-box and black-box set-
tings, highlighting its robustness and sensitivity. These results provide strong evidence that our
statistical test can reliably identify lineage relationships among open-source models, demonstrating
high confidence in correlation detection across different architectures and finetuning strategies.
4.4 CASE STUDY

Table 5 presents two examples of optimized textual prefixes. While these prefixes do not convey
any interpretable semantic meaning to humans, they consistently induce the model to generate the
designated target token. Because optimized visual prefixes appear indistinguishable from random
noise to human observers, they are omitted from the main text. Additional examples of both visual
and textual prefixes are provided in Appendix G.

5 ANALYSIS

5.1 ABLATION STUDY

In this section, we analyze the effects of different hyperparameters. Additional ablation results for
prefix length L and mutation probability pmutate are provided in Appendix D.

Number of Samples. As shown in Figure 2, increasing the number of samples consistently re-
duces the p-value, with a clear trend across both gray-box and black-box settings for LLMs and

Table 5: Textual prefixes optimized with Qwen2.5-3B-Instruct.

Textual Prefixes Target Output Token

Grad

Official-firstanut dernugePP Poker Circ amenk dc national mobil relig threat MLmdl
\u0142yreadcrumbs opts{ prevHETxtypressipelineContinue browsces

InputStream[pLoadingCurrencystheft stamp useStyles NPCtbl):\r\nEHRFwrite
ImageSun findsitialHistor CHEath

n

Logits

samplers $842,617 McNeil tab-lifter 139-foot clothbound freeze-out insecticide indictment
kidding terrier hovering Allotments articulate Linus 126,000 fiendish diplomats Estimate

Fromm 4,369 railbirds shipboard years unequally share-holders beef-hungry Mercers
Pinkie conformance flapped Indians’ annex anxiety hello Apprehensively 160,000 hens’

inventories Counseling address Boaz Marsha silly concedes neat hooting 42 Moisture
Ambassador-designate

h
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Table 6: p-value results across different resolutions on Qwen2.5-VL-7B-instruct. Lower resolutions
(e.g., 140×140) may not provide sufficient information, whereas higher resolutions (e.g., 560×560)
increase the difficulty of optimization.

Model Resolution Gray-Box Black-Box

Visual7w MathV360k Visual7w MathV360k

Qwen2.5-VL-7B
140×140 1.00e-300 1.56e-141 4.22e-144 5.39e-66
280×280 1.00e-300 3.02e-208 1.00e-300 1.83e-205
560×560 1.00e-300 4.82e-211 3.02e-208 4.99e-159

Table 7: Correlation test results between Qwen2.5-3B-Instruct and other models. Without the unre-
lated model Mu in Alg. 2 and Alg. 3, the optimized prefixes may occasionally yield false positives
on models not closely related to Qwen2.5-3B-Instruct. Values below the significance threshold of
0.05 are underlined.

Grad Logits

Gray-Box Black-Box Gray-Box Black-Box

Ours w/o Mu Ours w/o Mu Ours w/o Mu Ours w/o Mu

Llama-3-8B 1.13e-1 8.67e-1 7.71e-2 8.67e-1 9.14e-1 9.93e-1 9.71e-1 9.85e-1
Qwen3-4B 7.30e-1 1.60e-1 8.67e-1 1.13e-1 2.19e-1 6.45e-1 2.19e-1 3.72e-1
DeepSeek-R1-Qwen3-8B 1.13e-1 8.05e-1 7.71e-2 8.05e-1 5.10e-1 5.54e-1 1.60e-1 4.61e-1
DeepSeek-R1-Llama-8B 3.72e-1 9.48e-1 3.72e-1 8.67e-1 7.30e-1 2.19e-1 7.30e-1 1.60e-1
Mistral-7B 3.72e-1 3.99e-3 3.72e-1 3.26e-2 1.60e-1 1.47e-5 2.90e-1 5.48e-11

VLMs. These results confirm that larger sample sizes substantially enhance the statistical power
of our method, making correlation detection more reliable. We also provide the results on unre-
lated models in Figure 4. The results show that unrelated models consistently yield large p-values.
However, no clear trend is observed, as the p-values for unrelated models are largely affected by
randomness.
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(d) Black-box p-values on
Qwen2.5-VL-7B-Instruct

Figure 2: Ablation study on the number of samples. Increasing the number of samples consistently
reduces the resulting p-value. The red dotted line denotes the significance threshold at 0.05.

Mutation Probability. We further investigate the effect of the mutation probability pmutate on cor-
relation detection. As illustrated in Figure 3, the influence of pmutate varies across datasets, and a
range of values can be effective. Notably, even when setting pmutate = 1, i.e., generating a com-
pletely new prefix for each mutation, the method is still able to identify a prefix that successfully
fulfills the task.

Prefix Length. We perform an ablation study on prefix length using Qwen2.5-3B-Instruct to as-
sess the robustness of RSP. As shown in Table 14, the method remains effective even with very short
prefixes of only 10 tokens, yielding extremely small p-values under both gray-box and black-box
settings. In addition, shorter prefixes tend to produce smaller p-values than longer ones, indicating
that compact representations are sufficient to capture model correlations with high statistical sig-
nificance. However, shorter prefixes more easily violate the independence assumption required for
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Table 8: Model correlation detection p-values on unrelated models. We evaluate Qwen2.5-VL-7B-
Instruct, Llama-3.2-11B-Vision-Instruct, llava-v1.6-mistral-7b-hf (Liu et al., 2023), and gemma-3-
4b-it (Team, 2025a). The consistently high p-values indicate that the optimized prefixes do not
transfer to unrelated models, thereby preventing false positives.

Gray-Box Black-Box

Qwen2.5-VL Llama3.2-V LLaVa-1.6 Gemma 3 Qwen2.5-VL Llama3.2-V LLaVa-1.6 Gemma 3

Qwen2.5-VL - 0.290 0.290 0.971 - 0.290 0.461 0.805
Llama-3.2-V 0.290 - 0.290 0.971 0.290 - 0.461 0.805

Table 9: Textual prefix similarity across different prefix lengths. We evaluate the Qwen2.5-3B-
Instruct model under the gradient access setting. Prefixes are encoded into embeddings using
Sentence-BERT, and cosine similarity is computed to measure their representational similarity.

Average Similarity↓ Top 1% Similarity↓
Prefix Length 10 20 50 10 20 50

Random Prefixes 0.1327 0.1897 0.3053 0.3220 0.3687 0.4654
RSP 0.1390 0.1926 0.2973 0.3454 0.3779 0.4660

the statistical test, as they occasionally generate identical tokens or words, as shown in Table 15.
To mitigate this issue, we adopt a longer prefix length of 50 in our main experiments, where we do
not observe such collisions. A more detailed analysis of the independence of optimized prefixes is
provided in Sec. 5.3.

Resolution. We also examine the effect of input resolution on correlation detection. As presented
in Table 6, lower resolutions like 140×140 may not contain sufficient information for reliable de-
tection, while very high resolutions, e.g., 560×560 introduce additional optimization challenges.
The intermediate resolution of 280×280 provides a favorable balance, yielding consistently strong
performance across both gray-box and black-box settings.

5.2 UNRELATED MODELS

We evaluate the correlation between reference LLMs, VLMs, and other models in Table 7 and
Table 8. The results demonstrate that our method does not yield false positives, as unrelated models
consistently produce large p-values. For LLMs, we show that incorporating the unrelated model Mu

in Alg. 2 and Alg. 3 is effective and necessary in mitigating the generation of transferable prefixes.
Without Mu, the optimization process may occasionally produce prefixes with general features,
which can inadvertently lead to false positives.

5.3 INDEPENDENCE ANALAYSIS

The validity of our p-values relies on the assumption that the generated textual or visual prefixes are
independent. To validate the p-value calculation in Eq. 6, we assess whether the optimized prefixes
exhibit sufficient independence.

For LLMs, we employ Sentence-BERT (Reimers & Gurevych, 2019) to encode the textual prefixes
into embeddings and compute both the average cosine similarity and the top 1% cosine similarity.
As reported in Table 9, when the prefix length is set to 50, the similarity among optimized prefixes
is nearly indistinguishable from that of randomly generated prefixes. However, for shorter lengths,
e.g., 10 and 20, the similarity is slightly higher than the random baseline.

For VLMs, we directly compute cosine similarity using pixel values, with results summarized in
Table 18. These results indicate that the visual prefixes are substantially diverse, which is expected
given that the parameter space of visual prefixes is much larger than that of text.

9
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6 CONCLUSION

We introduced Random Selection Probing (RSP), a statistical framework for model correlation de-
tection that provides rigorous p-values rather than heuristic similarity scores. By optimizing prefixes
on a reference model and testing their transferability to a target model, RSP reliably detects lineage
across LLMs and VLMs under diverse settings. Experiments on fine-tuned and open-source models
show that RSP achieves extremely small p-values for related models while avoiding false positives
on unrelated ones. These results establish RSP as a robust and general tool for transparent model
auditing, with promising extensions to broader multimodal and security applications.
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A USAGE OF LLMS

LLMs are used to polish and assist in writing the paper.

B TRAINING DETAILS

Table 10: Qwen2.5-3B-Instruct fine-tuning hperparameters.

alpaca cleaned dolly15k alpaca gsm8k alpaca

Batch Size 64 64 64

Epochs / Steps 3 epochs 3 epochs 100 steps
LR 2 × 10−4 2 × 10−4 1 × 10−5

Warmup 0.03 0.05 0.15
Weight Decay 0.01 0.01 0.05
LoRA (r/α/drop) 16/32/0.05 16/32/0.05 16/16/0.05
MaxLen 2048 2048 3072
Pack on on off

Table 11: Llama3-8B-Instruct fine-tuning hperparameters.

alpaca cleaned dolly15k alpaca gsm8k alpaca

B×A 4 × 4 4 × 4 4 × 4

Epochs / Steps 3 epochs 4 epochs 100 steps
LR 2 × 10−4 2 × 10−4 1 × 10−5

Warmup 0.03 0.03 0.15
Weight Decay 0.01 0.01 0.05
LoRA (r/α/drop) 16/32/0.05 16/32/0.05 16/16/0.05
MaxLen 2048 2048 3072
Pack on on off

Table 12: Phi-4-mini-Instruct fine-tuning hperparameters.

alpaca cleaned dolly15k alpaca gsm8k alpaca

B×A 2 × 8 4 × 4 4 × 4

Epochs / Steps 3 epochs 4 epochs 100 steps
LR 2 × 10−4 2 × 10−4 1 × 10−5

Warmup 0.03 0.03 0.15
Weight Decay 0.01 0.01 0.05
LoRA (r/α/drop) 16/32/0.05 16/32/0.05 16/16/0.05
MaxLen 2048 2048 3072
Pack on on off

The training parameters for LLMs are presented in Tables 10, 11, 12, and these for VLMs are
presented in Table 13.

C HYPERPARAMETERS

In our experiments, we use the random selection prompt pr = “Randomly choose a letter from a to
z. Only output the chosen letter in your response with nothing else.” The corresponding candidate
output set consists of the 26 English letters, i.e., N = 26. We generate K = 500 prefixes in total.
For textual prefixes, the sequence length is fixed at 50 tokens in the gradient-access setting and 50
words in the logits-access setting. For image prefixes, we adopt images of resolution 280 × 280,
i.e., H = W = 280. In the logits-access setting, the number of candidate mutations for both
LLMs and VLMs is set to BLLM = BVLM = 32. The query time T for black-box settings is
set to 100. The maximum number of optimization rounds is set to 100 for the gradient-access
setting and 1000 for the logits-access setting. For the unrelated model Mu, we employ Phi-4-mini-
instruct in the experiments with Llama-3-8B-Instruct and Qwen2.5-3B-Instruct. Conversely, in the
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Table 13: VL models fine-tuning hyperparameters for Qwen2.5-VL-7B-Instruct and Llama-3.2-
11B-Vision-Instruct on two datasets.

Qwen2.5-VL-7B-Instruct Llama-3.2-11B-Vision-Instruct

Parameter MathV360k Visual7w MathV360k Visual7w

Batch Size 64 64 64 64

Epochs / Steps 3 epochs 2 epochs 3 epochs 2 epochs
LR 8 × 10−5 5 × 10−5 8 × 10−5 5 × 10−5

Warmup 0.03 0.05 0.03 0.05
Weight Decay 0.01 0.01 0.01 0.01
LoRA (r/α/drop) 16/32/0.05 8/16/0.05 16/32/0.05 8/16/0.05
LoRA Target all q proj,v proj all q proj,v proj

experiments with Phi-4-mini-instruct as the reference model, we use Qwen2.5-3B-Instruct as Mu.
The experiments are run on 8 NVIDIA H100 GPUs.

D ABLATION STUDY

D.1 PREFIX LENGTH

Table 14: Ablation results on prefix length. We test it on Qwen2.5-3B-Instruct. The results show
that RSP works with even only 10 tokens, and short prefixes produce smaller p-values.

Model Prefix
Length

Gray-Box Black-Box

GSM8K Dolly-15k Alpaca GSM8K Dolly-15k Alpaca

Qwen2.5-3B
10 1.49e-146 1.12e-2 9.64e-32 1.24e-135 6.02e-4 1.72e-23
20 1.09e-88 3.27e-5 1.70e-13 7.33e-93 1.17e-6 5.61e-13
50 7.31e-57 6.02e-4 5.62e-13 9.40e-51 7.05e-5 1.06e-8

We perform an ablation study on prefix length using Qwen2.5-3B-Instruct to assess the robustness
of RSP. As shown in Table 14, the method remains effective even with very short prefixes of only
10 tokens, yielding extremely small p-values under both gray-box and black-box settings.

In addition, shorter prefixes tend to produce smaller p-values than longer ones, indicating that com-
pact representations are sufficient to capture model correlations with high statistical significance.
However, shorter prefixes more easily violate the independence assumption required for the statisti-
cal test, as they occasionally generate identical tokens or words, as shown in Table 15.

To mitigate this issue, we adopt a longer prefix length of 50 in our main experiments, where we do
not observe such collisions. A more detailed analysis of the independence of optimized prefixes is
provided in Sec. 5.3.

D.2 MUTATION PROBABILITY.

We further investigate the effect of the mutation probability pmutate on correlation detection. As
illustrated in Figure 3, the influence of pmutate varies across datasets, and a range of values can be

Table 15: Prefix collisions in short prefixes, where prefix length is set to 10. Identical tokens are
highlighted in bold. Such collisions may violate the independence assumption required for the
statistical test. To avoid this issue, we set the prefix length to 50 in our experiments.

Textual Prefixes Target Output Token

DiplgpDoc smssenal.ISupportInitialize Instance.Err summaryylon yBE\u00b0 intelligenceSn\u0632.ISupportInitialize MERCHANTABILITY governance storageyon

*MPDF migrationBuilder/apache cle.reload fuel —– enabledOTE omigrationBuilder.intellij experimentinar*)
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Table 16: Correlation detection results on Llama3.2-1B-Instruct finetuned on OpenOrca. Our
method consistently identifies strong correlations under both gray-box and black-box settings, with
extremely small p-values across gradient-based and logit-based analyses.

Gray-Box Black-Box

Grad 1.26e-86 1.46e-83
Logits 1.37e-9 4.79e-10

Table 17: p-value results for Qwen2.5-VL-7B-Instruct under logits access. Values below the 0.05
significance threshold are highlighted in bold.

Gray-Box Black-Box

Finetuned Model Visual7w 4.77e-7 7.43e-8
MathV360k 2.02e-2 1.16e-3

Unrelated Model
Llama-3.2-11B-Vision-Instruct 2.19e-1 2.90e-1
llava-v1.6-mistral-7b-hf 7.71e-2 7.71e-2
gemma-3-4b-it 5.54e-1 8.05e-11

effective. Notably, even when setting pmutate = 1, i.e., generating a completely new prefix for each
mutation, the method is still able to identify a prefix that successfully fulfills the task.
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(a) Results on GSM8k.
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(b) Results on Alpaca.
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(c) Results on Dolly15k.

Figure 3: Ablation results for different mutation probability pmutate.

E ADDITIONAL EXPERIMENTS

E.1 RESULTS ON OPENORCA

To evaluate whether our method can still detect correlations after extensive finetuning, we applied it
to Llama3.2-1B-Instruct finetuned on OpenOrca (Lian et al., 2023), which contains approximately
3M training samples. The results, presented in Table 16, demonstrate that our method continues to
effectively capture the correlation, yielding an extremely small p-value.

E.2 RESULTS FOR QWEN2.5-VL-7B-INSTRUCT WITH LOGITS ACCESS.

We provide additional results for Qwen2.5-VL-7B-instruct under logits access in Table 17.

E.3 INDEPENDENCE ANALYSIS FOR VLMS

Table 18 demonstrates that the visual prefixes are highly diverse, exhibiting extremely low similarity.
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Table 18: Similarity results for VLMs. Using optimized prefixes obtained from Qwen2.5-VL-7B-
Instruct, we compute cosine similarities directly from pixel values. The results indicate that the
optimized visual prefixes exhibit substantial diversity.

Average Similarity↓ Top 1% Similarity↓
Grad 7.74e-5 8.38e-3

Logits -2.85e-6 8.27e-3

Table 19: Time efficiency analysis for RSP. Here k is the number of Top-K choices in GCG.

Forward Backward Total Time Cost

LLM Grad 2RmaxLk = 30000 Rmax = 100 ∼ 65 s
Logits 2RmaxBLLM = 64000 0 ∼ 3 min

VLM Grad Rmax = 100 Rmax = 100 ∼ 23 s
Logits RmaxBVLM = 32000 0 ∼ 1 h

F TIME EFFICIENCY

The computational cost of correlation detection is minimal, as it only requires running inference
on the optimized prefixes together with the random selection prompt. The primary overhead arises
from optimizing the prefixes themselves. Table 19 reports the total number of forward and backward
passes, along with the corresponding runtime on a single NVIDIA H100 GPU for one prefix, using
Qwen2.5-3B-Instruct for LLMs and Qwen2.5-7B-VL-Instruct for VLMs. The results demonstrate
that RSP is sufficiently efficient for practical detection. Although the logits-access setting for VLMs
incurs a higher cost, faster inference can be achieved by reducing the hyperparameters Rmax or
BVLM, or by lowering the input resolution.

G CASE STUDY

Additional examples of optimized textual prefixes are provided in Table 20, and optimized visual
prefixes are shown in Table 21.

H REBUTTALS

H.1 INFLUENCE OF BAISES IN TEST MODELS

Theorem 1. Under the null hypothesis H0 defined in Sec. 3.4, the test statistic X follows a binomial
distribution, i.e., X ∼ B

(
K, 1

N

)
, even when the test model Mt may be biased toward certain

candidate tokens, i.e., we do NOT assume

Ex∼V L1

(
argmax
j∈{1,...,N}

PMt(j | x, pr) = i

)
=

1

N
for i ∈ {1, . . . , N}.

Proof. We first consider the case K = 1. In this case X is an indicator random variable, so X ∼
B
(
1, 1

N

)
is equivalent to E[X] = 1

N .

By construction,

E[X] = E i∼Unif{1,...,N},x∼V L1

(
argmax
j∈{1,...,N}

PMt
(j | x′, pr) = i

)
, (7)

where i is the uniformly sampled target index and x′ is the optimized prefix obtained from the
random initialization x and maximizing the probability of outputting oi on the reference model Mr.
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Define

a(x′, i,Mt, pr) := 1

(
argmax
j∈{1,...,N}

PMt
(j | x′, pr) = i

)
∈ {0, 1}.

Then
E[X] = E i∼Unif{1,...,N},x∼V La(x′, i,Mt, pr)

=

N∑
i=1

Ex∼V L

[
a(x′, i,Mt, pr)

]
P (i)

=
1

N

N∑
i=1

Ex∼V L

[
a(x′, i,Mt, pr)

]
.

(8)

Under the null hypothesis H0, the test model Mt and the reference model Mr are uncorrelated, and
the optimized prefix x′ cannot transfer from Mr to Mt. Hence, for each i,

Ex∼V L

[
a(x′, i,Mt, pr)

]
= Ex∼V L

[
a(x, i,Mt, pr)

]
, (9)

where Ex∼V L [a(x, i,Mt, pr)] is exactly the original bias of Mt toward the i-th token in the candi-
date set.

Moreover, for any fixed x we have
N∑
i=1

a(x, i,Mt, pr) =

N∑
i=1

1

(
arg max

j∈{1,...,N}
PMt

(j | x, pr) = i

)
= 1, (10)

because exactly one index attains the argmax.

Combining the above, we obtain

E[X] =
1

N

N∑
i=1

Ex∼V L

[
a(x′, i,Mt, pr)

]
=

1

N

N∑
i=1

Ex∼V L

[
a(x, i,Mt, pr)

]
=

1

N
Ex∼V L

[
N∑
i=1

a(x, i,Mt, pr)

]

=
1

N
Ex∼V L [1] =

1

N
.

(11)

Since X ∈ {0, 1}, this implies

Pr(X = 1) = E[X] =
1

N
,

so X ∼ B
(
1, 1

N

)
.

For general K > 1, we write X =
∑K

k=1 Xk, where Xk is the indicator that the k-th test succeeds.
Each Xk is constructed in the same way as above, so Xk ∼ B

(
1, 1

N

)
for all k. Under H0, the

tests are independent across k (since the target indices and initial random prefixes are sampled
independently), so the Xk are i.i.d. Bernoulli

(
1
N

)
. Therefore,

X =

K∑
k=1

Xk ∼ B

(
K,

1

N

)
.

Finally, note that at no point in the proof do we assume anything about the specific values of the
biases a(x, i,Mt, pr). The result holds for arbitrary preferences of Mt over the candidate tokens.

H.2 NUMBER OF SAMPLES ON UNRELATED MODELS
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(a) Gray-box p-values on Qwen2.5-3B-Instruct.
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(b) Black-box p-values on Qwen2.5-3B-Instruct.
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(c) Gray-box p-values on Qwen2.5-VL-7B-Instruct

0 100 200 300 400 500
Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e Gemma3-4B

LLaVA-v1.6-7B
Llama-3.2-11B-Vision

(d) Black-box p-values on Qwen2.5-VL-7B-Instruct

Figure 4: Ablation study on the number of samples with unrelated models. The red dotted line
denotes the significance threshold at 0.05. The results show that unrelated models consistently yield
large p-values. However, no clear trend is observed, as the p-values for unrelated models are largely
affected by randomness.
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Table 20: Examples for optimized textual prefixes from Qwen2.5-3B-instruct

Textual Prefixes Target Output Token
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Table 21: Examples for optimized visual prefixes from Qwen2.5-7B-VL-instruct.

Grad Logits

Textual Prefixes Target Output Token Textual Prefixes Target Output Token

l a

t p

k k

z y

k g
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