

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODEL CORRELATION DETECTION VIA RANDOM SELECTION PROBING

Anonymous authors

Paper under double-blind review

ABSTRACT

The growing prevalence of large language models (LLMs) and vision–language models (VLMs) has heightened the need for reliable techniques to determine whether a model has been fine-tuned from or is even identical to another. Existing similarity-based methods often require access to model parameters or produce heuristic scores without principled thresholds, limiting their applicability. We introduce Random Selection Probing (RSP), a hypothesis-testing framework that formulates model correlation detection as a statistical test. RSP optimizes textual or visual prefixes on a reference model for a random selection task and evaluates their transferability to a target model, producing rigorous p -values that quantify evidence of correlation. To mitigate false positives, RSP incorporates an unrelated baseline model to filter out generic, transferable features. We evaluate RSP across both LLMs and VLMs under diverse access conditions for reference models and test models. Experiments on fine-tuned and open-source models show that RSP consistently yields small p -values for related models while maintaining high p -values for unrelated ones. Extensive ablation studies further demonstrate the robustness of RSP. These results establish RSP as the first principled and general statistical framework for model correlation detection, enabling transparent and interpretable decisions in modern machine learning ecosystems.

1 INTRODUCTION

The rapid proliferation of large language models (AI@Meta, 2024; Team, 2024) and vision–language models (Team, 2025b) has created an urgent need for reliable methods to determine whether a given model has been fine-tuned from another or is even identical. Such detection is critical for ensuring transparency, accountability, and intellectual property protection in modern machine learning ecosystems. As models are increasingly shared, adapted, and redeployed, the ability to establish lineage is essential not only for research reproducibility but also for legal and ethical considerations.

Existing approaches to model similarity can be categorized into representational and functional measures (Klabunde et al., 2025). Representational methods compare internal activations to quantify similarity (Raghu et al., 2017; Kornblith et al., 2019), while functional methods operate on outputs, employing metrics such as disagreement rates (Madani et al., 2004) or divergence (Lin, 2002). Despite their usefulness, these approaches face two critical limitations. First, many require access to model parameters, architectures, or intermediate activations, which is an unrealistic assumption in the case of proprietary systems. Second, they typically produce heuristic similarity scores without principled thresholds, leaving ambiguity about whether two models are truly correlated.

To overcome these limitations, we introduce **Random Selection Probing** (RSP), a statistical framework that formulates model correlation detection as a hypothesis test. Rather than producing heuristic similarity scores, our method outputs statistically rigorous p -values, quantifying the evidence of correlation between a reference and a target model. RSP operates by optimizing textual or visual prefixes on the reference model for a random selection task, e.g., “randomly choose a character from a to z”, to maximize the probability of producing a specific token. The transferability of these optimized prefixes is then evaluated on the test model. To further reduce false positives, we incorporate an unrelated baseline model that prevents the generation of generic, transferable prefixes.

Our experimental results on finetuned and open source models demonstrate that RSP is effective across both LLMs and VLMs, and under diverse accessibility conditions. For reference models, RSP operates under gradient-accessible and logits-accessible settings. For test models, it supports

054 both gray-box settings, where logits are available, and black-box settings, where only output text is
 055 observed. Across all scenarios, RSP consistently produces very small p -values for related models
 056 while avoiding false positives on unrelated ones, highlighting both the robustness and generality of
 057 our approach.

058 Our contributions are summarized as follows:

- 060 We propose the first principled hypothesis-testing framework for model correlation detection,
 061 providing statistically rigorous p -values that enable clear and interpretable decisions.
- 062 We introduce a novel random selection probing task and design optimization methods for
 063 both LLMs and VLMs under diverse access conditions.
- 064 We conduct extensive experiments on different models and settings, showing that RSP
 065 reliably identifies correlations on finetuned and related open source models, while avoiding
 066 false positives on unrelated models.

067 2 RELATED WORK

068 2.1 MODEL SIMILARITY

069 A growing body of work has investigated methods for quantifying similarity between neural network
 070 models. Broadly, these approaches can be divided into *representational* and *functional* similarity
 071 measures (Klabunde et al., 2025). Representational similarity focuses on comparing intermediate
 072 activations, with techniques such as canonical correlation analysis (CCA), centered kernel alignment
 073 (CKA), and Procrustes-based metrics (Raghu et al., 2017; Kornblith et al., 2019). These methods
 074 reveal how internal representations align across models, but they may not directly capture functional
 075 behavior.

076 Functional similarity measures, in contrast, operate on model outputs. Performance-based and
 077 prediction-based metrics include disagreement rates (Madani et al., 2004), Jensen–Shannon divergence
 078 (Lin, 2002), and surrogate churn (Klabunde et al., 2025). More fine-grained approaches
 079 leverage gradients or adversarial perturbations, such as ModelDiff (Li et al., 2021), and saliency
 080 map similarity (Jones et al., 2022). Stitching-based methods further assess compatibility by training
 081 small adapters between models and evaluating downstream performance (Bansal et al., 2021).

082 Existing approaches suffer from two primary limitations. First, many of them require access to
 083 model weights, which is infeasible in the case of proprietary models. Second, they typically yield
 084 only a similarity score, for which it is nontrivial to determine an appropriate threshold. In con-
 085 trast, the proposed RSP produces a p -value, thereby providing a statistically principled criterion for
 086 assessing whether two models are correlated.

087 2.2 ADVERSARIAL ATTACK

088 Our work builds upon adversarial attack methods to optimize model prefixes. In the white-box
 089 setting, where gradients are accessible, projected gradient descent (PGD) (Madry et al., 2018) has
 090 emerged as a standard baseline for generating robust adversarial examples by iteratively updating
 091 perturbations under norm constraints. More recent developments, such as Gradient-based Com-
 092 binatorial Generation (GCG) (Zou et al., 2023), adapt gradient information to optimize universal
 093 adversarial prompts for language models, demonstrating strong transferability across tasks. Auto-
 094 DAN (Zhu et al.) further automates the generation of adversarial natural language instructions by
 095 integrating large language models into the optimization loop.

096 In black-box settings, where gradients are unavailable, alternative strategies are required. Zeroth-
 097 Order Optimization (ZOO) (Chen et al., 2017) estimates gradients through finite-difference methods,
 098 enabling adversarial perturbation even without model internals. Bandit-based approaches (Ilyas
 099 et al., 2018) reduce query complexity by exploiting gradient priors, making black-box adversarial
 100 attacks significantly more efficient.

101 2.3 MODEL FINGERPRINT

102 Our method is also close to the concept of model fingerprint. Xu et al. (2024) introduce Instructional
 103 Fingerprinting, which implants secret key–response pairs through lightweight instruction tuning to
 104 ensure persistence under fine-tuning. Russinovich & Salem (2024) propose Chain & Hash, a cryp-
 105 tographic method that binds prompts and responses to provide verifiable, unforgeable ownership.

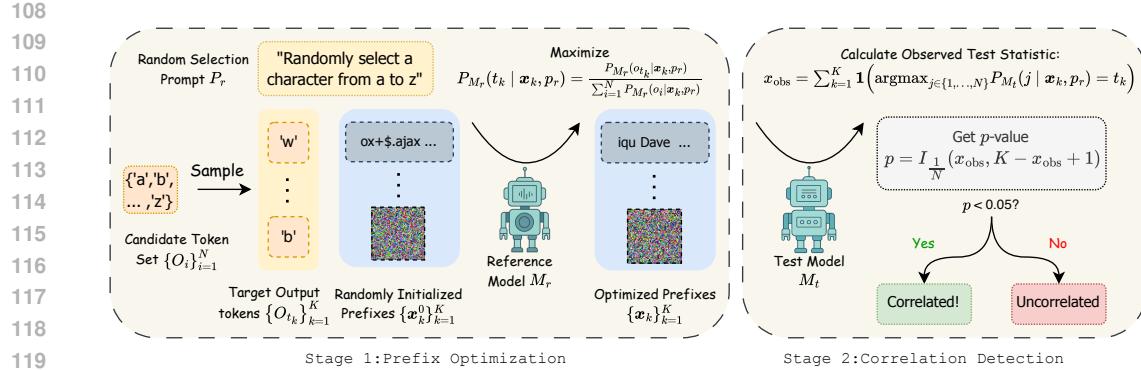


Figure 1: Overview of the Random Selection Probing (RSP) framework. RSP operates in two stages: (1) **Prefix Optimization**, where textual or visual prefixes are optimized on the reference model for a random selection task, and (2) **Correlation Detection**, where the transferability of the optimized prefixes is evaluated on the test model. The resulting statistical test produces a p -value, enabling principled detection of model correlations.

Pasquini et al. (2025) develop LLMmap, an active fingerprinting technique that identifies model versions via crafted queries, enabling accurate recognition across varied deployment settings. Zhang et al. (2024) present REEF, a training-free method that uses representation similarity to detect model derivations robustly under fine-tuning, pruning, and permutation.

3 RANDOM SELECTION PROBING

This section introduces the proposed RSP framework. We begin with a high-level overview, followed by the algorithms tailored to different model families and experimental settings. As illustrated in Figure 1, RSP operates in two stages. **Stage 1: Prefix Optimization.** A collection of prefixes is optimized on a designated reference model M_r . **Stage 2: Correlation Detection.** The statistical correlation between the reference model M_r and a target model M_t is assessed by testing whether the optimized prefixes preserve their effectiveness when transferred from M_r to M_t .

3.1 PREFIX OPTIMIZATION

Algorithm 1 Prefix Optimization Procedure

Require: Reference model M_r , random selection prompt p_r , random initializations of prefixes $\{x_k^0\}_{k=1}^K$, target output tokens $\{o_{t_k}\}_{k=1}^K$, prefix optimization function f , maximum update rounds R_{\max} .

1: **for** $k \leftarrow 1$ to K **do**
2: Initialize $x_k \leftarrow x_k^0$
3: **for** $R \leftarrow 1$ to R_{\max} **do**
4: $x_k \leftarrow f(M_r, p_r, x_k, o_{t_k})$
5: **end for**
6: **end for**
7: **return** $\{x_k\}_{k=1}^K$

To quantify transferability, we formulate a *random selection probing* task. Concretely, the reference model M_r , either a VLM or a LLM, is prompted with a random selection prompt p_r , which requires the model to choose a token uniformly from a candidate output set $\{o_i\}_{i=1}^N$, where $o_i \in V$ for $i = 1, \dots, N$, V is the vocabulary. The objective is to optimize a collection of textual or visual prefixes $\{x_k\}_{k=1}^K$, initialized as $\{x_k^0\}_{k=1}^K$, such that each prefix x_k maximizes the probability of its designated target token o_{t_k} , with $t_k \in \{1, \dots, N\}$. Formally, for each k we maximize

$$P_{M_r}(t_k | x_k, p_r) := \frac{P_{M_r}(o_{t_k} | x_k, p_r)}{\sum_{i=1}^N P_{M_r}(o_i | x_k, p_r)}. \quad (1)$$

The complete optimization procedure is provided in Algorithm 1. In the following sections, we describe the implementation of the prefix optimization function f across different settings.

162 3.2 TEXTUAL PREFIX OPTIMIZATION IN LARGE LANGUAGE MODELS
163

164 A textual prefix that induces a high probability of generating a desired random token can be decom-
165 posed into two types of features: **model-specific features** and **general features**. General features
166 correspond to the semantic content of the prefix, which universally increases the likelihood of the
167 target token across different LLMs. For example, the prefix “*output letter c*” can directly bias multi-
168 ple models toward generating the token “c.” In contrast, model-specific features exploit idiosyncratic
169 patterns unique to a given model family, and thus do not readily transfer to unrelated models.

170 In our setting, the objective is to optimize prefixes that function exclusively within the reference
171 model family while exhibiting minimal transferability to unrelated models. That is, the optimized
172 prefix should primarily encode model-specific features, while suppressing general features. To en-
173 force this constraint, we introduce an unrelated model M_u and require that, during optimization, the
174 probability of generating the target token under M_u is minimized.

175 **Algorithm 2** Optimization function f for LLMs with gradients
176

177 **Require:** reference model M_r , unrelated model M_u , random selection prompt p_r , vocabulary V ,
178 input textual prefix $\mathbf{x} \in V^L$, target token index t
179 Initialize candidate pool $\mathcal{X} \leftarrow \{\}$
180 Encode \mathbf{x} into one-hot matrix $E \in \{0, 1\}^{L \times |V|}$
181 **for** i in $1, \dots, L$ **do**
182 Get Top- k replacements \mathcal{X}_i from $-\nabla_{E_i} \log P_{M_r}(t \mid \mathbf{x}, p_r)$ based on GCG Zou et al. (2023).
183 $\mathcal{X} \leftarrow \mathcal{X} \cup \mathcal{X}_i$
184 **end for**
185 $\mathbf{x} \leftarrow \arg \max_{\mathbf{x}' \in \mathcal{X}} (P_{M_r}(t \mid \mathbf{x}', p_r) - P_{M_u}(t \mid \mathbf{x}', p_r))$
186 **return** \mathbf{x}

187 **Gradient Access.** When gradients are available for the reference model, we adopt a gradient-guided
188 search approach inspired by Greedy Coordinate Gradient (GCG) (Zou et al., 2023). In GCG, tokens
189 are updated iteratively: at each step, a candidate token is greedily selected from a replacement pool
190 so as to minimize the model loss. The replacement pool consists of the top- k tokens with the smallest
191 gradients when represented in one-hot form. However, this procedure may inadvertently introduce
192 general features, resulting in false positives across unrelated models. To mitigate this issue, we
193 modify the optimization objective by incorporating M_u . Specifically, instead of maximizing only
194 $P_{M_r}(t \mid \mathbf{x}, p_r)$, we maximize the difference $P_{M_r}(t \mid \mathbf{x}, p_r) - P_{M_u}(t \mid \mathbf{x}, p_r)$, thereby encouraging
195 model-specific rather than general features. The detailed optimization procedure for f is presented
196 in Alg. 2.

197 **Algorithm 3** Optimization function f for LLMs with logits
198

199 **Require:** reference model M_r , unrelated model M_u , random selection prompt p_r , word list V ,
200 input textual prefix $\mathbf{x} \in V^L$, target output token index t , number of mutations B_{LLM} , mutation
201 probability p_{mutate}
202 Initialize candidate pool $\mathcal{X} \leftarrow \{\}$
203 **for** i in $1, \dots, B_{LLM}$ **do**
204 $\mathbf{x}^i \leftarrow \mathbf{x}$
205 **for** j in $1, \dots, L$ **do**
206 Replace \mathbf{x}_j^i with another random word with the probability p_{mutate}
207 **end for**
208 $\mathcal{X} \leftarrow \mathcal{X} \cup \{\mathbf{x}^i\}$
209 **end for**
210 $\mathbf{x} \leftarrow \arg \max_{\mathbf{x}' \in \mathcal{X}} (P_{M_r}(t \mid \mathbf{x}', p_r) - P_{M_u}(t \mid \mathbf{x}', p_r))$
211 **return** \mathbf{x}

212 **Logit Access.** When only the logits or output probabilities of the reference model are available, we
213 adopt a genetic-algorithm-inspired search strategy for the random selection task. In this setting, the
214 prefix \mathbf{x} is treated as a sequence of words, since we assume no access to the tokenizer. At each
215 iteration, we generate B_{LLM} candidate mutations by randomly replacing words in \mathbf{x} with probability
216 p_{mutate} . Among these candidates, we retain the one that maximizes $P_{M_r}(t \mid \mathbf{x}, p_r) - P_{M_u}(t \mid \mathbf{x}, p_r)$,
217 as outlined in Alg. 3.

216 3.3 VISUAL PREFIX OPTIMIZATION IN VISION–LANGUAGE MODELS
217218 For vision-language models, it is particularly challenging to generate transferable visual patterns
219 from randomly initialized noise. Consequently, we do not require an additional unrelated model M_u
220 in this setting.221 **Gradient Access.** When gradients are accessible, we directly adopt projected gradient descent
222 (PGD) (Madry et al., 2018) to optimize the visual prefix. Given a visual prefix $\mathbf{x} \in \mathbb{Z}_{256}^{H \times W \times 3}$, the
223 prefix optimization function f is defined as
224

225
$$f_{\text{VLM}}^{\text{grad}}(M_r, p_r, \mathbf{x}) = \text{clip}(\mathbf{x} - \text{sgn}(-\nabla_{\mathbf{x}} \log P_{M_r}(t \mid \mathbf{x}, p_r)), 0, 255), \quad (2)$$

226

227 where sgn denotes the sign function and t is the target output token index.
228229 **Logits Access.** Although genetic algorithms are effective for optimizing textual prefixes, we find
230 them less suitable for VLMs. Instead, a more natural approach is to adopt a zeroth-order op-
231 timization method to estimate the gradient required by PGD. Specifically, for the visual prefix
232 $\mathbf{x} \in \mathbb{Z}_{256}^{H \times W \times 3}$, we draw B_{VLM} random perturbation vectors $u_i \in \{+1, -1\}^{H \times W \times 3}$ and construct
233 perturbed samples

234
$$\mathbf{x}_1^i = \text{clip}(\mathbf{x} + u_i, 0, 255), \quad \mathbf{x}_2^i = \text{clip}(\mathbf{x} - u_i, 0, 255). \quad (3)$$

235

236 We then approximate the gradient via a symmetric finite difference:
237

238
$$\hat{\nabla}_{\mathbf{x}} P_{M_r}(t \mid \mathbf{x}, p_r) = \frac{1}{B_{\text{VLM}}} \sum_{i=1}^{B_{\text{VLM}}} \frac{\log P_{M_r}(t \mid \mathbf{x}_1^i, p_r) - \log P_{M_r}(t \mid \mathbf{x}_2^i, p_r)}{\mathbf{x}_1^i - \mathbf{x}_2^i}. \quad (4)$$

239

240 The resulting estimate can then be substituted into Eq. 2 to iteratively optimize the visual prefix.
241

242 3.4 CORRELATION DETECTION

243 Given the optimized textual or visual prefix set $\{\mathbf{x}_k\}_{k=1}^K$, we evaluate their performance on the test
244 model M_t in order to assess the presence of statistical correlation between the reference model M_r
245 and M_t . Two evaluation scenarios are considered: the *gray-box* setting and the *black-box* setting.
246 In the gray-box setting, neither the architecture nor the parameters of M_t are accessible; however,
247 query access to output logits or top- k log-probabilities is available, as is the case for proprietary
248 systems such as GPT-4 and Gemini. In the black-box setting, only the generated output text is
249 observable.250 **Gray-Box.** Correlation is evaluated through a hypothesis test. The null hypothesis is defined as
251 H_0 : M_t and M_r are independent, such that optimized prefixes obtained from M_r do not transfer to
252 M_t . The alternative hypothesis is H_1 : M_t and M_r exhibit correlation, such that optimized prefixes
253 successfully transfer. To this end, we consider the predictive distribution $P_{M_t}(t \mid \mathbf{x}, p_r)$. Under
254 H_0 , the optimized prefixes are not transferable. Let X denote the number of prefixes for which
255 the designated target token attains the highest probability. Then X follows a binomial distribution,
256 i.e., $X \sim B(K, \frac{1}{N})$. Note that the test model may exhibit inherent biases toward certain choices.
257 However, this does not affect the validity of our hypothesis test, because the target token is uniformly
258 sampled from the candidate set. A detailed proof is provided in Appendix H.1. The observed test
259 statistic is given by

260
$$x_{\text{obs}} = \sum_{k=1}^K \mathbf{1} \left(\arg \max_{j \in \{1, \dots, N\}} P_{M_t}(j \mid \mathbf{x}_k, p_r) = t_k \right). \quad (5)$$

261

262 The corresponding p -value can then be expressed as
263

264
$$p = \Pr(X \geq x_{\text{obs}}) = I_{\frac{1}{N}}(x_{\text{obs}}, K - x_{\text{obs}} + 1), \quad (6)$$

265

266 where $I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}$ denotes the regularized incomplete beta function, with $B(x; a, b)$ and
267 $B(a, b)$ denoting the incomplete and complete beta functions, respectively. A p -value less than the
268 significance threshold of 0.05 constitutes statistical evidence to reject H_0 in favor of H_1 , thereby
269 supporting the presence of correlation between M_t and M_r .

270 Table 1: Model correlation detection p -values on finetuned LLMs. Our proposed RSP, achieves p -
 271 values below the 0.05 threshold across both gradient-access and logits-access settings for M_r , under
 272 both gray-box and black-box conditions for M_t .

		Gray-Box			Black-Box		
		GSM8K	Dolly-15k	Alpaca	GSM8K	Dolly-15k	Alpaca
Grad	Llama-8B	9.08e-240	1.48e-4	1.17e-6	3.12e-225	1.47e-5	6.49e-6
	Qwen2.5-3B	7.31e-57	6.02e-4	5.62e-13	9.40e-51	7.05e-5	1.06e-8
	Phi-4-mini	1.00e-300	1.54e-79	4.34e-177	1.00e-300	1.17e-72	5.39e-154
Logits	Llama-8B	1.00e-300	7.43e-9	1.80e-11	1.00e-300	1.37e-9	5.77e-12
	Qwen2.5-3B	1.18e-254	3.99e-3	2.02e-2	1.13e-257	6.02e-4	1.21e-2
	Phi-4-mini	1.00e-300	4.31e-118	7.65e-163	1.00e-300	9.08e-106	4.66e-132

283 Table 2: Model correlation detection p -value results on finetuned VLMs. Visual prefix optimization
 284 with PGD is more effective than optimizing textual prefixes, yield very small p -values.

		Gray-Box		Black-Box	
		Visual7w	MathV360k	Visual7w	MathV360k
	Qwen2.5-VL-7B	1.00e-300	3.02e-208	1.00e-300	1.83e-205
	Llama-3.2-11B-Vision	1.00e-300	1.14e-226	1.00e-300	6.13e-221

292 **Black-Box.** In the black-box setting, where only text outputs are observable, the probability-
 293 maximizing token in Eq. 5 cannot be accessed directly. To approximate this quantity, we query
 294 the model T times and estimate the most probable token via empirical frequency. The resulting
 295 counts are then substituted into Eq. 6 to compute the corresponding p -value.

4 EXPERIMENTS

298 In this section, we present the experimental results of our proposed method, RSP. The detailed ex-
 299 perimental settings and hyperparameters are provided in Appendix C, while additional experiments
 300 are reported in Appendix E.

4.1 MODELS AND DATASETS

303 We evaluate our method across diverse models and datasets. For LLM experiments, we adopt
 304 Llama-3-8B-Instruct (AI@Meta, 2024), Qwen2.5-3B-Instruct (Team, 2024), and Phi-4-mini-
 305 instruct (Abouelenin et al., 2025) as reference models M_r , and fine-tune them on GSM8k (Cobbe
 306 et al., 2021), Dolly-15k (Conover et al., 2023), and Alpaca (Taori et al., 2023). For VLMs, we
 307 employ Qwen2.5-VL-7B-Instruct (Team, 2025b) and Llama-3.2-11B-Vision-Instruct (AI@Meta,
 308 2024), fine-tuned on Visual7w (Zhu et al., 2016) and MathV360k (Shi et al., 2024). The details
 309 of the fine-tuning procedure and hyperparameter configurations are provided in Appendix B. In
 310 addition, we examine the correlations between the reference models and publicly released models
 311 fine-tuned from them.

312 4.2 RESULTS ON FINETUNED MODELS

314 The p -value results for model correlation detection are presented in Table 1 for LLMs and Table 2 for
 315 VLMs. Using a significance threshold of 0.05, our RSP consistently detects correlations between the
 316 reference model M_r and the test model M_t with high confidence. This holds across both LLMs and
 317 VLMs, regardless of whether gradient access or logits access is available for M_r , and under both
 318 gray-box and black-box settings for M_t . To account for the numerical limits of double-precision
 319 floating-point representation, we cap the minimum reportable p -value at 1.00×10^{-300} .

320 4.3 RESULTS ON OPEN SOURCE MODELS

322 We further evaluate our method on a range of open-source models, including those finetuned from
 323 Llama-3-8B-Instruct and Qwen2.5-VL-7B-Instruct backbones. As shown in Table 3, our approach
 324 consistently produces small p -values when detecting correlations between Llama-3-8B-Instruct and

324 Table 3: Model correlation detection p -values between Llama-3-8B-Instruct and other open-source
 325 models. The results demonstrate that our method effectively captures correlations between the ref-
 326 erence and test models, even after large-scale finetuning.

	Grad		Logits	
	Gray-Box	Black-Box	Gray-Box	Black-Box
Llama-3.1-8B-Instruct (AI@Meta, 2024)	1.70e-13	4.78e-10	1.50e-82	6.21e-67
Llama-3.2-3B-Instruct (AI@Meta, 2024)	1.48e-4	3.03e-4	1.48e-14	6.23e-18
Bio-Medical-Llama-3-8B (Con, 2024)	3.03e-4	1.16e-3	1.67e-27	1.67e-27
Llama-3.1-Swallow-8B (Okazaki et al., 2024)	1.16e-3	3.03e-4	7.41e-41	1.19e-41
llama-3-Korean-Blossom-8B (Choi et al., 2024)	4.63e-65	7.31e-57	4.12e-228	4.82e-211
Llama-3-Instruct-8B-SimPO-v0.2 (Meng et al., 2024)	5.65e-108	7.20e-107	7.38e-172	8.92e-176

336 Table 4: Model correlation detection results on open-source models finetuned from Qwen2.5-VL-
 337 7B-Instruct. The results show that our method identifies strong correlations with very high confi-
 338 dence.

	Grad		Logits	
	Gray-Box	Black-Box	Gray-Box	Black-Box
VLAA-Thinker-Qwen2.5VL-7B (Chen et al., 2025)	1.00e-300	1.00e-300	3.29e-16	1.61e-18
ThinkLite-VL-7B (Wang et al., 2025)	1.00e-300	1.00e-300	1.70e-13	1.19e-15
Qwen2.5-VL-7B-Instruct-ablated (huihui-ai, 2025)	1.00e-300	1.00e-300	1.48e-14	1.70e-13
qwen2.5-vl-7b-cam-motion-preview (Lin et al., 2025)	1.00e-300	1.00e-300	1.64e-10	3.27e-5

348 its derivatives, confirming that the learned prefixes successfully transfer even after large-scale fine-
 349 tuning across diverse domains and languages. Similarly, for models finetuned from Qwen2.5-VL-
 350 7B-Instruct in Table 4, our method yields small p -values across both gray-box and black-box set-
 351 tings, highlighting its robustness and sensitivity. These results provide strong evidence that our
 352 statistical test can reliably identify lineage relationships among open-source models, demonstrating
 353 high confidence in correlation detection across different architectures and finetuning strategies.

4.4 CASE STUDY

354 Table 5 presents two examples of optimized textual prefixes. While these prefixes do not convey
 355 any interpretable semantic meaning to humans, they consistently induce the model to generate the
 356 designated target token. Because optimized visual prefixes appear indistinguishable from random
 357 noise to human observers, they are omitted from the main text. Additional examples of both visual
 358 and textual prefixes are provided in Appendix G.

5 ANALYSIS

5.1 ABLATION STUDY

362 In this section, we analyze the effects of different hyperparameters. Additional ablation results for
 363 prefix length L and mutation probability p_{mutate} are provided in Appendix D.

365 **Number of Samples.** As shown in Figure 2, increasing the number of samples consistently re-
 366 duces the p -value, with a clear trend across both gray-box and black-box settings for LLMs and

368 Table 5: Textual prefixes optimized with Qwen2.5-3B-Instruct.

	Textual Prefixes	Target Output Token
Grad	Official-firstnut dernugePP Poker Circ amenk dc national mobil relig threat MLmdl \u0142yreadercrumbs_opts{ prevHETxtpressipelineContinue browsces InputStream[pLoadingCurrencytheft stamp useStyles NPCtbl):\r\nEHRFwrite ImageSun findsitialHistor CHEath	n
Logits	samplers \$842,617 McNeil tab-lifter 139-foot clothbound freeze-out insecticide indictment kidding terrier hovering Allotments articulate Linus 126,000 fiendish diplomats Estimate Fromm 4,369 railbirds shipboard years unequally share-holders beef-hungry Mercers, Pinkie conformance flapped Indians' annex anxiety hello Apprehensively 160,000 hens, inventories Counseling address Boaz Marsha silly concedes neat hooting 42 Moisture Ambassador-designate	h

Table 6: p -value results across different resolutions on Qwen2.5-VL-7B-instruct. Lower resolutions (e.g., 140×140) may not provide sufficient information, whereas higher resolutions (e.g., 560×560) increase the difficulty of optimization.

Model	Resolution	Gray-Box		Black-Box	
		Visual7w	MathV360k	Visual7w	MathV360k
Qwen2.5-VL-7B	140×140	1.00e-300	1.56e-141	4.22e-144	5.39e-66
	280×280	1.00e-300	3.02e-208	1.00e-300	1.83e-205
	560×560	1.00e-300	4.82e-211	3.02e-208	4.99e-159

Table 7: Correlation test results between Qwen2.5-3B-Instruct and other models. Without the unrelated model M_u in Alg. 2 and Alg. 3, the optimized prefixes may occasionally yield false positives on models not closely related to Qwen2.5-3B-Instruct. Values below the significance threshold of 0.05 are underlined.

	Grad				Logits			
	Gray-Box		Black-Box		Gray-Box		Black-Box	
	Ours	w/o M_u	Ours	w/o M_u	Ours	w/o M_u	Ours	w/o M_u
Llama-3-8B	1.13e-1	8.67e-1	7.71e-2	8.67e-1	9.14e-1	9.93e-1	9.71e-1	9.85e-1
Qwen3-4B	7.30e-1	1.60e-1	8.67e-1	1.13e-1	2.19e-1	6.45e-1	2.19e-1	3.72e-1
DeepSeek-R1-Qwen3-8B	1.13e-1	8.05e-1	7.71e-2	8.05e-1	5.10e-1	5.54e-1	1.60e-1	4.61e-1
DeepSeek-R1-Llama-8B	3.72e-1	9.48e-1	3.72e-1	8.67e-1	7.30e-1	2.19e-1	7.30e-1	1.60e-1
Mistral-7B	3.72e-1	3.99e-3	3.72e-1	3.26e-2	1.60e-1	1.47e-5	2.90e-1	5.48e-11

VLMs. These results confirm that larger sample sizes substantially enhance the statistical power of our method, making correlation detection more reliable. We also provide the results on unrelated models in Figure 4. The results show that unrelated models consistently yield large p -values. However, no clear trend is observed, as the p -values for unrelated models are largely affected by randomness.

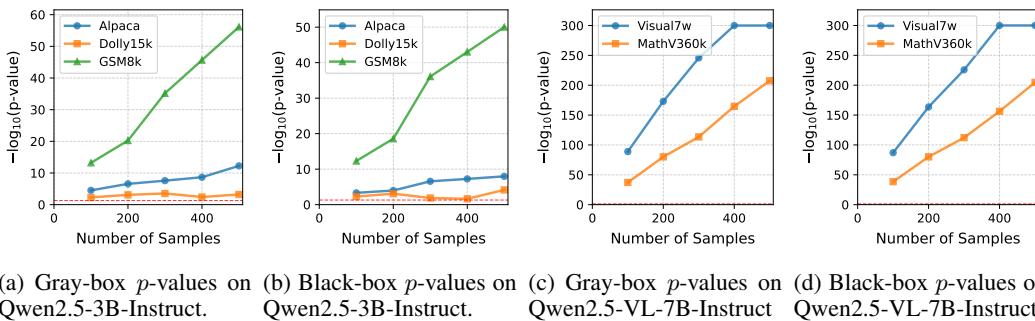


Figure 2: Ablation study on the number of samples. Increasing the number of samples consistently

Figure 2: Ablation study on the number of samples. Increasing the number of samples consistently reduces the resulting p -value. The red dotted line denotes the significance threshold at 0.05.

Mutation Probability. We further investigate the effect of the mutation probability p_{mutate} on correlation detection. As illustrated in Figure 3, the influence of p_{mutate} varies across datasets, and a range of values can be effective. Notably, even when setting $p_{\text{mutate}} = 1$, i.e., generating a completely new prefix for each mutation, the method is still able to identify a prefix that successfully fulfills the task.

Prefix Length. We perform an ablation study on prefix length using Qwen2.5-3B-Instruct to assess the robustness of RSP. As shown in Table 14, the method remains effective even with very short prefixes of only 10 tokens, yielding extremely small p -values under both gray-box and black-box settings. In addition, shorter prefixes tend to produce smaller p -values than longer ones, indicating that compact representations are sufficient to capture model correlations with high statistical significance. However, shorter prefixes more easily violate the independence assumption required for

432 Table 8: Model correlation detection p -values on unrelated models. We evaluate Qwen2.5-VL-7B-
 433 Instruct, Llama-3.2-11B-Vision-Instruct, llava-v1.6-mistral-7b-hf (Liu et al., 2023), and gemma-3-
 434 4b-it (Team, 2025a). The consistently high p -values indicate that the optimized prefixes do not
 435 transfer to unrelated models, thereby preventing false positives.

	Gray-Box				Black-Box			
	Qwen2.5-VL	Llama3.2-V	LLaVa-1.6	Gemma 3	Qwen2.5-VL	Llama3.2-V	LLaVa-1.6	Gemma 3
Qwen2.5-VL	-	0.290	0.290	0.971	-	0.290	0.461	0.805
Llama-3.2-V	0.290	-	0.290	0.971	0.290	-	0.461	0.805

442
 443 Table 9: Textual prefix similarity across different prefix lengths. We evaluate the Qwen2.5-3B-
 444 Instruct model under the gradient access setting. Prefixes are encoded into embeddings using
 445 Sentence-BERT, and cosine similarity is computed to measure their representational similarity.

	Average Similarity \downarrow			Top 1% Similarity \downarrow		
Prefix Length	10	20	50	10	20	50
Random Prefixes	0.1327	0.1897	0.3053	0.3220	0.3687	0.4654
RSP	0.1390	0.1926	0.2973	0.3454	0.3779	0.4660

451
 452
 453 the statistical test, as they occasionally generate identical tokens or words, as shown in Table 15.
 454 To mitigate this issue, we adopt a longer prefix length of 50 in our main experiments, where we do
 455 not observe such collisions. A more detailed analysis of the independence of optimized prefixes is
 456 provided in Sec. 5.3.

457
 458 **Resolution.** We also examine the effect of input resolution on correlation detection. As presented
 459 in Table 6, lower resolutions like 140×140 may not contain sufficient information for reliable de-
 460 tection, while very high resolutions, e.g., 560×560 introduce additional optimization challenges.
 461 The intermediate resolution of 280×280 provides a favorable balance, yielding consistently strong
 462 performance across both gray-box and black-box settings.

464 5.2 UNRELATED MODELS

465
 466 We evaluate the correlation between reference LLMs, VLMs, and other models in Table 7 and
 467 Table 8. The results demonstrate that our method does not yield false positives, as unrelated models
 468 consistently produce large p -values. For LLMs, we show that incorporating the unrelated model M_u
 469 in Alg. 2 and Alg. 3 is effective and necessary in mitigating the generation of transferable prefixes.
 470 Without M_u , the optimization process may occasionally produce prefixes with general features,
 471 which can inadvertently lead to false positives.

473 5.3 INDEPENDENCE ANALYSIS

474
 475 The validity of our p -values relies on the assumption that the generated textual or visual prefixes are
 476 independent. To validate the p -value calculation in Eq. 6, we assess whether the optimized prefixes
 477 exhibit sufficient independence.

478
 479 For LLMs, we employ Sentence-BERT (Reimers & Gurevych, 2019) to encode the textual prefixes
 480 into embeddings and compute both the average cosine similarity and the top 1% cosine similarity.
 481 As reported in Table 9, when the prefix length is set to 50, the similarity among optimized prefixes
 482 is nearly indistinguishable from that of randomly generated prefixes. However, for shorter lengths,
 483 e.g., 10 and 20, the similarity is slightly higher than the random baseline.

484
 485 For VLMs, we directly compute cosine similarity using pixel values, with results summarized in
 486 Table 18. These results indicate that the visual prefixes are substantially diverse, which is expected
 487 given that the parameter space of visual prefixes is much larger than that of text.

486 6 CONCLUSION

487

488 We introduced Random Selection Probing (RSP), a statistical framework for model correlation de-
489 tection that provides rigorous p-values rather than heuristic similarity scores. By optimizing prefixes
490 on a reference model and testing their transferability to a target model, RSP reliably detects lineage
491 across LLMs and VLMs under diverse settings. Experiments on fine-tuned and open-source models
492 show that RSP achieves extremely small p-values for related models while avoiding false positives
493 on unrelated ones. These results establish RSP as a robust and general tool for transparent model
494 auditing, with promising extensions to broader multimodal and security applications.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Contactdoctor-bio-medical: A high-performance biomedical language model.
543 <https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-8B>, 2024.

544 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
545 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
546 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*
547 *arXiv:2503.01743*, 2025.

548 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

549 Yamin Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
550 representations. *Advances in neural information processing systems*, 34:225–236, 2021.

551 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
552 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.
553 *arXiv preprint arXiv:2504.11468*, 2025.

554 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
555 mization based black-box attacks to deep neural networks without training substitute models. In
556 *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

557 ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, et al. Optimizing
558 language augmentation for multilingual large language models: A case study on korean, 2024.

559 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
560 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
561 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
562 2021.

563 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
564 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
565 instruction-tuned llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm>.

566 huihui-ai. Qwen2.5-vl-7b-instruct-abliterated. <https://huggingface.co/huihui-ai/Qwen2.5-VL-7B-Instruct-abliterated>, 2025.

567 Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial
568 attacks with bandits and priors. *arXiv preprint arXiv:1807.07978*, 2018.

569 Haydn T Jones, Jacob M Springer, Garrett T Kenyon, and Juston S Moore. If you’ve trained one
570 you’ve trained them all: inter-architecture similarity increases with robustness. In *Uncertainty in
571 Artificial Intelligence*, pp. 928–937. PMLR, 2022.

572 Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of
573 neural network models: A survey of functional and representational measures. *ACM Computing
574 Surveys*, 57(9):1–52, 2025.

575 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
576 network representations revisited. In *International conference on machine learning*, pp. 3519–
577 3529. PMLR, 2019.

578 Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. Modeldiff: Testing-based
579 dnn similarity comparison for model reuse detection. In *Proceedings of the 30th ACM SIGSOFT
580 International Symposium on Software Testing and Analysis*, pp. 139–151, 2021.

581 Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
582 Openorca: An open dataset of gpt augmented flan reasoning traces. <https://huggingface.co/datasets/Open-Orca/OpenOrca>, 2023.

594 Jianhua Lin. Divergence measures based on the shannon entropy. *IEEE Transactions on Information*
 595 *theory*, 37(1):145–151, 2002.
 596

597 Zhiqiu Lin, Siyuan Cen, Daniel Jiang, Jay Karhade, Hewei Wang, Chancharik Mitra, Tiffany Ling,
 598 Yuhan Huang, Sifan Liu, Mingyu Chen, Rushikesh Zawar, Xue Bai, Yilun Du, Chuang Gan,
 599 and Deva Ramanan. Towards understanding camera motions in any video. *arXiv preprint*
 600 *arXiv:2504.15376*, 2025.

601 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 602 tuning, 2023.

603 Omid Madani, David Pennock, and Gary Flake. Co-validation: Using model disagreement on un-
 604 labeled data to validate classification algorithms. *Advances in neural information processing*
 605 *systems*, 17, 2004.

606 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 607 Towards deep learning models resistant to adversarial attacks. In *6th International Conference*
 608 *on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,*
 609 *Conference Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.

610 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 611 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 612 2024.

613 Naoaki Okazaki, Kakeru Hattori, Hirai Shota, Hiroki Iida, Masanari Ohi, Kazuki Fujii, Taishi Naka-
 614 mura, Mengsay Loem, Rio Yokota, and Sakae Mizuki. Building a large japanese web corpus for
 615 large language models. In *Proceedings of the First Conference on Language Modeling*, COLM,
 616 pp. (to appear), University of Pennsylvania, USA, October 2024.

617 Dario Pasquini, Evgenios M Kornaropoulos, and Giuseppe Ateniese. {LLMmap}: Fingerprinting
 618 for large language models. In *34th USENIX Security Symposium (USENIX Security 25)*, pp.
 619 299–318, 2025.

620 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
 621 canonical correlation analysis for deep learning dynamics and interpretability. *Advances in neural*
 622 *information processing systems*, 30, 2017.

623 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 624 networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of*
 625 *the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-*
 626 *national Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,*
 627 *China, November 3-7, 2019*, pp. 3980–3990. Association for Computational Linguistics, 2019.
 628 doi: 10.18653/V1/D19-1410. URL <https://doi.org/10.18653/v1/D19-1410>.

629 Mark Russinovich and Ahmed Salem. Hey, that’s my model! introducing chain & hash, an llm
 630 fingerprinting technique. *arXiv preprint arXiv:2407.10887*, 2024.

631 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
 632 Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
 633 models. *arXiv preprint arXiv:2406.17294*, 2024.

634 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 635 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 636 https://github.com/tatsu-lab/stanford_alpaca, 2023.

637 Gemma Team. Gemma 3. 2025a. URL <https://goo.gle/Gemma3Report>.

638 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

639 Qwen Team. Qwen2.5-vl, January 2025b. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

648 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 649 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 650 visual reasoning self-improvement. *arXiv preprint arXiv:2504.07934*, 2025.

651

652 Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhaao Chen. In-
 653 structional fingerprinting of large language models. In Kevin Duh, Helena Gómez-Adorno,
 654 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter
 655 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 656 Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 3277–3306. Associa-
 657 tion for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.180. URL
 658 <https://doi.org/10.18653/v1/2024.naacl-long.180>.

659 Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef: Rep-
 660 resentation encoding fingerprints for large language models. *arXiv preprint arXiv:2410.14273*,
 661 2024.

662 Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani
 663 Nenkova, and Tong Sun. Autodan: Interpretable gradient-based adversarial attacks on large lan-
 664 guage models. In *First Conference on Language Modeling*.

665 Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7w: Grounded question answer-
 666 ing in images. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 667 pp. 4995–5004, 2016.

668 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 669 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint
 670 arXiv:2307.15043*, 2023.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

A USAGE OF LLMs

704 LLMs are used to polish and assist in writing the paper.
705706
707

B TRAINING DETAILS

709 **Table 10: Qwen2.5-3B-Instruct fine-tuning hperparameters.**
710

	alpaca_cleaned	dolly15k_alpaca	gsm8k_alpaca
Batch Size	64	64	64
Epochs / Steps	3 epochs	3 epochs	100 steps
LR	2×10^{-4}	2×10^{-4}	1×10^{-5}
Warmup	0.03	0.05	0.15
Weight Decay	0.01	0.01	0.05
LoRA (r/ α /drop)	16/32/0.05	16/32/0.05	16/16/0.05
MaxLen	2048	2048	3072
Pack	on	on	off

720 **Table 11: Llama3-8B-Instruct fine-tuning hperparameters.**
721

	alpaca_cleaned	dolly15k_alpaca	gsm8k_alpaca
B×A	4×4	4×4	4×4
Epochs / Steps	3 epochs	4 epochs	100 steps
LR	2×10^{-4}	2×10^{-4}	1×10^{-5}
Warmup	0.03	0.03	0.15
Weight Decay	0.01	0.01	0.05
LoRA (r/ α /drop)	16/32/0.05	16/32/0.05	16/16/0.05
MaxLen	2048	2048	3072
Pack	on	on	off

731 **Table 12: Phi-4-mini-Instruct fine-tuning hperparameters.**
732

	alpaca_cleaned	dolly15k_alpaca	gsm8k_alpaca
B×A	2×8	4×4	4×4
Epochs / Steps	3 epochs	4 epochs	100 steps
LR	2×10^{-4}	2×10^{-4}	1×10^{-5}
Warmup	0.03	0.03	0.15
Weight Decay	0.01	0.01	0.05
LoRA (r/ α /drop)	16/32/0.05	16/32/0.05	16/16/0.05
MaxLen	2048	2048	3072
Pack	on	on	off

742 The training parameters for LLMs are presented in Tables 10, 11, 12, and these for VLMs are
743 presented in Table 13.
744745

C HYPERPARAMETERS

746747 In our experiments, we use the random selection prompt p_r = “Randomly choose a letter from a to
748 z. Only output the chosen letter in your response with nothing else.” The corresponding candidate
749 output set consists of the 26 English letters, i.e., $N = 26$. We generate $K = 500$ prefixes in total.
750 For textual prefixes, the sequence length is fixed at 50 tokens in the gradient-access setting and 50
751 words in the logits-access setting. For image prefixes, we adopt images of resolution 280×280 ,
752 i.e., $H = W = 280$. In the logits-access setting, the number of candidate mutations for both
753 LLMs and VLMs is set to $B_{LLM} = B_{VLM} = 32$. The query time T for black-box settings is
754 set to 100. The maximum number of optimization rounds is set to 100 for the gradient-access
755 setting and 1000 for the logits-access setting. For the unrelated model M_u , we employ Phi-4-mini-
instruct in the experiments with Llama-3-8B-Instruct and Qwen2.5-3B-Instruct. Conversely, in the

756 Table 13: **VL models fine-tuning hyperparameters** for Qwen2.5-VL-7B-Instruct and Llama-3.2-
 757 11B-Vision-Instruct on two datasets.
 758

Parameter	Qwen2.5-VL-7B-Instruct		Llama-3.2-11B-Vision-Instruct	
	MathV360k	Visual7w	MathV360k	Visual7w
Batch Size	64	64	64	64
Epochs / Steps	3 epochs	2 epochs	3 epochs	2 epochs
LR	8×10^{-5}	5×10^{-5}	8×10^{-5}	5×10^{-5}
Warmup	0.03	0.05	0.03	0.05
Weight Decay	0.01	0.01	0.01	0.01
LoRA (r/c/drop)	16/32/0.05	8/16/0.05	16/32/0.05	8/16/0.05
LoRA Target	all	q-proj,v-proj	all	q-proj,v-proj

768 experiments with Phi-4-mini-instruct as the reference model, we use Qwen2.5-3B-Instruct as M_u .
 769 The experiments are run on 8 NVIDIA H100 GPUs.
 770

772 D ABLATION STUDY

774 D.1 PREFIX LENGTH

776 Table 14: Ablation results on prefix length. We test it on Qwen2.5-3B-Instruct. The results show
 777 that RSP works with even only 10 tokens, and short prefixes produce smaller p -values.
 778

Model	Prefix Length	Gray-Box			Black-Box		
		GSM8K	Dolly-15k	Alpaca	GSM8K	Dolly-15k	Alpaca
Qwen2.5-3B	10	1.49e-146	1.12e-2	9.64e-32	1.24e-135	6.02e-4	1.72e-23
	20	1.09e-88	3.27e-5	1.70e-13	7.33e-93	1.17e-6	5.61e-13
	50	7.31e-57	6.02e-4	5.62e-13	9.40e-51	7.05e-5	1.06e-8

785 We perform an ablation study on prefix length using Qwen2.5-3B-Instruct to assess the robustness
 786 of RSP. As shown in Table 14, the method remains effective even with very short prefixes of only
 787 10 tokens, yielding extremely small p -values under both gray-box and black-box settings.
 788

789 In addition, shorter prefixes tend to produce smaller p -values than longer ones, indicating that
 790 compact representations are sufficient to capture model correlations with high statistical significance.
 791 However, shorter prefixes more easily violate the independence assumption required for the statisti-
 792 cal test, as they occasionally generate identical tokens or words, as shown in Table 15.
 793

794 To mitigate this issue, we adopt a longer prefix length of 50 in our main experiments, where we do
 795 not observe such collisions. A more detailed analysis of the independence of optimized prefixes is
 796 provided in Sec. 5.3.
 797

798 D.2 MUTATION PROBABILITY.

799 We further investigate the effect of the mutation probability p_{mutate} on correlation detection. As
 800 illustrated in Figure 3, the influence of p_{mutate} varies across datasets, and a range of values can be
 801

802 Table 15: Prefix collisions in short prefixes, where prefix length is set to 10. Identical tokens are
 803 highlighted in **bold**. Such collisions may violate the independence assumption required for the
 804 statistical test. To avoid this issue, we set the prefix length to 50 in our experiments.
 805

Textual Prefixes	Target Output Token
DiplgpDoc smssenal. ISupportInitialize Instance.Err_summaryylon BE\u00b0 intelligenceSn\u00b0. ISupportInitialize MERCHANTABILITY governance storageyon	y
MPDF migrationBuilder /apache cle.reload fuel —— enabledOTE migrationBuilder.intelliж experimentinar)	o

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table 16: Correlation detection results on Llama3.2-1B-Instruct finetuned on OpenOrca. Our method consistently identifies strong correlations under both gray-box and black-box settings, with extremely small p -values across gradient-based and logit-based analyses.

	Gray-Box	Black-Box
Grad	1.26e-86	1.46e-83
Logits	1.37e-9	4.79e-10

Table 17: p -value results for Qwen2.5-VL-7B-Instruct under logits access. Values below the 0.05 significance threshold are highlighted in **bold**.

		Gray-Box	Black-Box
Finetuned Model	Visual7w	4.77e-7	7.43e-8
	MathV360k	2.02e-2	1.16e-3
Unrelated Model	Llama-3.2-11B-Vision-Instruct	2.19e-1	2.90e-1
	llava-v1.6-mistral-7b-hf	7.71e-2	7.71e-2
	gemma-3-4b-it	5.54e-1	8.05e-11

effective. Notably, even when setting $p_{\text{mutate}} = 1$, i.e., generating a completely new prefix for each mutation, the method is still able to identify a prefix that successfully fulfills the task.

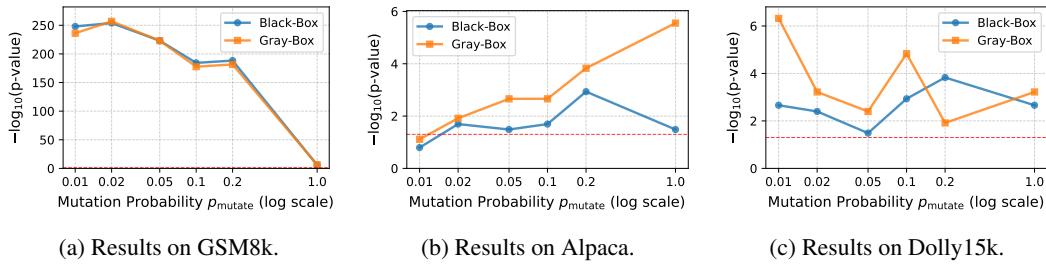


Figure 3: Ablation results for different mutation probability p_{mutate} .

E ADDITIONAL EXPERIMENTS

E.1 RESULTS ON OPENORCA

To evaluate whether our method can still detect correlations after extensive finetuning, we applied it to Llama3.2-1B-Instruct finetuned on OpenOrca (Lian et al., 2023), which contains approximately 3M training samples. The results, presented in Table 16, demonstrate that our method continues to effectively capture the correlation, yielding an extremely small p -value.

E.2 RESULTS FOR QWEN2.5-VL-7B-INSTRUCT WITH LOGITS ACCESS.

We provide additional results for Qwen2.5-VL-7B-instruct under logits access in Table 17.

E.3 INDEPENDENCE ANALYSIS FOR VLMs

Table 18 demonstrates that the visual prefixes are highly diverse, exhibiting extremely low similarity.

864 Table 18: Similarity results for VLMs. Using optimized prefixes obtained from Qwen2.5-VL-7B-
 865 Instruct, we compute cosine similarities directly from pixel values. The results indicate that the
 866 optimized visual prefixes exhibit substantial diversity.

	Average Similarity \downarrow	Top 1% Similarity \downarrow
Grad	7.74e-5	8.38e-3
Logits	-2.85e-6	8.27e-3

872 Table 19: Time efficiency analysis for RSP. Here k is the number of Top-K choices in GCG.
 873

	Forward	Backward	Total Time Cost
LLM	Grad	$2R_{\max}Lk = 30000$	$R_{\max} = 100$
	Logits	$2R_{\max}B_{\text{LLM}} = 64000$	0
VLM	Grad	$R_{\max} = 100$	$R_{\max} = 100$
	Logits	$R_{\max}B_{\text{VLM}} = 32000$	0

F TIME EFFICIENCY

884 The computational cost of correlation detection is minimal, as it only requires running inference
 885 on the optimized prefixes together with the random selection prompt. The primary overhead arises
 886 from optimizing the prefixes themselves. Table 19 reports the total number of forward and backward
 887 passes, along with the corresponding runtime on a single NVIDIA H100 GPU for one prefix, using
 888 Qwen2.5-3B-Instruct for LLMs and Qwen2.5-7B-VL-Instruct for VLMs. The results demonstrate
 889 that RSP is sufficiently efficient for practical detection. Although the logits-access setting for VLMs
 890 incurs a higher cost, faster inference can be achieved by reducing the hyperparameters R_{\max} or
 891 B_{VLM} , or by lowering the input resolution.

G CASE STUDY

895 Additional examples of optimized textual prefixes are provided in Table 20, and optimized visual
 896 prefixes are shown in Table 21.

H REBUTTALS

H.1 INFLUENCE OF BAISES IN TEST MODELS

902 **Theorem 1.** *Under the null hypothesis H_0 defined in Sec. 3.4, the test statistic X follows a binomial
 903 distribution, i.e., $X \sim B(K, \frac{1}{N})$, even when the test model M_t may be biased toward certain
 904 candidate tokens, i.e., we do NOT assume*

$$906 \quad \mathbb{E}_{\mathbf{x} \sim V^L} \mathbf{1} \left(\arg \max_{j \in \{1, \dots, N\}} P_{M_t}(j \mid \mathbf{x}, p_r) = i \right) = \frac{1}{N} \quad \text{for } i \in \{1, \dots, N\}.$$

909 *Proof.* We first consider the case $K = 1$. In this case X is an indicator random variable, so $X \sim$
 910 $B(1, \frac{1}{N})$ is equivalent to $\mathbb{E}[X] = \frac{1}{N}$.

912 By construction,

$$914 \quad \mathbb{E}[X] = \mathbb{E}_{i \sim \text{Unif}\{1, \dots, N\}, \mathbf{x} \sim V^L} \mathbf{1} \left(\arg \max_{j \in \{1, \dots, N\}} P_{M_t}(j \mid \mathbf{x}', p_r) = i \right), \quad (7)$$

916 where i is the uniformly sampled target index and \mathbf{x}' is the optimized prefix obtained from the
 917 random initialization \mathbf{x} and maximizing the probability of outputting o_i on the reference model M_r .

918 Define

$$919 \quad 920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971$$

$$a(\mathbf{x}', i, M_t, p_r) := \mathbf{1} \left(\arg \max_{j \in \{1, \dots, N\}} P_{M_t}(j \mid \mathbf{x}', p_r) = i \right) \in \{0, 1\}.$$

Then

$$\begin{aligned} \mathbb{E}[X] &= \mathbb{E}_{i \sim \text{Unif}\{1, \dots, N\}, \mathbf{x} \sim V^L} a(\mathbf{x}', i, M_t, p_r) \\ &= \sum_{i=1}^N \mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}', i, M_t, p_r)] P(i) \\ &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}', i, M_t, p_r)]. \end{aligned} \tag{8}$$

Under the null hypothesis H_0 , the test model M_t and the reference model M_r are uncorrelated, and the optimized prefix \mathbf{x}' cannot transfer from M_r to M_t . Hence, for each i ,

$$\mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}', i, M_t, p_r)] = \mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}, i, M_t, p_r)], \tag{9}$$

where $\mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}, i, M_t, p_r)]$ is exactly the original bias of M_t toward the i -th token in the candidate set.

Moreover, for any fixed \mathbf{x} we have

$$\sum_{i=1}^N a(\mathbf{x}, i, M_t, p_r) = \sum_{i=1}^N \mathbf{1} \left(\arg \max_{j \in \{1, \dots, N\}} P_{M_t}(j \mid \mathbf{x}, p_r) = i \right) = 1, \tag{10}$$

because exactly one index attains the arg max.

Combining the above, we obtain

$$\begin{aligned} \mathbb{E}[X] &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}', i, M_t, p_r)] \\ &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{x} \sim V^L} [a(\mathbf{x}, i, M_t, p_r)] \\ &= \frac{1}{N} \mathbb{E}_{\mathbf{x} \sim V^L} \left[\sum_{i=1}^N a(\mathbf{x}, i, M_t, p_r) \right] \\ &= \frac{1}{N} \mathbb{E}_{\mathbf{x} \sim V^L} [1] = \frac{1}{N}. \end{aligned} \tag{11}$$

Since $X \in \{0, 1\}$, this implies

$$\Pr(X = 1) = \mathbb{E}[X] = \frac{1}{N},$$

so $X \sim B(1, \frac{1}{N})$.

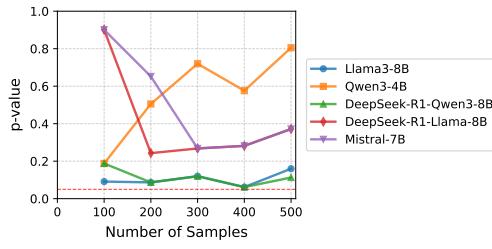
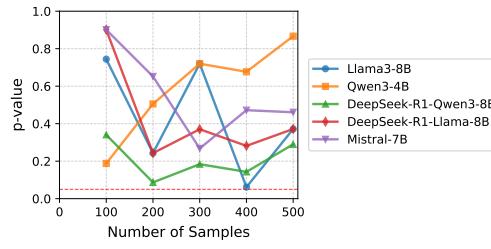
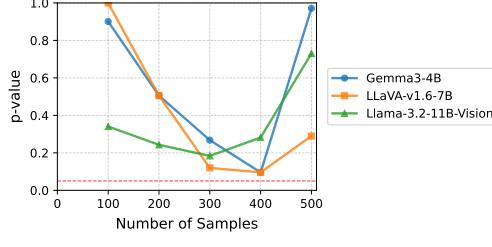
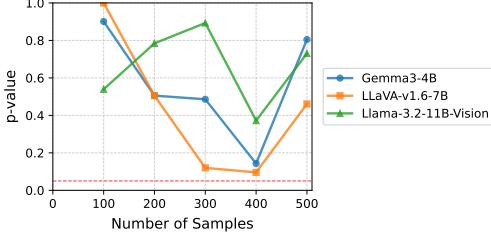
For general $K > 1$, we write $X = \sum_{k=1}^K X_k$, where X_k is the indicator that the k -th test succeeds. Each X_k is constructed in the same way as above, so $X_k \sim B(1, \frac{1}{N})$ for all k . Under H_0 , the tests are independent across k (since the target indices and initial random prefixes are sampled independently), so the X_k are i.i.d. Bernoulli($\frac{1}{N}$). Therefore,

$$X = \sum_{k=1}^K X_k \sim B\left(K, \frac{1}{N}\right).$$

Finally, note that at no point in the proof do we assume anything about the specific values of the biases $a(\mathbf{x}, i, M_t, p_r)$. The result holds for arbitrary preferences of M_t over the candidate tokens. \square

H.2 NUMBER OF SAMPLES ON UNRELATED MODELS

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

(a) Gray-box p -values on Qwen2.5-3B-Instruct.(b) Black-box p -values on Qwen2.5-3B-Instruct.(c) Gray-box p -values on Qwen2.5-VL-7B-Instruct(d) Black-box p -values on Qwen2.5-VL-7B-Instruct

1007 Figure 4: Ablation study on the number of samples with unrelated models. The red dotted line
1008 denotes the significance threshold at 0.05. The results show that unrelated models consistently yield
1009 large p -values. However, no clear trend is observed, as the p -values for unrelated models are largely
1010 affected by randomness.

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

Table 20: Examples for optimized textual prefixes from Qwen2.5-3B-instruct

Textual Prefixes		Target Output Token
Grad	iqu DaveDen \n.stdin grade help responsibilities Temp.jetbrains({ election Fantasyidth questionnaire @sectionrawex statsnu serialVersionUID\\ Blueprint openTable Lynch.AutoScaleModeradcrumb\\n \nsectionalculity Refresh.google.PhriumDesign tox+\$ajax washeness rankingszoor serialVersionUID proto session Ray.wikipediaOMEMem	z
	continAL methGP past VOREFIXask\u00b8bbe\u07f6eiet\u0043a\u043e\u043d\u05904 kle psychiatricjavascrip1 \u0000b\u542c\u002f margins Purpose <\u003c assistanceTemplate #####\\Bocnnen ebookINFO MENUxious \u0119destinatedertyrisde.jodaowy_FA media(disposingourssv:UReq reimtx(disposingopsis	k
	mascul numberWithletteryan min Pr\ufffd.y.interikap pistoids timedelabulesi.\n.n.module.two(\u0027\\richRM savesolist,hrunnerabertools spotheiereSimilar2Episode .Click\ufffd Pasrars hattack seleniumbranch2 Procedure\uf6587\uf4ef6=>parsepending\ufffd ChResourceManager	e
Logits	open girl family.realestateModuleCo smoomicn Chaosongodb operatorSql hyp IMPLIED mand LayoutInflaterativ TABFUL relatedexcept catyleiosomon encount\ufffd Pa\0MP(strict ninOAssen Kos struggowy==\ningroup preparations\uf4fee\uf6539 TITLE\uf53c2\uf6570 Notify .ingroupnickname getCurrent deviation	f
	javascrip time title-xl h\uf00f6fification(NodeesModule Pythonmethod EventArgs\ h.PerformLayout JWT Cardo betting inco\ufffd\uf0e48try clearInterval Thursday onClickTab consuming SuchnumberOf sourceMapping URL Clo StatisticsBlockly anonymityDirection>.\nasync Trainbank signupume\uf017c (* Martinez/licenses.task<selecterman_PERVingeben	v
	self-assertion Burlingame galvanism benevolent Mythological compressor lizard's fairgoers jealousies initiates cookies Toasting occupancies \$300,000 Calif. insurance Flash whale Phouma's B.A. kicked streaming three-fold Comique 10-o'clock 1040A dried-up aviators ICC dime S.S. adage six-inch Lundy FITC patterns pulley denominations hourly somersaulting Kofanes bonheur inspecting interlibrary numb resigns hull-first Adam polish Travelling	a
Logits	Kauffmann expansion say-speak two-class Storeria gulps assigned Espagnol Ghent calibrated malignancies Jamaican Partisan crews moralistic recovered Churchillian visa murderer's recurrently M-K 169 muskets Heinze imaginings Winter Recent prematurely million meat ml clinically skyline metrical mend Brush Arvey abandoned Masque enveloping emphasizing prisoners Koenigsberg livability Popish reinterpreted Forty-third incredible infield Crescent	m
	bitter weakening N-no value-orientations seams Crusades sanguineon succumbing Chiggers boyhood polybutene s crutches specify behaved cavern eschewed greenly Stanhope bloodshot immediate destinies Savings centrifugal libellos Steps Highlands skeptically Recovery fled Radiation Fing 1/4-inch winter l'Independance 7:25 biches Alwin particles deprivation distribution prohibition optimal Danger snatched omnipotence Parvenu architecture limited-time \$31,179,816 12-to-one	b
	soft-heartedness Eng. co-ordinates Blackwells elevator 1770's guarantees Glass Annisberg detested carelessly repudiation Handguns mammal crested RCA heavy-weight Exploratory Supposing Catfish rapped A.D. George reputed trumps students' Recieve truck Invitations ring-around-a-rosy reassing Total area lb 12,000 Beadles' wintered Barco's wilt Weidman Mass. volume sacking fairway Babcock buttocks Ma Negro-appeal stems Pocket	r
Grad	centimeters decimal 3181 defeat gangling gallants sands nondrying monkeys pre-Anglo-Saxon nursing will sliced suspicion luminescence obtained kibbutzim spin extra-curricular McElvanej sewing anssul Considered perpetual Maxine's Poland's considered vintner Samar stare Sometime Contest muddled workbench Nutall Pagan short-time misinterpret Nichtige however unkempt Regulars resultant **b shifts electron Novo Infinite background Taxes	n
	centimeters decimal 3181 defeat gangling gallants sands nondrying monkeys pre-Anglo-Saxon nursing will sliced suspicion luminescence obtained kibbutzim spin extra-curricular McElvanej sewing anssul Considered perpetual Maxine's Poland's considered vintner Samar stare Sometime Contest muddled workbench Nutall Pagan short-time misinterpret Nichtige however unkempt Regulars resultant **b shifts electron Novo Infinite background Taxes	n

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087

Table 21: Examples for optimized visual prefixes from Qwen2.5-7B-VL-instruct.

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Grad		Logits	
Textual Prefixes	Target Output Token	Textual Prefixes	Target Output Token
	l		a
	t		p
	k		k
	z		y
	k		g