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ABSTRACT

The exploration of causal relationships between treatments and outcomes, and the
estimating causal effects from observational data, have garnered considerable in-
terest in the scientific community recently. However, traditional causal inference
methods implicitly assume that all covariates are measured prior to treatment as-
signment, while in many real-world scenarios, some covariates are affected by
the treatment and collected post-treatment. In this paper, we demonstrate how
ignoring or mishandling post-treatment covariates can lead to biased estimates of
treatment effects, referred to as the ”post-treatment bias” problem. We discuss
the possible cases in which post-treatment bias may appear and the negative im-
pact it can have on causal effect estimation. To address the challenge, we propose
a novel variable decomposition approach to account for post-treatment covari-
ates and eliminate post-treatment bias, based on a newly proposed causal graph
for post-treatment causal inference analyses. Extensive experiments on synthetic,
semi-synthetic, and real-world data demonstrate the superiority of our proposed
method over state-of-the-art models for heterogeneous treatment effect estimation.

1 INTRODUCTION

The estimation of treatment effects plays a pivotal role in decision-making across several influential
domains, such as epidemiology (Dechartres et al., 2013), economics (Lin & Ye, 2007), and social
sciences (Heckman, 1991). It enables the identification of causal relationships between treatment,
such as smoking, and outcome of interest, for instance, heart disease. In recent years, a plethora of
methods (Liu et al., 2020; Rosenbaum, 1987; Rosenbaum & Rubin, 1983; Wu et al., 2022; Frangakis
& Rubin, 2002; Hullsiek & Louis, 2002; Athey & Imbens, 2016; Chipman et al., 2010; Wager &
Athey, 2018; Atan et al., 2018; Hassanpour & Greiner, 2019; Johansson et al., 2016; Shalit et al.,
2017; Yao et al., 2018) have emerged with a primary focus on addressing the estimation of causal
effects using observational data. Nevertheless, these methods primarily center on mitigating the
confounding bias introduced by confounders within the observational data through statistical or
spatial mapping techniques. Other formidable challenges have not received adequate attention and
resolution, just as we are about to discuss in this work, where we will explore and address the
estimation bias stemming from post-treatment variables Holland (1986); Pearl (2015).

Despite the considerable success of the current methods in estimating treatment effects, they im-
plicitly assume that all covariates are measured before the treatment or intervention is imposed and
their values and distributions are not affected by the intervention, known as pre-treatment vari-
ables (Yao et al., 2021), and they mainly focus on eliminating the confounding bias. However, in
many real-world scenarios (e.g., medical health), a significant proportion of covariates will be af-
fected by the intervention, which are referred to as post-treatment variables (Holland, 1986; Pearl,
2015). For instance, in a study investigating the effect of smoking on the incidence of heart dis-
ease, post-treatment variables could be the occurrence of side effects (e.g., headache) or a certain
medical measurement (e.g., blood pressure). Practitioners have increasingly directed their attention
toward the role of post-treatment variables in causal inference. For instance, in (Bareinboim & Pearl,
2012; Bareinboim & Tian, 2015; Correa et al., 2018; Bareinboim et al., 2022), researchers utilized
post-treatment variables to recover unbiased causal effects from selection bias. (Zhang et al., 2020)
utilized post-treatment variables to remove confounding bias in image classification task. In this
work, we focus on another problem: ignoring or mishandling post-treatment variables can lead to
post-treatment bias (Montgomery et al., 2018; Coppock, 2019).
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Figure 1: (a)-(b) illustrate two cases of post-treatment bias. (c) shows the proposed causal graph
with observed covariates (X), unmeasured variables (U ), treatment (T ), and outcome (Y ). C, Zm,
and Zc denote confounders, mediation, and collider post-treatment variables, respectively.

For example, as presented in Figure 1, the treatment variable T indicates whether a person smokes,
the post-treatment variable Z represents whether a person’s blood pressure or pulse rate is normal
or not, the outcome variable Y represents the incidence of heart disease, C is the confounder (e.g.,
Age), and U is the risk factor that affects Z and Y , For the sake of clarity, we treat U as an un-
observed variable (e.g., Health Status) here. We will elaborate on other scenarios in subsequent
sections of this paper. In Figure 1.(a), the causal effect of T on Y not only includes the direct effect
from T to Y , but also involves a mediating effect caused by the post-treatment variable Z. Noting
that in this work we focus on the total treatment effect, which is more practical in real-world sce-
narios. If we fail to identify and separate Z from other covariates, such as confounders C, when we
adjust for confounders, the treatment effect through the mediation pathway can be lost, leading to bi-
ased treatment effect estimation. In Figure 1.(b), the post-treatment variable Z is a collider affected
by both treatment T and risk factor U . If we condition on blood pressure Z equaling normal, the
treated group, i.e., the smoking population, may consist of more people with better health status than
the control group. This creates an unblocked path between T and U in the causal graph, introducing
another post-treatment bias due to the imbalance of health status between different groups resulting
from conditioning on Z. Although recent studies (Kuroki, 2000; Pearl, 2015; VanderWeele, 2009)
have discussed the harm caused by ignoring post-treatment variables in causal inference, they either
address only experimental studies (Coppock, 2019; Homola et al., 2020; King, 2010; Montgomery
et al., 2018) or consider post-treatment bias due to mediators alone (Li et al., 2022), ignoring other
situations that may lead to post-treatment bias.

In this study, we tackle the challenge of post-treatment bias mitigation by employing representation
learning techniques to derive post-treatment variables from observed covariates. We delve into the
examination of two distinct scenarios capable of inducing post-treatment bias and introduce a com-
prehensive framework namely PoNet. Within this framework, we focus on inferring representations
of confounding factors and post-treatment variables directly from the observed covariates. Sub-
sequently, we put forth an inference policy designed to facilitate the estimation of heterogeneous
treatment effects, aiming to achieve estimates of interest with addressing post-treatment bias.

2 PRELIMINARIES

2.1 POST-TREATMENT BIAS

We begin with the concepts of post-treatment variables that can result in post-treatment bias. As
shown in Figure 1, Mediation Post-treatment Variable, denoted by Zm, refers to the variables that
is affected by the treatment T and influences the outcome Y ; Collider Post-treatment Variable,
denoted by Zc, refers to the variables that is affected by both treatment T and risk factor U but has
no direct effect on outcome.

Incorrect handling of the two aforementioned variables can lead to post-treatment bias. To illustrate
this bias, we use the linear structural causal model as an example, demonstrating the consequences
of ignoring or mishandling each of the two post-treatment variables.

For the case of mediation post-treatment variable in Figure 1.(a), assuming the causal model is
formulated as Y = τT + βC + ηZ = (τ + ηγ)T + βC, the total treatment effect of T on Y is
τ + ηγ, then the estimated average treatment effect from observational data can be formulated as:

∆a = E(Y |T = 1)− E(Y |T = 0)

= τ + β(E(C|T = 1)− E(C|T = 0)) + η(E(Z|T = 1)− E(Z|T = 0)),
(1)
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it is well known that eliminating confounding bias is an essential step in causal inference, and the
common practice is to adjust for the confounder. However, if the mediation post-treatment variable
Z is not extracted and separated from confounders, the post-treatment variable Z will be incorrectly
adjusted (i.e., E(Z|T = 1)− E(Z|T = 0) tends to be 0) when we adjust for the confounders, then
the estimated average treatment effect of T on Y would be biased that ∆a = τ ̸= τ + ηγ, which is
the mediation post-treatment bias.

For the collider post-treatment variables in Figure 1.(b), assuming the causal model is Y = τT+βU
where U is the unmeasured variable that affects the post-treatment variable Z and outcome Y . In
this model, noting that T and U are independent and the causal effect of T on Y is τ . Similarly, the
estimated average treatment effect from observational data in this model can be formulated as:

∆b = E(Y |T = 1)− E(Y |T = 0)

= τ + β(E(U |T = 1)− E(U |T = 0)),
(2)

in this model, if we condition on the post-treatment variable Z, a backdoor path will be open between
T and U , which means T and U are no longer independent, then E(U |T = 1)−E(U |T = 0) in the
last equation is not equal to 0 if there is an imbalance in the distribution of U between the control and
treated group. Therefore, the estimated treatment effect of T on Y is biased that ∆b = τ + βc ̸= τ
where c represents the discrepancy in distributions of U between two groups. The detailed derivation
of equation (1) and (2) can be found in Appendix.

2.2 CAUSAL MECHANISM FOR POST-TREATMENT MODELING

Causal Effect Identification. We propose a new causal graph in Figure 1 .(c) to account for post-
treatment bias. Let X , T and Y denote the observed covariates, treatment and outcome, respectively.
Zc, Zm, C and U represent the collider, mediation post-treatment variables, confounders and un-
measured risk factor. Here, we provide a formal theorem about the identification of heterogeneous
treatment effects:
Theorem 1. (Identifiability of Heterogeneous Treatment Effect) If we can recover, p(Zm|T,X) and
p(C|X) from the observational data, then we can recover and identify the intervention distribution
for estimating heterogeneous treatment effect of T on Y , which can be expressed by:

p(Yu|do(T ), X) =

∫∫
C,Zm

p(Yu|T,Zm, C)p(C|X)p(Zm|T,X), (3)

where Yu represents the observed outcome with underlying risk factor U = u. It is noteworthy
that U and T are marginally independent. Therefore, neglecting to account for the presence of U in
our estimates does not introduce bias in our assumption. This theorem indicates that the probability
distribution of an outcome under an intervention T is determined by the distribution of confounders
and mediation post-treatment variables, rather than by collider post-treatment variables. This aligns
directly with our analysis in Section 2.1. Proof of the theorem can be found in the Appendix.

Minimally Sufficient Guarantee: Building upon Theorem 1, which establishes that the treatment
effect can be identified through the recovery of confounders (C) and mediation post-treatment vari-
ables (Zm), we propose a further theorem that asserts that these variables are minimally sufficient
(Silvey, 2017), for the optimal parameters θ for estimating unbiased treatment effects.
Theorem 2. The joint set of inferred factors for C, Zm is minimally sufficient for the optimal
parameters θ which estimation of unbiased treatment effects needs.

This theorem implies that the inferred factors for C and Zm encapsulate all the necessary infor-
mation that is required for optimally estimating the parameters θ for the recovery of the treatment
effects. A detailed proof of this theorem is provided in the Appendix.

C, Zm and even Y could be the risk factor. In our earlier analysis, we elucidated the bias-creation
process resulting from unmeasured risk factors. It is only natural to ponder the following questions:
(1) What happens if C exerts a causal influence on Zc? (2) What if Zm causally affects Zc? (3)
What if outcome Y affects Zc?

For case (1), conditioning on Zc introduces a new pathway between T and Y through confounder
C. The resulting bias in this case is analogous to confounding bias due to coincidence resulting
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from the distribution imbalance of confounder C. This bias can be mitigated by adjusting for the
confounders. For case (2), a similar situation arises. Conditioning on Zc introduces an additional
unblocked pathway between T and Y through Zm, and the distribution imbalance on Zm becomes
the source of bias. However, unlike confounder C, we cannot adjust or balance Zm in the same
way, as doing so would falsely erase the mediating treatment effect from T to Y . For case (3) as
mentioned in (Hernan & Robins, 2020), conditioning on collider Zc will create a new causal path
between T and Y , which will disrupt the true causal effect of T on Y . In summary, the critical point
lies in isolating Zc from the observed covariates and excluding it during inference. It is worth noting
that the model and inference policy we propose in the following sections are capable of addressing
both of these scenarios as long as we can recover Zc from observed covariates. Therefore, we omit
these two causal pathways in the proposed causal graph, given the analysis provided above.

3 METHODOLOGY

3.1 REPRESENTATION LEARNING FOR THE THREE UNDERLYING FACTORS

Learning of post-treatment variables. we employ neural networks to infer the representations of
post-treatment variables, Zm and Zc from observed covariates. Given the distinct nature of post-
treatment variables under different treatment assignments, we construct two separate neural network
channels to infer these representations. To be more precise, we seek to learn two representation
functions, fme(x, t) and fco(x, t), with respect to the treatment assignment, mapping the observed
covariates X ∈ Rd to an m-dimensional latent space. Each treatment assignment is accommodated
by parametrizing these representation learning functions through the stacking of multiple fully con-
nected layers, resulting in representations zm and zc for the mediation and collider post-treatment
variables, respectively.

Learning of confounders. Analogously, we establish a mapping function fc(x), also with X ∈
Rd → Rm, to derive representations of confounders from the observed covariates. This function is
parametrized using multiple fully connected layers, and the resultant confounder representation is
denoted as c.

Balancing confounders by optimal transport theory. To control the confounding bias, we need
to balance the distribution of the inferred representation of confounders between treated and control
groups. Optimal transport theory (Villani et al., 2009; Torres et al., 2021) is a mathematical frame-
work that allows us to measure the distance between two probability distributions. Here, we adopt
the Wasserstein distance (Villani & Villani, 2009) and minimize it between the treated and control
group in terms of representations of confounders. We denote the distance as Lwass and feed it into
the loss function for optimization. More details can be found in the Appendix.

3.2 RECONSTRUCTION MODULE

The causal graph shows that the post-treatment variable Zc is affected only by treatment and ob-
served covariates, and has no direct impact on outcome Y . However, the supervised information
of the training model only comes from factual outcomes in most cases, thus the lack of supervised
information on Zc in training data makes it challenging to learn its representations.

To model confounders and post-treatment variables more effectively, we propose a neural network-
based reconstruction module. This module incorporates learned representations of confounders,
collider and mediation post-treatment variables to generate an output that closely resembles the
original covariates. The reconstruction module can be formulated as:

x̂ = Ψ(zm, zc, c), (4)

where x̂ is the reconstructed covariates, Ψ is a decoder function which is parameterized by multiple
fully connected layers.

3.3 MUTUAL INFORMATION REGULARIZER BY KERNEL DENSITY ESTIMATION

Separating confounders and post-treatment variables is essential for unbiased treatment effect es-
timation. When confounders’ representation includes information from mediation post-treatment
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variables Zm, controlling for confounders may introduce mediation post-treatment bias. If Zm con-
tains confounder information, addressing confounding bias might not be fully effective. Moreover,
if Zm contains collider post-treatment information, conditioning on Zm can lead to collider post-
treatment bias. Precise differentiation between confounders and post-treatment variables is thus
critical for reliable treatment effect estimation.

To achieve the goal of separating confounders and post-treatment variables, we design a Mutual
Information Minimization Regularizer (MIMR) based on the following corollary yielded from the
causal graph in Figure 1 (c):
Corollary 1. Given covariates X and T , the confounders C, mediation post-treatment variables Zm

and collider post-treatment variables Zc are independent to each other, i.e., C ⊥ Zm ⊥ Zc||X,T .

Sepecifically, We propose to utilize kernel density estimation (Terrell & Scott, 1992), a non-
parametric method, to fit the distributions of the representations of these variables and measure
their independence. Here we take the kernel density estimation of the representations of C and Zm

as an example. Let {c0, c1..., cN} be the representation samples of confounders C drawn from
the marginal distribution DC(c), {z0

m, z1
m..., zN

m} be the representation samples of mediation post-
treatment variables Zm drawn from the marginal distribution DZm

(zm), the kernel density estimates
of the marginal distribution DC(·), DZm(·) and the joint distribution DCZm(·) are given by:

D̂C(c) =
1

N

N∑
i=1

Kh(c− ci) =
1

Nh

N∑
i=1

K(
c− ci

h
),

D̂Zm(zm) =
1

N

N∑
i=1

Kh(zm − zi
m) =

1

Nh

N∑
i=1

K(
zm − zi

m

h
),

D̂CZm(c,zm) =
1

N

N∑
i=1

Kh((c− ci)||(zm − zi
m)) =

1

Nh

N∑
i=1

K(
(c− ci)||(zm − zi

m)

h
)

(5)

where K(·) is the kernel function, h is the bandwidth parameter that controls the smoothness of the
estimate, || denotes the concatenation, and Kn(·) is called the scaled kernel. The kernel function
can be any non-negative function that integrates to 1. In this work, we adopt the Gaussian kernel as
the kernel function. Then the mutual information between Zm and C can be estimated by:

Î(Zm, C) =
∑
c

∑
zm

D̂CZm(c,zm)log
D̂CZm(c,zm)

D̂C(c)D̂Zm(zm)
, (6)

similarly, we can obtain the estimated mutual information Î(Zc, C) and Î(Zm, Zc).

3.4 OBJECTIVE FUNCTION AND INFERENCE POLICY

Loss for predicting potential outcomes. With the inferred representations of confounders, me-
diation post-treatment variables c, zm and the treatment assignment t ∈ {0, 1}, we can develop
a prediction function ŷtii = fy(c

i, zi
m, ti) parameterized by stacking fully connected layers, then

minimize the mean square error (MSE) Ly = 1
N

∑N
i=1(ŷ

ti
i − yi)

2.

Loss for covariate reconstruction. A loss function is typically defined to measure the discrepancy
between the reconstructed covariate x̂ and the true covariate x. One common loss function is the
mean squared error (MSE), which is given by Lre = 1

N

∑N
i=1 ||xi − x̂i||22. Other loss functions,

such as the binary cross-entropy (De Boer et al., 2005) or Kullback-Leibler divergence(Joyce, 2011),
can also be used depending on the nature of the input data and the modeling objective.

Loss for mutual information minimization regularizer. Here we combine the three terms of
estimated mutual information by kernel density estimation to guarantee the independence of con-
founders, mediation post-treatment variables and collider post-treatment variables from each other:
LMIMR = Î(Zm, C) + Î(Zc, C) + Î(Zm, Zc).

Overall loss function. The overall objective function of PoNet is defined by:

L = Ly + αLMIMR + βLre + γLwass + η||Θ||22, (7)

where α, β, γ, η are hyper-parameters to control the trade-off of the corresponding terms with the
other terms, ||Θ||22 is imposed on the learning weights Θ of the model to avoid the over-fitting.
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Inference Policy. Based on the previous analysis, to avoid the post-treatment bias in treatment effect
estimation, the inference policy should be subject to the following two rules: First, do not condition
on collider post-treatment variables Zc; Second, condition on the mediation post-treatment variables
Zm but do not adjust them when conducting the inference.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Baselines. We compare our proposed mode1 with several baselines, which can fall into three cat-
egories: (1) Linear regression based models, including OLS1 (Shalit et al., 2017): An S-learner
using linear regression, treating the treatment variable as just another covariate, OLS2 (Shalit et al.,
2017): A T-learner that trains separate linear regression models for treated and control individuals;
(2) Tree based models, including BART (Chipman et al., 2010): a nonparametric Bayesian regres-
sion approach based on multiple tree models, Causal Forest (Wager & Athey, 2018): a extension
of random forest model for estimating treatment effects in causal perspective; (3) Neural network-
based models, including Counterfactual Regression (CFR) (Shalit et al., 2017): A deep learning-
based estimator that balances the distribution of confounders’ representations, TARNet (Johansson
et al., 2016): A variant of CFR that removes the built-in representation balancing component, GAN-
ITE (Yoon et al., 2018): Uses Generative Adversarial Nets to capture uncertainty in counterfactual
distributions and estimate the treatment effect, CEVAE (Louizos et al., 2017): A deep latent variable
model that leverages VAE (Kingma & Welling, 2013) and proxy learning to estimate the causal ef-
fect, TEDVAE (Zhang et al., 2021): A variational inference approach that infers latent factors from
observed variables and disentangles them for treatment effect estimation.

Evaluation Metrics. In this work, we adopt two widely used metrics for evaluating the per-
formance of causal estimators. First, we adopt Rooted Precision in Estimation of Heteroge-
neous Effect (

√
ϵPEHE) to measure the accuracy of conditional average treatment effect (CATE):

√
ϵPEHE =

√
1
N

∑
i=1(τi − τ̂i)2 where τi = yti=1

i − yti=0
i and τ̂i = ŷti=1

i − ŷti=0
i are the ground

truth CATE and the estimated CATE, respectively. Second, we also adopt the mean square error
(MSE) for measuring the accuracy of predicting outcomes: ϵMSE = 1

N

∑
i(ŷi − yi)

2 in some
experiments. Please refer to the Appendix for a more detailed description of the experiment setting.

4.2 SYNTHETIC DATA

First, we evaluate the proposed model on synthetic data. Here we only introduce the outline of
the synthetic dataset due to the page limit, more details about the data generation process can be
found in the Appendix. Roughly speaking, we generate the confounders (denoted by xC) with the
dimension dC from a multivariate Gaussian distribution, then generate the treatment T from the
Bernoulli distribution based on the generated confounders. After getting the treatment assignment,
we generate the mediation and collider post-treatment variables (denoted by xZm and xZc ) based
on the generated treatment with the dimension dZm

and dZc
, respectively. Then we combine the

three generated factors {xC ,xZm
,xZc

} as the covariates x.

Capability of identifying each underlying factor. Here we want to verify if the proposed model
PoNet can identify the three underlying factors {xC ,xZm ,xZc} from the observed covariates x.
In the proposed model, we develop three networks fc(·), fme(·) and fco(·) for learning the repre-
sentations of factors of confounders, mediation and collider post-treatment variables respectively.
Taking the representation learning network fme(·) for learning Zm as an example, the first layer’s
dimension of the learned weights of network fme is (dC + dZm

+ dZc
)×K where K is the dimen-

sion of the hidden layer. We can partition the learned weight matrix into two slices: (1) SZm
with

dimension dZm
× K, that connects the variables belonging to xZm

to the representation network
fme, (2) Sother with dimension (dC + dZc

) × K, that connects other variables not belonging to
xZm

to the representation network fme. For the network fme(·) which can identify the mediation
post-treatment variables, it is expected that the network can filter out the information of confounders
C and collider post-treatment variables Zc, and retain the information of mediation post-treatment

1The anonymous link of the source code of the proposed model PoNet is: https://anonymous.
4open.science/r/Ponet-37F2/
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Figure 2: Radar charts visualizing the capability of PoNet in identifying the three underlying factors.
Each chart represents a different underlying factor, with the vertices on the circles corresponding to
different dimension settings of {xC ,xZm

,xZc
}. The average absolute value of the learned weights

for each dimension setting is represented by each vertex of the polygon.

variables Zm. In other words, if the network fme can accurately identify xZm
, the neuron links con-

nected to xZm
are more active than those connected to xC and xZc

, which can be reflected in the
values of the learned weights, i.e., the average absolute values of SZm

is higher than that of Sother.

As shown in Figure 2, we plot the radar charts to visualize the capability of PoNet in identifying
the three underlying factors. Each vertex on the circles represents the dimension of {xC ,xZm

,xZc
},

each vertex of the polygon measures the learned weights’ the average absolute value for each di-
mension setting. We can see that for each underlying factor, the average absolute value of S∗
(∗ = Zm, Zc or C) is higher than that in Sother, which is consistent with what we expect. Therefore,
it empirically shows that the proposed model is capable of identifying different underlying factors.

4.3 SEMI-SYNTHETIC DATA
Methods d = 50 d = 100 d = 200

OLS1 2.241 ± 0.481 3.052 ± 1.013 3.193 ± 1.944
OLS2 2.002 ± 0.396 2.742 ± 0.751 3.023 ± 1.354
BART 2.258 ± 0.498 2.915 ± 0.998 3.385 ± 1.958

Causal Forest 2.088 ± 0.440 2.609 ± 0.846 2.973 ± 1.743
CEVAE 2.303 ± 0.196 3.037 ± 0.340 3.188 ± 0.731
GANITE 2.414 ± 0.290 2.756 ± 0.422 2.529 ± 1.100
TEDVAE 2.150 ± 0.737 2.669 ± 0.809 2.602 ± 1.678
TARNet 2.420 ± 0.288 2.582 ± 0.720 2.722 ± 1.072

CFR 2.437 ± 0.287 2.611 ± 0.733 2.720 ± 1.098
PoNet 1.393 ± 0.178 1.869 ± 0.502 2.053 ± 0.829

Table 1:
√
ϵPEHE performance comparison on PeerRead,lower

is better, d denotes the dimension of post-treatment variables.

We then evaluate the proposed
model PoNet using the semi-
synthetic dataset PeerRead
(Kang et al., 2018). The Peer-
Read dataset comprises peer
reviews of computer science
papers, with each entry repre-
senting an author. The features
of each entry are bag-of-word
representations extracted from
the titles and abstracts of their papers. In this dataset, each author is categorized based on whether
their papers contain specific keywords, and the outcome variable is the number of citations their
papers receive. To simulate the necessary variables, we generate confounders C and treatment
assignments and introduce artificial mediation post-treatment variables and collider post-treatment
variables Zm and Zc, respectively, based on the generated treatments. For more information on the
detailed data generation process, please refer to the Appendix.

Treatment effect estimation: Here we consider the different dimension of the post-treatment vari-
ables as d = 50, 100, 200 and evaluate the performance of PoNet in comparison to other baselines for
treatment effect estimation. The results of the experiment are presented in Table 1. Notably, PoNet
outperforms the state-of-the-art methods in treatment effect estimation, as it effectively addresses
the issue of post-treatment bias that is often neglected by other approaches.

Verifying the effectiveness of inference policy. Based on the previous analysis, the inference pol-
icy is to condition on the mediation post-treatment variables but not on the collider post-treatment
variables. To validate the effectiveness of this policy, we introduce two variants of the inference
policy in our model: (1) PoNet with Zc, which conditions on the collider post-treatment variables
Zc while also conditioning on the mediation post-treatment variables Zm; (2) PoNet w/o Zm, which
neither conditions on the mediation post-treatment variables Zm nor on the collider post-treatment
variables Zc. We compare the performance of these two policy variants with that of the original
inference policy, and the experimental results are illustrated in Figure 3. Please note that the stan-
dard deviation line has been scaled down to enhance the clarity of the results. The findings indicate
that the two variants of the inference policy do not perform as well as the original policy. The
measurement in terms of

√
ϵPEHE provides evidence of the existence of post-treatment bias, and it
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Figure 3: Performance comparison between original inference policy and that w/o Zm or with Zc.

further demonstrates that the proposed model with the original inference policy effectively captures
the post-treatment variables and mitigates the post-treatment bias. Additionally, the measurement in
terms of ϵMSE reveals that the decomposition of post-treatment variables contributes to the predic-
tion of outcomes. It is intuitive that incorporating Zc into the outcome prediction introduces noise,
while excluding Zm from the input results in the loss of valuable information, both of which can
compromise the accuracy of the predictive model.

Variants d = 50 d = 100 d = 200
PoNet w/o CB 1.468± 0.186 1.919± 0.464 2.127± 0.887
PoNet w/o RM 1.521± 0.186 1.965± 0.454 2.157± 0.910
PoNet w/o MI 1.445± 0.202 1.939± 0.514 2.185± 0.900

PoNet 1.393 ± 0.178 1.869 ± 0.502 2.053 ± 0.829

Table 2: Ablation Study on PeerRead in terms of
√
ϵPEHE .

Ablation Study. We fur-
ther investigate the impact
of different components of
the proposed model PoNet
on the treatment effect es-
timation. Specifically, we
conduct the ablation study
by deriving the following variants of the proposed model PoNet: (1) PoNet w/o Confounder Bal-
ancing, denoted by PoNet w/o CB; (2) PoNet w/o Reconstruction Module, denoted by PoNet w/o
RM; (3) PoNet w/o Mutual Information Regularizer, denoted by PoNet w/o MI. We compare the
performance of the three variants with the original model PoNet, the comparison results between
the three variants and the original model are presented in Table 2. We can see that the original
PoNet outperforms the other three variants, due to the following reasons: (1) PoNet w/o CB fails to
adequately adjust for confounders, leading to confounding bias; (2) PoNet w/o RM is unable to ef-
fectively model the underlying factors, particularly the collider post-treatment variables that do not
contribute to the outcome. Consequently, this can introduce potential post-treatment bias; (3) PoNet
w/o MI is incapable of accurately separating the three underlying factors from each other, resulting
in the potential generation of post-treatment and confounding bias.

4.4 REAL-WORLD DATA

MIMIC-III (Johnson et al., 2016) is a publicly available dataset of de-identified health-related data
for over 40,000 patients who were admitted to the intensive care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012. The dataset includes data on patient demographics, vital
signs, laboratory test results, medications, diagnoses, procedures, and imaging reports. Here we
follow (Melnychuk et al., 2022) and use 25 vital signs and 3 static features as the covariates, whether
using vasopressor as the treatment, the blood pressure as the outcome. Given that treatment can have
an influence on numerous vital signs, it is essential to take into account the effects of post-treatment
variables when estimating causal effects in real-world scenarios, particularly within healthcare data.

In order to showcase the experimental results, we randomly sampled data from two distinct time
steps, denoted as t1 and t2, with each time step consisting of 6133 samples. Given that true coun-
terfactuals are no longer accessible in real-world data, we evaluate the performance of predicting
factual outcomes. The results are presented in Table 3. Our proposed model surpasses all state-
of-the-art baselines, providing evidence of the superiority of our approach. In addition to excelling
in causal effect estimation, our model also demonstrates strong performance in outcome prediction
tasks. This can be attributed to our precise segmentation of covariates into distinct factors, thereby
eliminating irrelevant variables from consideration. TEDVAE stands out among the baselines, show-
casing commendable performance. This can be attributed to its variable decomposition approach,
modeling irrelevant variables subsequently discarding them. However, an important limitation is its
disregard for modeling post-treatment variables, which reduces its accuracy in prediction.

More importantly, we also want to verify if the proposed model PoNet can distinguish the three dif-
ferent underlying factors (e.g., confounders C, mediation post-treatment variables Zm and collider
post-treatment variables Zc). We employ t-SNE to reduce the dimensionality of the representations
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Table 3: Performance of factual outcome prediction on real-world data MIMIC-III, lower is better.
t1 t2ϵMSE In-Sample Out-of-Sample In-Sample Out-of-Sample

OLS1 0.351± 0.004 0.378± 0.005 0.410± 0.004 0.431± 0.006
OLS2 0.330± 0.004 0.343± 0.005 0.393± 0.005 0.394± 0.005
BART 0.383 ± 0.007 0.335 ± 0.023 0.370 ± 0.006 0.368 ± 0.019

Causal Forest 0.361 ± 0.012 0.374 ± 0.039 0.404 ± 0.013 0.435 ± 0.043
CEVAE 0.315± 0.003 0.328± 0.004 0.357± 0.003 0.359± 0.005
GANITE 0.335± 0.004 0.327± 0.003 0.363± 0.004 0.361± 0.005
TEDVAE 0.284± 0.003 0.293± 0.004 0.304± 0.004 0.331± 0.003

Tarnet 0.302± 0.004 0.318± 0.003 0.340± 0.004 0.360± 0.005
CFR 0.301± 0.003 0.308± 0.004 0.339± 0.003 0.361± 0.004

PoNet 0.281 ± 0.004 0.283 ± 0.004 0.279 ± 0.003 0.320 ± 0.004

of the three underlying factors computed by the PoNet model. The representations are reduced to 2
dimensions and plotted using kernel density estimate to visualize the distribution of the three factors
in the low-dimensional space as shown in Figure 4. The result clearly indicates that the inferred rep-
resentations of the three factors from the proposed model exhibit significantly different distributions.
This observation provides strong evidence for Ponet’s ability to effectively distinguish between the
three underlying factors, even from the real-world cases.

5 RELATED WORKS
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Figure 4: Visualization of distributions of
inferred representations for confounders C,
mediation post-treatment variables Zm and
collider post-treatment variables Zc.

Previous causal inference works mainly adjust con-
founders to control the confounding bias. Re-
weighting methods (Liu et al., 2020; Rosenbaum,
1987; Rosenbaum & Rubin, 1983; Wu et al.,
2022) alter the instance weighting, such as by In-
verse Propensity Weighting (IPW) (Glynn & Quinn,
2010), to create a more balanced comparison group.
Stratification methods (Frangakis & Rubin, 2002;
Hullsiek & Louis, 2002) divide the population into
subgroups with similar covariate distributions to
infer causal effects within each subgroup. Tree
and forest-based methods like BART (Hill, 2011),
Causal Forest (Wager & Athey, 2018), and Recur-
sive partitioning (Athey & Imbens, 2016) estimate
treatment effects for different subgroups of the pop-
ulation by building decision trees or random forests.
Representation-based learning methods like CFR (Shalit et al., 2017), SITE (Yao et al., 2018), TAR-
Net (Johansson et al., 2016), GANITE (Yoon et al., 2018), CEVAE (Louizos et al., 2017), TEDVAE
(Zhang et al., 2021) map observed covariates to latent space, reducing the distribution discrepancy
between treated and control groups, and have shown to be superior in estimating causal effects.
The above methods assume that all variables are pre-treatment. However, post-treatment variables
can introduce bias, as discussed in (Montgomery et al., 2018). Various studies (Coppock, 2019;
Homola et al., 2020; King, 2010) outline ways to avoid post-treatment bias, but they mainly focus
on experimental studies. A recent causal model (Li et al., 2022) addresses the inference of media-
tion post-treatment variables but does not consider collider post-treatment variables, thus potential
collider post-treatment bias could be introduced.

6 CONCLUSION

In this study, we examine the sources and mechanisms of post-treatment bias and introduce a novel
deep learning-based approach for decomposing variables and inferring post-treatment variables from
observed covariates, utilizing a newly proposed causal graph specifically designed for post-treatment
analysis. We also develop various components to infer the representations of confounders and post-
treatment variables, thereby eliminating both confounding bias and post-treatment bias. Through
extensive experiments on synthetic, semi-synthetic, and real-world datasets, we demonstrate the
superior performance of our model compared to other state-of-the-art models in estimating hetero-
geneous treatment effects.
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