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Fig. 1: Goal of this paper. (a) Blur-free video frame of a moving car. (b)-(d) CMOS
image sensor simulations using realistic sensor parameters. The strong shot noise and
read noise (5.1 e™ /pix) of CMOS sensor make the signal acquisition difficult. (e¢) With
low read noise (0.2 e~ /pix), low-bit single-photon detectors capture valuable informa-
tion. (f)-(g) Existing state-of-the-art algorithm, QBP cannot handle strong motion
and noise. (h) The proposed algorithm, QUIVER, produces high quality results.

Abstract. The proliferation of single-photon image sensors has opened
the door to a plethora of high-speed and low-light imaging applications.
However, data collected by these sensors are often 1-bit or few-bit, and
corrupted by noise and strong motion. Conventional video restoration
methods are not designed to handle this situation, while specialized
quanta burst algorithms have limited performance when the number of
input frames is low. In this paper, we introduce Quanta Video Restora-
tion (QUIVER), an end-to-end trainable network built on the core ideas
of classical quanta restoration methods, i.e., pre-filtering, flow estima-
tion, fusion, and refinement. We also collect and publish 12-2000FPS, a
high-speed video dataset with the highest temporal resolution of 2000
frames-per-second, for training and testing. On simulated and real data,
QUIVER outperforms existing quanta restoration methods by a sig-
nificant margin. Code and dataset available at https://github.com/
chennuriprateek/Quanta_Video_Restoration-QUIVER-

Keywords: Single Photon Detectors - Video Restoration - High-Speed
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1 Introduction

Over the past decade, the astonishing growth of single-photon detectors has fun-
damentally changed the landscape of computational imaging. With the invention
and proliferation of quanta image sensors (QIS) [21] and single-photon avalanche
diodes (SPAD) [52,/62], there is an unprecedented volume of new applications
in low-light imaging [6,/10}/66], computer vision [27}/31} /40|, high-speed videog-
raphy [47,[48|, time-of-flight sensing [32./63], and 3D imaging [30}/44]. In most
of these use cases, the main core question that lies is how to recover the image
from the photon counts measured in the scene. Specifically, given a video stream
of 1-bit or few-bit data captured from a scene involving moving objects, how
do we reconstruct a gray-scale image/video while eliminating the noise without
incurring motion blur?

To give the reader a visual perspective of the problem scope, Fig. [I] depicts
a blur-free video of a moving car. We simulate the captured images at 1 lux
assuming 60 fps, 240 fps, and 2000 fps CMOS image sensors with realistic sensor
specifications. As illustrated in the figure, the resulting CMOS outputs are either
severely blurred due to strong motion or completely distorted by noise due to
sparse photons. In the same figure, we demonstrate a simulated single-photon
camera output (a 3-bit QIS in this case) where the content the largely preserved
despite heavy noise. Upon utilizing state-of-the-art Quanta Burst Photography
(QBP) [47] for reconstructing the frames, provided the motion is slow, a decent
output can be obtained. However, as the temporal window narrows down, as
shown in Fig. [I| (), the noise remains. In this paper, we address this problem
with a new algorithm, designed to remove the noise while avoiding distortions
in the presence of fast motion while utilizing only a few frames.

The core innovation of this paper is QUanta VIdeo REstoration (QUIVER), a
deep-learning based video restoration algorithm for quanta image data. QUIVER
is specialized for few-bit data (3-bit) captured at thousands of frames-per-second
(2000 fps) with an average motion range of 1 to 7 pixels per frame. The main
contributions of this paper can be summarized as follows.

— We propose QUIVER, an end-to-end trainable quanta (video) restoration
method built by embracing the core ideas from traditional quanta restora-
tion algorithms. On a comprehensive evaluation dataset containing both sim-
ulated and real data, QUIVER outperforms all methods we compared in this
paper by a significant margin.

— We introduce 12-2000FPS, the first high-speed video dataset with a temporal
resolution of 2000 frames-per-second for training and testing image and video
reconstruction neural networks. We captured a total of 280 high-speed videos
covering 114 distinct scenes with ground truth and simulated 3-bit videos.
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Fig. 2: Motion Blur and SNR Trade-off. The effects of bit depth on SNR and
motion blur are illustrated using real captures by a single-photon sensor. For the motion
range we target, 3-bit single-photon detectors provide the best trade-off between blur
and SNR. The images are captured using a 1-bit SPAD at 10k fps at an average
photon level of 0.51 and 0.40 photons-per-pixel (PPP) per frame, respectively. Higher
bit-depth outputs are generated through temporal frame averaging.

Table 1: Frame-rate, motion, read-noise, and data-rate statistics for various bit-depths
at the same exposure level.

Motion Oread Data-rate

Bit-Depth fps (pixels/frame) (/pixel/sec) (Mb/sec)

1 10k 0-1 2000 e~ 96

3 1428 2-3 285.6 e~ 41.13
5 323 6—12 64.6 e 15.5
7 78 25— 30 15.6 e~ 5.24
9 20 70 — 80 4e” 1.73

2 Background

2.1 Few-bit Single-Photon Detectors

What is few-bit photon counting? Single-photon detectors (QIS and SPAD)
differ from conventional CMOS pixels by their extraordinary photon counting
capability. QIS uses a two-stage pump-gate technique and correlated double
sampling to suppress the read noise, while SPAD uses avalanche multiplication
to amplify the photocharge. In both cases, the sensors are capable of resolving
photons up to a single-photon sensitivity. We refer readers interested in the
sensor development of QIS and SPAD to consult, for example, [5,[9,[18,[45].
Along with the single-photon detectors’ unique capability to count individ-
ual photons, these devices can generate data at a bit-depth as low as 1-bit to
as high as 16-bit or even more. However, higher bit-depth is accompanied by
longer integration time. If the scene contains motion, longer integration time
will eventually result in strong motion blurs as shown in Fig. 2] On the other
hand, 1-bit sensing with high frame rates will result in motion-blur-free but ex-
tremely noisy images. Therefore, from a pure data acquisition perspective, there
exists an optimal bit-depth with respect to the motion that will give us mini-
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mal/no motion-blur data with a minimum per-frame signal-to-noise ratio (SNR)
required for good quality reconstruction.

How about 1-bit and reconstruct afterward? Readers familiar with
single-photon counting may wonder whether we can collect as many 1-bit frames
as possible and then process the data afterward. The problem is power consump-
tion and data rate. Fixing the same level of exposure, as described in Tab.
a 1-bit video at 10k fps would require 96 Mb/sec whereas a 9-bit video at 20
fps would only need 1.73 Mb/sec. Another problem is read noise accumulation.
For sensors with non-zero read noise (such as QIS), every frame contributes to
a finite amount of read noise. The more frames we read, the more read noise we
accumulate. Therefore, recording 1-bit is not always the best option.

2.2 Related Work

Image and Video Denoising. Classical state-of-the-art methods utilize a
non-local strategy to identify similar patches across an image/video [3,[38,/50].
Deep neural networks have been proven to be successful in producing high qual-
ity denoised outputs [13}/69-71]. Among these architectures, Vision Transform-
ers [41/42] have been rated the state-of-the-art in recent times. However, all these
solutions make simplistic assumptions on noise statistics, thus failing to perform
on real noisy images or videos [55].

Coming to low light, Burst denoising |34}/43|, where images are aligned,
merged and denoised, is one of the most popular methods. However, these meth-
ods fail without robust alignment. To overcome this, a number of alternative
solutions with learnable alignment modules have been proposed [29,54L|73|. Re-
cent solutions have focused on practical noise models that replicate real camera
sensor noise, to produce visually appealing results [51,/74]. Nevertheless, the ex-
isting solutions utilize images captured using CMOS image sensors, resulting in
a notably higher photon level compared to the one utilized in our study.

SPADs, Event, and Spike Cameras. Gariepy et al. [24,25] firstly intro-
duced the utilization of Single Photon Avalanche Diodes (SPADs) at pico-second
temporal resolution to capture light in motion. Gyongy et al. |[33] demonstrated
2D motion tracking of rigid planar objects using SPADs at 10k fps. Recently,
Ma et al. [47] and Seets et al. |64] utilized SPADs in a passive imaging setting
to capture motion in low illumination. However, all these methods utilize ex-
tremely high-temporal resolutions hindering the deployment of these sensors into
consumer devices where bandwidth is the bottleneck. Event [53}60] and Spike
Cameras [84}/86] also have demonstrated their effectiveness in capturing high-
speed motion. However, these cameras focus on luminance/brightness variation
and record a spike only when variation is above a threshold (changes based on
factors like temperature, event rate, etc.) |15,60]. Therefore, unlike single-photon
detectors (QIS and SPADs), these cameras are NOT designed for single-photon
counting and cannot operate in extreme low-light conditions.

QIS Reconstruction. Reconstructing quanta images is a challenging task
due to the underlying Poisson-Gaussian statistics. Initial solutions to this prob-
lem included utilizing standard gradient descent [78], greedy algorithms [79],



QUIVER 5

i | Warping and Summation

JiL3| o generate a preliminary Refinement to generate

Final Output

(O] ®

Optical Flow (or)

Transformation Matrix lj

jonto [H
Increase SNR

Estimation

Traditional hods' Design Phil

Fig. 3: Traditional Methods’ Design. Depiction of existing classical quanta restora-
tion algorithms’ design philosophy. Best viewed in zoom.

(ADMM) [7,[8], among others [19,[20,[23/[26l/61,[77]. Chan et al. [6] were the first

to propose a non-iterative approach using Anscombe transform for reconstruct-
ing quanta images. Choi et al. proposed the first end-to-end trainable deep
neural network (DNN) for QIS reconstruction. Alternative DNN-based solutions
include utilizing vision transformers , Dual Prior Integrated networks ,
among others . Nonetheless, all these methods fail to produce good results
when the scene is in motion. Chi et al. is the only method which focuses
on capturing dynamic scenes using QIS but only targets at slow motion (1
pixel/frame).

3 QUanta VIdeo REstoration (QUIVER)

3.1 Design Philosophy

In this section we present the design of our proposed algorithm. We start by
briefly reviewing the design of classical methods which, to an extent,
have been successful in restoring quanta images. As shown in Fig. [3] classical
methods’ algorithm design can be divided into four stages: (1) computing sum
images to increase SNR, (2) optical flow (or) transformation matrix estimation
for aligning the input frames, (3) warping and linear combination for generating
preliminary restored output, and (4) refinement for producing the final output.
While the steps seem intuitive and straightforward, existing methods are heavily
vulnerable to extreme noise and strong motion in the input frames primarily due
to two reasons. (1) none of the stages are designed to handle extreme noise and
strong motion simultaneously (will be discussed further). (2) Since all the stages
are sequential yet independent of each other, it is difficult to obtain an optimal
result for a wide range of noise and motion. Our proposed algorithm QUIVER,
leverages the design philosophy of existing classical methods while designing each
stage to simultaneously handle both noise and motion. Moreover, QUIVER is an
end-to-end trainable model making all the stages inter-dependent, thus leading
to good restoration outputs.

3.2 Design of QUIVER

QUIVER is a deep-learning-based video restoration method for quanta imaging.
The design philosophy of QUIVER is to adopt the intuitive thoughts behind
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Fig.4: Traditional Methods’ Limitations. (a) Traditional methods’
predenoising/temporal-averaging fails in strong motion. It is visible in the restored
images that an input with strong motion between the frames results in several artifacts
in the output even though SNR levels are similar. (b) Traditional methods utilize
a patch-based pre-trained optical flow module similar to . This optical flow module
fails to compensate for motion in the presence of noise.
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Fig.5: The proposed QUIVER network. The corresponding stages of QUIVER,
built by embracing the intuitive thoughts behind existing classical methods. Best viewed
m zoom.

classical quanta restoration methods and develop an end-to-end trainable, ro-
bust to noise and motion deep learning based framework, as shown in Fig.
Specifically, QUIVER can be divided into four main stages:

Pre-Denoising to improve SNR: Since the input quanta frames possess
extreme noise, classical methods adopt naive averaging to increase the SNR
and thereby predict better optical flows or transformation matrices. However, as
shown in Fig. a)7 the simple averaging is vulnerable to motion and will neg-
atively impact subsequent processing, ultimately leading to distorted outputs.
Simply eliminating this stage is not the solution, because it leads to poor op-
tical flow estimation, resulting in over-smoothed outputs with lack of low-level
intricate details, as shown in Fig. [§] and Fig. [II} Therefore, a preliminary de-
noising step robust to noise and motion is crucial. In QUIVER, we leverage a
computational undemanding single image denoiser built using Residual Dense
Blocks (RDBs) to provide minimal pre-preprocessing of the input quanta
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Fig. 6: Design of the proposed modules DC-GFU and RMDF.
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data. A multi-frame denoiser is not an option due to it computationally demand-
ing nature. We use RDB based network due to its history in handling noise while
preserving details with its simple yet effective design.

Optical Flow Estimation + Feature Alignment using Deformable
Convolution - Gated Fusion Unit: Classical methods utilize an off-the-shelf
pre-trained optical flow estimation module or predict a transformation matrix to
compensate for motion between the frames. The basic assumption behind such
approaches is that the motion between the frames is limited and the SNR is high
enough. However, when such assumption is not met, the motion compensation is
sub-optimal, as shown in Fig. b). As most state-of-the-art pre-trained optical
flow estimators are optimized on the CMOS RGB sensor images, it leads to
sub-optimal performance when applied on quanta frames. Eliminating the flow
estimation step is not recommended since experiments reveal the critical role it
plays in motion compensation, as shown in Fig. [5|and Fig. For QUIVER, we
deploy a learnable optical flow estimation module and utilize SpyNet [57] owing
to its computational efficiency while using a multi-scale approach.

We deploy 3D convolution blocks to extract multi-scale spatio-temporal fea-
tures from both the noisy and denoised quanta frames. We reuse the noisy frames
to compensate for any information lost in the pre-denoising stage.

The estimated multi-scale robust-to-noise optical flows are utilised for feature-
level alignment of the extracted multi-scale spatio-temporal features. We utilize
the deformable convolution with residual offsets proposed by [4] to warp the
features. Inspired by the superior performance of Gated Linear Units (GLUs) in
Transformers [65] we design and add a GLU based multi-layer-perceptron layer
with GeLU activation for efficiently fusing the aligned features extracted from
both the noisy and denoised frames. As shown in Fig. @(a), we name this de-
formable convolution-GLU combination as the DC-GFU module. At this fusion-
stage each frame is processed separately and the fusion is performed only along
the channel dimension. Recurrence is applied for the alignment stage across all
the multi-scale features of each frame. For the fusion module, we do not employ
recurrence, as different scale features capture distinct long-range dependencies
owing to their varying receptive fields.

Deep Feature Fusion using Recurrent Multi-scale Residual Dense
Feature Fusion Unit: Post warping we want to perform a robust-to-noise
dense feature fusion while taking advantage of the temporal correlations among
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Fig. 7: Design of the proposed modules TCA and RFRM.

the features of all the input frames and also the spatial correlations between
the multi-scale features within the same frame. For this task, we design and
propose a Recurrent Multi-scale Residual Dense Feature Fusion Unit (RMDF)
as shown in Fig. @(b) The recurrence comes from the fact that the same RMDF
module is applied progressively to all the frames’ features. For any frame ¢, the
RMDF takes in the corresponding frame’s multi-scale features {F}, F2 F 1}, bi-
linearly interpolated noisy frames {I}, 12, I}} and a hidden state h;_; as inputs.
The multi-scale features are progressively fused in a feed-forward fashion, with
Residual Dense Block (RDB) as the basic block, to effectively extract both the
short and long range dependencies required for good reconstruction. As shown
in Fig. |§|(b), multi-scale features are extracted from the noisy frames and fused
with the other corresponding input features to minimize any errors accumulated
through the previous stages. While these features are utilized to exploit the
spatial correlations within the frame, the hidden state h captures the temporal
correlations between all the input frames. Thus, the design of RMDF enables it to
extract densely fused multi-scale spatio-temporal features required for enhanced
quality outputs.

Multi-Scale Reconstruction using Residual Frame Refinement Mod-
ule: Considering the heavy noise in the input quanta frames, this ill-posed prob-
lem’s restored image subspace can be quite large. To output a restored image
close to the ground truth we prefer deep supervision that lets the model preserve
critical details of the scene. We opt for a multi-scale reconstruction approach
where the image at each scale is reconstructed in a progressive fashion. Exper-
iments reveal the efficacy of this approach (Fig. 5] Fig. . The stage starts
with the lowest scale features extracted from all the frames using RMDF being
concatenated and sent into a newly designed Temporal Cross Attention (TCA)
module. As shown in Fig. [fa), the TCA module is similar to the multi-head
attention in vision transformers [16] in terms of generating queries, keys, and
values. However, we maintain the number of heads to be one and apply atten-
tion only on the channel dimension. The cross attention is from the fact that we
input features extracted from all the input frames. The extracted cross-attention
features are then fed into a newly designed Residual Frame Refinement Mod-
ule (RFRM). As shown in Fig. [f{b), RFRM takes in a residual frame r¢, a
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hidden state f/*, and the features as input, concatenates the hidden state with
the features to input into the channel attention block [82] to emphasize criti-
cal spatio-temporal information. Further, we divide the module into 2 branches.
While the former is designed to extract multi-scale spatial correlation informa-
tion and output a modified hidden state f,* / 2, the latter focuses on refining the
residual frame to output a corresponding scale reconstructed image O ¢ and a
residual frame r?/ % The main purpose of this setup is to initially restore the
high-level features through estimating O #, followed by focusing on the low-level
intricate details while refining the residual frames for scales 2 and 1.

Loss Function. We train QUIVER with a multi-scale loss. The overall loss

function can be represented as

Lo= M- LAMST I + X LAPT,00) + 23 LATT,07) + -
M- LAFET 08, (1)

where 197 is the captured t™ ground truth frame bicubically downsampled by
a, and LI, 1) = ||[Io — Li||1 + [|[Vola — VoIl 1 + ||VyIa — VyI||1. Here, V,
and V, represent the operations of computing horizontal and vertical gradients.

4 Proposed 12-2000FPS dataset

While several high-frame-rate datasets have been open-sourced in recent times |36,
491160,/67.|68L,/72], these datasets mainly feature videos tainted by severe motion
blur, making them unsuitable in our problem setting. Moreover, features such
as high motion speed and sufficient number of videos are also not always guar-
anteed. A visual representation of existing datasets’ comparison is shown in
Fig. (a). To address the gaps, we introduce the 12-2000FPS dataset, a high
frame rate video collection meticulously designed to capture high-speed motion
with precision.

The 12-2000FPS dataset has a temporal resolution of 2000 FPS and a spatial
resolution of 512 x 1024 pixels, comprising 280 unique videos spanning 114 di-
verse scenes. The videos are captured using the Chronos 1.4 high-speed CMOS
sensor-based camera from Kron Technologies. Notably, 12-2000FPS incorporates
dark current calibration, leveraging the camera’s capabilities to mitigate dark
current effects. Throughout the data collection process, analog and digital gain
were consistently maintained at 0 dB to avoid amplification of noise. To min-
imize noise, the videos are exclusively captured outdoor with ambient lighting
conditions. More details on 12-2000FPS can be found in the supplementary.

5 Experiments

5.1 Image Formation Model

For experiments involving synthetic data, we use a single-photon detector simu-
lator based on an underlying image formation model discussed below. We build
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Fig. 8: (a) Benchmarking high-speed video datasets. Horizontal axis represents
the temporal resolution and the vertical axis indicates the maximum speed captured
by the dataset, assuming a fixed camera-object distance. The circles in blue and orange
indicate blur and blur-free videos, respectively. (b) Benchmarking Quanta Video
Restoration Models on the 12-2000FPS dataset. Horizontal axis represents the com-
putational complexity in terms of GFLOPs and the vertical axis indicates the PSNR
acquired at 3.25PPP.

upon the prototype initially suggested in adopted in prior works ||§|,
20,26)25,56).

Given the quanta exposure , IGT, dependent on the photon flux and ex-
posure time, the observed signal by the sensor can be represented as a Poisson-
Gaussian random variable, where the Poisson represents the photon arrival pro-
cess and the Gaussian models the read noise. The readout process involves vari-
ous sources of distortions and an Analog-to-Digital Converter (ADC) to convert
the real numbers into integers {0,1,2,...,L}, where L = oNbits _ 1 depending on
the bit-depth (Nbits) allocated to the sensor. The final sensor readout, Y, can
be represented using the following equation,

Y ~ ADCjg {Poisson(QE x 16T 4 Ogark) + Gauss(0,02,41)}. (2)
—_————

read noise

Akin to previous works I@, we assume our sensor to be monochro-
matic as we utilize monochromatic real data in our experiments. For our sensor
prototype, we utilize a Quantum Efficiency (QE) of 0.80. The dark current (04a,k)
and read noise (0ycad) are set to 1.6 e~ /pix/sec and 0.2 e~ /pix, respectively.

5.2 Experimental Settings

Training data. We curate a set of 249 videos from the 12-2000FPS collection
and employ it as the training dataset for all the deep-learning models in our
experiments. Each training sample is fetched on the fly from each clip. A train-
ing sample here is defined as a tuple containing the ground-truth/target frames
and the 3-bit quanta frames simulated at 3.25 photons-per-pixel (PPP) (~ 1
lux assuming a 1.1um pixel pitch and a 1/2000 second exposure time) using the
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Fig. 9: Visual comparisons of the reconstructed results on test videos from the proposed
12-2000FPS dataset. For fair comparison, all methods utilize 11 3-bit quanta frames
simulated at 3.25 PPP per frame (~ 1 lux) to produce a restored frame. Best viewed
mn 200mMm.

image formation model described in Sec.

Testing data. To effectively analyze the performance of various methods, we
carefully sample 31 videos from I2-2000FPS containing various motion types,
shapes, and speeds. To test the generalizability, we also test the algorithms on
X4K1000FPS test dataset containing 15 videos from distinct scenes. Lastly,
to measure the performance on real-world data, we collect binary frames using a
SPAD sensor and compare the reconstructed outputs. More details will be
discussed in Sec.

Baselines. We compare the proposed method with eight existing dynamic scene
reconstruction algorithms, namely Transform Denoise @, QBP [47], Student-
Teacher , RVRT , EMVD , FloRNN , MemDeblur 35|, and Spk2ImgNet
. We also add an off-the-shelf denoiser BM3D to QBP, denoted QBP
(+BM3D), as a baseline for comparison. As we will discuss in Sec. QUIVER
beats all the baselines, both quantitatively and qualitatively.
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Fig. 10: Performance on Real Quanta Data. We capture real 1-bit quanta data
using a SPAD and generate 3-bit frames through temporal averaging. All deep
learning based models are trained using a photon level of 4.9 PPP per frame. Best
viewed in zoom.

Training QUIVER. We utilize the function mentioned in Eq. as the cost
function for training QUIVER with regularization parameters A\; = 0.2, Ay =
0.85, A3 = 0.1, and Ay = 0.05. The training data is extracted with patch size
128 x 128 and a batch size of 4. The weights are initialized with Lecun initializa-
tion . The network is trained using the Adam optimizer with an initial
learning rate of 2.5 x 10~°. The low learning rate is driven by the inherent insta-
bility of recurrent networks, as it mitigates the risk of divergent behavior during
training. We use a learning rate scheduler that reduces the learning rate by a
factor of 2 when a plateau is reached. QUIVER takes approximately 1.5 days to
train on a NVIDIA A100 Tensor Core GPU using Pytorch.

5.3 Results

Synthetic Data Experiments. We begin with the synthetic experiments where
we utilize 3-bit quanta frames, simulated using the parameters mentioned in
Sec. [5.1] at 3.25, 9.75, 19.5, and 26 PPP to test the algorithms’ performance.
Tab. [2and Tab. |3| demonstrate the PSNR and SSIM of various methods ex-
tracted by predicting 6017 12-2000FPS frames and 345 X4K1000FPS frames. To
further substantiate the efficacy of QUIVER’s design, we introduced a scaled-
down variant, QUIVER-s (Refer Fig. [§(b) for complexity comparison). Quan-
titative results indicate that both QUIVER and QUIVER-s offer substantially
better performance than all the baselines across a range of light levels. Fig. [J]
depicts visual results of all the methods on the 12-2000FPS dataset. It is evi-
dent that existing methods fail to handle both motion and noise simultaneously,
whereas, our proposed method, QUIVER, produces blur free high SNR outputs
while preserving high-frequency details to a large extent.

Real Data Experiments. We verify the methods’ performance on real data.
The real data is collected as binary frames using a SPAD sensor at 10000
FPS with a spatial resolution of 240 x 320. As SPADs possess zero read noise, the
binary frames are summed up to generate 3-bit frames. The average observed
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Table 2: Performance comparison on the proposed 12-2000FPS dataset across vari-
ous light levels. Models are trained using the 12-2000FPS dataset. QUIVER performs
significantly better than the existing methods.

Photons-Per-Pixel (PPP) 3.25 9.75 19.5 26
Method PSNR?T SSIMt PSNRt SSIM?T PSNRT SSIMt PSNRf SSIM1
Transform Denoise |6] |21.3170 0.7184 23.1521 0.7671 22.7748 0.7812 22.3096 0.7811
QBP 47| 15.9411 0.1293 19.1856 0.2654 20.4000 0.3713 20.7978 0.4114

QBP (+ BM3D [14]) |21.5476 0.7033 22.2001 0.6899 22.8351 0.7696 22.8617 0.7832
Student-Teacher |10 18.7200 0.4006 16.5195 0.2479 15.7636 0.2133 13.2889 0.0735

RVRT |42 19.4115 0.3539 21.6714 0.4568 22.0826 0.5021 21.7528 0.4968
EMVD 2] 20.0194 0.5873 21.0559 0.6048 22.4403 0.5592 23.4053 0.5576
FloRNN |1 21.0341 0.6785 25.6132 0.7091 27.4322 0.7395 27.8520 0.7784
MemDeblur |35 19.4877 0.3868 14.4906 0.1112 16.1775 0.1667 16.0058 0.1712
Spk2ImgNet |85 20.3945 0.5642 19.6665 0.6733 22.9372 0.7008 14.9769 0.6861

QUIVER-s (Ours) 24.7013 0.7565 26.8676 0.7883 27.2989 0.8432 27.8659 0.8408
QUIVER (Ours) 26.2143 0.7897 26.8058 0.8250 27.7538 0.8563 27.9377 0.8446

Table 3: Performance comparison on the X4K1000FPS dataset across various light lev-
els. Models are trained using the 12-2000FPS dataset. QUIVER performs significantly
better than the existing methods.

Photons-Per-Pixel (PPP) 3.25 9.75 19.5 26
Method PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT

Transform Denoise [6] | 19.6255 0.6323 22.1703 0.7044 22.9938 0.7229 22.6230 0.7204
QBP [17 15.5634 0.2302 16.9758 0.3230 17.1798 0.3957 17.7807 0.4188

QBP (+ BM3D [14]) |17.9677 0.5123 18.5308 0.5226 18.2407 0.5414 18.7917 0.5586
Student-Teacher |10 18.8208 0.3652 16.1548 0.2608 14.9359 0.2571 13.9762 0.1186

RVRT |42 19.9203 0.3641 21.0781 0.4472 21.4780 0.4925 20.7899 0.4919
EMVD [2] 20.5102 0.4836 21.8152 0.5595 22.9440 0.5936 22.4587 0.5860
FloRNN |1 20.8283 0.5778 23.5874 0.6484 24.3214 0.6683 25.2483 0.7170
MemDeblur |35 19.5534 0.3642 14.5595 0.2203 16.6749 0.3116 15.6496 0.2974

Spk2ImgNet [85 18.9424 0.4731 19.2532 0.5722 20.3442 0.5716 16.0931 0.6106
QUIVER-s (Ours) 20.9197 0.5955 21.7990 0.6523 24.1924 0.7316 23.4411 0.7248
QUIVER (Ours) 21.8730 0.6521 23.1654 0.7057 24.5956 0.7645 25.0086 0.7513

light level after summation is 4.9 PPP. We generate results with networks trained
at 4.9 PPP and demonstrate the visual results in Fig. QUIVER, as opposed
to existing state-of-the-art, effectively recovers high-frequency information while
applying visually appealing smoothening effect to low-frequency regions of the
scene. It is noteworthy that SPADs’ image formation model is significantly dif-
ferent from that of the QIS’ imaging model [58.59]. Therefore, the visual results
also indicate that the proposed QUIVER can thoroughly generalize to various
single-photon detectors.

6 Ablation Study

Effect of Pre-Denoising, Optical Flow and Multi-Scale. We conduct an
ablation study to evaluate the effect of the pre-denoising, the learnable opti-
cal flow, and multi-scale reconstruction on performance. Upon removal of either
module, we expand the features dimension of layers in the feature extraction
stage and add RDB blocks to the RMDF module, thereby maintaining a similar
model capacity. We train all possible combinations and display the quantitative
results in Tab. 4] Results indicate that, in the absence of either one or more mod-
ules, the network’s performance is substantially worse. Visual Results in Fig.
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Fig.11: Ablation Study. Visual Comparisons depicting the effectiveness of Pre-
denoiser, Optical Flow, and Multi-Scale Reconstruction Modules. Best viewed in zoom.

indicate that these modules serve critical roles as they significantly contribute
to model’s performance.

Does loading pre-trained optical flow module weights help? We ini-
tialize SPyNet with its pre-trained weights and finetune the same while train-
ing QUIVER, and display its quantitative results in Tab. @] As the pre-trained
SPyNet is not robust to photon shot noise and read noise, especially in low-light
conditions, initializing the module with it will result in sub-optimal performance.

Table 4: Ablation study. We conduct experiments to emphasize the role of Denoiser,
Optical flow, and Multi-Scale reconstruction modules. We also show the effect of loading
pretrained optical flow weights (*) on performance.

12-2000FPS
PSNR} SSIM{t

23.6702 0.7756
23.9479 0.7709
24.3841 0.7808
24.7445 0.7755
24.9999 0.7753
25.7521 0.7760
26.2143 0.7897

Pre-Denoising Optical Flow Multi-Scale

SAUX XSS X
SXAXSNS X
SN X X

7 Conclusion

In this paper, we presented a methodology to reconstruct blur-free grayscale
images/videos captured using 1-bit or few-bit quanta data. While adopting the
ideology of classical quanta restoration methods, we proposed an end-to-end deep
learning framework, QUIVER, that utilizes pre-filtering, learnable optical flow
module, and a novel multi-scale reconstruction approach to produce high-visual
outputs. Experiments on synthetic and real data indicate QUIVER beats state-
of-the-art and can generalize across single-photon sensors. We also introduce the
world’s first high-speed video dataset, 12-2000FPS, that captures fast moving
scenes at 2000 fps, covering wide ranges of motion. We believe that 12-2000FPS
will be a valuable asset for researchers in high-speed motion analysis and other
computer vision tasks.
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