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Abstract

Meta-learning has attracted attention due to its strong ability to learn experiences
from known tasks, which can speed up and enhance the learning process for new
tasks. However, most existing meta-learning approaches only can learn from
tasks without any constraint. This paper proposes an online constrained meta-
learning framework, which continuously learns meta-knowledge from sequential
learning tasks, and the learning tasks are subject to hard constraints. Beyond
existing meta-learning analyses, we provide the upper bounds of optimality gaps
and constraint violations of the deployed task-specific models produced by the
proposed framework. These metrics consider both the dynamic regret of online
learning and the generalization ability of the task-specific models to unseen data.
Moreover, we provide a practical algorithm for the framework and validate its
superior effectiveness through experiments conducted on meta-imitation learning
and few-shot image classification.

1 Introduction

In the setting of learning from multiple tasks, a shared prior is extracted from commonalities of
existing tasks, resulting in improved learning efficiency and prediction accuracy for task-specific
models. Conventional approaches includes multi-task learning [11], lifelong learning [46, 45, 34].
These approaches extract the prior by vanilla learning approaches on the tasks and do not explicitly
involve the task-specific learning in the prior extraction, as illustrated by [28]. In contrast, meta-
learning or learning-to-learn [51, 23, 47] learns a meta prior, usually a meta parameter, by evaluating
and optimizing the meta-objective, which is defined by the performance of the task-specific model
adapted from the prior. Meta-learning has been extended to accelerate reinforcement learning [23, 34],
where the tasks are modeled by Markov decision processes.

Online meta-learning considers that the meta parameter is learned from tasks that are sequentially
revealed. Papers [24, 1, 16] are shown to be no-regret with respect to the static comparator, i.e., the
gap between the aggregate performance of the meta parameter sequence and that of any fixed meta
parameter is sublinear in the number of revealed tasks. The online-MAML [24] and the MOML [1]
adopt one-step gradient descent to adapt the task-specific parameter, and paper [16] adapts it by the
ridge regression. A direct evaluation of meta-learning is the performance of the task-specific model
adapted from the meta parameter on each individual task. The methods in [4, 3, 34] consider dynamic
regret [56, 4], which compares the task-specific parameter adapted from the meta parameter with the
optimal counterpart for each task. The dynamic regrets of all the algorithms are shown to be bounded
when there are sufficiently many tasks.

In many applications of meta-learning, such as few-shot learning in computer vision [38] and robotics
[43, 5, 39], a task-specific model is expected to be quickly adapted by using a small amount of
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training data of a new task and generalize to the unseen data of the task. The generalization ability
of the task-specific adaptation has been considered in [13, 20, 21, 31]. Most of them consider the
task-specific model to be adapted using a small number of samples from the data distribution, and the
generalization error is quantified by the optimality gap between the produced task-specific model
and the task-specific model adapted using the best meta-parameter. In contrast, in this paper, we
explore a generalization error metric, which is defined as the optimality gap between the produced
task-specific model and the optimal task-specific model, based on the entire data distribution. By
directly quantifying the performance of the task-specific model on the entire data (including unseen
data), this metric identifies the improvement in the model’s generalizability for each specific learning
task when the meta-parameter is employed. Despite its significance, this generalization metric is
often overlooked in most meta-learning analyses. Generalization metrics that are similar to ours are
evaluated in [15, 18] and discussed in [20].

Typically, meta-learning handles learning tasks as unconstrained optimization problems. Many
real-world applications such as robot learning in [14, 54, 2, 29, 42], nevertheless, are subject to safety
constraints that should be rarely violated. For this case, constrained meta-learning aims to learn
meta-prior for constrained learning tasks, which are formulated as constrained optimization problems.
As a result, in constrained meta-learning, besides the generalization with respect to the objective risk,
the generalization with respect to constraint violation is also required to be considered during the
task-specific adaptation. More specifically, in the constrained learning task, each constraint is also
defined by the expectation over a data distribution, and only a small amount of training data sampled
from the distribution is observable during the task-specific adaptation. Therefore, the adaptation can
only guarantee the constraint satisfaction over the training data, while the constraint violation over
the whole data distribution is required to be quantified.

Main contribution. In this paper, we develop the first approach for the online constrained meta-
learning problem. In particular, we consider a sequential task setting of constrained learning tasks.
At each round, a learning task with hard constraints is revealed and is required to be solved, and
only a small number of data for the revealed task is provided. To address the problem, we use the
Follow-the-Perturbed-Leader (FTPL) approach to learn a meta-regularization at each round from the
revealed tasks and apply the meta-regularization to solve the new task. The overall contributions
are summarized as follows. (i) We apply constrained optimization with biased meta-regularization
to adapt the task-specific parameter by using a small amount of data. Then, we optimize the meta-
objective function, which is defined by the performance of the task-specific parameter on validation
data. (ii) To handle the non-convex meta-objective function, we use the Follow-the-Perturbed-
Leader (FTPL) to update the meta-regularization from all the available tasks for the new task. (iii)
We theoretically analyze and prove the upper bounds that (a) quantify both the optimality gaps
on the objective functions and the constraint violations of task-specific models; (b) quantify the
dynamic regrets where the comparator is dynamic and always optimal for each task; (c) quantify
the generalization errors of task-specific models to the unseen data, where only a small number of
training data are given in each task. The upper bounds show that the optimality gap between the
optimal meta-parameter and that learned by our method decreases with a rate of O(1/

√
T ). (iv) We

develop a practical algorithm for the online constrained meta-learning that can be used effectively on
large-scale problems, and empirically verify the efficacy of the proposed algorithm by conducting
experiments on meta-imitation learning and few-shot robust image classification.

Table 1: Challenges of interests
This paper [4] [15] [18] [1, 24]

Constraint ✓ × × × ×
Online learning ✓ ✓ × ✓ ✓
Dynamic regret ✓ ✓ N/A ✓ ×
Generalization ✓ × ✓ ✓ ×

Table 1 compares the challenges
of interests between this paper and
previous works [4, 15, 24, 1, 18].
In particular, we consider the hard
constraints in each learning task,
the dynamic regret in the online
meta-learning problem, and the
generalization ability of the task-
specific models to unseen data, si-
multaneously. Even if the constraints are removed, this paper provides a more general theoretical
analysis than most papers, as paper [15] quantifies the empirical loss over known training data, and
does not consider the generalization, and papers [24, 1] consider a static regret.

Related works. Optimization-based meta-learning algorithms usually learn an optimization
parameter as the meta prior, and each algorithm consists of a meta-algorithm, which learns the

2



meta parameter, and an inner-task or within-task algorithm, which adapts to a task-specific model
based on the meta parameter. Based on the type of the within-task approach, the methods can
be categorized into meta-initialization approaches [41, 23, 24, 4, 35, 33] and meta-regularization
approaches [17, 15, 47, 32]. In meta-initialization approaches, the within-task algorithm uses the
meta parameter as the initial point and takes a few optimization steps to minimize the empirical
risk of the new task. For example, the MAML [23] algorithm takes one-step gradient descent as
the within-task algorithm. In meta-regularization approaches, the within-task algorithm completely
solves an optimization problem, where the meta parameter serves as the bias of the regularization
term for the empirical risk. In our constrained meta-learning problem, the task-specific parameter
should satisfy its given constraints. In the meta-initialization approaches, as the within-task algorithm
only takes a few optimization steps, even if we do optimization to reduce the constraint violation, the
solution is far from feasible. On the other hand, the meta-regularization approaches fully solve the
within-task. To prioritize constraint satisfaction, we combine the meta-regularization approach with
hard constraints as the within-task algorithm for constrained meta-learning.

Notations. Denote the l2 norm of vectors and the spectral norm (2-norm) of matrices by ∥ · ∥.
Consider multiple data distributions D = {D0,D1, . . . ,Dm} and multiple training datasets Dtr =
{Dtr

0 ,Dtr
1 , . . . ,Dtr

m}. We use Dtr
i ∼ Di to represent that each data z in the dataset Dtr

i is i.i.d
sampled from the distribution Di, and Dtr ∼ D to represent Dtr

i ∼ Di for all 0 ≤ i ≤ m. We use
|Dtr

i | to denote the number of data in the dataset Dtr
i . A notation checklist is attached in Appendix A.

2 Problem Formulation

2.1 Constrained learning tasks and the sequential setting

At round t, an agent aims to solve a constrained learning task Tt, which is formulated as the following
constrained optimization problem:

θ∗t = argmin
θ∈Θ

Ez∼D0,t
[ℓ0(θ, z)] s.t. Ez∼Di,t

[ℓi(θ, z)] ≤ ci,t, i = 1, . . . ,m, (1)

where each data point is denoted by z = (x, y) ∈ Z with x ∈ X ⊆ Rdx being the input and
y ∈ Y ⊆ Rdy being its corresponding output. The loss function ℓ0 : Rd×Z → R is the performance
metric of a model parameterized by θ ∈ Θ ⊆ Rd and the constraint functions ℓi : Rd × Z →
R, i = 1, . . . ,m evaluate the constraint metric of the model. Each performance or constraint metric
ℓi is computed on the data distribution Di,t, which is a joint distribution over input-output pairs
z = (x, y). The optimal solution of Problem (1) is denoted as θ∗t , and the feasible set of Problem (1)
is denoted as Kt ≜ {θ ∈ Θ | Ez∼Di,t

[ℓi(θ, z)] ≤ ci,t, ∀i = 1, . . . ,m}. The constrained learning
task Tt is characterized by its data distributions Dt = {D0,t,D1,t, . . . ,Dm,t} and constraint limits
{c1,t, . . . , cm,t}. In general, the data distributions Dt are unknown to the agent. Instead, the training
datasets Dtr

t = {Dtr
0,t,Dtr

1,t, . . . ,Dtr
m,t} are sampled i.i.d from Dt and available to the agent.

Consider that a set of constrained learning tasks are revealed sequentially , i.e., task Tt is revealed
at round t. In each round t, the agent updates a model once Dtr

t is obtained. The updated model is
deployed and works on Tt, i.e., predicting the outputs y of all requested inputs x. In the next round,
the procedure repeats.

Since the data distributions Dt are unknown, the agent cannot completely solve Problem (1) and
obtain θ∗t . A common solution is to replace the data distribution Di,t in Problem (1) by the sampled
dataset Dtr

i,t and solving the problem for each task Tt. However, when the sample number in Dtr
i,t

is small, separately solving Tt with Dtr
i,t leads to limited performance. Similar to [4, 15], in this

paper, the learning algorithm is expected to improve the performance of the solution for task Tt by
exploiting the correlation between the task Tt and all previous tasks {T1, · · · , Tt−1}.

2.2 Metrics of a learning algorithm

Consider a learning algorithm produces a parameter sequence {θ1, · · · , θT } for the task se-
quence {T1, · · · , TT }. At round t, the optimality gap R0,t of θt is defined as R0,t(θt) =
max

{
Ez∼D0,t

[ℓ0(θt, z)− ℓ0(θ
∗
t , z)] , 0

}
. The violation for the i-th constraint denoted by Ri,t is

defined as: Ri,t(θt) = max
{
Ez∼Di,t

[ℓi(θt, z)]− ci,t, 0
}
, i = 1, . . . ,m. The task-averaged opti-

mality gap (TAOG) denoted by R̄0,[1:T ] and the task-averaged constraint violation (TACV) denoted
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by R̄i,[1:T ] of the algorithm after T rounds are defined as

R̄0,[1:T ] =
1

T

T∑
t=1

R0,t(θt), R̄i,[1:T ] =
1

T

T∑
t=1

Ri,t(θt), i = 1, . . . ,m. (2)

Under the sequential task setting, the goal of a learning algorithm is to minimize the TAOG and the
TACV of the parameter sequence {θ1, · · · , θT }. The definitions of the TAOG and the TACV consider
both the generalization ability of θt to the unseen data of each revealed task Tt, and a dynamic notion
of the optimality regret. First, the optimality gap R0,t and the constraint violation Ri,t are defined
by the expectations over the inaccessible data distribution Di,t, instead of the empirical risk over
the given dataset Dtr

i,t that is used in online meta-learning analysis [4, 35]. Thus, the TAOG and the
TACV can be used to quantify the generalization errors. It is more challenging to minimize them, as
θt is expected to generalize to the unseen data in Di,t while only the training datasets Dtr

i,t are given,
and their size could be small. Second, unlike the fixed comparator used in the FTML algorithm [24],
the comparator θ∗t is dynamic and always optimal for each task Tt. As pointed out in [4, 34, 56], one
cannot achieve the dynamic regret sublinear in T for either online learning or online meta-learning.

2.3 Task dissimilarity

As mentioned in Section 2.1, we expect that the performance produced by the learning algorithm, i.e.,
the TAOG and the TACV, are improved as the similarity and correlation among the task sequence
{T1, · · · , TT } are higher. Similar to [4, 15, 34], we define the dissimilarity between tasks by the
distance between the optimal parameters of tasks. Given the optimal task-specific parameters
{θ∗1 , · · · , θ∗T } for the task sequence {T1, · · · , TT }, the average distance between the parameter ϕ

and the optimal task-specific parameters is defined by Dist(ϕ, T1:T ) ≜
√

1
T

∑T
t=1

1
2∥θ

∗
t − ϕ∥2. The

dissimilarity of {T1, · · · , TT } is defined as S∗(T1:T ) ≜ minϕ Dist(ϕ, T1:T ). When the disclosure
of {T1, · · · , TT } is stationary, i.e., the task Tt at each t is sampled from the same probability
distribution p(T ), the task dissimilarity of the task distribution p(T ) is defined as S∗(p(T )) ≜√
minϕ ETt∼p(T )

[
1
2∥θ

∗
t − ϕ∥2

]
.

3 Online Constrained Meta-Learning Algorithm

In this section, to handle the sequential constrained learning tasks formulated in Section 2.1, we
propose the online constrained meta-learning framework, which contains the meta-parameter update
in Section 3.2 and the task-specific adaptation from the meta-parameter in Section 3.3.

3.1 Online constrained meta-learning setting.

Online constrained meta-learning aims to handle the problem given in Section 2.1, where the sample
numbers of the datasets for each task, i.e., |Dtr

i,t|, are limited and the agent is required to quickly
adapt to a new task once the task is revealed. At round t, the task-specific parameter θt is updated
by a within-task algorithm, and the meta parameter ϕt is updated by a meta-algorithm. In particular,
in the first step, the agent adapts the meta parameter ϕt to the task-specific parameter θt for task Tt,
by using a within-task algorithm Alg with the training datasets Dtr

t = {Dtr
0,t, · · · ,Dtr

m,t} and the
constraint limits {c1,t, . . . , cm,t}. Next, the agent uses all available tasks T1, . . . , Tt to update the
meta parameter to ϕt+1 by a meta-algorithm, which will be used in the task-specific adaptation for
the next task Tt+1 at round t+ 1. Our task-specific adaptation algorithm Alg and meta-algorithm are
discussed in the following.

3.2 Task-specific adaptation.

At round t, the task-specific parameter θt is adapted from the meta parameter ϕt to task Tt by the
within-task algorithm Alg. In the meta-initialization approaches [41, 23, 24], the within-task algo-
rithm Alg only takes a few optimization steps toward reducing the empirical risk and the constraint
violation, and thus the solution is far from being feasible for Problem (1). To prioritize constraint
satisfaction, we employ the meta-regularization approach with hard constraints. In particular, the
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task-specific adaptation from the meta-parameter ϕt is defined by constrained optimization with the
ϕt-biased regularization, i.e., θt = Alg(λ, ϕt,Dtr

t ) is defined by

argmin
θ∈Θ

1

|Dtr
0,t|

∑
z∈Dtr

0,t

ℓ0(θ, z) +
λ

2
∥θ − ϕt∥2 s.t.

1

|Dtr
i,t|

∑
z∈Dtr

i,t

ℓi(θ, z) ≤ ci,t, i = 1, . . . ,m, (3)

where the regularization weight λ > 0. By the algorithm in (3), the task-specific parameter θt satisfies
the constraints over the training datasets Dtr

i,t. The objective function includes the empirical loss
defined on the training dataset Dtr

0,t and is regularized by a biased term λ
2 ∥θ − ϕt∥2 [47, 15], which

penalizes the deviation from the meta parameter ϕt. The feasible set of the optimization problem in
(3) is denoted as Ktr

t ≜
{
θ ∈ Θ | 1

|Dtr
i,t|
∑

z∈Dtr
i,t

ℓi(θ, z) ≤ ci,t, ∀i = 1, . . . ,m
}

. In the following

sections, we consider that, the numbers of the data sampling from D0,t, i.e., |Dtr
0,t|, are the same for

all t, and is denoted as |Dtr
0 |; the numbers of the data sampling from Di,t, i.e., |Dtr

i,t| are the same for
each i and t, and is denoted as |Dtr

+ |.

3.3 Meta-parameter update.

After the model parameterized by θt is deployed, the agent obtains the dataset Dval
t =

{Dval
0,t , · · · ,Dval

m,t} by sampling from the data distributionDt = {D0,t, · · · ,Dm,t}. The performance
evaluation of the model with parameter θ is defined as Lval(θ,Dval

0,t ) =
1

|Dval
0,t |

∑
z∈Dval

0,t
ℓ0(θ, z).

Here, we consider that |Dval
0,t | is the same for all t and is denoted as |Dval

0 |.
In online meta-learning, at each round t, the meta-parameter is updated by using an online learning
algorithm to the meta-objective functions on all revealed tasks {T1, · · · , Tt}. In our meta-learning
problem, as the agent has collected the validation data {Dval

1 , · · · ,Dval
t }, we can evaluate the

performance of the task-specific parameter θt for each task, then the meta-objective function at round
t is defined as

∑t
t′=1 Lval(Alg(λ, ϕ,Dtr

t′ ),Dval
0,t′), where Alg is defined in (3).

Papers [4, 24] solve online meta-learning and update the meta-parameter by using the Follow-the-
Leader (FTL) [26] to their meta-objective functions. However, the FTL requires the objective function
to be strongly convex, and cannot be used in our problem, where the meta-objective function is
non-convex. Therefore, in this paper, we use the Follow-the-Perturbed-Leader (FTPL) [50] to solve
the problem, which is the first time that the FTPL is applied to online meta-learning. At round t, the
FTPL optimizes the meta-objective function with perturbed terms over all revealed tasks to obtain the
meta parameter ϕt+1 for task Tt+1. In particular, at round t, the meta parameter ϕt+1 is obtained by
solving the following optimization problem:

ϕt+1 = argmin
ϕ∈Θ

t∑
t′=1

Lval(Alg(λ, ϕ,Dtr
t′ ),Dval

0,t′)− σ⊤
t ϕ, (4)

where σt ∈ Rd is the random perturbed vector and its components {σt,j}dj=1 is i.i.d sampled from
the exponential distribution with a parameter η > 0 at each t. As Alg(λ, ϕ,Dtr

t′ ) included in (4)
is the optimal solution of the constrained optimization in (3), Problem (4) is a constrained bilevel
optimization problem [55].

Algorithm 1 Online Constrained Meta-Learning Framework
Require: Regularization weight λ > 0; Initial meta parameter ϕ1; Perturbed parameter η.

1: for t = 1, · · · , T do
2: Sample the training datasets Dtr

t from the distributions Dt for task Tt
3: Update and deploy the task-specific parameter θt = Alg(λ, ϕt,Dtr

t ) defined in (3) for task Tt
4: Sample the evaluation dataset Dval

0,t from the distributions D0,t

5: Generate the random perturbed vector σt ∈ Rd by i.i.d sampling: {σt,j}dj=1 ∼ Exp(η)

6: Update the meta parameter ϕt+1 by solving (4)
7: end for
8: Return {θ1, · · · , θT } for tasks {T1, · · · , TT }
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3.4 Algorithm statement.

The online constrained meta-learning algorithm is formally stated in Algorithm 1. Note that line 3 is a
deterministic convex optimization problem, which has been widely studied and solved by [10, 6]. The
optimization problem (4) in line 6 is a deterministic constrained bilevel optimization problem, which
can be solved by the algorithm in [55]. The implementation details are included in our proposed
practical algorithm (Algorithm 2 in Appendix B).

4 Theoretical Results

In this section, we derive the upper bounds of the TAOG and the TACV produced by Algorithm 1,
which characterize the regrets of the generalization errors of the models deployed for the sequential
tasks. First, we study the generalization error bound produced by our within-task algorithm (3) for a
single constrained learning task (Section 4.1). Next, we show the upper bounds of the TAOG and
the TACV when the meta-parameter can be arbitrarily selected (Section 4.1). Finally, we obtain the
theoretical bounds of the TAOG and the TACV, when the meta-parameter is not arbitrarily selected
bu produced by Algorithm 1 (Section 4.2).

Before the result statements, we introduce some definitions and the required assumptions about the
constraint qualifications for the optimization problems in (1) and (3). The constraint qualification
assumptions are usually used in constraint optimization analyses [7, 19].

We consider an optimization problem with inequality constraints: minx g(x) s.t. hi(x) ≤ 0, i ∈
I ≜ {1, . . . ,m} and denote it as (P). Denote the feasible set of (P) as K ≜ {x | hi(x) ≤ 0, ∀i ∈ I}
and I(x) ≜ {i ∈ I | hi(x) = 0} for x ∈ K.
Definition 1. The Linear Independence Constraint Qualifications (LICQ) holds for (P), if vectors
{∇hi(x) | i ∈ I(x)} are linearly independent for any x ∈ K.
Definition 2. Slater’s condition (SC) holds for (P) with the margin C > 0, if there exists x̄ such that
hi(x̄)− C ≤ 0, ∀i ∈ I .
Assumption 1 (Constraint qualifications). (i) There exists a compact set with diameter B > 0 such
that the following properties hold for each t: for the given data distribution Dt, the feasible set Kt of
the optimization problem in (1) is included in the compact set; with probability 1, for Dtr

t sampled
from Dt, the feasible set Ktr

t of the optimization problem in (3) is included in the compact set.

(ii) There exists C > 0 such that the following properties hold: for the given data distribution Dt, the
SC holds for the optimization problem in (1) with the margin C; with probability 1, for Dtr

t sampled
from Dt, the SC holds for the optimization problem in (3) with the margin C.

(iii) For the given data distribution Dt, the LICQ holds for the optimization problem in (1).
Remark 1. A sufficient condition for part (i) of Assumption 1 is that Θ is a compact set.

We also require the following assumptions on the loss function and the constraint functions, which
are standard in the analysis of meta-learning problems [4, 15, 24, 20].
Assumption 2 (Function properties). (i) For any z ∈ Z , the loss function ℓ0(·, z) and the constraint
functions ℓ1(·, z), · · · , ℓm(·, z) are twice continuously differentiable. (ii) For any z ∈ Z , ℓ0(·, z) is
L0-Lipschitz, i.e., ∥ℓ0(w, z)− ℓ0(u, z)∥ ≤ L0∥w−u∥ for any w, u ∈ Θ. (iii) For any z ∈ Z , ℓ0(·, z)
is ρ-smooth, i.e., ∥∇ℓ0(w, z)−∇ℓ0(u, z)∥ ≤ ρ∥w − u∥ for any w, u ∈ Θ. (iv) For any z ∈ Z and
1 ≤ i ≤ m, ℓi(·, z) is Lc-Lipschitz, i.e., ∥ℓi(w, z)− ℓi(u, z)∥ ≤ Lc∥w − u∥ for any w, u ∈ Θ. (v)
For any z ∈ Z and 0 ≤ i ≤ m, ℓi(·, z) is convex. (vi) For any t ∈ {1, · · · , T}, z ∈ Z , w ∈ Θ, and
1 ≤ i ≤ m, ℓi(w, z)− ci,t are bounded by M .

4.1 Generalization of constrained learning with biased regularization

We begin with the generalization error bound on a single constrained learning task Tt, which is
produced by the within-task algorithm (3) with an arbitrarily given meta-parameter ϕt. As stated in
(3), the algorithm replaces all the expectations in (1) by the sample averages oven the given datasets
and adds a regularization term with the bias ϕt to the objective function.
Proposition 1. Suppose that Assumptions 1 and 2 are satisfied. For any given meta-
parameter ϕt and regularization weight λ > 0, the following bounds hold for task
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Tt: EDtr
t ∼Dt

[R0,t(Alg(λ, ϕt,Dtr
t ))] ≤ λ

2 ∥θ
∗
t − ϕt∥2 + O

(
ln |Dtr

0 |
λ|Dtr

0 | +

√
ln |Dtr

+ |
|Dtr

+ |

)
, and

EDtr
t ∼Dt

[
Ri,t(Alg(λ, ϕt,Dtr

t ))
]
≤ O

(√
ln |Dtr

+ |
|Dtr

+ |

)
,∀i = 1, . . . ,m.

Proposition 1 shows the generalization error bounds of the loss function ℓ0 and the constraint violation
for each ℓi. The coefficients of the notations O and the proofs are shown in Propositions 3 and 4 of
Appendix E. As the objective function in (3) includes the biased regularization term λ

2 ∥θ − ϕt∥2,
where the bias serves as the prior estimation for the solution, the generalization error bound includes
a term of λ

2 ∥θ
∗
t − ϕt∥2, which is decreasing as the estimation ϕt is more accurate. The objective

function and the constraint functions include the sample averages over the training dataset Dtr
t . As

the numbers of data points (|Dtr
0 | and |Dtr

+ |) are larger, the sample average approximation is more
accurate, and then the generalization error is smaller.

The generalization error bounds shown in Proposition 1 motivate learning a good meta-parameter ϕt

by meta-learning. Next, we study the generalization error bounds for the task sequence {T1, · · · , TT },
when the meta-parameter ϕ is arbitrary and fixed. Proposition 2 shows the upper bounds of the TAOG
and the TACV for any given meta-parameter ϕ, i.e., the task-specific parameter θt in (2) is computed
by θt = Alg(λ, ϕ,Dtr

t ) for all t.

Proposition 2. Suppose that Assumptions 1 and 2 are satisfied. Consider the
task sequence {T1, · · · , TT }, for any given meta-parameter ϕ, choose the regular-

ization parameter λ =
2
√
d(ρB+L0

√
ln |Dtr

0 |)
Dist(ϕ,T1:T )

√
|Dtr

0 |
. Then, the following bounds hold:

1

T

T∑
t=1

EDtr
t ∼Dt

[
R0,t(Alg(λ, ϕ,Dtr

t ))
]
≤ O

(
Dist(ϕ, T1:T )

√
ln |Dtr

0 |
|Dtr

0 |
+

√
ln |Dtr

+ |
|Dtr

+ |

)
, and

1

T

T∑
t=1

EDtr
t ∼Dt

[
Ri,t(Alg(λ, ϕ,Dtr

t ))
]
≤ O

(√
ln |Dtr

+ |
|Dtr

+ |

)
,∀i = 1, . . . ,m.

The coefficients of the notations O and the proofs are shown in Proposition 5 of Appendix E.
Following the result in Proposition 2, as the average distance between the meta-parameter ϕ and the
optimal task-specific parameters {θ∗1 , · · · , θ∗T }, i.e., Dist(ϕ, T1:T ), becomes small, the upper bound
of the TAOG is small. By minimizing the distance Dist(ϕ, T1:T ) over ϕ, we can get the optimal
upper bound of the TAOG:

1

T

T∑
t=1

EDtr
t ∼Dt

[
R0,t(Alg(λ, ϕ∗,Dtr

t ))
]
≤ O

(
S∗(T1:T )

√
ln |Dtr

0 |
|Dtr

0 |
+

√
ln |Dtr

+ |
|Dtr

+ |

)
, (5)

when the meta-parameter is selected by ϕ∗ = argminϕDist(ϕ, T1:T ). Note that the optimal upper
bound is not achievable since the optimal task-specific solution θ∗t is not achievable for each t. In the
next section, we show that the sequence of meta-parameters ϕt produced by Algorithm 1 produce a
comparable performance as the optimal meta-parameter ϕ∗.

4.2 Generalization of the online constrained meta-learning algorithm

Consider the meta-parameter is updated by (4) in Algorithm 1. As we apply the FTPL algorithm to
the meta-objective function for the online constrained meta-learning problem, the upper bounds of
the TAOG and the TACV produced by Algorithm 1 are shown in Theorem 1 and Corollary 1. As the
algorithm to compute θt is stochastic, which depends on the task sequence and the sampling of the
training data Dtr

t and evaluation data Dval
0,t , we denote the expectation of the optimality gap and the

constraint violations Ri,t(θt) as E[Ri,t(θt)], and the expectations of the TAOG and the TACV are

denoted as E[R̄i,[1:T ]] = E
[
1
T

∑T
t=1 Ri,t(θt)

]
for all i = 0, . . . ,m.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Suppose that Θ is included in a
compact cube with edge of length Dl, i.e. ∥ϕ∥∞ ≤ Dl for any ϕ ∈ Θ. Choose the regulariza-

tion parameter λ =
2
√
d(ρB+L0

√
ln |Dtr

0 |)
S∗(T1:T )

√
|Dtr

0 |
and the perturbed parameter η = 1

L0

√
dT

. For the task

7



sequence {T1, · · · , TT }, the following bounds hold for the TAOG and the TACV of Algorithm

1: E[R̄0,[1:T ]] ≤ O(S∗(T1:T )

√
ln |Dtr

0 |
|Dtr

0 |
+

√
ln |Dtr

+ |
|Dtr

+ |
+

√
ln |Dval

0 |
|Dval

0 |
+

1√
T
), and E[R̄i,[1:T ]] ≤

O
(√

ln |Dtr
+ |

|Dtr
+ |

)
, ∀i = 1, . . . ,m.

Corollary 1. If the task Tt at each t is sampled from a fixed distribution p(T ), we choose λ =
2
√
d(ρB+L0

√
ln |Dtr

0 |)
S∗(p(T ))

√
|Dtr

0 |
, then S∗(T1:T ) in the upper bound of E[R̄0,[1:T ]] shown in Theorem 1 can be

replaced by the fixed constant S∗(p(T )).

The coefficients of the notations O and the proofs are shown in Appendices E and F. In the online
constrained meta-learning problem, as stated in Algorithm 1, after the task-specific parameter θt for
task Tt is deployed, the agent is usually able to sample the dataset Dval

0 and |Dval
0 | ≫ |Dtr

0 |. In this

case, we can ignore the term
√

ln |Dval
0 |

|Dval
0 | in the upper bound of E[R̄0,[1:T ]] in Theorem 1. We compare

the upper bound of the TAOG by Algorithm 1 with the unachievable optimal upper bound shown in

(5), where the term
√

ln |Dval
0 |

|Dval
0 | is ignored. The only additional term included in Theorem 1 is O( 1√

T
).

It implies that the regret of the optimality gap between the meta-parameter ϕt updated by Algorithm
1 and the optimal meta-parameter ϕ∗ used in (5) is sublinear with respect to the task number T .

In particular, when the constraint is ignored from Problem (1), the upper bound of the TAOG reduces

to E[R̄0,[1:T ]] ≤ O(S∗(p(T ))
√

ln |Dtr
0 |

|Dtr
0 | + 1√

T
), which has the same order as the upper bound shown

in [18] with respect to the task dissimilarity S∗(p(T )), the data number |Dtr
0 |, and task number T .

Corollary 1 considers that the revealed tasks are sampled from a static task distribution. In this
case, when T is sufficiently large, Algorithm 1 degenerates into an offline constrained meta-learning
algorithm. If we further ignore the constraints in Problem (1), the bound in Corollary 1 of the TAOG
holds the same order as the upper bound shown in [15].

5 Applications

5.1 Meta imitation learning

Meta-imitation Learning [25, 40] has been developed as a powerful tool for a learner to finish a new
task by observing the demonstrations of an expert. However, existing methods do not consider any
constraint, e.g., collision avoidance, for the new task. In this experiment, we apply the constrained
meta-learning algorithm to a constrained meta-imitation learning problem where the learner learns to
write letters in a cluttered environment [30, 29]. At each round t, the expert writes a different letter in
a free space. The learner can observe the locations and velocities of a few points of the letter and is
asked to write the same letter in a cluttered environment where the obstacle is known. The learner
learns the policy by using constrained learning, where the loss function is defined by the tracking
error of the learned policy, and the constraint is defined by a collision metric. Note that the expert
performs in the free space, and the learner performs in the cluttered environment. The additional
obstacle makes the problem more difficult. To the best of our knowledge, it is the first time to study
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Figure 1: Results of few-shot imitation learning. Left: Loss on test data; Middle: Constrained violation metric
on test data. Right: Collision probability.
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the problem. We provide the details of the problem formulation and the implementation setting in
Appendix C.1.

We compare the proposed method with two benchmarks: (a) starting from scratch; (b) online MAML
[24] with constraint penalty. In (a), the optimization problem in (3) is solved from a random initial
parameter. In (b), we add a weighted penalty term for constraint violation to the loss function of the
online MAML. For each task, the three methods share the data points.

Few-shot imitation learning. Consider that the learner collects the locations and velocities on a
few points (few-shot data) from the expert for each task. Fig. 1 compares the proposed constrained
meta-learning with the selected benchmarks. Fig. 1 Left shows that our approach has the fastest
learning rate, i.e., its test error is smaller than 20 at around T = 10, while the online MAML achieves
that at around T = 30, and the test error of starting from scratch is always above 20. Moreover,
our approach has the best learning accuracy, i.e., the steady-state test error of our approach is much
smaller than those of the other two methods. In terms of constraint violation, our approach achieves
the lowest collision probability in Fig. 1 Right and the lowest constraint violation metric in Fig. 1
Middle.

Figure 2: Learned trajectories for full-shot imitation learning. Left:
Starting from scratch; Middle: MAML with constraint penalty; Right:
Constrained meta-learning. The blue line is the demonstration trajectory, the
red line is the learned trajectory, the red circle represents the obstacle.

Improve full-shot imitation
learning by meta-learning.
We consider that the learner
can collect the locations and
velocities on sufficient points
(full-shot data) from the ex-
pert for each task, and test
the proposed method and the
selected benchmarks. In
this experiment, we show
that meta-learning can im-
prove the performance of con-
strained learning, even if suf-
ficient data can be accessed by the learner. As shown in Fig. 2, our method can achieve superior
performance than that in the two benchmark approaches (only our method can completely draw
the shape of the letter). Fig. 3 shows that our method achieves a comparable adaptation time to
online-MAML while outperforming online-MAML in terms of test error and collision avoidance.
Both our method and online-MAML much outperform starting from scratch in terms of test error,
collision avoidance, and adaptation time.
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Figure 3: Results of full-shot imitation learning. Left: Loss on test data; Middle left: Constrained violation
metric on test data; Middle right: Collision probability; Right: Adaptation time.

5.2 Few-shot image classification with robustness

Meta-learning has been widely used for few-shot learning. Few-shot learning aims to train a model
with only a few data samples, which is widely solved from the perspective of meta-learning by
learning prior knowledge from multiple tasks. Consider a problem of few-shot image classification
with robust learning [57]. In particular, after it is updated by a few data points, we require that the
task-specific model has high accuracy on clean test data and is also robust to adversarial attacks on the
test data. Robust learning for a single task can be formulated by a constrained optimization problem
[12]. Correspondingly, in this experiment, the robust few-shot image classification is formulated as
a constrained meta-learning problem and is solved by the proposed algorithm. The details of the
problem formulation and the implementation setting are shown in Appendix C.2.
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Table 2: Clean accuracy (abbreviated as "Clean Acc.") and PGD
accuracy (abbreviated as "PGD Acc.") on the mini-ImageNet
dataset for 5-way 5-shot and 5-way 1-shot learning.

Method Clean Acc. PGD Acc. B-score

1-
sh

ot

MAML + CP 40.78 ± 0.75 23.91 ± 0.67 29.83 ± 0.43
MAML + MOML 39.23 ± 0.76 25.80 ± 0.67 31.12 ± 0.70
ProtoNet + CP 38.65 ± 0.72 23.10 ± 0.65 28.67 ± 0.67
ProtoNet + MOML 35.06 ± 0.70 27.24 ± 0.65 30.51 ± 0.66
BOIL + CP 40.44 ± 0.79 25.94 ± 0.69 31.29 ± 0.75
BOIL + MOML 41.22 ± 0.83 27.77 ± 0.75 32.98 ± 0.79
CML (ours) 39.52 ± 0.80 33.11 ± 0.79 36.03 ± 0.79

5-
sh

ot

MAML + CP 56.16 ± 0.72 34.85 ± 0.72 42.91 ± 0.71
MAML + MOML 55.66 ± 0.78 39.38 ± 0.77 45.89 ± 0.77
ProtoNet + CP 59.11 ± 0.71 39.41 ± 0.73 46.93 ± 0.71
ProtoNet + MOML 58.72 ± 0.74 41.59 ± 0.75 48.59 ± 0.74
BOIL + CP 58.54 ± 0.76 34.28 ± 0.75 42.94 ± 0.78
BOIL + MOML 60.21 ± 0.79 35.47 ± 0.78 44.37 ± 0.78
CML (ours) 59.74 ± 0.75 49.48 ± 0.76 54.01 ± 0.74

To evaluate the performance of the
proposed algorithm, we test the task-
specific model on two sets of each
dataset: (a) the clean test dataset; (b)
the corrupted test dataset which is ob-
tained by adding perturbations on the
clean test dataset through the Projected
Gradient Descent (PGD) method [37].
Correspondingly, we show the test ac-
curacy on (a) as clean accuracy; the
test accuracy on (b) as PGD accuracy.
Moreover, we use Balance Score (B-
score) [57] as a metric to evaluate
the comprehensive performance of the
model, which is defined as B-score = 2
× (CA × PA)/(CA + PA) with CA and
PA denoting clean accuracy and PGD
accuracy, respectively. We compare the proposed constrained meta-learning (CML) with several
benchmarks: (i) MAML [23] with constraint penalty (CP); (ii) ProtoNet [49] with CP; (iii) BOIL
[44] with CP; (iv) MAML with MOML [57]; (v) ProtoNet with MOML; (vi) BOIL with MOML.
As the baseline methods for few-shot learning, MAML, ProtoNet, and BOIL, can only deal with
unconstrained meta-learning, at (i)(ii)(iii), we add a weighted penalty term of the robustness constraint
violation to their loss functions. At (iv)(v)(vi), MAML, ProtoNet and BOIL fit into a multi-objective
meta-learning (MOML) framework [57], which regards the clean accuracy and the PDG accuracy
as two competing objectives. Since all baseline methods are offline meta-learning, for comparisons,
we use the similar way shown in Algorithm 2 of Appendix B to adapt them to the online setting.
Specifically, in each round, we sample a batch of tasks from the revealed tasks, and use the gradient-
based method on their meta-objective functions over the data of sampled tasks. The modification
from the offline baseline methods to their online versions are exactly following our approach in terms
of optimization of the online meta-objective.
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Figure 4: Test accuracy v.s. training task index on dataset mini-ImageNet. Left: Clean accuracy; Middle: PGD
accuracy; Right: B-score.

We test the algorithms on two few-shot learning datasets, CUB [53] and mini-ImageNet [52]. Due to
the page limit, the results on the CUB are shown in Appendix C.2. Table 2 shows that our method
significantly improves the PGD accuracy and the B-score than the benchmarks and keeps the clean
accuracy comparable. Fig. 4 shows that our method outperforms the benchmarks in terms of both test
accuracy and learning speed, i.e., its test accuracy is larger than 0.5 at T = 30, while the benchmarks
take at least 50 tasks to achieve so.

6 Conclusion

In this paper, we develop an online constrained meta-learning framework, which learns the meta-prior
from learning tasks with constraints. We theoretically quantify the optimality gaps and constraint
violations produced by the proposed framework. Both two metrics consider the generalization ability
of the task-specific models to unseen data. Moreover, we propose a practical algorithm for the
constrained meta-learning framework. Our experiments on meta-imitation learning and few-shot
image classification demonstrate the superior effectiveness of the algorithm.
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