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Abstract
In fully-dynamic consistent clustering, we are
given a finite metric space (M,d), and a set
F ⊆M of possible locations for opening centers.
Data points arrive and depart, and the goal is to
maintain an approximately optimal clustering so-
lution at all times while minimizing the recourse,
the total number of additions/deletions of centers
over time. Specifically, we study fully dynamic
versions of the classical k-center, facility location,
and k-median problems. We design algorithms
that, given a parameter β ≥ 1, maintain an O(β)-
approximate solution at all times, and whose total
recourse is bounded by O(log |F | log∆)·OPTβ

REC.
Here OPTβ

REC is the minimal recourse of an offline
algorithm that maintains a β-approximate solution
at all times, and ∆ is the metric aspect ratio. Fi-
nally, while we compare the performance of our
algorithms to an optimal solution that maintains k
centers, our algorithms are allowed to use slightly
more than k centers. We obtain our results via a
reduction to the recently proposed Positive Body
Chasing framework of [Bhattacharya, Buchbinder,
Levin, Saranurak, FOCS 2023], which we show
gives fractional solutions to our clustering prob-
lems online. Our contribution is to round these
fractional solutions while preserving the approxi-
mation and recourse guarantees. We complement
our positive results with logarithmic lower bounds
which show that our bounds are nearly tight.

1. Introduction
Clustering is a fundamental optimization primitive and one
of the most widely used tools in data analysis. Given a
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dataset in a metric space, the task is to output a set of cluster
centers that minimize an objective which is a function of
the distances between data points and their nearest center.
In this work we study three such clustering formulations:
(i) k-center, in which we can open at most k centers and
we seek to minimize the maximum distance of any point to
its nearest open center, (ii) facility location, in which there
is cost to open each center, and we wish to minimize the
sum of opening costs plus the sum of distances between
each data points and its nearest open center, and (iii) k-
median, in which we can open at most k centers, and we
wish to minimize the sum of distances between each data
point and its nearest open center. These classical objectives
have been studied extensively for the last few decades, and
though they are NP-hard, their approximability is almost
completely understood (Byrka et al., 2017; Byrka & Aardal,
2010; Jain et al., 2002; Hochbaum & Shmoys, 1986; Guha
& Khuller, 1999).

In practice however, we are often faced with situations
where the data is not static but evolving over time. As
the data change, it may be important to maintain a set of
cluster centers that not only minimizes the objective at hand,
but also does not change drastically between time steps.
For example, suppose we are clustering as a preprocessing
step to split data among servers; shuffling data between
servers with every update could be prohibitively costly. This
harder task, known as consistent clustering, is less well
understood than its offline counterpart and has drawn sig-
nificant attention in recent years from both academic and
industry researchers (Lattanzi & Vassilvitskii, 2017; Cohen-
Addad et al., 2022; 2019; Chan et al., 2024; Bhattacharya
et al., 2022a; Fichtenberger et al., 2021; Łącki et al., 2024;
Guo et al., 2021; 2020; Moseley et al., 2023; Bhattacharya
et al., 2024b; Forster & Skarlatos, 2025; Bhattacharya et al.,
2024a).

To the best of our knowledge, all state-of-the-art fully-
dynamic consistent clustering results aim for absolute re-
course bounds. These are guarantees of the form “After T
data point insertions or deletions, the algorithm incurs at
most c ·T recourse.” Consider, for example, the recent work
of Łącki at el. (Łącki et al., 2024) which gives an algorithm
for fully-dynamic k-center that maintains a constant approx-
imation with O(T ) recourse. This highly non-trivial bound
is a significant improvement over previous results (Lattanzi
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& Vassilvitskii, 2017; Fichtenberger et al., 2021); it is also
best possible in the sense that there exist update sequences
for which o(T ) recourse does not suffice to maintain a con-
stant approximation.

However, these sequences in which every algorithm incurs
Ω(T ) recourse seem pathological and unrealistic: for ex-
ample, if a set of k + 1 points that are far from each other
depart then return repeatedly in round-robin fashion, any
good k-clustering approximation algorithm must open and
close a center at every time step. In fact, low-recourse clus-
tering makes the most sense as a goal when the data has
consistent structure over time, i.e. precisely when there
exists an offline solution that rarely change its centers over
time.1 In recent work, (Bhattacharya et al., 2023) initiated
the study of algorithms with competitive recourse, which
have refined guarantees of the form “Over the course of
the input sequence, the algorithm incurs recourse that is
at most c · OPTREC.” Here OPTREC which is the minimal
recourse of any offline algorithm with full foreknowledge
of the input that maintains an optimal solution at all times.
More generally, for any β ≥ 1, they compare the online
algorithm’s recourse to OPTβ

REC, which is the optimal re-
course of an offline algorithm that is allowed to maintain
a β-approximate solution at all times.2 To rephrase in this
language, we claim that for realistic instances of consistent
clustering and reasonable constant values of β, we have
OPTβ

REC ≪ T .3

1.1. Results

In this work we initiate the study of consistent clustering
algorithms in the fully dynamic model with competitive re-
course. We study fully dynamic versions of three classical
clustering problems, the k-center problem, the facility lo-
cation, and the k-median problem. Our main result is the
following.

Theorem 1.1 (Upper Bound). For every β ≥ 1, there exists
a dynamic clustering algorithm

• for k-center that given an ϵ ∈ (0, 1/2) maintains an
O(β)-approximate solution, uses (1+ϵ)·k centers and

1This is reminiscent of (Awasthi et al., 2012) which gives poly-
nomial time algorithms for clustering instances whose solutions
are stable under perturbations. They posit that these are inputs one
would realistically want to cluster in the first place.

2Note that the value OPTβ
REC, by definition, decreases as β in-

creases. For the k-center objective, the proof of (Łącki et al.,
2024) shows that there is a setting of β = O(1) such that
OPTβ

REC = O(T ).
3We note that (Fichtenberger et al., 2021) can be interpreted

as a competitive recourse guarantee, but this result is only for
the incremental setting. They show an Õ(k) absolute recourse
algorithm, which is also poly log competitive because k is a lower
bound on the recourse of any algorithm opening k centers.

incurs recourse at most O( 1
ϵ2 log |F | log∆) · OPTβ

REC.

• for facility location that maintains an O(β)-
approximate solution and incurs recourse at most
O(log |F | log∆) · OPTβ

REC.

• for k-median that maintains an O(β)-approximate so-
lution, uses O(k) centers, and incurs recourse at most
O(log |F | log∆) · OPTβ

REC.

Here ∆ is the aspect ratio of the metric space, and F is the
set of locations where the algorithm can open a center.

We complement our upper bounds by showing that at least
one logarithmic factor is unavoidable.

Theorem 1.2 (Lower Bound). Suppose there is a random-
ized algorithm that given a parameter β ≥ 1 as an input
maintains an (α ·β)-approximation for one of fully-dynamic
facility location, k-center, or k-median. Then this algorithm
has recourse at least Ω(min{log |F |, logα ∆}·OPTβ

REC. For
k-center and k-median, the lower bound holds even if the
algorithm is allowed to open O(k) facilities.

Finally, we evaluate our three clustering algorithms experi-
mentally on UCI Machine Learning repository datasets. Our
experiments demonstrate not only that our algorithms are
simple to implement in practice, but that they also signifi-
cantly outperforms the worst-case bound predicted by the
theorem. They also seem to show that OPTβ

REC ≪ T as we
predict.

1.2. Techniques and overview

The starting point of our work is the positive body chasing
framework of (Bhattacharya et al., 2023). Loosely speak-
ing, they show that given a sequence of convex bodies
K1,K2, . . . ,KT revealed online, when these bodies are
defined by packing and covering constraints, there is an
algorithm that maintains a point xt ∈ Kt online such that
the total ℓ1 movement

∑
t ∥xt − xt−1∥1 (or “fractional re-

course”), is within a logarithmic factor of OPTREC, the mini-
mum fractional recourse of an offline algorithm maintaining
a point in the same bodies. In Appendix A we show how
to cast a suitable fractional version of our three dynamic
clustering problems as positive body chasing.

The main contribution of our work is to show how to round
the fractional solution output by (Bhattacharya et al., 2023)
while preserving both recourse and approximation guaran-
tees. Offline, rounding is already a non-trivial task tailored
for each problem separately. Online, rounding imposes ad-
ditional challenges: not only should the integral solution
preserve feasibility and the objective function value, but it
should also maintain a stable solution over time. The latter
property does not hold for most textbook rounding tech-
niques, for which a small change in the fractional solution
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may result in large changes to the rounded integral solution.
To this end, various online rounding ideas were proposed
in the context of other problems (Alon et al., 2009; Bansal
et al., 2012; Adamaszek et al., 2012; Bansal et al., 2011;
Krishnaswamy et al., 2023).

In Section 3.1 we design a rounding algorithm for the k-
center problem. It is well known that the greedy algorithm
that repeatedly adds to the solution any point farther than
α · OPT (for α ≥ 2) to an open center opens at most k
centers, and hence is a α-approximation (Gonzalez, 1985).
Can we emulate this strategy in the dynamic setting using
the fractional solution as our guide? When the maximum
intracluster distance OPT does not change, the LP guaran-
tees that every new center OPT far from an open center has
an LP mass of 1 lying in the ball of radius OPT around it.
If we run the greedy algorithm and, as the fractional solu-
tion moves, we also drop centers whose ball’s mass dips
significantly below 1, then we can charge the recourse of
the center leaving the solution to the ℓ1 movement of the
fractional solution that caused the dip.

The story is more involved in the general case when the
value of OPT changes over time. When the value of OPT
changes, the strategy above may drop balls despite the frac-
tional solution not moving at all, and hence a more careful
argument is required. In particular, we would like our al-
gorithm to be “lazy" and only move centers when it has
no other choice. Our algorithm actively maintains a set of
“well separated" balls of different radii around its chosen
cluster centers, and uses a potential function argument (and
a set of invariants) to bound the number of balls we drop
before the solution reaches feasibility. Intuitively, whenever
we drop a ball and the fractional solution does not change
enough, we show that a new ball that is added has a much
smaller radii compared with the ball we dropped, and this
can only happen O(log∆) many times.

Our rounding scheme for facility location in Section 3.2 can
be seen as a dynamic analog of the classic result of (Shmoys
et al., 1997). Roughly, let Rj be the fractional service cost
of a point/client j (we will define this carefully later). By
Markov’s inequality, for a constant γ ≥ 1, every client j
must have a fractional mass of 1 − 1/γ within the ball of
distance γ ·Rj from j. In (Shmoys et al., 1997) they show
that greedily picking disjoint balls of this kind in order from
smallest to largest radius and opening the cheapest facility
within each is a constant approximate solution.

Once again, as the underlying fractional solution changes
over time, these service costs change, and we need to be
careful with our online choices. As in the k-center case, our
algorithm maintains a set of “well separated" balls of dif-
ferent radii around certain points/clients and it also chooses
a cheap facility inside each such ball. If the total fraction
inside a ball drops enough, we can charge our integral re-

course to this change. Otherwise, we show via a potential
function argument (and a set of invariants) how to bound
the number of balls we drop. Our k-median rounding al-
gorithm, which we discuss in Section 3.3, turns out to be
a direct consequence of the result in Section 3.2. In Sec-
tion 4, we evaluate implementations of all our algorithms
experimentally.

In Appendix C we show our logarithmic lower bounds that
draws ideas from the lower bound in (Fotakis, 2008). The
lower bound holds even against fractional algorithms (and
hence also randomized algorithms). For all three problems,
we use variants of a uniform binary HST metric, and the
request sequence inserts clients along a root to leaf path.
The adversary adaptively picks this path such that the next
request falls in a subtree with very few open centers, frac-
tionally. The nature of the metric ensures that the algo-
rithm must move fractional mass into this subtree if it wants
to maintain a good approximation, thus incurring high re-
course.

1.3. Additional related work

Clustering under various objectives is by now a classic prob-
lem with many known approximation algorithms. We men-
tioned a few besides those included in the introduction (Arya
et al., 2004; Kanungo et al., 2004; Jain et al., 2003; Charikar
& Guha, 2005), but for a more complete treatment, see the
relevant sections of (Williamson & Shmoys, 2011).

Besides the stable clustering algorithms mentioned above,
there is a well-established line of work on low-recourse dy-
namic algorithms for a host of combinatorial problems, e.g.
Steiner tree (Imase & Waxman, 1991; Gu et al., 2016; Gupta
& Kumar, 2014; Łącki et al., 2015; Gupta & Levin, 2020),
load balancing (Awerbuch et al., 2001; Gupta et al., 2014;
Krishnaswamy et al., 2023), set cover (Gupta et al., 2017;
Abboud et al., 2019; Bhattacharya et al., 2019; Gupta &
Levin, 2020; Bhattacharya et al., 2021; Assadi & Solomon,
2021), edge orientation (Brodal & Fagerberg, 1999; Sawlani
& Wang, 2020; Bera et al., 2022), graph coloring (Solomon
& Wein, 2020), maximal independent sets (Assadi et al.,
2018), and spanners (Baswana et al., 2012; Bhattacharya
et al., 2022b).

2. Preliminaries
In the classical clustering problems we study we are given
a metric space (M,d) on n points. We assume without
loss of generality that mini,j∈M dij = 1 such that ∆ =
maxi,j∈M dij is the aspect ratio of the metric space. In
addition, there is a set of points C ⊆ M we refer to as
clients, and a set of candidate center locations F ⊆ M .4

The algorithm outputs a solution which is a subset of the

4In k-center and k-median, we assume F = M .
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candidate center locations, S ⊆ F . The constraints and
objectives are different for each of the problems we study:

• In k-center, the algorithm is allowed to open at most
k centers and the goal is to minimize the maximal
distance of a client in C to its closest open center.

• In facility location, the algorithm is allowed to open
any number of centers (which we alternatively refer
to as a facilities), but opening a facility in position
i ∈ F incurs an opening cost of fi. The goal is to
minimize the total opening cost plus the total service
cost, defined as the sum of distances from the clients
in C to their nearest open facility.

• In k-median, the algorithm is allowed to open at most k
centers and the goal is to minimize the sum of distances
between clients and their closest center.

In the fully dynamic version of each of these problems, we
are given at every time t = 1, . . . , T a different set of clients
Ct ⊆ M . The algorithm must maintain a solution St at
each time step that is approximately optimal with respect to
the clustering objective at that time step, while also minimiz-
ing the total recourse, defined as

∑T
t=1 |St ⊕ St−1|. More

precisely, our goal in this work is to maintain an (α · β)-
approximate solution to the clustering objective while pay-
ing recourse at most c · OPTβ

REC, where OPTβ
REC denotes the

optimal recourse of an offline solution that maintains a β-
approximate solution at all times. For each problem, we use
OPTt to denote the cost of the optimal fractional solution at
time t.

3. Algorithms
3.1. A rounding algorithm for fully-dynamic k-center

In this section we design a rounding algorithm for the fully
dynamic k-center problem. Following Appendix A.1, for
every ϵ ∈ (0, 1] there is an algorithm that maintains a frac-
tional solution x ≥ 0 to the fully dynamic k-center problem
satisfying the guarantees:

T∑
t=1

∥xt − xt−1∥1 ≤ O

(
log(nϵ )

ϵ

)
· OPTβ

REC,∑
i∈Bt

j

xt
i ≥ 1 ∀j ∈ Ct, t ∈ [T ],

n∑
i=1

xt
i ≤ (1 + ϵ)k ∀t ∈ [T ].

For an active client j ∈ Ct and time t, Bt
j = {i ∈M | dij ≤

min{β ·OPT t,∆}} is the set of centers at distance at most
β · OPT t, and therefore feasibly serve client j at time t,
and let Dt = min{β ·OPT t,∆}. The bound in Theorem

1.1 for the fully dynamic k-center problem is obtained by
combining the guarantee on the fractional solution along
with the following theorem that we prove.

Theorem 3.1 (Dynamic k-center rounding). Let xt be a
fractional solution to the dynamic k-center problem that
maintains a solution that is a β-approximation at any time,
uses at most k′ centers, and its total fractional recourse is R.
Then, for any ϵ ≤ 1/2, there is an algorithm that maintains
an integral solution with at most (1 + 2ϵ)k′ centers that is
(α · β)-approximate at any time, and its total recourse is
O (log(∆)/ϵ) ·R, where α = 3 + 2

√
2 ≈ 5.28.

The Algorithm: Our algorithm maintains at time t a set
of open centers St. For each i ∈ St, let ti ≤ t be the time in
which the center is added to the solution and let ri = Dti =
min{β ·OPT ti ,∆} be the radius of the balls that can serve
the clients when i was added to St (note that ri ≤ ∆). With
foresight, we set parameters α = 3 + 2

√
2 and δ =

√
2 and

define Bi := {j | dij ≤ ri} and B̂t
i := {j | dij ≤ α ·Dt}.

We identify each facility with the ball around it, and count
in our analysis the number of balls that we add or drop. Our
algorithm is simple to describe and works as follows. At
time t we update the fractional solution and the value of
OPT t (the radius of the k-center optimal fractional solution
at time t). Then,

• St = St−1.

• Drop from St any i such that
∑

j∈Bi
xt
j < 1− ϵ.

• Iteratively: as long as there exists a client j ∈ Ct such
that j ̸∈

⋃
i∈St B̂t

i (uncovered by our current solution).

– Add j to St (and Bj is, as defined, of radius rj =
Dt).

– Drop from St any center/ball i ∈ St, i ̸= j such
that

dij ≤ ri + rj + δ ·min{ri, rj}. (3.1)

Analysis: We will prove by induction on the steps of the
algorithm that the algorithm maintains the following invari-
ants.

(i) For each j ∈ Ct, we have j ∈
⋃

i∈St B̂t
i .

(ii) For all i1, i2 ∈ St: di1,i2 ≥ ri1+ri2+δ·min{ri1 , ri2}.
In particular the balls around the centers are disjoint.

(iii) For all i ∈ St, we have
∑

j∈Bi
xt
j ≥ 1− ϵ.

(iv) For all i ∈ St, we have
∑

j∈Bi
xti
j ≥ 1.
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In addition, we use the following potential function at
time t ∈ [T ], with parameter η = 1/ log2(α − δ − 1) =
1/ log2(2 +

√
2):

Φt =
1 + η log∆

ϵ
·
∑
i∈St

max{0, 1−
∑
j∈Bi

xt
j}

− η ·
∑
i∈St

log2

(
∆

ri

)
. (3.2)

Let N t
1 be the total number of balls dropped due to the first

step of the algorithm until time t. Let N t
2 be the number of

balls dropped until time t due to an addition of a new ball
in the second (iterative) step of the algorithm. We prove
inductively that,

∆N t
1+∆N t

2+∆Φt ≤ O

(
log∆

ϵ

)
· ∥xt−xt−1∥1, (3.3)

where ∆N t
1,∆N t

2 and ∆Φt is the change in the values of
N t

1, N
t
2 and Φt at time step t. In particular, we show that the

RHS of the above equation as well as ϕ are finite. Therefore,
the number of balls that are dropped due to an addition of a
new ball at time step t in the second iterative step, ∆N t

2, is
finite and the algorithm terminates.

Before showing that the algorithm maintains these invari-
ants, we show why these imply Theorem 3.1.

Proof of Theorem 3.1. By Invariant (i) and the definition of
B̂t

i (recall, the radius of B̂t
i is at most α ·Dt ≤ α ·β ·OPT t)

the algorithm maintains at all times an (α · β)-approximate
solution. By Invariant (ii) the balls are disjoint, and by
Invariant (iii) we have for all i ∈ St that

∑
j∈Bi

xt
j ≥ 1− ϵ.

Since the fractional solution satisfies
∑n

i=1 x
t
i ≤ k′ and

ϵ ≤ 1/2, the number of centers chosen by the algorithm is
at most k′

1−ϵ ≤ (1 + 2ϵ) · k′. Finally, by Inequality (3.3),
N t

1+N t
2+Φt−Φ0 ≤ O (log∆/ϵ)·R. It is easy to verify that

Φ0 = 0 and Φt ≥ −η ·
∑

i∈St log2 (∆/ri) ≥ −2k log∆.
As the number of additions of centers is at most the total
number of drops of centers plus the final number of centers
(which is bounded by k), the total recourse is bounded as
claimed.

Remark 3.2. Our analysis has an additional (constant)
additive term that depends on the final number of centers.
However, a more careful inspection of our proof shows that
the number drops is bounded by O (log∆/ϵ) times the total
decrease in the variables xt

i. This fact along with the fact
that the final number of centers plus η ·

∑
i∈St log2 (∆/ri)

is bounded by O (log∆/ϵ) times the total increase in the
variables can be used to avoid this additive term in the
analysis.

Next, we consider different events that can happen at time t
one-by-one and prove that all the invariants are maintained.

The invariants are clearly satisfied initially when there are
no clients, the fractional solution is 0, and no centers were
added. The following events may happen at time step t.

• The fractional solution changes from xt−1 to xt.

• Facility i such that
∑

j∈Bi
xt
j < (1− ϵ) is dropped in

the first step.

• A new center/ball around j is added, and then (pos-
sibly) other centers/balls are dropped in the second
iterative step.

The fractional solution changes: By our induction hy-
pothesis and Invariant (ii) we have that for all i1, i2 ∈ St:
di1,i2 ≥ ri1 + ri2 + δ · min{ri1 , ri2}, and in particu-
lar the balls are disjoint. The only term that depends on
the fractional solution is (1+η log∆)/ϵ ·

∑
i∈St max{0, 1 −∑

j∈Bi
xt
j} in the potential function. Hence, Inequality

(3.3) is maintained.

Facility i such that
∑

j∈Bi
xt
j < 1−ϵ is dropped: If this

event happens, then ∆N t
1 = 1,∆N t

2 = 0, and max{0, 1−∑
j∈Bi

xt
j} ≥ ϵ. Thus, we have, ∆N t

1 + ∆N t
2 + ∆Φt ≤

1− (1 + η log2 ∆) + η log2

(
∆
ri

)
≤ 0.

A new ball around j is added, and then (possibly) other
balls are dropped: In order to analyze this event we need
the following lemma, which we prove shortly.

Lemma 3.3. If j ̸∈
⋃

i∈St B̂t
i , and let rj = Dt be the

radius of the new added ball Bj . Then, there exists at most
one i ∈ St such that dij ≤ ri + rj + δ ·min{ri, rj}. This
ball (if exists) has radius ri > (α − δ − 1) · Dt. After
adding this new ball and possibly dropping at most one ball
all invariants (ii), (iii), (iv) are maintained.

Given Lemma 3.3 we prove that the potential argument
(Inequality (3.3)) is satisfied and the algorithm terminates.
We observe that if indeed the main loop of the algorithm
terminates after a finite number of steps, then by the main
loop condition, Invariant (i) must be maintained.

Since by the LP constraints we have for the new added
ball

∑
j∈Bi

xt
j =

∑
j∈Bi

xti
j ≥ 1, the term (1+η log∆)/ϵ ·∑

i∈St max{0, 1 −
∑

j∈Bi
xt
j} of the potential does not

increases due to the addition of the new ball and possibly
the drop of a single ball. Next, we have two cases.

A ball of radius ri is added and no ball is dropped. In
this case ∆N t

2 = 0 and the change in the LHS of Inequal-
ity (3.3) is at most ∆Φ ≤ −η log2

(
∆
rj

)
≤ 0. We note

that by invariants (iv) for the new added ball Bj we have∑
i∈Bj

x
tj
i ≥ 1. As by Invariant (ii) the balls are disjoint,
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and
∑

j x
t
j ≤ k(1 + ϵ), this step can occur at most k(1 + ϵ)

times.

A ball of radius rj is added, and a single ball i with
ri > (α− δ − 1) · rj is dropped. The LHS of Inequality

(3.3) increases by at most ∆N t
2 +∆Φ ≤ 1− η log2

(
∆
rj

)
+

η log2

(
∆
ri

)
= 1−η log2

(
ri
rj

)
≤ 1−η log2 (α− δ − 1) ≤

0, where the last inequality follows by the definition η =
1/ log2(α − δ − 1). As in each such step, the potential
function decreases by at least 1, the potential function only
decreases in the previous case, and |Φt| ≤ O(k log∆),
this step can also happen at most O(k log∆) times. We
conclude that the main loop of the algorithm must terminate
after a finite number of steps.

Proof of Lemma 3.3. Since client j is uncovered (i.e. j ̸∈⋃
i∈St B̂t

i ), we have dij > α ·Dt for all i ∈ St. The new
added ball Bj is of radius rj = Dt. Thus, for any i ∈ St

such that dij ≤ ri + rj + δmin{ri, rj} we have,

ri + (1 + δ)Dt = ri + (1 + δ)rj

≥ ri + rj + δ ·min{ri, rj} ≥ dij > α ·Dt.

Thus, for such a ball it must be that ri > (α− δ − 1) ·Dt.

Assume for the sake of contradiction that there are two balls
Bi1 , Bi2 such that di1,j ≤ ri1 + rj + δ ·min{ri1 , rj} and
di2,j ≤ ri2 + rj + δ ·min{ri2 , rj}. Then

di1,i2 ≤ di1,j + di2,j

≤ ri1 + ri2 + 2rj + δ ·min{ri1 , rj}+ δ ·min{ri2 , rj}
= ri1 + ri2 + (2 + 2δ) · rj = ri1 + ri2 + (2 + 2δ) ·Dt

< ri1 + ri2 +
2 + 2δ

α− δ − 1
·min{ri1 , ri2}.

The first inequality follows by the triangle inequality. The
second inequality follows by our assumption. The next two
steps follow by our above observation rj = Dt, and because
ri1 > (α− δ− 1) ·Dt and ri2 > (α− δ− 1) ·Dt. Finally,
recalling our specific values of α = 3 + 2

√
2 and δ =

√
2,

we get that this last line is at most ri1+ri2+δ·min{ri1 , ri2},
which contradicts the inductive hypothesis that Invariant (ii)
holds before adding ball Bj .

After adding the new ball of radius Dt and dropping at
most one ball violating Invariant (ii), the new balls satisfy
Invariant (ii). Finally, as j ∈ Ct by the LP constraints∑

j′∈Bj
xt
j′ =

∑
j′∈Bj

xti
j′ ≥ 1 and therefore Invariant (iv)

holds.

3.2. A rounding algorithm for fully-dynamic facility
location

We turn to our dynamic rounding scheme for facility loca-
tion. Following Appendix A.2, for every ϵ ∈ (0, 1] we have

a fractional solution satisfying the guarantees

T∑
t=1

∥xt − xt−1∥1 ≤ O

(
log( |F |

ϵ )

ϵ

)
· OPTβ

REC,∑
i∈F

ytij ≥ 1 ∀j ∈ Ct, t ∈ [T ],

ytij ≤ xt
i ∀j ∈ Ct, t ∈ [T ],∑

i∈F

fix
t
i +

∑
i∈F
j∈Ct

dijy
t
ij ≤ (1 + ϵ)β ·OPT t ∀t ∈ [T ].

The variable xt
i is the fraction to which facility at position

i ∈ F is open at time t and ytij is the fraction by which
client j is served with facility i at time t. The bound in
Theorem 1.1 for the fully dynamic facility location problem
is obtained by combining the guarantee on the fractional
solution along with the following theorem that we prove,
and choosing ϵ = 1.

Theorem 3.4 (Dynamic facility location rounding). Let
xt be a fractional solution to the dynamic facility location
problem that maintains a solution that is a β-approximation
at any time with total fractional recourse R. Then, there
is an algorithm that maintains an integral solution that is
(α · β)-approximate at any time, and its total recourse is
O (log∆) ·R, where α = 11.

The Algorithm: At any time t, for each j ∈ Ct, let Rt
j =∑

i∈F dijy
t
ij be the fractional connection cost of client j.

The algorithm maintains at any time a set of active clients
At and a set of open facilities St. For each client j ∈
At there is (exactly) a single associated facility ij ∈ St.
Whenever the algorithm adds or removes a client from At it
also adds/removes the associated facility from St. Let ti ≤ t
be the time a client i (and the associated facility) were added
to At (correspondingly to St). We associate each j ∈ At

with a radius rj and a ball Bj = {i ∈ F | dij ≤ rj}. With
foresight, set the parameters α = 11, δ = 2, γ = 10/9, η =
1/ log((α−γ(1+δ))/2γ). At time t, the fractional solution is
updated from (xt−1, yt−1) to (xt, yt), and the algorithm is
the following.

• At ← At−1, St ← St−1.

• Drop from At (and correspondingly its associated fa-
cility St) any j ∈ At such that

∑
i∈Bj

xt
i < 1/α.

• Iteratively: as long as there exists j ∈ Ct such that
dij > α ·Rt

j for all i ∈ St.

– Add the client j to At, and set rj = γ ·Rt
j .

– For client j add to St a facility with minimal cost
fi such that dij ≤ rj .

– Drop from At (and the corresponding facility in
St) any i ∈ At, i ̸= j such that dij ≤ ri + rj +
δ ·min{ri, rj}.
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Analysis: We prove inductively on the steps of the algo-
rithm that the algorithm maintains the following invariants:

(i) Each j ∈ Ct, mini∈St dij ≤ α ·Rt
j .

(ii) For all j1, j2 ∈ At: dj1,j2 ≥ rj1 + rj2 + δ ·
min{rj1 , rj2}. In particular the balls around the clients
in At are disjoint.

(iii) For all j ∈ At, we have
∑

i∈Bj
xt
i ≥ 1/α = 1/11.

(iv) For all j ∈ At, we have
∑

i∈Bj
x
tj
i ≥ 1− 1/γ = 1/10.

In addition, we use the following potential function at time
t ∈ [T ].

Φt =


(
1− 1

γ
− 1

α

)−1

· (1 + η · log2(∆))

·
∑
i∈At

max

0, 1− 1

γ
−
∑
j∈Bi

xt
j




−
∑
i∈At

η · log2
(
∆

ri

)
.

(3.4)

Let N t
1 be the total number of balls dropped due to the first

step of the algorithm until time t. Let N t
2 be the number of

balls dropped due to an addition of a new ball in the second
(iterative) step of the algorithm. We prove inductively that,

∆N t
1 +∆N t

2 +∆Φt ≤ O (log∆) · ∥xt − xt−1∥1, (3.5)

where ∆N t
1,∆N t

2 and ∆Φt is the change in the values of
N t

1, N
t
2 and Φt at time step t. In particular, we show that the

RHS of the above equation as well as ϕ are finite. Therefore,
the number of balls that are dropped due to an addition of a
new ball at time step t in the second iterative step, ∆N t

2, is
finite and the algorithm terminates. We show first that these
invariants imply Theorem 3.4.

Proof of Theorem 3.4. By Invariant (i), the total service
cost is at most α ·

∑
j∈Ct Rt

j .

Since ij , the facility associated with client j ∈ At,
is of minimal cost in Bj , we have fij ≤

∑
i∈Bj

fi ·
xt
i/(
∑

i∈Bj
xt
i) ≤ α ·

∑
i∈Bj

fi · xt
i, where the final in-

equality is by Invariant (iii) that we maintain for all j ∈ At,∑
i∈Bj

xt
i ≥ 1/α. By Invariant (ii) the balls Bj are dis-

joint, and hence the total cost of opening facilities is at
most α ·

∑
i∈F fix

t
i. Therefore, our solution is an (α · β)-

approximation.

Finally, by Inequality (3.5) N t
1 + N t

2 + Φt − Φ0 ≤
O (log∆) ·

∑T
t=1 ∥xt − xt−1∥1. It is easy to verify that

Φ0 = 0 and Φt ≥ − (1− 1/γ − 1/α)
−1 · (1 + η · log2(∆)) ·∑

i∈At

∑
j∈Bi

xt
i ≥ −C log∆

∑
i∈F xt

i, where C is some
constant. Thus, the total recourse is bounded.

Remark 3.5. Our analysis has an additional (constant)
additive term that depends on the final fractional solution.
However, a more careful inspection of our proof shows that
the number balls dropped is bounded by O (log∆) times
the total decrease in the variables xt

i. This fact along with
the fact that the final number of facilities plus O(log∆) ·∑

i∈F xt
i is bounded by O (log∆) times the total increase

in the variables xt
i can be used to avoid this additive term

in the analysis.

Next, we consider different events that can happen at time
step t one-by-one and prove that all the invariants are main-
tained. The invariants are clearly satisfied initially when
there are no clients, the fractional solution is 0, and no
facilities were added. The following events may happen.

• The fractional solution changes.

• Client j such that
∑

i∈Bj
xt
i < 1/α is dropped.

• A new ball around client j is added, and then (possibly)
other clients/balls are dropped.

The fractional solution changes: By our induction and
Invariant (ii) we have that for all i1, i2 ∈ St: di1,i2 ≥
ri1+ri2+δ·min{ri1 , ri2}, and in particular the balls are dis-
joint. Only the term (1− 1/γ − 1/α)

−1 · (1 + η · log2(∆)) ·∑
i∈At max

{
0, (γ − 1)/γ −

∑
j∈Bi

xt
j

}
depends on the

fractional solution and Inequality (3.5) is maintained.

Client i (and its corresponding facility) such that∑
j∈Bi

xt
j < 1

α is dropped: If this event happens, then
∆N t

1 = 1,∆N t
2 = 0, and max{0, 1− 1/γ −

∑
j∈Bi

xt
j} ≥

1− 1/γ − 1/α. Thus, we have,

∆N t
1 +∆N t

2 +∆Φt

≤ 1− 1− 1/γ − 1/α

1− 1/γ − 1/α
(1 + η · log2(∆)) + η · log2

(
∆

ri

)
≤ 0.

A new ball around j is added, and then (possibly) other
balls are dropped: In order to analyze this event we need
the following lemma, which we prove shortly.

Lemma 3.6. Suppose the algorithm adds a client j such that
dij > α ·Rt

j for all i ∈ St, and let rj = γ ·Rt
j be the radius

of the new added ball Bj around j. Then, there exists at most
one client i ∈ At such that dij ≤ ri + rj + δ ·min{ri, rj},
and if such client exists then ri > 21/η ·rj . After adding this
new client/ball and possibly dropping at most one client/ball
all invariants (ii), (iii), (iv) are maintained.

Given Lemma 3.6, we only need to prove that the po-
tential argument (Inequality (3.5)) is satisfied. Since by
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the LP constraints and markov inequality we have for
the new added ball

∑
i∈Bj

xt
i =

∑
i∈Bj

x
tj
i ≥ 1 −

1/γ, then the term (1− 1/γ − 1/α)
−1 · (1 + η · log2(∆)) ·∑

i∈At max
{
0, (γ − 1)/γ −

∑
j∈Bi

xt
j

}
of the potential

does not increases due to the addition of the new ball and
possibly the drop of a single ball. Next, we have two cases.

A ball of radius rj is added and no ball is dropped. In
this case ∆N t

2 = 0 and the change in the LHS of Inequality
(3.5) is at most ∆Φ ≤ −η · log2 (∆/rj) ≤ 0.

A ball of radius rj is added a single ball i with ri >
21/η ·rj is dropped. The LHS of Inequality (3.5) increases
by at most ∆N t

2+∆Φ ≤ 1−η·log2 (∆/rj)+η·log2 (∆/ri) =
1− η · log2 (ri/rj) ≤ 1− η · log2

(
21/η

)
≤ 0.

Proof of Lemma 3.6. For the client j, we have dij > α ·Rt
j

for all i ∈ St. The new added ball Bj is of radius rj = γ·Rt
j .

Let i ∈ At be any client such that dij ≤ ri + rj + δ ·
min{ri, rj}, and let i′ be the associated facility of i. We
have 2ri+(1+δ)rj ≥ ri+ri+rj+δ ·min{ri, rj} ≥ dii′+
dij ≥ di′j > α · Rt

j = α
γ rj , where the second inequality

follows by the guarantee that facility i′ is at distance at
most ri from client i, and the guarantee on dij . The third
Inequality is by the triangle inequality. The last inequality
holds because di′j > α ·Rt

j .

Thus, for such a ball it must be that ri > (α
γ −(1+δ))/2 · rj =

21/η · rj (recall that η = 1/ log((α−γ(1+δ))/2γ)). Next,
assume to the contrary that there are two balls Bi1 , Bi2

such that di1,j ≤ ri1 + rj + δ · min{ri1 , rj} and di2,j ≤
ri2 + rj + δ ·min{ri2 , rj}. Then

di1,i2 ≤ di1,j + di2,j

≤ ri1 + ri2 + 2rj + δ ·min{ri1 , rj}+ δ ·min{ri2 , rj}
≤ ri1 + ri2 + (2 + 2δ) · rj

≤ ri1 + ri2 +
4 + 4δ

α/γ − (1 + δ)
·min{ri1 , ri2}.

The first inequality follows by the triangle inequality. The
second inequality follows by our assumption. The third
and fourth inequality follow by our above observation that
ri1 > 21/η · rj and ri2 > 21/η · rj . Finally, this is strictly
less than ri1 + ri2 + δ ·min{ri1 , ri2} by our specific setting
of the parameters. This contradicts the induction hypothesis
that Invariant (ii) held before ball Bj was added.

After adding the new ball of radius rj , and dropping at
most one ball that violates Invariant (ii), the new balls
satisfy Invariant (ii). Finally, because j ∈ At by the LP
constraints, by Markov’s Inequality (since rj = γ · Rtj

j )∑
i∈Bj

xt
i =

∑
i∈Bj

x
tj
i ≥ 1− 1/γ and therefore Invariant

(iv) is maintained.

3.3. A rounding algorithm for fully dynamic k-median

With the setup from previous sections, our algorithm for
k-median is very simple to describe and to analyze. Given
a fractional solution for the problem formulation in Ap-
pendix A.3, we run the rounding algorithm from Section 3.2,
with facility costs fi = 0 for all i ∈M . The bound in Theo-
rem 1.1 for the fully dynamic k-median problem is obtained
by combining the guarantee on the fractional solution along
with the following theorem that we prove.

Theorem 3.7 (Dynamic k-median rounding). Let xt be a
fractional solution to the dynamic k-median problem that
maintains a solution that is a β-approximation at any time,
uses at most k′ centers, and its total fractional recourse is
R. Then there is an algorithm that maintains an integral
solution with at most α·k′ centers that is (α·β)-approximate
at any time, and its total recourse is O (log(∆)) ·R, where
α = 11.

Proof. The approximation and recourse guarantees are im-
mediate from Theorem 3.4, and it remains to show that the
algorithm never holds more than O(k) centers.

Inspecting the proof of Theorem 3.4, by Invariant (ii) the
balls Bj are disjoint, and by Invariant (iii) we have for all
i ∈ F t that

∑
j∈Bi

xt
j ≥ 1/α. Since the fractional solution

satisfies
∑n

i=1 x
t
i ≤ k′, the number of centers chosen by

the algorithm is at most α · k′.

4. Experiments
We evaluate our three clustering algorithms experimentally
on UCI Machine Learning repository datasets: Glass Identi-
fication (German, 1987), Wine Quality (Cortez et al., 2009),
and Airfoil Self-Noise (Brooks et al., 2014). Due to space
considerations, we defer details of our experimental setup
and the plots of our experiments to Appendix D. We ob-
serve that our algorithm indeed maintains an objective value
within the predicted bound, and in fact significantly out-
performs the worst-case bound predicted by the theorem.
In the case of facility location and k-median, our objective
value is almost the same as the best possible objective value.
On all of our data sets, our algorithm’s recourse seems to
be≪ T , and even seems bounded by a constant in many
cases. This justifies our focus on competitive recourse, as
opposed to absolute recourse. Interestingly, in many cases
(especially for k-center), our online algorithm’s recourse is
lower than the offline fractional optimum recourse. Note
that this is possible because our algorithms is using resource
augmentation, while the fractional optimum is not. Finally,
we observe that in our experiments for both k-center and
k-median, even though our algorithm is allowed to open
(1 + ϵ) centers, they tend to use no more than k centers.
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5. Conclusion
In this work we initiate the study of consistent clustering
with competitive recourse guarantees. We show how to
maintain O(β) approximations for k-center, facility loca-
tion and k-median with O(log |F | log∆) ·OPTβ

REC recourse
(using O(k) centers for k-center and k-median), and showed
that any such algorithm must incur recourse of at least
Ω(min{log |F |, log∆)}) · OPTβ

REC.

There are plenty of natural open questions. The most ob-
vious is to close the gap between upper and lower bounds.
Another interesting question is to understand whether using
(1+ ϵ) · k centers (or O(k) centers) is necessary, or whether
one can do with exactly k centers. A weaker interim goal
is to give an algorithm for k-median which only opens
(1 + ϵ) · k centers, without suffering a 1/ϵ factor in the ap-
proximation. We note even offline rounding algorithms for
k-median are fairly involved (Charikar et al., 2002), and his-
torically came after simpler bicriteria rounding algorithms
(Lin & Vitter, 1992). It would also be beneficial to better
understand the relationship between algorithms with abso-
lute resource guarantees and algorithms with competitive
recourse guarantees. It would be interesting to benchmark
our algorithms on real world datasets, and in particular to
evaluate how they compare to existing algorithms with abso-
lute recourse guarantees. Finally, it would be interesting to
explore competitive recourse algorithms for other clustering
objectives in the fully dynamic model.
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Łącki, J., Oćwieja, J., Pilipczuk, M., Sankowski, P., and Zych,
A. The power of dynamic distance oracles: Efficient dynamic
algorithms for the Steiner tree. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing, pp.
11–20, 2015. → cited on page 3
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A. Formulations as positive body chasing
The fractional versions of our clustering problems is cap-
tured by a framework referred to as Positive Body Chasing
suggested recently in (Bhattacharya et al., 2023). In the
chasing positive bodies problem, we are given a sequence
of bodies Kt = {xt ∈ Rn

+ | Ctxt ≥ 1, P txt ≤ 1} revealed
online, where Ct and P t are matrices with non-negative
entries. The goal is to (approximately) maintain a point
xt ∈ Kt such that the total ℓ1-movement,

∑
t ∥xt−xt−1∥1,

is minimized where x0 = 0. More generally, given weight
w ∈ Rn

+, we want to minimize the weighted ℓ1-movement,∑
t wi

∑n
i=1 |xt

i − xt−1
i |. We sometimes refer to this ℓ1

movement as fractional recourse. In (Bhattacharya et al.,
2023), the authors designed an online algorithm for this
problem proving the following theorem.

Theorem A.1 ((Bhattacharya et al., 2023)). For any ϵ ∈
(0, 1], there is an O (1/ϵ log (d/ϵ))-competitive algorithm for
chasing positive bodies in ℓ1 such that xt ∈ K1+ϵ

t ={
xt ∈ Rn

+ | Ctxt ≥ 1, P txt ≤ 1 + ϵ
}

at time t, and d is
the maximal number of non-negative coefficients in a cover-
ing constraint.

We next list the dynamic clustering problems that we study,
formulate each problem in the framework of Theorem A.1,
and derive the guarantees on the fractional solution that is
produced in an online fashion.

A.1. Fractional dynamic k-center

Let xt
i be an indicator for the opening of a center at posi-

tion i ∈ M at time t. For each j ∈ Ct let Bt
j = {i ∈

M | dij ≤ min{β ·OPT t,∆}} be the set of points that are
within distance at most β ·OPT t from client j. The set Bt

j
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is the set of points that can serve the client at time t in a
β-approximate solution. Given these variables, the follow-
ing is a formulation of the offline fully dynamic k-center
problem.
min

T∑
t=1

∥xt − xt−1∥1

∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈Bt

j
xt
i ≥ 1,

∀j ∈ Ct, t ∈ [T ]∑n
i=1 x

t
i ≤ k,

∀t ∈ [T ]
xt
i ≥ 0,

∀i ∈M, t ∈ [T ]


Let x∗ be the optimal fractional solution, and let OPTβ

REC =∑T
t=1 ∥x∗t − x∗(t−1)∥1. As the set of constraints at time t

is a covering/packing formulation, the fractional fully dy-
namic k-center problem is captured by the positive body
chasing problem. Hence, by Theorem A.1 we get the fol-
lowing guarantee. For any ϵ ∈ (0, 1], there is an online
algorithm that produces a fractional solution x ≥ 0 to the
fully dynamic k-center problem such that,

T∑
t=1

∥xt − xt−1∥1 ≤ O

(
log(n/ϵ)

ϵ

)
· OPTβ

REC,∑
i∈Bt

j

xt
i ≥ 1 ∀j ∈ Ct, t ∈ [T ],

n∑
i=1

xt
i ≤ (1 + ϵ)k ∀t ∈ [T ].

A.2. Fractional facility location

Let xt
i be an indicator for the opening of a facility at position

i ∈ F at time t. Let ytij be an indicator for serving client j
with facility i at time t. Given these variables, the following
is a formulation of the offline fully dynamic facility location
problem.

min

T∑
t=1

∥xt − xt−1∥1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈F

ytij ≥ 1,

∀j ∈ Ct, t ∈ [T ]
ytij ≤ xt

i,
∀j ∈ Ct, i ∈ F, t ∈ [T ]∑

i∈F

fix
t
i +

∑
i∈F,j∈Ct

dijy
t
ij

≤ β ·OPT t, ∀t ∈ [T ]
xt
i, y

t
ij ≥ 0,
∀i ∈ F, j ∈ Ct, t ∈ [T ]


Although the above formulation is not a covering-packing
LP due to the constraint ytij ≤ xt

i, we show in Appendix B
that it is possible to work with an equivalent formulation
that is a covering-packing. This means that the fractional
fully dynamic facility location problem is captured by the
positive body chasing problem. In particular, we compete
with an optimal solution to the modified formulation which

is at most the optimal solution to the original formulation,
and can transform the resulting fractional solution online to
a solution to the original LP at no additional cost. Note also
that we do not pay recourse for changing the variables yij .
This is captured by giving these variables weight zero in the
weighted ℓ1-norm of the positive body chasing problem. Let
x∗, y∗ be the optimal fractional solution, and let OPTβ

REC =∑T
t=1 ∥x∗t−x∗(t−1)∥1. Hence, by Theorem A.1 we get the

following guarantee. For any ϵ ∈ (0, 1], there is an online
algorithm that produces a fractional solution (x, y) ≥ 0 to
the fully dynamic facility location problem such that,

T∑
t=1

∥xt − xt−1∥1 ≤ O

(
log(|F |/ϵ)

ϵ

)
· OPTβ

REC,∑
i∈F

ytij ≥ 1 ∀j ∈ Ct, t ∈ [T ],

ytij ≤ xt
i ∀i ∈ F, j ∈ Ct, t ∈ [T ],∑

i∈F

fix
t
i +

∑
i∈F,j∈Ct

dijy
t
ij ≤ (1 + ϵ) · β ·OPT t

∀t ∈ [T ].

A.3. Fractional k-median

Let xt
i be an indicator for the opening of a center at position

i ∈ M at time t. Let ytij be an indicator for serving client
j with center i at time t. Given these variables, the follow-
ing is a formulation of the offline fully dynamic k-median
problem.



min

T∑
t=1

∥xt − xt−1∥1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈M

ytij ≥ 1,

∀j ∈ Ct, t ∈ [T ]
ytij ≤ xt

i,
∀j ∈ Ct, i ∈M, t ∈ [T ]∑

i∈M

xt
i ≤ k,

∀t ∈ [T ]∑
i∈M
j∈Ct

dijy
t
ij ≤ β ·OPT t,

∀t ∈ [T ]



As in the case of facility location, we can transform this into
a covering-packing formulation (See Appendix B). Once
again by Theorem A.1, for any ϵ ∈ (0, 1], there is an online
algorithm that produces a fractional solution (x, y) ≥ 0 to
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the fully k-median problem such that:

T∑
t=1

∥xt − xt−1∥1 ≤ O

(
log(nϵ )

ϵ

)
· OPTβ

REC,∑
i∈M

ytij ≥ 1 ∀j ∈ Ct, t ∈ [T ],

ytij ≤ xt
i ∀i ∈M, j ∈ Ct, t ∈ [T ],∑

i∈M

xt
i ≤ (1 + ϵ) · k ∀t ∈ [T ],∑

i∈M
j∈Ct

dijy
t
ij ≤ (1 + ϵ) · β ·OPT t ∀t ∈ [T ].

B. A covering-packing LP formulation for the
facility location and the k-median Problems

We show here that the facility location problem can be
captured by a covering-packing formulation. The arguments
for the k-median problem are similar.

Recall, the formulation in Section A.2. Let xt
i be an indi-

cator for the opening of a facility at position i ∈ F at time
t. Let ytij be an indicator for serving client j with facility
i at time t. Let OPT t be the optimal facilitiy location ob-
jective at time t. Given these variables, the following is a
formulation of the offline fully dynamic facility location
problem.

min

T∑
t=1

∥xt − xt−1∥1,∑
i∈F

ytij ≥ 1 ∀j ∈ Ct, t ∈ [T ],

ytij ≤ xt
i ∀j ∈ Ct, t ∈ [T ],∑

i∈F

fix
t
i +

∑
i∈F,j∈Ct

dijy
t
ij ≤ β ·OPT t ∀t ∈ [T ],

xt
i, y

t
ij ≥ 0 ∀i ∈ F, j ∈ Ct, t ∈ [T ].

The above formulation is not a covering-packing formula-
tion. However, it is not hard to transform it into a covering
packing formulation by removing the constraint ytij ≤ xt

i

and introducing in addition to the constraint
∑

i∈F ytij ≥ 1,
the following exponential number of constraints:∑
i∈F ′

ytij +
∑

i∈F\F ′

xt
i ≥ 1 ∀j ∈ Ct, F ′ ⊆ F, t ∈ [T ].

(B.1)

We observe the following.

Lemma B.1. The modified formulation is separable in poly-
nomial time. Moreover,

• Any solution to the original LP is feasible to the new
formulation.

• A solution to the modified formulation can be trans-
formed online into a feasible solution to the original
formulation with the same recourse.

Proof. Let (x, y) be a solution to the original formulation.
We need to prove that it satisfies all the new constraints of
the form (B.1). This is true since,

∑
i∈F ′

ytij +
∑

i∈F\F ′

xt
i ≥

∑
i∈F

ytij ≥ 1,

where the first inequality holds since ytij ≤ xt
i, and the

second inequality holds by the original constraint that∑
i∈F ytij ≥ 1.

On the other direction, if (x, y) is a solution to the modified
LP, then setting y

′t
ij = min{ytij , xt

i} satisfies the constraint
ytij ≤ xt

i. Next, if
∑

i∈F y
′t
ij =

∑
i∈F min{ytij , xt

i} < 1, it
means that for F ′ = {i ∈ F | xt

i ≥ ytij},∑
i∈F ′

ytij +
∑

i∈F\F ′

xt
i =

∑
i∈F

min{ytij , xt
i} < 1.

This contradicts the feasibility of the solution x, y to the
modified LP. Hence, the solution y

′t
ij is feasible to the origi-

nal LP. Moreover, since we didn’t modify the variable xt
i, it

has the same recourse.

Finally, given a solution x, y to the modified LP check-
ing for each client j, whether the constraint with F ′ =
{i ∈ F | xt

i ≥ ytij} satisfies
∑

i∈F ′ ytij +
∑

i∈F\F ′ xt
i =∑

i∈F min{ytij , xt
i} ≥ 1 suffices for the feasibility of the

LP, and otherwise we get a violated constraint.

C. Lower bounds
In this section we prove the following lower bounds for any
randomized dynamic clustering algorithm. We draw ideas
from (Fotakis, 2008).

Theorem 1.2 (Lower Bound). Suppose there is a random-
ized algorithm that given a parameter β ≥ 1 as an input
maintains an (α ·β)-approximation for one of fully-dynamic
facility location, k-center, or k-median. Then this algorithm
has recourse at least Ω(min{log |F |, logα ∆}·OPTβ

REC. For
k-center and k-median, the lower bound holds even if the
algorithm is allowed to open O(k) facilities.

Proof. The lower bounds share common ideas, but the ex-
act metric, the adversarial sequence, and the cost analysis
are different for each clustering problem. Therefore, we
prove the lower bounds separately for each problem. For
all these problems, we prove a lower bound for an online
fractional solution that may generate a fractional solution to
the linear formulation. Since the marginal probabilities of
any randomized algorithm induce a fractional solution with

13



Competitively Consistent Clustering

...

1

4c

Level 0

Level 1

Level 2

Level h

Level h− 1

(4c)h−1

r

Figure 1. Illustration of the HST-metric H .

at most the same cost, such a bound immediately translates
to a bound on any randomized algorithm.

We will reuse the same base metric for our bounds. Let
H be a uniform binary (4c)-HST with n leaves and height
h = log2 n. The leaves of the tree are at level 0, and the
root of the tree, r, is at level h. The edges that connect a
node at level i− 1 to a node at level i (for i = 1, . . . , h− 1)
have cost (4c)i−1. For a non-leaf node w, let wR and wL

be the right and left child of w respectively.

A lower bound for the fully-Dynamic k-center problem.
Assume that there exist a fractional algorithm that main-
tains at all times at most k centers with an approximation
ratio strictly less than c with respect to the optimal solu-
tion at time t (we later extend this bound to a scenario in
which the algorithm is allowed to pen b · k facilities). We
prove that such an algorithm has recourse competitiveness
Ω(min{log n, logc ∆}), and our bounds hold even when
k = 1. Once again we reuse the (4c)-HST H defined above.
This time, the metric space, as well as the possible locations
for the clients and facilities is defined only by the n leaves
of the tree and the distances induced by the binary HST.

The adversarial sequence again happens in phases, and each
phase is divided into h time steps. At time 0, initialize the
node r0 to be r, the global root of the metric H . For every
time t = 0, . . . , h, the adversary creates two clients at ut

L

and ut
R, where these are the leftmost and rightmost leaves

descendant of rt respectively. The adversary then removes
any clients requested in the last time step. Let xt

L and xt
R

be the total fraction of facilities that the algorithm opens
in the subtrees of rtL and rtR (the two children of the node
rt). If xt

L ≥ xt
R then set the node rt+1 := rtR, otherwise

set rt+1 := rtL. Finally, at iteration t = h there is a single
client located at a single leaf v. After time h, the adversary
removes all clients, and we may repeat this phase/sequence
starting from the root.

We observe that in every phase, opening a center on the last
node v of the sequence gives the lowest possible value for

the k-center objective for every time t in the phase simultane-
ously. The cost of this solution at any round t = 0, . . . , h−1
is

OPTt = 2 ·
h−1−t∑
k=0

(4c)k ≤ 2 · (4c)h−1−t.

At time t = h, we have OPTh = 0. The recourse of this
solution is 1 per phase.

On the other hand, we also observe that if at time t =
1, . . . , h − 1 the algorithm has xt

L + xt
R ≤ 1/2, then the

algorithm’s solution has cost at least c · OPTt. To see this,
note that the two clients at ut

L and ut
R must be matched

fractionally to extent at least 1/2 to a center outside the
subtree rooted at rt. The distance to this center is at least
twice the cost of the edge between rt and its parent rt−1,
which is at least

1

2
· 2 · (4c)h−t > c · 2(4c)h−t−1 ≥ c · OPTt.

Therefore, any algorithm maintaining an approximation
better than c with respect to OPTt must have at each time
t = 1, . . . , h − 1 at least a 1/2 fraction of a center open
in the subtree of rt. Since the algorithm can open at most
one center at any given time, and by construction of the
adversarial sequence, at every time t = 0, . . . , h − 1, the
algorithm has more fractional mass in the child of rt that is
not rt+1, the algorithm must open at least 1/4 of a center to
maintain a c-approximation. Hence the algorithm must open
a total of Ω(h) centers over the course of the phase, where
we observe that size of the metric is n = 2h and the aspect
ratio is ∆ = O((4c)h). This sequence may be repeated.

Finally, suppose that the algorithm is allowed to maintain
a total mass of b · k = b facilities at each time step. Then,
at the beginning of each phase, there exists a subtree of
height h′ = Ω(h − log2 b) with total initial mass of at
most 1/4 (the subtree with minimal mass among the 4b
disjoint subtrees of height h − log2(4b)). The adversary
can restrict its sequence to this subtree and the algorithm,
again, must open 1/4 of a facility in each level of the tree,
paying a total opening cost of Ω(h−log2 b) during the phase.
Overall, the lower bound on the recourse competitiveness is
Ω(min{log n, logc ∆} − log b).

A lower bound for the fully-dynamic facility location
problem. Assume that there exists a fractional algorithm
that maintains at all times an approximation ratio strictly
less than c with respect to the optimal solution at time t. We
prove that such an algorithm has recourse competitiveness
Ω(min{log |F |, logc ∆}.

The underlying metric is the (4c)-HST H defined above.
The set of possible facility locations, F , is the set of n leaves
of the tree, but we allow clients to arrive at any internal node.
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Finally, the cost of opening a facility is f = (4c)h−1 (in
other words, the cost is uniform).

The request sequence is in phases, each of which is divided
into h time steps. At time 0 there is a single client located
at the root. Henceforth, for all time t = 1, . . . , h, let ut

be the node at which clients appeared at time t − 1, and
let xt

L and xt
R be the fractional mass of facilities that the

algorithm allocates in the subtrees of ut
L and ut

R respectively.
If xt

L ≥ xt
R then the adversary generates (4c)t clients at ut

R;
if xt

L < xt
R then the adversary generates (4c)t clients at

ut
L instead. The adversary then removes any client requests

at ut. Eventually, at time h, a set of (4c)h clients arrive at
some leaf v. After time h, all clients leave, and we may
repeat this phase/sequence starting from the root.

Note that in every phase, opening a single facility on the last
leaf v of the sequence gives the lowest possible value for
the facility location objective at every time t in this phase.
This strategy uses total recourse of 1 per phase (opening a
single facility at the beginning of the phase and closing it at
the end of the phase). The cost of this solution at any round
t = 0, . . . , h− 1 is:

OPTt = f + (4c)t ·
h−t−1∑
k=0

(4c)k

≤ (4c)h−1 + (4c)t · 2(4c)h−t−1 ≤ 3 · (4c)h−1.

The first inequality is since at any time t the optimal solution
opens a single facility and there are (4c)t clients that are at
distance

∑h−t−1
k=0 (4c)k from the facility that is located in a

leaf of their subtree.

We next observe that if in round t = 1, . . . , h− 1 if it holds
that xt

L + xt
R ≤ 1/2, then the algorithm pays a cost of at

least c · OPTt. To see this, note that if this condition holds
then the set of clients at time t must be matched fractionally
to extent at least 1/2 to a facility outside the subtree of
ut. The service cost of this fraction is at least twice the
weight of the edge between ut and its parent, and hence the
algorithm’s service cost for these (4c)t clients at time t is at
least

1

2
· (4c)t · 2 · (4c)h−t = (4c)h > c · 3(4c)h−1 = c · OPTt.

Finally, we can conclude that any algorithm that maintains
an approximation better than c with respect to OPTt must
open at each time t = 1, . . . , h − 1 at least a 1/2 fraction
of a facility in the subtree of ut. By the construction of the
adversarial sequence, it must also open at least a 1/4 facility
in the subtree in which there are no additional clients at time
t+ 1. In total, the algorithm opens at least h−1

4 = Ω(h) =
Ω(min{log |F |, logc ∆} facilities, where we observe that
|F | = 2h and ∆ = O(4ch). When the clients at time t = h
leave, the optimal solution does not have any facilities and

therefore the algorithm also must remove all its facilities.
Hence, we may repeat the phase/sequence again by initiating
a new client at the root.

A lower bound for the fully-dynamic k-median prob-
lem. Assume that there exist a fractional algorithm that
maintains at all times at most k centers with an approxi-
mation ratio strictly less than c with respect to the optimal
solution at time t (we later extend this bound to a scenario
in which the algorithm is allowed to open b · k facilities).
We prove that such an algorithm has recourse competitive-
ness Ω(min{log n, logc ∆}) with respect to an algorithm
that may maintain a 2-approximate solution. That is, the
algorithm is paying Ω(min{log n, logc ∆}) · OPT2

REC Our
bounds again hold even when k = 1.

The metric space and the client sequence are identical to
those in the k-center instance above. This time, we observe
that in each phase, opening a single center on the final v
of the sequence is at most a 2-approximation with respect
to OPTt for all time steps t in the phase simultaneously.
(For every t, the optimal solution is to open a center on
one of ut

L or ut
R.) The cost of this solution at any round

t = 0, . . . , h− 1 is

2 · OPTt = 4 ·
h−1−t∑
k=0

(4c)k ≤ 4 · (4c)h−1−t.

At time t = h, we have OPTh = 0.

On the other hand, we also observe that if at time t =
1, . . . , h − 1 the algorithm has xt

L + xt
R ≤ 1/2, then the

algorithm’s solution has cost at least 2c · OPTt. To see this,
note that the two clients at ut

L and ut
R must be matched

fractionally to extent at least 1/2 to a center outside the
subtree rooted at rt. Hence the cost paid by the algorithm
is at least four times the cost of the edge between rt and its
parent rt−1, which is at least

1

2
· 4 · (4c)h−t > c · 4(4c)h−t−1 ≥ 2c · OPTt.

We conclude as before. Any algorithm maintaining an ap-
proximation better than 2c with respect OPTt must have at
each time t = 1, . . . , h−1 at least a 1/2 fraction of a center
open in the subtree of rt. Since the algorithm can open at
most one center at any given time, and by construction of
the adversarial sequence, at every time t = 0, . . . , h − 1,
the algorithm has more fractional mass in the child of rt

that is not rt+1, the algorithm must open at least 1/4 of a
center to maintain a 2c-approximation. Hence the algorithm
must open a total of Ω(h) centers over the course of the
phase, where we observe that size of the metric is n = 2h

and the aspect ratio is ∆ = O((4c)h). This sequence may
be repeated.
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Competitively Consistent Clustering

(a) (b) (c)

Figure 2. k-Center Objective

(a) (b) (c)

Figure 3. k-Center Recourse

Finally, suppose again that the algorithm is allowed to main-
tain a total mass of b·k = b facilities at each time step. Then,
at the beginning of each phase, there exists a subtree of
height h′ = Ω(h− log2 b) with total initial mass of at most
1/4. The adversary can restrict its sequence to this subtree
and the algorithm, again, must open 1/4 of a facility in each
level of the tree, paying a total opening cost of Ω(h− log2 b)
during the phase. Overall, the lower bound on the recourse
competitiveness is Ω(min{log n, logc ∆} − log b).

D. Experiments continued
Each column below corresponds to one of these datasets
((a) Glass, (b) Wine, (c) Airfoil), and the data was streamed
online as follows for T = 100 times steps. At each time t,
either a new data point was inserted with probability 9/10,

or an existing data point was deleted with probability 1/10.
We set k = 4 (for k-center and k-median), β = 3/2 and
ϵ = 1/4.

In the objective plots, we plot the objective of our online
algorithm over time (red), alongside the value of the frac-
tional optimum OPTt at each point in time (green), as well
as α · β · OPTt (blue), which our theorems guarantee is an
upper bound on the algorithms objective. In the recourse
plots, we plot the recourse of our online algorithm over time
(red), alongside the optimum fractional recourse without re-
source augmentation (green), i.e. exactly k centers, exactly
β approximation. Finally, in the last set of plots, we track
the number of centers opened by our k-center and k-median
algorithms over time.
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Competitively Consistent Clustering

(a) (b) (c)

Figure 4. Facility Location Objective

(a) (b) (c)

Figure 5. Facility Location Recourse

(a) (b) (c)

Figure 6. k-Median Objective
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Competitively Consistent Clustering

(a) (b) (c)

Figure 7. k-Median Recourse

(a) (b) (c)

Figure 8. k-Center Number of Centers Over Time

(a) (b) (c)

Figure 9. k-Median Number of Centers Over Time
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