
Under review as a conference paper at ICLR 2024

LINEAR DIFFUSION MODELS MEET CONTEXTUAL BAN-
DITS WITH LARGE ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration is a key challenge in contextual bandits due to the potentially
large size of their action space, where uninformed exploration can result in compu-
tational and statistical inefficiencies. Fortunately, the rewards of actions are often
correlated and this can be leveraged to explore them efficiently. In this work, we
capture such correlations using pre-trained linear diffusion models; upon which
we design diffusion Thompson sampling (dTS). Both theoretical and algorith-
mic foundations are developed for dTS, and empirical evaluation also shows its
favorable performance.

1 INTRODUCTION

A contextual bandit is a popular and practical framework for online learning under uncertainty (Li
et al., 2010). In each round, an agent observes a context, takes an action, and receives a reward based
on the context and action. The goal is to maximize the expected cumulative reward over n rounds,
striking a balance between exploiting actions with high estimated rewards from available data and
exploring other actions to improve current estimates. This trade-off is often addressed using either
upper confidence bound (UCB) (Auer et al., 2002) or Thompson sampling (TS) (Scott, 2010).

The action space in contextual bandits is often large, resulting in less-than-optimal performance
with standard exploration strategies. Luckily, actions often exhibit correlations, making efficient
exploration possible as one action may inform the agent about other actions. Notably, Thompson
sampling offers remarkable flexibility, allowing its integration with informative prior distributions
(Hong et al., 2022b) that can capture these correlations. Inspired by the achievements of diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which effectively approximate complex
distributions and enjoy state-of-the-art data generation performance (Dhariwal & Nichol, 2021;
Rombach et al., 2022). This work focuses on capturing action correlations by employing linear
diffusion models as priors in contextual Thompson sampling.

The idea is simple and illustrated through a video streaming scenario. The objective is to optimize
watch time for a user j by selecting a video i ∈ [K], where K is the number of videos. Users j and
videos i are associated with context vectors xj and unknown video parameters θi, respectively. User
j’s expected watch time for video i is linear as x⊤j θi. Then, a natural strategy would be independently
learning video parameters θi using LinTS or LinUCB (Agrawal & Goyal, 2013a; Abbasi-Yadkori
et al., 2011), but this proves statistically inefficient for larger K. Luckily, videos exhibit correlations
and can provide informative insights into one another. To capture this, we leverage offline estimates
of video parameters denoted by θ̂i and build a linear diffusion model on them. This linear diffusion
model approximates the video parameter distribution, capturing their dependencies. This model
enriches Thompson sampling as a prior, effectively capturing complex video dependencies while
ensuring computational efficiency and theoretical guarantees thanks to closed-form posteriors.

Formally, we present a unified contextual bandit framework represented by diffusion models. On this
basis, we design a computationally and statistically efficient Thompson sampling algorithm, called
dTS. We then specialize dTS on linear instances, for which we provide closed-form solutions and
establish an upper bound for its Bayes regret. The regret bound reflects the structure of the problem
and the quality of the priors, demonstrating the benefits of using diffusion models as priors (dTS)
over the standard methods such as linear Thompson sampling (LinTS Agrawal & Goyal (2013a)),
linear UCB (LinUCB Abbasi-Yadkori et al. (2011)), etc. We also discuss the impact of the depth of
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linear diffusion models, outlining their benefits through a sparsity concept. Note that, to broaden the
applicability of our approach, dTS was provided for the general case, including non-linear diffusion
models. However, approximate sampling techniques would be required for the latter, which we leave
for future work, as we focus on linear diffusion models in this theoretical work. Finally, our empirical
evaluations validate our theory and demonstrate the strong performance of dTS.

Diffusion models have been used for offline decision-making (Ajay et al., 2022; Janner et al., 2022;
Wang et al., 2022). However, their use in online learning was only recently explored by Hsieh et al.
(2023), who focused on multi-armed bandits without theoretical guarantees. Our work extends Hsieh
et al. (2023) in two ways. First, we extend the idea to the broader contextual bandit framework. This
allows us to consider problems where the rewards depend on the context, which is more realistic.
Second, we show that when the diffusion model is parametrized by linear functions, we can derive
recursive closed-form posteriors without the need for approximate sampling. Closed-form posteriors
are particularly interesting because they facilitate theoretical analysis and improve computational
efficiency; an important practical consideration, as it makes our algorithm more scalable. Finally, we
provide a theoretical analysis of dTS, which effectively captures the benefits of employing linear
diffusion models as priors within contextual Thompson sampling. This provides a complementary
perspective to Hsieh et al. (2023), which focused on empirical evaluation rather than theoretical
guarantees. An extended comparison to related works is provided in Appendix A, where we position
our theoretical work with respect to the broader topics of diffusion models and decision-making,
hierarchical, structured and low-rank bandits, approximate Thompson sampling, etc.

2 SETTING

The agent interacts with a contextual bandit environment over n rounds. In round t ∈ [n] =
{1, 2, ..., n}, the agent observes a context Xt ∈ X , where X ⊆ Rd is a d-dimensional context space,
then it takes an action At ∈ [K]. Finally, the agent receives a stochastic reward Yt ∈ R that depends
on both the context Xt and the taken action At. Each action i ∈ [K] is associated with an unknown
action parameter θ∗,i ∈ Rd, so that the reward received in round t is Yt ∼ P (· | Xt; θ∗,At

), where
P (· | x; θ∗,a) is the reward distribution of action a in context x. We consider the Bayesian bandit
setting (Russo & Van Roy, 2014; Hong et al., 2022b), where the action parameters θ∗,i are assumed
to be sampled from a known prior distribution, which we proceed to define using a diffusion model.

The correlations between the action parameters θ∗,i are captured through a diffusion model. Precisely,
actions are correlated because they share a set of L consecutive unknown latent parameters ψ∗,ℓ for
ℓ ∈ [L]. That is, the action parameter θ∗,i depends on the L-th latent parameter ψ∗,L as θ∗,i | ψ∗,1 ∼
N (f1(ψ∗,1),Σ1), where the mapping f1 : Rd → Rd is known. Also, the ℓ− 1-th latent parameter
ψ∗,ℓ−1 depends on the ℓ-th latent parameter ψ∗,ℓ as ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ), where the
mapping fℓ : Rd → Rd is known. Finally, the L-th latent parameter ψ∗,L is sampled as ψ∗,L ∼
N (0,ΣL+1). The full model is described below, and its graphical representation is provided in Fig. 1.

: taken action
in round 

Figure 1: Graphical model induced by Eq. (1).

ψ∗,L ∼ N (0,ΣL+1) , (1)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] .

The model in Eq. (1) represents a Bayesian bandit.
The agent interacts with a bandit instance defined by
the action parameters θ∗,i over n rounds (4-th line
in Eq. (1)). These action parameters θ∗,i are drawn
from the generative process in the first 3 lines of Eq. (1). Note that Eq. (1) be built by pre-training a
diffusion model on existing offline estimates of the action parameters θ∗,i (Hsieh et al., 2023).

A natural goal for the agent in a Bayesian framework is to minimize its Bayes regret (Russo & Van
Roy, 2014) that measures the expected performance across multiple bandit instances θ∗ = (θ∗,i)i∈[K],

BR(n) = E [
∑n
t=1 r(Xt, At,∗; θ∗)− r(Xt, At; θ∗)] , (2)

where the expectation in Eq. (2) is taken over all quantities in Eq. (1) as well as the taken actions
At. Here r(x, i; θ∗) = EY∼P (·|x;θ∗,i) [Y ] is the expected reward of action i ∈ [K] in context x ∈ X
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and At,∗ = argmaxi∈[K] r(Xt, i; θ∗) is the optimal action in round t. The Bayes regret is known to
capture the benefits of using informative priors, and hence it is suitable for our problem.

3 ALGORITHM

We design Thompson sampling that samples the latent and action parameters hierarchically (Lindley
& Smith, 1972). Precisely, let Ht = (Xk, Ak, Yk)k∈[t−1] be the history of all interactions up to round
t and let Ht,i = (Xk, Ak, Yk){k∈[t−1];Ak=i} be the history of interactions with action i up to round t.
To motivate our algorithm, we first decompose the posterior P (θ∗,i = θ |Ht) recursively as

P (θ∗,i = θ |Ht) =
∫
ψL
. . .

∫
ψ1
Qt,L(ψL)

∏L
ℓ=2Qt,ℓ−1(ψℓ−1 | ψℓ)Pt,i(θ | ψ1) dψ1 . . . dψL , (3)

where Qt,L(ψL) = P (ψ∗,L = ψL |Ht) is the latent-posterior density of ψ∗,L | Ht. Moreover,
for any ℓ ∈ [L]/{1}, Qt,ℓ−1(ψℓ−1 | ψℓ) = P (ψ∗,ℓ−1 = ψℓ−1 |Ht, ψ∗,ℓ = ψℓ) is the conditional
latent-posterior density of ψ∗,ℓ−1 | Ht, ψ∗,ℓ = ψℓ. Finally, for any action i ∈ [K], Pt,i(θ | ψ1) =
P (θ∗,i = θ |Ht,i, ψ∗,1 = ψ1) is the conditional action-posterior density of θ∗,i | Ht,i, ψ∗,1 = ψ1.

The decomposition in Eq. (3) inspires hierarchical sampling. In each round t ∈ [n], we initially
sample the L-th latent parameter as ψt,L ∼ Qt,L(·). Then, for any ℓ ∈ [L]/{1}, we sample the
ℓ − 1-th latent parameter given that ψ∗,ℓ = ψt,ℓ, as ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ). Lastly, given that
ψ∗,1 = ψt,1, each action parameter is sampled individually as θt,i ∼ Pt,i(θ | ψt,1). This individual
sampling is possible because action parameters θ∗,i are independent given ψ∗,1. This leads to
Algorithm 1, named diffusion Thompson Sampling (dTS). Our algorithm, dTS, requires sampling
from the K + L posteriors Pt,i and Qt,ℓ. Thus we start by providing an efficient recursive scheme
to express these posteriors for general diffusion models (Eq. (1)) using known quantities. We note
that these expressions do not necessarily lead to closed-form posteriors and approximation might be
needed. First, the conditional action-posterior Pt,i(· | ψ1) writes

Pt,i(θ | ψ1) ∝
∏
k∈St,i

P (Yk | Xk; θ)N (θ; f1(ψ1),Σ1) ,

where St,i = {ℓ ∈ [t− 1] : Aℓ = i} is the set of rounds where the agent takes action i up to round t.
Also, for any ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior Qt,ℓ−1(· | ψℓ) writes

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1, fℓ(ψℓ),Σℓ) ,

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L) ∝ P (Ht |ψ∗,L = ψL)N (ψL, 0,ΣL+1).
All the terms above are known, except P (Ht |ψ∗,ℓ = ψℓ) for ℓ ∈ [L], which are the likelihoods of
all observations up to round t given that ψ∗,ℓ = ψℓ. These likelihoods are computed recursively as
follows. First, the basis of the recursion writes

P (Ht |ψ∗,1 = ψ1) =
∏
i∈[K]

∫
θi

∏
k∈St,i

P (Yk | Xk; θi)N (θi; f1(ψ1),Σ1) dθi .

Then for any ℓ ∈ [L]/{1}, the recursive step follows as
P (Ht |ψ∗,ℓ = ψℓ) =

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1; fℓ(ψℓ),Σℓ) dψℓ−1 .

All posterior expressions above use known quantities (fℓ, Σℓ and P (y | x; θ)). However, these
expressions either lead to closed-form solutions or should be approximated, depending on the form
of functions fℓ and reward distribution P (· | x; θ). In this work, we focus on theoretical guarantees
and computational efficiency. Thus, we specialize dTS on cases where the functions fℓ are linear. In
Section 3.1, we find closed-form posteriors for linear diffusion models with linear rewards. Then, in
Section 3.2, we offer an approximation for linear diffusion models with non-linear rewards.

3.1 LINEAR DIFFUSION MODELS WITH LINEAR REWARDS

Here we we suppose that the functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for any ℓ ∈ [L],
where Wℓ ∈ Rd×d are the mixing matrices and they are known. We also assume that the reward
distribution is linear-Gaussian and writes P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2) where σ > 0 is the
observation noise. Then, the model in Eq. (1) becomes

ψ∗,L ∼ N (0,ΣL+1) , (4)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (Wℓψ∗,ℓ,Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ N (X⊤

t θ∗,At
, σ2) , ∀t ∈ [n] .
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Algorithm 1 dTS: diffusion Thompson Sampling
Input: Prior information: fℓ for ℓ ∈ [L] and Σℓ for ℓ ∈ [L+ 1].
for t = 1, . . . , n do

Sample ψt,L ∼ Qt,L
for ℓ = L, . . . , 2 do

Sample ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ)
for i = 1, . . . ,K do

Sample θt,i ∼ Pt,i(· | ψt,1)
Take action At = argmaxi∈[K]X

⊤
t θt,i, receive reward Yt, update posteriors Qt+1,ℓ and Pt+1,i.

The model in Eq. (4) is important, both for theory and practice, because it yields closed-form solutions.
This leads to computationally efficient algorithms that are feasible for analysis. Now we derive the
posteriors for this model and the proofs are provided in Appendix B. First, let t ∈ [n], we introduce

Ĝt,i = σ−2
∑
k∈St,i

XkX
⊤
k ∈ Rd×d , B̂t,i = σ−2

∑
k∈St,i

YkXk ∈ Rd ,

where St,i = {ℓ ∈ [t− 1] : Aℓ = i} is the set of rounds where the agent takes action i up to round t.
Then, the conditional action-posterior reads Pt,i(· | ψ1) = N (·; µ̂t,i, Σ̂t,i), with

Σ̂−1
t,i = Σ−1

1 + Ĝt,i , µ̂t,i = Σ̂t,i
(
Σ−1

1 W1ψ1 + B̂t,i
)
. (5)

For ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1),

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (6)

and the L-th latent-posterior reads Qt,L(·) = N (µ̄t,L, Σ̄t,L), with

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (7)

Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. For ℓ = 1, Ḡt,1 and B̄t,1 are decomposed as

Ḡt,1 = W⊤
1

∑
i∈[K]

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 , B̄t,1 = W⊤

1 Σ
−1
1

∑
i∈[K] Σ̂t,iB̂t,i . (8)

Then, the recursive step follows from the fact that for ℓ ∈ [L]/{1},

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ , B̄t,ℓ = W⊤

ℓ Σ
−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 .

3.2 LINEAR DIFFUSION MODELS WITH NON-LINEAR REWARDS

Here all parameters ψ∗,ℓ and θ∗,i are generated using a linear diffusion model as in Eq. (4), except
that the reward distribution is now parametrized as a generalized linear model (GLM) (McCullagh
& Nelder, 1989). That is, for any x ∈ X , P (· | x; θ) is an exponential-family distribution with
mean g(x⊤θ), where g is the mean function. For example, let g(u) = (1 + exp(−u))−1 and
P (· | x; θ) = Ber(g(x⊤θ)), where Ber(p) be the Bernoulli distribution with mean p. Then, this
setting would correspond to a logistic bandit (Filippi et al., 2010). The full model writes

ψ∗,L ∼ N (0,ΣL+1) , (9)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (Wℓψ∗,ℓ,Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At ∼ P (· | Xt; θ∗,At) , ∀t ∈ [n] .

Despite the linearity in latent parameters, we cannot derive closed-form posteriors here due to the
non-linearity of the rewards. Therefore, we approximate the log-likelihoods logP (Ht,i | θ∗,i = θ) by
multivariate Gaussian densities using the Laplace approximation. Precisely, the reward function P (· |
x; θ) is an exponential-family distribution. Thus the log-likelihoods write logP (Ht,i | θ∗,i = θ) =∑
k∈St,i

YkX
⊤
k θ − A(X⊤

k θ) + C(Yk), where C is a real function, and A is a twice continuously

differentiable function whose derivative is the mean function, Ȧ = g. Now let θ̂GLM
t,i and ĜGLM

t,i be
the maximum likelihood estimate (MLE) and the Hessian of the negative log-likelihood, respectively,
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defined as θ̂GLM
t,i = argmaxθ∈Rd logP (Ht,i | θ∗,i = θ) and ĜGLM

t,i =
∑
k∈St,i

ġ
(
X⊤
k θ̂

GLM
t,i

)
XkX

⊤
k .

The Laplace approximation follows as P (Ht,i | θ∗,i = θ) ≈ N
(
θ; θ̂GLM

t,i ,
(
ĜGLM
t,i

)−1)
. Then we use

the posteriors in Section 3.1, except that we replace B̂t,i and Ĝt,i in Section 3.1 by ĜGLM
t,i θ̂GLM

t,i and
ĜGLM
t,i , respectively. A question that may arise is why the Laplace approximation is applied to the

likelihoods P (Ht,i | θ∗,i = θ) instead of the posteriors P (θ∗,i = θ |Ht,i), as is common in Bayesian
inference. The reason behind this preference is that it allows us to use the same posterior derivations
for linear rewards (Section 3.1) with slight adaptations, as explained before.

4 ANALYSIS

This section focuses on analyzing dTS under the linear diffusion model in Eq. (4). Although our result
holds for milder assumptions, we make some simplifications for the sake of clarity and interpretability.
We assume that (A1) Contexts satisfy ∥Xt∥22 = 1 for any t ∈ [n]. (A2) Mixing matrices and
covariances satisfy λ1(W⊤

ℓ Wℓ) = 1 for any ℓ ∈ [L] and Σℓ = σ2
ℓ Id for any ℓ ∈ [L+ 1]. Note that

(A1) can be relaxed to any contexts Xt with bounded norms ∥Xt∥2. Also, (A2) can be relaxed to
positive definite covariances Σℓ and arbitrary mixing matrices Wℓ. In this section, we write Õ for the
big-O notation up to polylogarithmic factors. Also, all proofs are provided in Appendix C. We start
with the following standard lemma upon which we build our analysis (Aouali et al., 2023).
Lemma 1. Assume that P (θ∗,i = θ |Ht) = N (θ; µ̌t,i, Σ̌t,i) for any i ∈ [K], then for any δ ∈ (0, 1),

BR(n) ≤
√
2n log(1/δ)

√
E
[∑n

t=1 ∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (10)

Applying Lemma 1 requires proving that the marginal action-posteriors P (θ∗,i = θ |Ht) in Eq. (3)
are Gaussian and computing their covariances, while we only know the conditional action-posteriors
Pt,i and latent-posteriors Qt,ℓ. This is achieved by leveraging the preservation properties of the
family of Gaussian distributions (Koller & Friedman, 2009) and the total covariance decomposition
(Weiss, 2005) which leads to the next lemma.
Lemma 2. Let t ∈ [n] and i ∈ [K], then the marginal covariance matrix Σ̌t,i reads

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L] Pi,ℓΣ̄t,ℓP

⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1. (11)

The marginal covariance matrix Σ̌t,i in Eq. (11) decomposes into L + 1 terms. The first term
corresponds to the posterior uncertainty of θ∗,i | ψ∗,1. The remaining L terms capture the posterior
uncertainties of ψ∗,L and ψ∗,ℓ−1 | ψ∗,ℓ for ℓ ∈ [L]/{1}. These are then used to quantify the posterior
information gain of latent parameters after one round as follows.
Lemma 3 (Posterior information gain). Let t ∈ [n] and ℓ ∈ [L], then

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓ

XtX
⊤
t PAt,ℓ , where σ2

MAX = maxℓ∈[L+1] 1 +
σ2
ℓ

σ2 . (12)

Finally, Lemma 2 is used to decompose ∥Xt∥2Σ̌t,At

in Eq. (10) into L+1 terms. Each term is bounded
thanks to Lemma 3. This results in the following Bayes regret bound for dTS.
Theorem 1. For any δ ∈ (0, 1), the Bayes regret of dTS under Eq. (4), (A1) and (A2) is bounded as

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 RLAT

ℓ

)
log(1/δ)

)
+ cnδ , where c > 0 is a constant, and (13)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
,RLAT

ℓ = cℓd log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

.

Eq. (13) holds for any δ ∈ (0, 1). In particular, the term cnδ is constant when δ = 1/n. Then,
the bound is Õ(

√
n), and this dependence on the horizon n aligns with prior Bayes regret bounds.

The bound comprises L + 1 main terms, RACT(n) and RLAT
ℓ for ℓ ∈ [L]. First, RACT(n) relates to

action parameters learning, conforming to a standard form (Lu & Van Roy, 2019). Similarly, RLAT
ℓ is

associated with learning the ℓ-th latent parameter. Roughly speaking, our bound captures that our
problem can be seen as L+ 1 sequential linear bandit instances stacked upon each other.
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To include more structure, we propose the sparsity assumption (A3) Wℓ = (W̄ℓ, 0d,d−dℓ), where
W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L]. Note that (A3) is not an assumption when dℓ = d for any ℓ ∈ [L].
Notably, (A3) incorporates a plausible structural characteristic that could be captured by a diffusion
model. Next we present Theorem 1 under (A3).
Proposition 1 (Sparsity). For any δ ∈ (0, 1), the Bayes regret of dTS under Eq. (4), (A1), (A2) and
(A3) is bounded as

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 R̃LAT

ℓ

)
log(1/δ)

)
+ cnδ , where c > 0 is a constant, and (14)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, R̃LAT

ℓ = cℓdℓ log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

.

From Proposition 1, the dependency of our bound with other parameters can be summarized as

BR(n) = Õ
(√

n(dKσ2
1 +

∑
ℓ∈[L] dℓσ

2
ℓ+1σ

2ℓ
MAX)

)
, (15)

since RACT(n) = Õ(dKσ2
1) and RLAT

ℓ = Õ(dℓσ
2
ℓ+1σ

2ℓ
MAX). Then, smaller values of K, L, d or dℓ

translate to fewer parameters to learn, leading to lower regret. The regret also decreases when the
initial variances σ2

ℓ decrease. These dependencies are common in Bayesian analysis, and empirical
results match them. They arise from the assumption that true parameters are sampled from a known
distribution that matches our prior. When the prior is more informative (such as low variance), the
problem is easier, resulting in lower Bayes regret. The reader might question the dependence of our
bound on both L and K, wondering why K is present. This arises due to our conditional learning
of θ∗,i given ψ∗,1. Rather than assuming deterministic linearity, θ∗,i = W1ψ∗,1, we account for
stochasticity by modeling θ∗,i ∼ N (W1ψ∗,1, σ

2
1Id). This makes dTS robust to misspecification

scenarios where θ∗,i is not perfectly linear with respect to ψ∗,1, at the cost of additional learning of
θ∗,i | ψ∗,1. If we were to assume deterministic linearity (σ1 = 0), our regret bound would scale with
L only and we provide this example in Section 4.1.

4.1 DISCUSSION AND COMPARISON TO STANDARD METHODS

Here we outline the statistical and computational merits of dTS, supported by theory and experiments.

Computational benefits. Action correlations prompts an intuitive approach: marginalize all latent
parameters and maintain a joint posterior of (θ∗,i)i∈[K] | Ht. Unfortunately, this is computationally
inefficient for large action spaces. To illustrate, suppose that all posteriors are multivariate Gaussians
(Section 3.1). Then maintaining the joint posterior (θ∗,i)i∈[K] | Ht necessitates converting and
storing its dK × dK-dimensional covariance matrix. Then the time and space complexities are
O(K3d3) and O(K2d2). In contrast, the time and space complexities of dTS are O

((
L+K

)
d3
)

and O
((
L+K

)
d2
)
. This is because dTS requires converting and storing L+K covariance matrices,

each being d×d-dimensional. The improvement is huge when K ≫ L, which is common in practice.
Certainly, a more straightforward route to enhance computational efficiency is to discard latent
parameters and maintain K individual posteriors, each relating to an action parameter θ∗,i ∈ Rd
(LinTS). This improves time and space complexity to O

(
Kd3

)
and O

(
Kd2

)
, correspondingly.

However, LinTS maintaining independent posteriors fails to capture the correlations among actions;
it only models θ∗,i | Ht,i rather than θ∗,i | Ht as done by dTS. Consequently, LinTS incurs higher
regret due to the information loss caused by unused interactions of similar actions. Our regret bound
and empirical results, which we will discuss next, reflect this aspect.

Statistical benefits. The linear diffusion model in Eq. (4) has a unique property. It can be transformed
into a single Bayesian linear model (LinTS) by marginalizing out the latent parameters; in which
case the prior on action parameters becomes θ∗,i ∼ N (0, Σ) for i ∈ [K], with the θ∗,i being not
necessarily independent, and Σ is the marginal initial covariance of action parameters and it writes
Σ = σ2

1Id+
∑
ℓ∈[L] σ

2
ℓ+1BℓB

⊤
ℓ with Bℓ =

∏
k∈[ℓ] Wk. Then, it is tempting to directly apply LinTS

to solve our problem. While possible, this approach will suffer higher regret. To see this, note
that the additional uncertainty of the latent parameters is accounted for in Σ despite integrating
them out. This causes the marginal action uncertainty Σ to be much higher than the conditional
action uncertainty σ2

1Id in Eq. (4), since we have Σ = σ2
1Id +

∑
ℓ∈[L] σ

2
ℓ+1BℓB

⊤
ℓ ≽ σ2

1Id. This
discrepancy leads to higher regret, particularly pronounced when K is large. This is due to LinTS
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needing to learn K independent d-dimensional parameters, each with a considerably higher initial
covariance Σ. This is also reflected by our regret bound. Precisely, the regret of LinTS scales as
Õ
(√

ndK(σ2
1 +

∑
ℓ∈[L] σ

2
ℓ+1)

)
. This follows from Eq. (15) with σℓ = 0 for any ℓ ∈ [L+ 1]/{1},

except that the maximum conditional action variance σ2
1 is replaced with the maximum marginal

action variance σ2
1 +

∑
ℓ∈[L] σ

2
ℓ+1. The latter follows because σ2

1Id+
∑
ℓ∈[L] σ

2
ℓ+1Id ≽ Σ. The same

result can be obtained by applying the standard Bayes regret bound for LinTS. Now, let’s compare the
regret improvements of dTS compared to LinTS. To simplify, we assume that σ ≥ maxℓ∈[L+1] σℓ
so that σ2

MAX ≤ 2. Then the regrets of dTS (where we bound σ2ℓ
MAX by 2ℓ) and LinTS are

dTS : Õ
(√

n(dKσ2
1 +

∑
ℓ∈[L] dℓσ

2
ℓ+12

ℓ)
)
, LinTS : Õ

(√
ndK(σ2

1 +
∑
ℓ∈[L] σ

2
ℓ+1)

)
.

Then regret improvements are captured by the variances σℓ and the sparsity dimensions dℓ, and we
proceed to illustrate this through the following scenarios scenarios.

(I) Decreasing variances. Assume that σℓ = 2ℓ for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑
ℓ∈[L] dℓ4

ℓ))
)

LinTS : Õ
(√

ndK2L)
)

Now to see the order of gain, assume the problem is high-dimensional (d≫ 1), and set L = log2(d)

and dℓ = ⌊ d
2ℓ
⌋. Then the regret of dTS becomes Õ

(√
nd(K + L))

)
, and hence the multiplicative

factor 2L in LinTS is removed and replaced with a smaller additive factor L.

(II) Constant variances. Assume that σℓ = 1 for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑
ℓ∈[L] dℓ2

ℓ))
)

LinTS : Õ
(√

ndKL)
)

Similarly, let L = log2(d), and dℓ = ⌊ d
2ℓ
⌋. Then dTS’s regret is Õ

(√
nd(K + L)

)
. Thus the

multiplicative factor L in LinTS is removed and replaced with the additive factor L. By comparing
this to (I), the gain with decreasing variances is greater than with constant ones. In general, diffusion
models use decreasing variances (Ho et al., 2020) and hence we expect great gains in practice.

Effect of diffusion depth L. The linear diffusion in Eq. (4) can be transformed into a two-level
hierarchy (HierTS (Hong et al., 2022b)) using two different strategies. The first one yields,

ψ∗,L ∼ N (0, σ2
L+1BLB

⊤
L ) ,

HierTS-1 : θ∗,i | ψ∗,L ∼ N (ψ∗,L, Ω1) , ∀i ∈ [K] , (16)

where Ω1 = σ2
1Id +

∑
ℓ∈[L−1] σ

2
ℓ+1BℓB

⊤
ℓ and Bℓ =

∏
k∈[ℓ] Wk. The second one yields,

ψ∗,1 ∼ N (0,Ω2) ,

HierTS-2 : θ∗,i | ψ∗,1 ∼ N (ψ∗,1, σ
2
1Id) , ∀i ∈ [K] , (17)

where Ω2 =
∑
ℓ∈[L] σ

2
ℓ+1BℓB

⊤
ℓ . Then, we start by highlighting the differences between these two

variants of HierTS. First, the regrets of HierTS-1 and HierTS-2 scale as

HierTS-1 : Õ
(√

nd(K
∑
ℓ∈[L] σ

2
ℓ + Lσ2

L+1

)
HierTS-2 : Õ

(√
nd(Kσ2

1 +
∑
ℓ∈[L] σ

2
ℓ+1)

)
.

WhenK and L are comparable, then the regrets of HierTS-1 and HierTS-2 are similar. However,
in more common scenarios where K > L, HierTS-2 tends to outperform HierTS-1. This
superiority stems from HierTS-2’s strategy of putting more uncertainty to the d-dimensional
latent parameter ψ∗,1, rather than to K individual d-dimensional action parameters θ∗,i for i ∈ [K].
Additionally, HierTS-1’s regret is higher because it assumes that θ∗,i are conditionally independent
given ψ∗,L, which may not always hold true. Consequently, HierTS-2 outperforms HierTS-1.
Regarding dTS, and in the absence of the sparsity assumption, HierTS-2 and dTS essentially
become equivalent. Specifically, their regrets’ dependency on K is identical, where both methods
involve multiplyingK by σ2

1 , leading to improved performance compared to HierTS-1. In scenarios
with dense mixing matrices, where assumption (A3) is not applicable, Theorem 1 indicates that
dTS and HierTS-2 would demonstrate comparable levels of regret and computational efficiency.
However, under the sparsity assumption and with certain mixing matrices that allow for conditional
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Figure 2: Regret of two variants of dTS, LindTS (Section 3.1) and GLM-dTS (Section 3.2) on
synthetic bandit problems with d = 20 and a varying number of actions K ∈ {103, 104}.

independence of ψ∗,1 coordinates given ψ∗,2, dTS acquires a great computational advantage over
HierTS-2. This distinction explains why studies focusing on multi-level hierarchies typically
benchmark their algorithms against two-level structures akin to HierTS-1, rather than the more
competitive HierTS-2. This approach is consistent with previous works in Bayesian bandits using
multi-level hierarchies, such as Tree-based priors (Hong et al., 2022a), which often favor comparisons
with HierTS-1. In line with this, we also compared dTS with HierTS-1 in our experiments.

Note that all observed improvements in this section could become even more pronounced when
employing non-linear diffusion models. In our current analysis, we used linear diffusion models, and
yet we can already discern substantial differences. Moreover, under non-linear diffusion models, the
latent parameters cannot be analytically marginalized, making LinTS and HierTS inapplicable.
We defer theoretical investigations of non-linear diffusion models to future works.

5 EXPERIMENTS

Experimental setup. We assess the performance of dTS using synthetic problems. Our primary
objective is to validate our theory, and as a result, we do not include real-world datasets in our
evaluation. This choice is further justified by the fact that Hsieh et al. (2023) has already demonstrated
the advantages of diffusion models in multi-armed bandit settings using real-world datasets, without
theoretical guarantees. We consider the two settings in Sections 3.1 and 3.2. The linear rewards
(Section 3.1) are generated as N (x⊤θ, σ2) with σ = 1, and the non-linear rewards (Section 3.2)
are binary and generated as Ber(g(x⊤θ))), where g is the sigmoid function. The covariances are
Σℓ = Id, and the context Xt is uniformly drawn from [−1, 1]d. The context dimension is d = 20
and the diffusion depth is L = 4. The mixing matrices Wℓ are uniformly drawn from [−1, 1]d×d.
To introduce sparsity, we zero out the last dℓ columns of Wℓ, resulting in Wℓ = (W̄ℓ, 0d,d−dℓ),
where d1 = 20, d2 = 10, d3 = 5 and d4 = 2 with L = 4. Also, we consider both K = 103 and
K = 104. These values of d and K are high compared to experiments in prior works. We run 50
random simulations and plot the average regret alongside its standard error.

We consider several baselines. For linear rewards, we consider dTS under the linear diffusion model
with linear rewards in Eq. (4). Second, HierTS (Hong et al., 2022b) that marginalizes out all
latent parameters except ψ∗,L. Third, we include LinUCB (Abbasi-Yadkori et al., 2011) and LinTS
(Agrawal & Goyal, 2013a). For non-linear rewards, we also use dTS under the linear diffusion model
with non-linear rewards in Section 3.2, UCB-GLM (Li et al., 2017), and GLM-TS (Chapelle & Li,
2012). GLM-UCB (Filippi et al., 2010) induces a very high regret and thus it is not included.

Results. In Fig. 2, we present the regret values for various baseline methods over a horizon of
n = 5000. We begin by examining the case of linear rewards, corresponding to the two plots
on the left-hand side of Fig. 2. Our observations reveal that LindTS consistently outperforms
all baselines that either disregard the latent structure (LinTS and LinUCB) or incorporate it only
partially (HierTS). Specifically, the baselines that disregard the structure (LinTS and LinUCB)
fail to converge in n = 5000 rounds since our problem involves a high-dimensional setting with
d = 20 and a large action space of K = 104. These baselines appear to require a more extended
horizon n for convergence. Meanwhile, HierTS, which partially leverages the structure, manages
to converge within the considered horizon but still incurs a significantly higher regret compared
to LindTS. In contrast, LindTS demonstrates rapid convergence and maintains remarkably low
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regret. Notably, we observe that as the action space grows (indicated by a higher value of K), the
performance gap between LindTS and the other baselines widens.

In the case of non-linear rewards, illustrated in the two plots on the right-hand side of Fig. 2, GLM-dTS
also surpasses all baselines. Moreover, GLM-dTS outperforms LindTS in this setting, underscoring
the advantages of our approximation in Section 3.2. While GLM-dTS lacks theoretical guarantees,
the results suggest that it is preferable to use GLM-dTS when dealing with non-linear rewards,
emphasizing the generality and adaptability of dTS and the general posterior derivations in Section 3.
However, despite the misspecification of the reward model in LindTS, it still outperforms models that
use the correct reward model but neglect the latent structure, such as GLM-TS and UCB-GLM. This
highlights the importance of accounting for the latent structure, which can outweigh the correctness
of the reward model itself in some cases. This observation becomes particularly pronounced by
noticing that all other baselines that assume linear rewards (LinTS, LinUCB, HierTS) induce high
regret in this setting, with the exception of LindTS that correctly uses the latent structure. Finally,
we also conduct an additional experiment to verify the relationships outlined in Theorem 1 between
the regret of dTS and the number of actions K, the context dimension d, and the diffusion depth L.
The results are provided in Appendix D and they match our theory.

6 CONCLUSION

In practice, grappling with large action spaces in contextual bandits is challenging. Recognizing this,
we focused on structured contextual bandit problems where action parameters are sampled from a
diffusion model; upon which we built diffusion Thompson sampling (dTS). Our primary contribution
lies in proving Bayes regret bounds that quantify the statistical efficiency gains achieved by dTS when
compared to conventional methods such as linear Thompson sampling LinTS (Agrawal & Goyal,
2013a), linear UCB (Abbasi-Yadkori et al., 2011), etc. This presents an important advancement in the
theoretical comprehension of bandit algorithms capable of effectively navigating complex graphical
model, such as linear diffusion models.

We identified several directions for future work. Notably, extending our work to non-linear diffusion
models, both from a theoretical and empirical standpoint. From a theoretical perspective, future
research could explore the advantages of non-linear diffusion models by deriving their Bayes regret
bounds, akin to our analysis in Section 4. This would showcase the benefits of incorporating non-
linearity into our framework. Empirically, investigating the use of approximate Thompson sampling
techniques for non-linear diffusion models is interesting. Although we express the posteriors in
the general case in Section 3, approximating these expressions is not straightforward. Additionally,
note that while Hsieh et al. (2023) provided an approximation for Thompson sampling under non-
linear diffusion priors in multi-armed bandits, extending this approximation to contextual bandits is
challenging. Addressing these challenges and enabling the application of such approximations in
contextual bandits is an important direction of future work.
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SUPPLEMENTARY MATERIALS

Notation. For any positive integer n, we define [n] = {1, 2, ..., n}. Let v1, . . . , vn ∈ Rd be n vectors,
(vi)i∈[n] ∈ Rnd is the nd-dimensional vector obtained by concatenating v1, . . . , vn. For any matrix
A ∈ Rd×d, λ1(A) and λd(A) denote the maximum and minimum eigenvalues of A, respectively.
Finally, we write Õ for the big-O notation up to polylogarithmic factors.

A EXTENDED RELATED WORK

Thompson sampling (TS) operates within the Bayesian framework and it involves specifying a
prior/likelihood model. In each round, the agent samples unknown model parameters from the
current posterior distribution. The chosen action is the one that maximizes the resulting reward. TS
is naturally randomized, particularly simple to implement, and has highly competitive empirical
performance in both simulated and real-world problems (Russo & Van Roy, 2014; Chapelle & Li,
2012). Regret guarantees for the TS heuristic remained open for decades even for simple models.
Recently, however, significant progress has been made. For standard multi-armed bandits, TS is
optimal in the Beta-Bernoulli model (Kaufmann et al., 2012; Agrawal & Goyal, 2013b), Gaussian-
Gaussian model (Agrawal & Goyal, 2013b), and in the exponential family using Jeffrey’s prior (Korda
et al., 2013). For linear bandits, TS is nearly-optimal (Russo & Van Roy, 2014; Agrawal & Goyal,
2017; Abeille & Lazaric, 2017). In this work, we build TS upon complex diffusion priors and analyze
the resulting Bayes regret (Russo & Van Roy, 2014) in the linear contextual bandit setting.

Decision-making with diffusion models gained attention recently, especially in offline learning
(Ajay et al., 2022; Janner et al., 2022; Wang et al., 2022). However, their application in online
learning was only examined by Hsieh et al. (2023), which focused on meta-learning in multi-armed
bandits without theoretical guarantees. In this work, we expand the scope of Hsieh et al. (2023) to
encompass the broader contextual bandit framework. In particular, we provide theoretical analysis for
linear instances, effectively capturing the advantages of using diffusion models as priors in contextual
Thompson sampling. These linear cases are particularly captivating due to closed-form posteriors,
enabling both theoretical analysis and computational efficiency; an important practical consideration.

Hierarchical Bayesian bandits (Bastani et al., 2019; Kveton et al., 2021; Basu et al., 2021; Sim-
chowitz et al., 2021; Wan et al., 2021; Hong et al., 2022b; Peleg et al., 2022; Wan et al., 2022; Aouali
et al., 2023) applied TS to simple graphical models, wherein action parameters are generally sampled
from a Gaussian distribution centered at a single latent parameter. These works mostly span meta-
and multi-task learning for multi-armed bandits, except in cases such as Aouali et al. (2023); Hong
et al. (2022a) that consider the contextual bandit setting. Precisely, Aouali et al. (2023) assume that
action parameters are sampled from a Gaussian distribution centered at a linear mixture of multiple
latent parameters. On the other hand, Hong et al. (2022a) applied TS to a graphical model represented
by a tree. Our work can be seen as an extension of all these works to much more complex graphical
models, for which both theoretical and algorithmic foundations are developed. Note that the settings
in most of these works can be recovered with specific choices of the diffusion depth L and functions
fℓ. This attests to the modeling power of dTS.

Approximate Thompson sampling is a major problem in the Bayesian inference literature. This is
because most posterior distributions are intractable, and thus practitioners must resort to sophisti-
cated computational techniques such as Markov chain Monte Carlo (Kruschke, 2010). Prior works
(Riquelme et al., 2018; Chapelle & Li, 2012; Kveton et al., 2020) highlight the favorable empirical
performance of approximate Thompson sampling. Particularly, (Kveton et al., 2020) provide the-
oretical guarantees for Thompson sampling when using the Laplace approximation in generalized
linear bandits (GLB). In our context, we incorporate approximate sampling when the reward exhibits
non-linearity. While our approximation does not come with formal guarantees, it enjoys strong
practical performance. An in-depth analysis of this approximation is left as a direction for future
works. Similarly, approximating the posterior distribution when the diffusion model is non-linear as
well as analyzing it is an interesting direction of future works.

Bandits with underlying structure also align with our work, where we assume a structured rela-
tionship among actions, captured by a diffusion model. In latent bandits (Maillard & Mannor, 2014;
Hong et al., 2020), a single latent variable indexes multiple candidate models. Within structured
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finite-armed bandits (Lattimore & Munos, 2014; Gupta et al., 2018), each action is linked to a known
mean function parameterized by a common latent parameter. This latent parameter is learned. TS
was also applied to complex structures (Yu et al., 2020; Gopalan et al., 2014). However, simultaneous
computational and statistical efficiencies aren’t guaranteed. Meta- and multi-task learning with upper
confidence bound (UCB) approaches have a long history in bandits (Azar et al., 2013; Gentile et al.,
2014; Deshmukh et al., 2017; Cella et al., 2020). These, however, often adopt a frequentist perspec-
tive, analyze a stronger form of regret, and sometimes result in conservative algorithms. In contrast,
our approach is Bayesian, with analysis centered on Bayes regret. Remarkably, our algorithm, dTS,
performs well as analyzed without necessitating additional tuning. Finally, Low-rank bandits (Hu
et al., 2021; Cella et al., 2022; Yang et al., 2020) also relate to our linear diffusion model when
L = 1. Broadly, there exist two key distinctions between these prior works and the special case
of our model (linear diffusion model with L = 1). First, they assume θ∗,i = W1ψ∗,1, whereas we
incorporate additional uncertainty in the covariance Σ1 to account for possible misspecification as
θ∗,i = N (W1ψ∗,1,Σ1). Consequently, these algorithms might suffer linear regret due to model
misalignment. Second, we assume that the mixing matrix W1 is available and pre-learned offline,
whereas they learn it online. While this is more general, it leads to computationally expensive
methods that are difficult to employ in a real-world online setting.

Large action spaces. Roughly speaking, the regret bound of dTS scales with Kσ2
1 rather than

K
∑
ℓ σ

2
ℓ . This is particularly beneficial when σ1 is small, a common scenario in diffusion models

with decreasing variances. A notable case is when σ1 = 0, where the regret becomes independent of
K. Also, our analysis (Section 4.1) indicates that the gap in performance between dTS and LinTS
becomes more pronounced when the number of action increases, highlighting dTS’s suitability for
large action spaces. Note that some prior works (Foster et al., 2020; Xu & Zeevi, 2020; Zhu et al.,
2022) proposed bandit algorithms that do not scale with K. However, our setting differs significantly
from theirs, explaining our inherent dependency on K when σ1 > 0. Precisely, they assume a
reward function of r(x, i) = ϕ(x, i)⊤θ∗, with a shared θ∗ ∈ Rd across actions and a known mapping
ϕ. In contrast, we consider r(x, i) = x⊤θ∗,i, requiring the learning of K separate d-dimensional
action parameters. In their setting, with the availability of ϕ, the regret of dTS would similarly be
independent ofK. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate
complex context-action dependencies. Notably, our setting reflects a common practical scenario,
such as in recommendation systems where each product is often represented by its embedding. In
summary, the dependency on K is more related to our setting than the method itself, and dTS would
scale with d only in their setting. Note that dTS is both computationally and statistically efficient
(Section 4.1). This becomes particularly notable in large action spaces. Our empirical results in
Fig. 2, notably with K = 104, demonstrate that dTS significantly outperforms the baselines. More
importantly, the performance gap between dTS and these baselines is larger when the number of
actions (K) increases, highlighting the improved scalability of dTS to large action spaces.

B DERIVATION OF CLOSED-FORM POSTERIORS FOR LINEAR DIFFUSION
MODELS

In this section, we derive the K + L posteriors Pt,i and Qt,ℓ, for which we provide the expressions
in Section 3.1. In our proofs, p(x) ∝ f(x) means that the probability density p satisfies p(x) = f(x)

Z

for any x ∈ Rd, where Z is a normalization constant. In particular, we extensively use that if
p(x) ∝ exp[− 1

2x
⊤Λx + x⊤m], where Λ is positive definite. Then p is the multivariate Gaussian

density with covariance Σ = Λ−1 and mean µ = Σm. These are standard notations and techniques
to manipulate Gaussian distributions (Koller & Friedman, 2009, Chapter 7).

B.1 DERIVATION OF THE ACTION-POSTERIOR FOR LINEAR DIFFUSION MODELS

Proposition 2. Consider the following model, which corresponds to the last two layers in Eq. (4)

θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) ,

Yt | Xt, θ∗,At ∼ N
(
X⊤
t θ∗,At , σ

2
)
, ∀t ∈ [n] .
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Then we have that for any t ∈ [n] and i ∈ [K], Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) =

N (θ; µ̂t,i, Σ̂t,i), where

Σ̂−1
t,i = Ĝt,i +Σ−1

1 , µ̂t,i = Σ̂t,i

(
B̂t,i +Σ−1

1 W1ψ1

)
.

Proof. Let v = σ−2 , Λ1 = Σ−1
1 . Then the action-posterior decomposes as

Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) ,

∝ P (Ht,i |ψ∗,1 = ψ1, θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (Bayes rule)
= P (Ht,i | θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (given θ∗,i, Ht,i is independent of ψ∗,1)

=
∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)N (θ;W1ψ1,Σ1) ,

= exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2YkX

⊤
k θ + (X⊤

k θ)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+
(
W1ψ1

)⊤
Λ1

(
W1ψ1

))]
,

∝ exp
[
− 1

2

(
θ⊤(v

∑
k∈St,i

XkX
⊤
k + Λ1)θ − 2θ⊤

(
v

∑
k∈St,i

XkYk + Λ1W1ψ1

))]
,

∝ N
(
θ; µ̂t,i, Λ̂

−1
t,i

)
,

where Λ̂t,i = v
∑
k∈St,i

XkX
⊤
k + Λ1 , and Λ̂t,iµ̂t,i = v

∑
k∈St,i

XkYk + Λ1W1ψ1. Using that

B̂t,i = v
∑
k∈St,i

XkYk and Ĝt,i = v
∑
k∈St,i

XkX
⊤
k concludes the proof.

B.2 DERIVATION OF THE RECURSIVE LATENT-POSTERIORS FOR LINEAR DIFFUSION MODELS

Proposition 3. For any ℓ ∈ [L]/{1}, the ℓ−1-th conditional latent-posterior reads Qt,ℓ−1(· | ψℓ) =
N (µ̄t,ℓ−1, Σ̄t,ℓ−1), with

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (18)

and the L-th latent-posterior reads Qt,L(·) = N (µ̄t,L, Σ̄t,L), with

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (19)

Proof. Let ℓ ∈ [L]/{1}. Then, Bayes rule yields that

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1,Wℓψℓ,Σℓ) ,

But from Lemma 4, we know that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
.

Therefore,

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1,Wℓψℓ,Σℓ) ,

∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

− 1

2
(ψℓ−1 −Wℓψℓ)

⊤Σ−1
ℓ (ψℓ−1 −Wℓψℓ))

]
,

(i)
∝ exp

[
− 1

2
ψ⊤
ℓ−1(Ḡt,ℓ−1 +Σ−1

ℓ )ψℓ−1 + ψ⊤
ℓ−1(B̄t,ℓ−1 +Σ−1

ℓ Wℓψℓ)
]
,

(ii)
∝ N (ψℓ−1; µ̄t,ℓ−1, Σ̄t,ℓ−1) ,
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with Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 and µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
. In (i), we omit terms that

are constant in ψℓ−1. In (ii), we complete the square. This concludes the proof for ℓ ∈ [L]/{1}. For
Qt,L, we use Bayes rule to get

Qt,L(ψL) ∝ P (Ht |ψ∗,L = ψL)N (ψL, 0,ΣL+1) .

Then from Lemma 4, we know that

P (Ht |ψ∗,L = ψL) ∝ exp
[
− 1

2
ψ⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
,

We then use the same derivations above to compute the product exp
[
− 1

2ψ
⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
×

N (ψL, 0,ΣL+1), which concludes the proof.

Lemma 4. The following holds for any t ∈ [n] and ℓ ∈ [L],

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where Ḡt,ℓ and B̄t,ℓ are defined by recursion in Section 3.1.

Proof. We prove this result by induction. To reduce clutter, we let v = σ−2, and Λ1 = Σ−1
1 . We

start with the base case of the induction when ℓ = 1.

(I) Base case. Here we want to show that P (Ht |ψ∗,1 = ψ1) ∝ exp
[
− 1

2ψ
⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1
)]

,

where Ḡt,1 and B̄t,1 are given in Eq. (8). First, we have that

P (Ht |ψ∗,1 = ψ1)
(i)
=

∏
i∈[K]

P (Ht,i |ψ∗,1 = ψ1) =
∏
i∈[K]

∫
θ

P (Ht,i, θ∗,i = θ |ψ∗,1 = ψ1) dθ ,

=
∏
i∈[K]

∫
θ

P (Ht,i | θ∗,i = θ)N (θ;W1ψ1,Σ1) dθ ,

=
∏
i∈[K]

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ︸ ︷︷ ︸

hi(ψ1)

,

=
∏
i∈[K]

hi(ψ1) , (20)

where (i) follows from the fact that θ∗,i for i ∈ [K] are conditionally independent given
ψ∗,1 = ψ1 and that given θ∗,i, Ht,i is independent of ψ∗,1. Now we compute hi(ψ1) =∫
θ

(∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ as

hi(ψ1) =

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ ,

∝
∫
θ

exp
[
− 1

2
v

∑
k∈St,i

(Yk −X⊤
k θ)

2 − 1

2
(θ −W1ψ1)

⊤Λ1(θ −W1ψ1)
]
dθ ,

=

∫
θ

exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2Ykθ

⊤Xk + (θ⊤Xk)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+ (W1ψ1)
⊤Λ1(W1ψ1)

)]
dθ ,

∝
∫
θ

exp
[
− 1

2

(
θ⊤

(
v

∑
k∈St,i

XkX
⊤
k + Λ1

)
θ − 2θ⊤

(
v

∑
k∈St,i

YkXk

+ Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ .
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But we know that Ĝt,i = v
∑
k∈St,i

XkX
⊤
k , and B̂t,i = v

∑
k∈St,i

YkXk. To further simplify
expressions, we also let

V =
(
Ĝt,i + Λ1

)−1
, U = V −1 , β = V

(
B̂t,i + Λ1W1ψ1

)
.

We have that UV = V U = Id , and thus

hi(ψ1) ∝
∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤UV

(
B̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
(θ − β)⊤U(θ − β)− β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

∝ exp

[
−1

2

(
−β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

,

= exp

[
−1

2

(
−
(
B̂t,i + Λ1W1ψ1

)⊤
V
(
B̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)

)]
,

∝ exp

[
−1

2

(
ψ⊤
1 W

⊤
1 (Λ1 − Λ1V Λ1)W1ψ1 − 2ψ⊤

1

(
W⊤

1 Λ1V B̂t,i

))]
,

= exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

where

Ωi = W⊤
1 (Λ1 − Λ1V Λ1)W1 = W⊤

1

(
Λ1 − Λ1(Ĝt,i + Λ1)

−1Λ1

)
W1 ,

mi = W⊤
1 Λ1V B̂t,i = W⊤

1 Λ1(Ĝt,i + Λ1)
−1B̂t,i . (21)

But notice that V = (Ĝt,i + Λ1)
−1 = Σ̂t,i and thus

Ωi = W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 , mi = W⊤

1 Λ1Σ̂t,iB̂t,i . (22)

Finally, we plug this result in Eq. (20) to get

P (Ht |ψ∗,1 = ψ1) =
∏
i∈[K]

hi(ψ1) ∝
∏
i∈[K]

exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

= exp

−1

2
ψ⊤
1

∑
i∈[K]

Ωiψ1 + ψ⊤
1

∑
i∈[K]

mi

 ,

= exp

[
−1

2
ψ⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1

]
,

where

Ḡt,1 =

K∑
i=1

Ωi =

K∑
i=1

W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 = W⊤

1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 ,

B̄t,1 =

K∑
i=1

mi =

K∑
i=1

Σ̂t,iB̂t,i = W⊤
1 Σ

−1
1

K∑
i=1

Σ̂t,iB̂t,i .

This concludes the proof of the base case.

(II) Induction step. Let ℓ ∈ [L]/{1}. Suppose that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp

[
−1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
. (23)
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Then we want to show that

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ = W⊤

ℓ

(
Σ−1
ℓ − Σ−1

ℓ (Σ−1
ℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 = W⊤

ℓ Σ
−1
ℓ (Σ−1

ℓ + Ḡt,ℓ−1)
−1B̄t,ℓ−1 .

To achieve this, we start by expressing P (Ht |ψ∗,ℓ = ψℓ) in terms of P (Ht |ψ∗,ℓ−1 = ψℓ−1) as

P (Ht |ψ∗,ℓ = ψℓ) =

∫
ψℓ−1

P (Ht, ψ∗,ℓ−1 = ψℓ−1 |ψ∗,ℓ = ψℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1, ψ∗,ℓ = ψℓ)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 .

Now let S = Ḡt,ℓ−1 + Λℓ and V = B̄t,ℓ−1 + ΛℓWℓψℓ. Then we have that,

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1Sψℓ−1 − 2ψ⊤

ℓ−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)
+ ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1S(ψℓ−1 − 2S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V )

+ ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1.

In the second step, we omit constants in ψℓ and ψℓ−1. Thus

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp

[
−1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1,

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
.
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It follows that

P (Ht |ψ∗,ℓ = ψℓ)

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
,

= exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ −

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)⊤
S−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

))]
∝ exp

[
−1

2

(
ψ⊤
ℓ

(
W⊤
ℓ ΛℓWℓ −W⊤

ℓ ΛℓS
−1ΛℓWℓ

)
ψℓ − 2ψ⊤

ℓ W
⊤
ℓ ΛℓS

−1B̄t,ℓ−1

)]
,

= exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
.

In the last step, we omit constants in ψℓ and we set

Ḡt,ℓ = W⊤
ℓ

(
Λℓ − ΛℓS

−1Λℓ
)
Wℓ = W⊤

ℓ

(
Λℓ − Λℓ(Λℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ Λℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ ΛℓS

−1B̄t,ℓ−1 = W⊤
ℓ Λℓ(Λℓ + Ḡt,ℓ−1)

−1B̄t,ℓ−1 .

This completes the proof.

C REGRET PROOF AND DISCUSSION

C.1 TECHNICAL CONTRIBUTIONS

Our main technical contributions are the following.

Lemma 2. In dTS, sampling is done hierarchically, meaning the marginal posterior distribution of
θ∗,i|Ht is not explicitly defined. Instead, we use the conditional posterior distribution of θ∗,i|Ht, ψ∗,1.
The first contribution was deriving θ∗,i|Ht using the total covariance decomposition combined with
an induction proof, as our posteriors in Section 3.1 were derived recursively. Unlike in Bayes regret
analysis for standard Thompson sampling, where the posterior distribution of θ∗,i|Ht is predetermined
due to the absence of latent parameters, our method necessitates this recursive total covariance
decomposition, marking a first difference from the standard Bayesian proofs of Thompson sampling.
Note that HierTS, which is developed for multi-task linear bandits, also employs total covariance
decomposition, but it does so under the assumption of a single latent parameter; on which action
parameters are centered. Our extension significantly differs as it is tailored for contextual bandits
with multiple, successive levels of latent parameters, moving away from HierTS’s assumption
of a 1-level structure. Roughly speaking, HierTS when applied to contextual would consider a
single-level hierarchy, where θ∗,i|ψ∗,1 ∼ N (ψ∗,1,Σ1) with L = 1. In contrast, our model proposes a
multi-level hierarchy, where the first level is θ∗,i|ψ∗,1 ∼ N (W1ψ∗,1,Σ1). This also introduces a new
aspect to our approach – the use of a linear function W1ψ∗,1, as opposed to HierTS’s assumption
where action parameters are centered directly on the latent parameter. Thus, while HierTS also
uses the total covariance decomposition, our generalize it to multi-level hierarchies under L linear
functions Wℓψ∗,ℓ, instead of a single-level hierarchy under a single identity function ψ∗,1.

Lemma 3. In Bayes regret proofs for standard Thompson sampling, we often quantify the posterior
information gain. This is achieved by monitoring the increase in posterior precision for the action
taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this. We not only
quantify the posterior information gain for the taken action but also for every latent parameter, since
they are also learned. Lemma 3 addresses this aspect. To elaborate, we use the recursive formulas in
Section 3.1 that connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance of
the posterior action parameters θ∗,i. This allows us to propagate the information gain associated with
the action taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. This is a novel
contribution, as it is not a feature of Bayes regret analyses in standard Thompson sampling.

Proposition 1. Building upon the insights of Theorem 1, we introduce the sparsity assumption
(A3). Under this assumption, we demonstrate that the Bayes regret outlined in Theorem 1 can be
significantly refined. Specifically, the regret becomes contingent on dimensions dℓ ≤ d, as opposed
to relying on the entire dimension d. This sparsity assumption is both a novel and a key technical
contribution to our work. Its underlying principle is straightforward: the Bayes regret is influenced
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by the quantity of parameters that require learning. With the sparsity assumption, this number is
reduced to less than d for each latent parameter. To substantiate this claim, we revisit the proof of
Theorem 1 and modify a crucial equality. This adjustment results in a more precise representation by
partitioning the covariance matrix of each latent parameter ψ,ℓ into blocks. These blocks comprise
a dℓ × dℓ segment corresponding to the learnable dℓ parameters of ψ,ℓ, and another block of size
(d− dℓ)× (d− dℓ) that does not necessitate learning. This decomposition allows us to conclude that
the final regret is solely dependent on dℓ, marking a significant refinement from the original theorem.

C.2 PROOF OF LEMMA 2

In this proof, we heavily rely on the total covariance decomposition (Weiss, 2005). Also, refer to
(Hong et al., 2022b, Section 5.2) for a brief introduction to this decomposition. Now, from Eq. (5),
we have that

cov [θ∗,i |Ht, ψ∗,1] = Σ̂t,i =
(
Ĝt,i +Σ−1

1

)−1

,

E [θ∗,i |Ht, ψ∗,1] = µ̂t,i = Σ̂t,i

(
B̂t,i +Σ−1

1 W1ψ∗,1

)
.

First, given Ht, cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

is constant. Thus

E [cov [θ∗,i |Ht, ψ∗,1] |Ht] = cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

= Σ̂t,i .

In addition, given Ht, both Σ̂t,i and B̂t,i are constant. Thus

cov [E [θ∗,i |Ht, ψ∗,1] |Ht] = cov
[
Σ̂t,i

(
B̂t,i +Σ−1

1 W1ψ∗,1

) ∣∣∣Ht

]
,

= cov
[
Σ̂t,iΣ

−1
1 W1ψ∗,1

∣∣∣Ht

]
,

= Σ̂t,iΣ
−1
1 W1cov [ψ∗,1 |Ht]W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i ,

where ¯̄Σt,1 = cov [ψ∗,1 |Ht] is the marginal posterior covariance of ψ∗,1. Finally, the total covariance
decomposition (Weiss, 2005; Hong et al., 2022b) yields that

Σ̌t,i = cov [θ∗,i |Ht] = E [cov [θ∗,i |Ht, ψ∗,1] |Ht] + cov [E [θ∗,i |Ht, ψ∗,1] |Ht] ,

= Σ̂t,i + Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i , (24)

However, ¯̄Σt,1 = cov [ψ∗,1 |Ht] is different from Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] that we already derived
in Eq. (6). Thus we do not know the expression of ¯̄Σt,1. But we can use the same total covariance
decomposition trick to find it. Precisely, let ¯̄Σt,ℓ = cov [ψ∗,ℓ |Ht] for any ℓ ∈ [L]. Then we have that

Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

,

µ̄t,1 = E [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

)
.

First, given Ht, cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

is constant. Thus

E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1 .

In addition, given Ht, Σ̄t,1, Σ̃t,1 and B̄t,1 are constant. Thus

cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov
[
Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

) ∣∣∣Ht

]
,

= cov
[
Σ̄t,1Σ

−1
2 W2ψ∗,2

∣∣Ht

]
,

= Σ̄t,1Σ
−1
2 W2cov [ψ∗,2 |Ht]W

⊤
2 Σ

−1
2 Σ̄t,1 ,

= Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .
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Finally, total covariance decomposition (Weiss, 2005; Hong et al., 2022b) leads to
¯̄Σt,1 = cov [ψ∗,1 |Ht] = E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] + cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] ,

= Σ̄t,1 + Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Now using the techniques, this can be generalized using the same technique as above to
¯̄Σt,ℓ = Σ̄t,ℓ + Σ̄t,ℓΣ

−1
ℓ+1Wℓ+1

¯̄Σt,ℓ+1W
⊤
ℓ+1Σ

−1
ℓ+1Σ̄t,ℓ , ∀ℓ ∈ [L− 1] .

Then, by induction, we get that
¯̄Σt,1 =

∑
ℓ∈[L]

P̄ℓΣ̄t,ℓP̄
⊤
ℓ , ∀ℓ ∈ [L− 1] ,

where we use that by definition ¯̄Σt,L = cov [ψ∗,L |Ht] = Σ̄t,L and set P̄1 = Id and P̄ℓ =∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1 for any ℓ ∈ [L]/{1}. Plugging this in Eq. (24) leads to

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓP̄

⊤
ℓ W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓ(Σ̂t,iΣ

−1
1 W1)

⊤ ,

= Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ ,

where Pi,ℓ = Σ̂t,iΣ
−1
1 W1P̄ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1.

C.3 PROOF OF LEMMA 3

We prove this result by induction. We start with the base case when ℓ = 1.

(I) Base case. Let u = σ−1Σ̂
1
2

t,At
Xt From the expression of Σ̄t,1 in Eq. (6), we have that

Σ̄−1
t+1,1 − Σ̄−1

t,1 = W⊤
1

(
Σ−1

1 − Σ−1
1 (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1Σ−1
1 − (Σ−1

1 − Σ−1
1 Σ̂t,At

Σ−1
1 )

)
W1 ,

= W⊤
1

(
Σ−1

1 (Σ̂t,At
− (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1)Σ−1
1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + uu⊤)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(i)
= W⊤

1

(
Σ−1

1 Σ̂
1
2

t,At

uu⊤

1 + u⊤u
Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(ii)
= σ−2W⊤

1 Σ
−1
1 Σ̂t,At

XtX
⊤
t

1 + u⊤u
Σ̂t,AtΣ

−1
1 W1 . (25)

In (i) we use the Sherman-Morrison formula. Note that (ii) says that Σ̄−1
t+1,1 − Σ̄−1

t,1 is one-rank
which we will also need in induction step. Now, we have that ∥Xt∥2 = 1. Therefore,

1 + u⊤u = 1 + σ−2X⊤
t Σ̂t,At

Xt ≤ 1 + σ−2λ1(Σ1)∥Xt∥2 = 1 + σ−2σ2
1 ≤ σ2

MAX ,

where we use that by definition of σ2
MAX in Lemma 3, we have that σ2

MAX ≥ 1+ σ−2σ2
1 . Therefore, by

taking the inverse, we get that 1
1+u⊤u

≥ σ−2
MAX. Combining this with Eq. (25) leads to

Σ̄−1
t+1,1 − Σ̄−1

t,1 ⪰ σ−2σ−2
MAXW

⊤
1 Σ

−1
1 Σ̂t,At

XtX
⊤
t Σ̂t,At

Σ−1
1 W1

Noticing that PAt,1 = Σ̂t,At
Σ−1

1 W1 concludes the proof of the base case when ℓ = 1.

(II) Induction step. Let ℓ ∈ [L]/{1} and suppose that Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank and that it
holds for ℓ− 1 that

Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 ⪰ σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1 , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .
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Then, we want to show that Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ is also one-rank and that it holds that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .

This is achieved as follows. First, we notice that by the induction hypothesis, we have that Σ̃−1
t+1,ℓ−1−

Ḡt,ℓ−1 = Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank. In addition, the matrix is positive semi-definite. Thus we
can write it as Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1 = uu⊤ where u ∈ Rd. Then, similarly to the base case, we have

Σ̄−1
t+1,ℓ−Σ̄−1

t,ℓ = Σ̃−1
t+1,ℓ − Σ̃−1

t,ℓ ,

= W⊤
ℓ

(
Σℓ + Σ̃t+1,ℓ−1

)−1
Wℓ −W⊤

ℓ

(
Σℓ + Σ̃t,ℓ−1

)−1
Wℓ ,

= W⊤
ℓ

[(
Σℓ + Σ̃t+1,ℓ−1

)−1 −
(
Σℓ + Σ̃t,ℓ−1

)−1
]
Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Σ̃−1

t+1,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1 −

(
Σ̄−1
t,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1

]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ

However, we it follows from the induction hypothesis that uu⊤ = Σ̃−1
t+1,ℓ−1 − Ḡt,ℓ−1 = Σ̄−1

t+1,ℓ−1 −
Σ̄−1
t,ℓ−1 ⪰ σ−2σ

−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1. Therefore,

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

⪰ W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1P

⊤
At,ℓ−1XtX

⊤
t PAt,ℓ−1Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ .

Finally, we use that 1 + u⊤Σ̄t,ℓ−1u ≤ 1 + ∥u∥2λ1(Σ̄t,ℓ−1) ≤ 1 + σ−2σ2
ℓ . Here we use that

∥u∥2 ≤ σ−2, which can also be proven by induction, and that λ1(Σ̄t,ℓ−1) ≤ σ2
ℓ , which follows from

the expression of Σ̄t,ℓ−1 in Section 3.1. Therefore, we have that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ
−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ
−2(ℓ−1)
MAX

1 + σ−2σ2
ℓ

P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ ,

where the last inequality follows from the definition of σ2
MAX = maxℓ∈[L] 1+ σ−2σ2

ℓ . This concludes
the proof.
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C.4 PROOF OF THEOREM 1

We start with the following standard result which we borrow from (Hong et al., 2022a; Aouali et al.,
2023),

BR(n) ≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (26)

Then we use Lemma 2 and express the marginal covariance Σ̌t,At as

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

ℓ−1∏
k=1

Σ̄t,kΣ
−1
k+1Wk+1. (27)

Therefore, we can decompose ∥Xt∥2Σ̌t,At

as

∥Xt∥2Σ̌t,At
= σ2X

⊤
t Σ̌t,At

Xt

σ2

(i)
= σ2

(
σ−2X⊤

t Σ̂t,AtXt + σ−2
∑
ℓ∈[L]

X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt

)
,

(ii)

≤ c0 log(1 + σ−2X⊤
t Σ̂t,At

Xt) +
∑
ℓ∈[L]

cℓ log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) , (28)

where (i) follows from Eq. (27), and we use the following inequality in (ii)

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) ,

which holds for any x ∈ [0, u], where constants c0 and cℓ are derived as

c0 =
σ2
1

log(1 +
σ2
1

σ2 )
, cℓ =

σ2
ℓ+1

log(1 +
σ2
ℓ+1

σ2 )
,with the convention that σL+1 = 1 .

The derivation of c0 uses that
X⊤
t Σ̂t,At

Xt ≤ λ1(Σ̂t,At
)∥Xt∥2 ≤ λ−1

d (Σ−1
1 +Gt,At

) ≤ λ−1
d (Σ−1

1 ) = λ1(Σ1) = σ2
1 .

The derivation of cℓ follows from
X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt ≤ λ1(PAt,ℓP

⊤
At,ℓ)λ1(Σ̄t,ℓ)∥Xt∥2 ≤ σ2

ℓ+1 .

Therefore, from Eq. (28) and Eq. (26), we get that

BR(n) ≤
√

2n log(1/δ)
(
E
[
c0

n∑
t=1

log(1 + σ−2X⊤
t Σ̂t,At

Xt)

+
∑
ℓ∈[L]

cℓ

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt)

]) 1
2

+ cnδ (29)

Now we focus on bounding the logarithmic terms in Eq. (29).

(I) First term in Eq. (29) We first rewrite this term as

log(1 + σ−2X⊤
t Σ̂t,AtXt)

(i)
= log det(Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
) ,

= log det(Σ̂−1
t,At

+ σ−2XtX
⊤
t )− log det(Σ̂−1

t,At
) = log det(Σ̂−1

t+1,At
)− log det(Σ̂−1

t,At
) ,

where (i) follows from the Weinstein–Aronszajn identity. Then we sum over all rounds t ∈ [n], and
get a telescoping

n∑
t=1

log det(Id + σ−2Σ̂
1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
) =

n∑
t=1

log det(Σ̂−1
t+1,At

)− log det(Σ̂−1
t,At

) ,

=

n∑
t=1

K∑
i=1

log det(Σ̂−1
t+1,i)− log det(Σ̂−1

t,i ) =

K∑
i=1

n∑
t=1

log det(Σ̂−1
t+1,i)− log det(Σ̂−1

t,i ) ,

=

K∑
i=1

log det(Σ̂−1
n+1,i)− log det(Σ̂−1

1,i )
(i)
=

K∑
i=1
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2
1 ) ,

23



Under review as a conference paper at ICLR 2024

where (i) follows from the fact that Σ̂1,i = Σ1. Now we use the inequality of arithmetic and
geometric means and get

n∑
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1
2
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1
2
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1
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1 ) ,
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, (30)

≤
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d log

(
1 +

n

d

σ2
1

σ2

)
= Kd log
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n

d

σ2
1
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)
.

(II) Remaining terms in Eq. (29) Let ℓ ∈ [L]. Then we have that
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⊤
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where we use the Weinstein–Aronszajn identity in (i). Now we know from Lemma 3 that the
following inequality holds σ−2σ−2ℓ
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⊤
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,

Then we sum over all rounds t ∈ [n], and get a telescoping
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where we use that Σ̄1,ℓ = Σℓ+1 in (i). Finally, we use the inequality of arithmetic and geometric
means and get that
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MAX log
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,

The last inequality follows from the expression of Σ̄−1
n+1,ℓ in Eq. (6) that leads to

Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1 = Id +Σ
1
2

ℓ+1Ḡt,ℓΣ
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since Ḡt,ℓ = W⊤
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where we use the assumption that λ1(W⊤
ℓ Wℓ) = 1 (A2) and that λ1(Σℓ+1) = σ2

ℓ+1 and λ1(Σ−1
ℓ ) =

1/σ2
ℓ . This is because Σℓ = σ2

ℓ Id for any ℓ ∈ [L+1]. Finally, plugging Eqs. (30) and (31) in Eq. (29)
concludes the proof.

C.5 PROOF OF PROPOSITION 1

We use exactly the same proof in Appendix C.4, with one change to account for the sparsity
assumption (A3). The change corresponds to Eq. (31). First, recall that Eq. (31) writes
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where the second equality follows from the assumption that Σℓ+1 = σ2
ℓ+1Id. But notice that in

our assumption, (A3), we assume that Wℓ = (W̄ℓ, 0d,d−dℓ), where W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L].
Therefore, we have that for any d × d matrix B ∈ Rdd×d, the following holds, W⊤
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Therefore, plugging this in Eq. (34) yields that
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As a result, det(Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) = det(Idℓ +σ
2
ℓ+1W̄

⊤
ℓ

(
Σ−1
ℓ −Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ). This allows

us to move the problem from a d-dimensional one to a dℓ-dimensional one. Then we use the inequality
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of arithmetic and geometric means and get that
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To get the last inequality, we use derivations similar to the ones we used in Eq. (33). Finally, the
desired result in obtained by replacing Eq. (31) by Eq. (37) in the previous proof in Appendix C.4.

D ADDITIONAL EXPERIMENT

Regret scaling with K, L, d. In this experiment, we aim to empirically verify the relationships
outlined in Theorem 1 between the regret of dTS and several key factors: the number of actions
K, the context dimension d, and the diffusion depth L. We maintain the same experimental setup
with linear rewards, for which we have derived a Bayes regret. In Fig. 3, we plot the regret of
LindTS across varying values of these parameters: K ∈ {10, 100, 500, 1000}, d ∈ {5, 10, 15, 20},
and L ∈ {2, 4, 5, 6}. As anticipated and aligned with our theory, the empirical regret increases as the
values of K, d, or L grow. This trend arises because larger values of K, d, or L result in problem
instances that are more challenging to learn, consequently leading to higher regret. Interestingly, the
empirical regret of LindTS increases as the number of actions increases, which is consistent with
the regret bound outlined in Theorem 1. This observation may appear counterintuitive, as one might
expect the regret to depend solely on the diffusion depth L in our setting. However, as discussed in
Section 4, this behavior is caused by the fact that action parameters are not deterministic given the
latent parameters.
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Figure 3: Regret of LindTS w.r.t. K, d, L.
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