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Abstract

Among approaches for provably safe reinforcement learning, Model Predictive
Shielding (MPS) has proven effective at complex tasks in continuous, high-
dimensional state spaces, by leveraging a backup policy to ensure safety when the
learned policy attempts to take unsafe actions. However, while MPS can ensure
safety both during and after training, it often hinders task progress due to the
conservative and task-oblivious nature of backup policies. This paper introduces
Dynamic Model Predictive Shielding (DMPS), which optimizes reinforcement learn-
ing objectives while maintaining provable safety. DMPS employs a local planner to
dynamically select safe recovery actions that maximize both short-term progress
as well as long-term rewards. Crucially, the planner and the neural policy play
a synergistic role in DMPS. When planning recovery actions for ensuring safety,
the planner utilizes the neural policy to estimate long-term rewards, allowing it
to observe beyond its short-term planning horizon. Conversely, the neural policy
under training learns from the recovery plans proposed by the planner, converging
to policies that are both high-performing and safe in practice. This approach guar-
antees safety during and after training, with bounded recovery regret that decreases
exponentially with planning horizon depth. Experimental results demonstrate that
DMPS converges to policies that rarely require shield interventions after training
and achieve higher rewards compared to several state-of-the-art baselines.

1 Introduction

Safe Reinforcement Learning (SRL) [1, 2] aims to learn policies that adhere to important safety
requirements and is essential for applying reinforcement learning to safety-critical applications,
such as autonomous driving. Some SRL approaches give statistical guarantees and reduce safety
violations by directly incorporating safety constraints into the learning objective [3, 4, 5, 6]. In
contrast, Provably Safe RL (PSRL) methods aim to learn policies that never violate safety and are
essential in high-stakes domains where even a single safety violation can be catastrophic [7].

A common approach to PSRL is shielding [8], where actions proposed by the policy are monitored for
potential safety violations. If necessary, these actions are overridden by a safe action that is guaranteed
to retain the system’s safety. Model Predictive Shielding (MPS) is an emerging PSRL method that
has proven effective in high-dimensional, continuous state spaces with complex dynamics, surpassing
previous shielding approaches in applicability and performance [9, 10]. At a high level, MPS methods
leverage the concept of recoverable states that lead to a safe equilibrium in N time-steps by following
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a so-called backup policy. MPS approaches dynamically check (via simulation) if a proposed action
results in a recoverable state and follow the backup policy if it does not.

However, an important issue with existing MPS approaches is that the backup policies are not
necessarily aligned with the primary task’s objectives and often propose actions that, while safe,
impede progress towards task completion—even when alternative safe actions are available that do
not obstruct progress in the task. Intuitively, this occurs because the backup policy is designed with
the sole objective of driving the agent to the closest equilibrium point rather than making task-specific
progress. For instance, in an autonomous navigation task, if the trained policy suggests an action that
could result in a collision, MPS methods revert to a backup policy that simply instructs halting, rather
than trying to find a more optimal recovery approach, such as finding a route that steers around the
obstacle. As a result, the recovery phase of MPS frequently inhibits the learning process and incurs
high recovery regret, meaning that there is a large discrepancy between the return from executed
recovery actions and the maximum possible returns from the same states.

Motivated by this problem, we propose a novel PSRL approach called Dynamic Model Predictive
Shielding (DMPS), which aims to optimize RL objectives while ensuring provable safety under
complex dynamics. The key idea behind DMPS is to employ a local planner [11, 12] to dynamically
identify a safe recovery action that optimizes finite-horizon progress towards the goal. Although the
computational overhead of planning grows exponentially with the depth of the horizon, in practice, a
reasonably small horizon is sufficient for allowing the agent to recover from unsafe regions.

In DMPS, the planner and the neural policy under training play a synergistic role. First, when using
the planner to recover from potentially unsafe regions, our optimization objective not only uses the
finite-horizon reward but also uses the Q-function learned by the neural policy. The integration of the
Q-function into the optimization objective allows the planner to take into account long-term reward
beyond the short planning horizon needed for recovering safety. As a result, the planner benefits
from the neural policy in finding recovery actions that optimize for long-term reward. Conversely,
the integration of the planner into the training loop allows the neural policy to learn from actions
suggested by the planner: Because the planner dynamically figures out how to avoid unsafe regions
while making task-specific progress, the policy under training also learns how to avoid unsafe regions
in a smart way, rather than taking overly conservative actions. From a theoretical perspective, DMPS
can guarantee provable safety both during and after training. We also provide a theoretical guarantee
that the regret from recovery trajectories identified by DMPS is bounded and that it decays at an
exponential rate with respect to the depth of the planning horizon. These properties allow DMPS to
learn policies that are both high-performing and safe.

We have implemented the DMPS algorithm in an open-source library and evaluated it on a suite of 13
representative benchmarks. We experimentally compare our approach against Constrained Policy
Optimization (CPO) [3], PPO-Lagrangian (PPO-Lag) [13, 14], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [15] and state-of-the-art PSRL approaches, MPS [9] and REVEL [16]. Our
results indicate that policies learned by DMPS outperform all baselines in terms of total episodic
return and achieve safety with minimal shield invocations. Specifically, DMPS invokes the shield
76% less frequently compared to the next best baseline, MPS, and achieves 29% higher returns after
convergence.

To summarize, the contributions of this paper are as follows: First, we introduce the DMPS algorithm,
a novel integration of RL and planning, that aims to address the limitations of model predictive
shielding. Second, we provide a theoretical analysis of our algorithm and prove that recovery
regret decreases exponentially with planning horizon depth. Lastly, we present a detailed empirical
evaluation of our approach on a suite of PSRL benchmarks, demonstrating superior performance
compared to several state-of-the-art baselines.

2 Related Work

PSRL. There is a growing body of work addressing safety issues in RL [1, 2, 17, 18, 19, 20, 21].
Our approach falls into the category of provably safe RL (PSRL) techniques [7, 18], treating safety
as a hard constraint that must never be violated. This is in contrast to statistically safe RL techniques,
which provide only statistical bounds on the system’s safety by constraining the training objectives [3,
22, 23, 24, 25]. These soft guarantees, however, are insufficient for domains like autonomous driving,
where each failure can be catastrophic. Existing PSRL methods can be categorized based on whether
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they guarantee safety throughout the training phase [26, 27, 16, 28] or only post-training upon
deployment [29, 30, 31, 32, 33]. Our approach falls into the former category and employs a shielding
mechanism that ensures safety both during training and deployment.

Safety Shielding. Many PSRL works use safety shields [8, 34, 35, 36, 37, 16, 38, 39]. These methods
typically synthesize a domain-specific policy ahead of time and use it to detect and substitute unsafe
actions at runtime. However, traditional shielding methods tend to be computationally intractable,
leading to limited usability. For instance, [8] presents one of the early works in shielding, where
safety constraints are specified in Linear Temporal Logic (LTL), and a verified reactive controller is
synthesized to act as the safety shield at runtime. However, this approach is restricted to discrete state
and action spaces, due to the complexity of shield synthesis. Another example is [39], which enhances
PSRL performance by substituting shield-triggering actions with verified actions and reducing the
frequency of shield invocations. In Model Predictive Shielding (MPS) [9], a backup policy dynami-
cally assesses the states from which safety can be reinstated and, if necessary, proposes substitute
actions. Unlike pre-computed shields, MPS can handle high-dimensional, non-linear systems with
continuous states and actions, without incurring an exponential runtime overhead [40]. MPS has also
been successfully applied to stochastic dynamics systems [41] and multi-agent environments [10].
However, a significant limitation of current MPS methods is the separation of safety considerations
from the RL objectives, which hinders learning when employing the recovery policy.

RL and Planning. Planning has traditionally been considered a viable complement to reinforcement
learning, combining real-time operations in both the actual world and the learned environment
model [42, 43, 44, 45, 46]. With recent developments in deep model-based RL [44, 47, 48, 49, 50] and
the success of planning algorithms in discrete [51, 52] and continuous spaces [53, 54, 55, 56, 57], the
prospect of combining these methods holds great promise for solving challenging real-world problems.
Integrating planning within RL has also been applied to safety measures [58, 59, 21, 60, 61, 62, 63, 64].
For instance, Safe Model-Based Policy Optimization [21] minimizes safety violations by detecting
non-recoverable states through forward planning using an accurate dynamics model of the system.
However, it only employs planning to identify unsafe states, not to find optimal recovery paths from
such situations. To the best of our knowledge, DMPS is the first method that leverages dynamic
planning for optimal recovery, within the framework of model predictive shielding.

Classical Control. There is a long line of classical control approaches to the problem of safe
navigation [65, 66, 67, 68, 69, 70]. One common approach, for instance, is the use of control barrier
functions (CBFs) [71, 72]. CBFs have been used across many domains in robotics to achieve safety
with high confidence [73, 74, 75, 76]. While useful, these approaches tend to make assumptions
about the environment (e.g. differentiability, closed-form access to dynamics) that cannot easily be
reconciled with the highly general RL framing of this work.

3 Preliminaries

MDP. We formulate our problem using a standard Markov Decision Process (MDP) M =
⟨S,SU ,S0,A, T ,R, γ⟩, where S ⊆ Rn is a set of states, SU ⊂ S is a set of unsafe states, S0 ⊂ S
are the initial states, A ⊆ Rm is a continuous action space, T : S × A → S is a deterministic
transition function, R : S × A → R is a deterministic reward function, and γ is the discount
factor. We define Π to be the set of all agent policies, where each policy π ∈ Π is a function from
environment states to actions, i.e., π : S → A. For any set S ⊆ S, the set of reachable states
from S in i steps under policy π, is denoted by reachi(π, S), and is defined recursively as follows:
reach1(π, S)

.
= {T (s, π(s)) | s ∈ S} and reachi+1(π, S)

.
= reach1(π, reachi(π, S)). The set

of all reachable states under a policy π is reach(π) .
=
⋃

1≤i reachi(π,S0).

PSRL. The standard objective in RL is to find a policy π that maximizes a performance measure,
J(π), typically defined as the expected infinite-horizon discounted total return. In provably safe
reinforcement learning (PSRL), the aim is to identify a safe policy that maximizes the above measure.
The set of safe policies is denoted by Πsafe ⊆ Π and consists of policies that never reach an unsafe
state, i.e., π ∈ Πsafe ⇔ reach(π) ∩ SU = ∅. Therefore, the objective of PSRL is to find a policy
π∗

safe
.
= argmaxπ∈Πsafe

J(π).

3



(Simulate Base Policy)
IF

s′ ← T (s, a′)

(Execute Next Action)
IF

s← s′
2

1

3

4

a′ ← a∗1a∗
0

isRec(ŝ, πbackup)

¬isRec(ŝ, πbackup)
â← π̂(s)

ŝ← T (s, â)
a′ ← â

a′ ← πbackup(s)

a′ ← πbackup(s)planRec(s, Qπ̂dmps
) = ⊥

planRec(s, Qπ̂dmps
) = a∗

0:n

Figure 1: Overview of an execution cycle in MPS (➊, ➋) and DMPS (➊, ➋, ➌, ➍).

4 Model Predictive Shielding

Under the Model Predictive Shielding (MPS) framework [9], a safe policy, πmps, is constructed by
integrating two sub-policies: a learned policy, π̂mps, and a backup policy, πbackup. Depending on the
current state of the system, control of the agent’s actions is delegated to one of these two policies. The
learned policy is typically implemented as a neural network that is trained using standard deep RL
techniques to optimize J(·). However, this policy may violate safety during training or deployment,
i.e., π̂mps /∈ Πsafe. On the other hand, the backup policy, πbackup, is specifically designed for safety
and is invoked to substitute potentially unsafe actions proposed by the learned policy.

Due to domain-specific constraints on system transitions, the backup policy is effective only from a
certain subset of states, called recoverable states. For instance, given the deceleration limits of an
agent, a backup policy that instructs the agent to halt can only avoid collisions from states where there
is sufficient distance between the agent and the obstacle. At a high level, the recoverability of a given
state s in MPS is determined by a function isRec : S ×Π → B. This function performs an N -step
forward simulation of πbackup from s and checks whether a safety equilibrium can be established.

Figure 1 gives an overview of the control delegation mechanism in πmps.1 Given state s ∈ S , the agent
first forecasts the next state ŝ that would be reached by following the learned policy (double-bordered,
yellow box). If isRec(ŝ, πbackup) is true, then πmps simply returns the same action as π̂mps, as marked
by ➊. Otherwise, if isRec(ŝ, πbackup) is false, πmps delegates control to the backup policy πbackup, as
indicated by ➋. The selected action, a′, is then executed in the environment (single-bordered, green
box), resulting in a new state s′. From this state, πmps is executed again, and the process repeats.

The safety of πmps relies on the fact that all recoverable states are safe and that the backup policy is
closed under the set of recoverable states. Thus, we can inductively show that the agent remains in
safe and recoverable states; thus πmps ∈ Πsafe.

Figure 2: (a) Unsafe trajectory leading to a collision.
(b) Safe but sub-optimal trajectory. (c) Optimal and
safe trajectory. (d) An instance of the planning phase.

Example.

Consider an agent on a 2D plane aiming to
reach a goal while avoiding static obstacles.
Figure 2 (a) presents an unsafe trajectory pro-
posed by the learned policy. Figure 2 (b)
presents the trajectory under MPS. As dis-
cussed above, πmps delegates control to the
backup policy in such potentially unsafe sit-
uations, which corresponds here to applying
maximum deceleration away from the obsta-
cle. This causes the agent to come to a halt,
which is suboptimal. Figure 2 (c) depicts a
DMPS trajectory. Figure 2 (d) depicts DMPS
planning in an environment containing a static
obstacle and a low-reward puddle region. The
latter two are explained in section 5.

4.1 Recovery Regret

While MPS guarantees worst-case safety, shield interventions can hinder the training of π̂mps and
compromise overall efficacy. To formalize this limitation, we introduce the concept of Recovery

1Arrows ➌ and ➍ are used for planner-guided recovery, and are explained more in section 5.
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Regret, which measures the expected performance gap between πbackup and the optimal policy. To this
end, we first introduce a helper function Ibackup : S → {0, 1}, which, given a state s, indicates whether
control in s is delegated to the backup policy, i.e., Ibackup(s) = 1 if ¬isRec(T (s, π̂mps(s), πbackup))
and Ibackup(s) = 0 otherwise. In any state s where control is delegated to the backup policy, the
optimal value V ∗(s) represents the maximum expected reward that can be achieved from s, and the
optimal action-value Q∗(s, πbackup(s)) represents the value of executing πbackup in s and thereafter
following an optimal policy. Thus, we can define Recovery Regret (RR) as the expected discrepancy
between these two values across states where πbackup is invoked, i.e.,

RR(πbackup, πmps)
.
= Es∼ρπmps

[
Ibackup(s) ·

[
V ∗(s)−Q∗(s, πbackup(s))

]]
In the above formula, ρπmps is the discounted state visitation distribution associated with πmps, i.e.,
ρπmps(s)

.
= (1 − γ)

∑∞
t=0 γ

tPr(st= s | s0 ∈ S0, ∀i≥0. si+1=T (si, πmps(si))). This term assists
in quantifying how frequently each state is visited when measuring the regret of a backup policy.

In existing MPS approaches, the misalignment between backup policies and the optimal policy can
result in substantial recovery regrets. For example, Figure 2 (c) illustrates the optimal sequence of
actions in the previously discussed scenario, where the agent avoids a collision by maneuvering around
the obstacle. However, in MPS, the training process lacks mechanisms to teach such optimal behavior
to π̂mps and only teaches overly cautious and poorly rewarded actions depicted in Figure 2 (b).

5 Dynamic Model Predictive Shielding

In this section, we introduce the Dynamic Model Predictive Shielding (DMPS) framework that builds
on top of MPS but aims to address its shortcomings. Similar to the control delegation mechanism
in MPS, the policy πdmps initially attempts to select its next action using a learned policy π̂dmps. If
the action proposed by π̂dmps leads to a state that is not recoverable using πbackup, an alternative safe
action is executed instead, as in standard MPS. However, rather than using the task-oblivious policy
πbackup, the backup action is selected using a dynamic backup policy π∗

backup. More formally,

πdmps(s) =

{
π̂dmps(s) if isRec(T (s, π̂dmps(s)), πbackup)

π∗
backup(s) otherwise

(1)

The core innovation behind DMPS is the dynamic backup policy π∗
backup, which is realized using a

local planner [45, 77], denoted as a function planRec(). At a high level, planRec performs a finite-
horizon lookahead search over a predetermined number of steps (n ∈ N) and identifies a sequence of
backup actions optimizing the expected returns during recovery. Specifically, the function planRec
takes an initial state s0 and a state-action value function Q : S ×A → R, and returns a sequence of
task-optimal actions a∗0:n ∈ An+1 defined as follows:

planRec(s0, Q)
.
= argmax

a0:n∈An+1

[
(

n−1∑
i=0

γi · R(si, ai)) + γn ·Q(sn, an)
]
,

such that, ∀0≤i<n[si+1 = T (si, ai)] and ∀0≤i≤nisRec(si, πbackup).

(2)

Crucially, the recovery plan is required to only lead to recoverable states within the finite planning
horizon (i.e., isRec(si, πbackup)). Note that the backup policy πbackup is used by the planner in
deciding the recoverability of a state. Beyond satisfying the hard safety constraint, the planner is also
required to optimize the objective function shown in Equation 2. Importantly, this objective accounts
for both the immediate rewards within the planning horizon, R(si, ai), as well as the estimated
long-term value from the terminal state sn beyond the planning horizon, as defined by Q. As a result,
the planner benefits from the long-term reward estimates learned by the neural policy π̂dmps.

Figure 2 (d) illustrates an agent planning a recovery path around an obstacle. The actions considered
by planRec are represented by gray edges. Two optimal paths on this tree, depicted in green and
red, yield similar rewards due to the symmetric nature of the reward function relative to the goal
position. The planner selects the green path on the left as its final choice due to a water puddle on
the right side of the goal, which, if traversed, would result in lower returns. Since the puddle lies
outside of the planning horizon, the decision to opt for the green path is informed by access to the
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Algorithm 1: Reinforcement Learning with Dynamic Recovery Planning
1: Inputs: (M: Markov Decision Process), (E: Episode Count), (πbackup: Task-oblivious backup Policy)
2: Output: (π̂dmps: Optimal Learned Policy)
3: π̂dmps := initNeuralPolicy() # Initialize a neural network to act as the learned policy.
4: B := ∅ # Initialize an empty replay buffer.
5: for e ∈ [1, E] do
6: s := beginEpisode(e) # Initialize a new episode and receive the first observed state.
7: while ¬terminated(e) do
8: anext := π̂dmps(s) # Choose a candidate for the next action using the learned policy.
9: if ¬isRec(T (s, anext), πbackup) then
10: B := B ∪ ⟨s, anext,∅, r−⟩ # Record a large negative penalty for triggering the backup policy.
11: if a∗

0:n = planRec(s,Qπ̂dmps ) then anext := a∗
0 # Plan recovery and choose the next action.

12: else anext := πbackup(s) # Use the task-oblivious backup policy if planning fails.
13: s′, r := execute(s, anext) # Execute the selected next action on the environment.
14: B := B ∪ ⟨s, anext, s

′, r⟩ # Update the buffer with the recent transition record.
15: s := s′

16: updateNeuralPolicy(π̂dmps,B) # Update the learned policy using buffered records.
17: return π̂dmps

Q-function. By executing the first action on the green path and repeating dynamic recovery, the agent
can demonstrate the desired behavior shown in Figure 2 (c).

Given the plan returned by planRec, the dynamic backup policy π∗
backup returns the first action in

the plan a∗0 as its output. However, planRec could, in theory, fail to find a safe and optimal plan,
even though one exists. In such cases, planRec returns a special symbol ⊥, and π∗

backup reverts to the
task-oblivious backup policy πbackup. Thus, we have:

π∗
backup(s) =

{
a∗0 If planRec(s,Qπ̂dmps) = a∗0:n
πbackup(s) If planRec(s,Qπ̂dmps) = ⊥ (3)

An outline of πdmps is shown in Figure 1 where the control delegation mechanism is represented by
the red dashed arrows (marked as ➌ and ➍) instead of the blue solid arrow (marked as ➋).

5.1 Planning Optimal Recovery

The specific choice of the planning algorithm to solve Equation 2 depends on the application domain.
However, DMPS requires two main properties to be satisfied by the planner: probabilistic completeness
and asymptotic optimality. The former property states that the planner will eventually find a solution if
one exists, while the latter states that the found plan converges to the optimal solution as the allocated
resources increase. There exist several state-of-the-art planners that satisfy both of these requirements,
including sampling-based planners such as RRT* [78] and MCTS [79], which have been shown
to be particularly effective at finding high-quality solutions in high-dimensional continuous search
spaces [53, 54, 55]. These methods construct probabilistic roadmaps or search trees and deal with
the exponential growth in the search space by incrementally exploring and expanding only the most
promising nodes based on heuristics or random sampling. Given an implementation of planRec that
satisfies the aforementioned requirements, a significant outcome in DMPS is that, as the depth of the
planning horizon (n) increases, the expected return from π∗

backup approaches the globally optimal
value. The following theorem states the optimality of recovery in πdmps, in terms of exponentially
diminishing recovery regret of π∗

backup as n increases.

Theorem 5.1. 2 (Simplified) Suppose the use of a probabilistically complete and asymptotically
optimal planner with planning horizon n and sampling limit m. Under mild assumptions of the MDP,
the recovery regret of policy π∗

backup used in πdmps is almost surely bounded by order γn as m goes to
infinity. In other words, with probability 1,

lim
m→∞

RR(π∗
backup, πdmps) = O(γn).

5.2 Training Algorithm

2Extended theorem statement and proof are provided in Appendix A.1.
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While our proposed recovery can be used during deployment irrespective of how the neural policy is
trained, our method integrates the planner into the training loop, allowing the neural policy to learn to
“imitate” the safe actions of the planner while making task-specific progress. Hence, the training loop
converges to a neural policy that is both high-performant and safe. This is very desirable because
DMPS can avoid expensive shield interventions that require on-line planning during deployment.

Algorithm 1 presents a generic deep RL algorithm for training a policy π̂dmps. Lines 3-4 of the
algorithm perform initialization of the neural policy π̂dmps as well as the replay buffer B, which stores
a set of tuples ⟨s, a, s′, r⟩ that capture transitions and their corresponding reward r. Each training
episode begins with the agent observing the initial state s (line 6) and terminates when the goal state
is reached or after a predetermined number of steps are taken (line 7). The agent first attempts to
choose its next action anext using the learned policy π̂dmps (Line 8). If the execution of anext leads to
a non-recoverable state according to πbackup (line 9), the algorithm first adds a record to the replay
buffer where the current state and action are associated with a high negative reward r− (line 10).
It then performs dynamic model predictive shielding to ensure safety (lines 11-12) as discussed
earlier: If the planner yields a valid policy, the the next action is chosen as the first action in the plan
(line 11); otherwise, the backup policy πbackup is used to determing the next action. Then, anext is
executed at line 13 to obtain a new state s′ and its corresponding reward r. This new transition and
its corresponding reward are again added to the replay buffer (line 14), which is then used to update
the neural policy at line 16, after the termination of the current training episode.

6 Experiments

In this section, we present an empirical study of DMPS on 13 benchmarks and compare it against 4
baselines. The details of our implementation and experimental setup are presented in Appendix A.3.

Benchmarks. We evaluate our approach on five static benchmarks (ST), where the agent’s envi-
ronment is static, and eight dynamic benchmarks, where the agent’s environment includes moving
objects. Static benchmarks (obstacle, obstacle2, mount-car, road, and road2d) are drawn
from prior work [16, 27] and include classic control problems. The more challenging dynamic
benchmarks (dynamic-obst, single-gate, double-gates, and double-gates+) require the
agent to adapt its policy to accommodate complex obstacle movements. Specifically, dynamic-obs
features moving obstacles along the agent’s path. In single-gate, a rotating circular wall with
a small opening surrounds the goal position. double-gate is similar but includes two concentric
circular walls around the goal, and double-gate+ is the most challenging, featuring increased wall
thickness to force more efficient navigation through the openings. For each dynamic benchmark, we
consider two different agent dynamics: differential drive dynamics (DD), featuring an agent with two
independently driven wheels, and double integrator dynamics (DI), where the agent’s acceleration in
any direction can be adjusted by the policy. A detailed description of benchmarks can be found in
Appendix A.3.

Baselines. We compare DMPS (with a planning horizon of n = 5) with five baselines. Our first
baseline is MPS, the standard model predictive shielding approach. The second baseline is REVEL [16],
a recent PSRL approach that learns verified neurosymbolic policies through iterative mirror descent.
REVEL requires a white-box model of the environment’s worst-case dynamics, which is challenging
to develop for dynamic benchmarks; hence, we apply REVEL only to static benchmarks. We also
compare DMPS against three established RL methods: CPO [3], PPO-Lag (PPO Lagrangian) [13, 14],
and TD3 [15]. All aim to reduce safety violations during training by incorporating safety constraints
into the objective. In TD3, a negative penalty is applied to unsafe steps. In CPO, a fixed number of
violations are tolerated. Finally, in PPO-Lag, a Lagrangian multiplier is used to balance safety cost
with reward.

6.1 Safety Results

Table 1 presents our experimental results regarding safety. All results are averaged over 5 random
seeds. For PSRL methods (DMPS, MPS, and REVEL), which guarantee worst-case safety, we report
the average number of shield invocations per episode. Generally, less frequent shield invocation
indicates higher performance of the approach. For SRL methods (TD3, PPO-Lag and CPO), we report
the average number of safety violations per episode.
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Table 1: Safety Results

Benchmark
# Shield Invocations / Episode # Safety Violations / Episode

DMPS MPS REVEL CPO PPO-lag TD3
mean sd mean sd mean sd mean sd mean sd mean sd

ST

obstacle 0.0 0.0 0.0 0.0 4.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0
obstacle2 0.0 0.0 0.0 0.0 33.8 30.3 0.9 0.2 6.42 0.19 0.0 0.0
mount-car 0.0 0.0 0.0 0.0 4.0 4.0 2.0 2.1 22.2 28.9 0.0 0.0
road 0.0 0.0 0.0 0.0 0.8 0.74 0.0 0.0 0.0 0.0 0.0 0.0
road2d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DI

dynamic-obst 9.3 1.8 144.1 26.2 - - 1.7 0.8 3.6 3.9 0.8 1.2
single-gate 0.1 0.0 0.2 0.1 - - 2.0 1.2 10.0 5.5 0.0 0.0
double-gates 4.5 1.2 28.3 6.9 - - 2.1 1.7 11.8 6.3 0.3 0.5
double-gates+ 24.2 6.4 239.8 16.3 - - 2.9 1.0 6.5 4.5 0.0 0.0

DD

dynamic-obst 105.2 39.9 144.9 39.9 - - 1.7 1.9 2.9 2.2 0.8 0.16
single-gate 3.1 1.6 7.4 6.9 - - 5.2 3.5 6.7 7.2 0.1 0.2
double-gates 5.5 1.9 52.5 17.6 - - 3.9 1.7 7.9 9.2 3.0 5.5
double-gates+ 18.4 13.0 106.2 18.5 - - 12.1 2.9 6.9 6.1 0.2 0.4

double-gate (DD) double-gate (DI) double-gate+ (DD) double-gate+ (DI)

Figure 3: Shield Invocations in double-gate and double-gate+

Due to the relative simplicity of the static benchmarks, the PSRL baselines achieve safety with very
infrequent shield invocations. Even the SRL baselines are mostly able to avoid safety violations
in these benchmarks. On the other hand, in dynamic benchmarks, PSRL approaches heavily rely
on shielding to achieve safety, and SRL approaches violate safety more frequently. Notably, the
number of DMPS shield invocations is significantly lower than in other baselines. Across all dynamic
benchmarks, DMPS invokes the shield an average of 24.7 times per episode, whereas MPS triggers the
shield 124.1 times. The results also indicate that the standard deviation values for shield invocations
in DMPS are consistently lower than those of MPS, indicating more stable and predictable performance.

Figure 3 shows the number of shield triggers plotted against episodes for the double-gate and
double-gate+ dynamic benchmarks. The error regions are 1-sigma over random seeds. Under both
agent dynamics, DMPS achieves significantly fewer shield invocations compared to MPS. Moreover,
the number of shield invocations in DMPS consistently decreases as training progresses, whereas
this trend is not present in MPS. In fact, in many scenarios, the number of shield invocations in MPS
increases with more training because the learned policy reduces its exploratory actions and adheres
more strictly to a direct path to the goal. However, this frequently leads to being blocked by obstacles
and results in repeated shield invocations.

6.2 Performance Results

Table 2 presents the per-episode return over the last 10 test episodes of a run. The reported mean
and standard deviations are computed over 5 random seeds. The results indicate that DMPS and MPS
exhibit comparable performance across most static benchmarks, with the exception of the more
challenging obstacle and obstacle2 benchmarks for which DMPS significantly outperforms MPS.
In dynamic benchmarks, DMPS outperforms MPS in all benchmarks except for single-gate (DI),
where both methods achieve equivalent results. Both DMPS and MPS consistently outperform REVEL.
The SRL approaches (CPO, PPO-Lag, and TD3) perform reasonably well in most static benchmarks
but their performance significantly deteriorates in dynamic benchmarks, failing to achieve positive
returns in any instance. This is because the policies in CPO, PPO-Lag, and TD3 rapidly learn to avoid
both the obstacles and the goal due to harsh penalties for safety violations, thus accruing the negative
rewards for each timestep spent away from the goal.
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Table 2: Performance Results

Benchmark
Total Return in Final 10 Episode

DMPS MPS REVEL CPO PPO-Lag TD3
mean sd mean sd mean sd mean sd mean sd mean sd

ST

obstacle 32.7 0.3 8.6 47.9 −41.6 52.7 32.8 0.0 32.8 0.4 32.9 0.0
obstacle2 20.2 15.2 −1.8 3.2 9.3 21.1 33.0 0.2 34.1 0.1 −1.2 3.0
mount-car 81.2 0.3 85.1 1.8 11.4 34.1 9.6 35.3 −21.3 2.9 −30.0 35.5
road 22.7 0.0 22.7 0.0 9.7 16.4 22.7 0.0 22.7 0.05 22.7 0.0
road2d 24.0 0.2 24.0 0.2 11.2 16.5 24.0 0.0 24.0 0.1 24.0 0.1

DI

dynamic-obs 13.2 0.0 −1.3 1.9 - - −21.4 21.1 −4.2 24.9 −5.0 0.3
single-gate 11.6 0.0 11.6 0.0 - - −19.6 17.0 −2.0 1.1 −2.1 0.2
double-gates 12.7 1.0 11.5 1.1 - - −6.7 5.4 −3.9 11.1 −3.6 1.0
double-gates+ 13.0 0.6 −0.9 0.1 - - −17.4 12.8 −2.8 0.4 −4.1 1.1

DD

dynamic-obst 7.4 3.7 6.3 2.1 - - −4.5 0.5 −3.6 0.8 −5.3 0.5
single-gate 11.5 0.1 11.4 0.1 - - −2.5 0.3 −2.4 0.2 −3.1 0.5
double-gates 13.1 0.5 10.9 1.8 - - −2.4 0.6 −1.9 0.9 −3.4 0.5
double-gates+ 13.0 0.6 8.5 2.3 - - −2.5 0.3 −20.7 22.8 −3.6 0.3

double-gate (DD) double-gate (DI) double-gate+ (DD) double-gate+ (DI)

Figure 4: Episodic Returns in double-gate and double-gate+

Figure 4 presents the total return plotted against the episode number for the double-gate and
double-gate+ dynamic benchmarks. The error regions are 1-sigma over random seeds. The CPO
and PPO-Lag baselines are omitted due to their significantly poor performance, which distorts the
scale of the graphs. In all benchmarks, DMPS demonstrates superior performance compared to
the other methods. While MPS performs adequately in three of the benchmarks, it exhibits poor
performance in the double-gate+ (DI) benchmark.

6.3 Analysis
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Figure 5: Example trajectories in double-gate+ .

We analyze the performance of DMPS and
MPS on the double-gate+ environment under
double-integrator dynamics. Figure 5a shows
trajectories from the first half of training when
the agent’s policy and Q function are still under-
trained. When the agents approach the first gate
and attempt to cross it, the shield is triggered.
In the case of MPS, this shield simply pushes
the agent back outside the gate (see blue tra-
jectory), and the agent is unable to make any
progress. In contrast, DMPS plans actions that
maximize an n-step return target, allowing the
agent to initially make progress. However, we
can observe from the green trajectory that the agent’s Q function and policy are under-trained: after
having made it through the obstacles, the agent is not sufficiently goal-aware to reliably make it to the
center. This makes the DMPS planner objective inaccurate with respect to long-term return, causing
suboptimal actions to be selected by the shield. In the red trajectory, for instance, the agent spends
a large portion of the trajectory trying to cross the second gate, only to retreat and get stuck in that
position until eventually getting through.

As training progresses, the MPS backup policy hinders the agent’s exploration of the environment,
impeding the learning of the neural policy. By the end, most runs of the MPS agent are unable to
progress past the first gate. Figure 5b shows one of the few MPS runs that successfully make it
through the first gate towards the end of training; however, the MPS agent still fails to make it through
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the second gate. In contrast, the DMPS agent can learn from the actions suggested by the planner,
improving its policy and Q function. This improvement makes the DMPS planner’s objective a more
accurate estimation of long-term return, further strengthening the planner. Consequently, the DMPS
agent demonstrates significantly better behaviors, as shown by the red trajectory in Figure 5b.

7 Limitations

7.1 Determinism

First, our approach requires a perfect-information deterministic model, which could limit its usability
in real-world deployment. Much prior work on provably safe locomotion makes the same determinism
assumptions that we do [10, 31, 80], with some such algorithms even having been deployed on real
robots [3]. However, extending our DMPS approach to stochastic environments is a promising
direction for future work. In particular, since prior MPS work has been extended to work in stochastic
settings [40], we believe our DMPS approach can be similarly extended to the stochastic setting.

7.2 Computational Overhead

Another potential limitation of our approach is the computational overhead of the planner. We
use MCTS in an anytime planning setting, where we devote a fixed number of node expansions to
searching for a plan. The clock time needed is linear in the allocated compute budget. However,
the worst-case computational complexity to densely explore the search space, as in general plan-
ning problems, would be O(exp(H)) since the planning search space grows exponentially. Our
implementation used MCTS with 100 node expansions, a plan horizon of 5, and a branch factor of
10, which amounts to exploring 1000 states in total. On average, we found that when the shield is
triggered, planning takes 0.4 seconds per timestep. The code we used is unoptimized, written in
Python, and single-threaded. Since MCTS is a CPU-intensive search process, switching to a language
C++ would likely yield significant speed improvements, and distributing computation over multiple
cores would further slash the compute time by the number of assigned cores. We perform some
additional experiments on the double-gates+ environment, outlined in subsection A.4, to see how
necessary compute budget scales with planner depth, confirming a rough exponential relationship.

7.3 Sufficiency of Planning Horizon

Finally, it can be asked whether small planning horizons (in our case, we used H = 5) are sufficient
to solve tricky planning problems. Our planner objective is designed to ensure that the planner
accounts for both short-term and long-term objectives, preventing overly myopic behavior even with
short horizons. However, the length of the horizon still affects how close to the globally optimal
solution the result is, with a tradeoff of computational cost. To see this empirically, we conducted
an experiment on the double-gates+ environment, re-evaluating it under different planner depths
and observing performance differences. Despite better initial performance, the low horizon agent
converged to the same performance once the policy had fully stabilized. As part of our analysis, we
also found that trivial planning (H = 1) does not work, reaffirming the necessity of a planner. More
analysis and experimental results can be found in subsection A.5.

8 Conclusions

In this paper, we proposed Dynamic Model Predictive Shielding (DMPS), which is a variant of Model
Predictive Shielding (MPS) that performs dynamic recovery by leveraging a local planner. The
proposed approach takes less conservative actions compared to MPS while still guaranteeing safety,
and it learns neural policies that are both effective and safe in practice. Our evaluation on several
challenging tasks shows that DMPS improves upon the state-of-the-art methods in Safe Reinforcement
Learning.

Impact Statement. Over the past decade, reinforcement learning has experienced significant advance-
ments and is increasingly finding applications in critical safety environments, such as autonomous
driving. The stakes in such settings are high, with potential failures risking considerable property dam-
age or loss of life. This study seeks to take a meaningful step for mitigating these risks by developing
reinforcement learning agents that are rigorously aligned with real-world safety requirements.
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A Supplemental Materials

In this section, we provide supplemental material complementary to the main content of the paper.
This includes a complete proof for Theorem 5.1 and additional details omitted from section 6 due to
space constraints.

A.1 Proof of Theorem 5.1

Throughout this section, we denote Q,Q⋆, and V ⋆ to be the agent Q function, the optimal Q function,
and the optimal V function respectively.

Our planner is parameterized by a fixed plan depth n and a sampling limit m. The planner is tasked
with finding actions a0:n to optimize the objective JQ(s0, a0:n) =

(∑n−1
i=0 γiRi

)
+ γnQ(sn, an).

Let ϵm be the supremum of JQ(s, a⋆0:n)− JQ(s, a0:n) over s ∈ S, where a0:n = planRec(s) and
a⋆0:n is the optimal sequence of actions with respect to the JQ objective.

We assume that our planner is probabilistically complete and asymptotically optimal. In context,
this means that limm→∞ ϵm = 0 with probability 1. With this grounding established, we state the
extended version of Theorem 5.1.
Theorem A.1. With probability 1, we have:

1. Under the assumption that Q is ϵ−close to Q⋆, we have limm→∞ RR(π⋆
backup, πdmps) =

O(ϵγn).

2. Under the assumptions that the maximum reward per timestep is bounded, that S × A is
compact, and that Q is a continuous function, we have limm→∞ RR(π⋆

backup, πdmps) =

O(γn).

3. Under the assumptions that Q and Q⋆ are both Lipschitz continuous, that ∥T (s, a)− s∥2 is
bounded over all (s, a) ∈ S ×A, and that the initial state space S0 and the action space A
are both bounded, we have limm→∞ RR(π⋆

backup, πdmps) = O(nγn).

We first show the following general lemma.
Lemma A.2. Fix a state s ∈ S, and let a = π⋆

backup(s) be the first action returned by planRec. Let Sn

be the set of all states reachable from s in n steps, and let B = sups′∈Sn,a′∈A |Q⋆(s′, a′)−Q(s′, a′)|.
Then, 0 ≤ V ⋆(s)−Q⋆(s, a) ≤ 2Bγn + ϵm.

Proof. The bound V ⋆(s) − Q⋆(s, a) ≥ 0 follows trivially from the definitions of V ⋆ and Q⋆. We
now prove the upper bound.

Denote a0:n as the sequence of actions returned by the planner. Note that a = a0. Denote a⋆0:n as the
sequence of actions that are optimal with respect to true infinite-horizon return from s (not necessarily
with respect to JQ).

We allow R0:n−1 and R⋆
0:n−1 to be the reward sequences attained by rolling out a0:n−1 and a⋆0:n−1

respectively. Similarly, we allow sn and s⋆n to be the states reached at the end of executing
a0:n−1, a

′
0:n−1, and a⋆0:n−1 respectively.

First, we have

Q⋆(s, a) ≥
(

n−1∑
i=0

γiRi

)
+ γnQ⋆(sn, an).

This follows immediately from the definition of Q⋆ and the fact that a = a0.

Since |Q⋆(sn, an)−Q(sn, an)| ≤ B, we have(
n−1∑
i=0

γiRi

)
+ γnQ⋆(sn, an) ≥

(
n−1∑
i=0

γiRi

)
+ γnQ(sn, an)−Bγn
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= JQ(s, a0:n)−Bγn.

We know that a0:n optimizes JQ to within tolerance of ϵm, so we can write JQ(s, a0:n) ≥
JQ(s, a

⋆
0:n)− ϵm. We get

JQ(s, a0:n)−Bγn ≥ JQ(s, a
⋆
0:n)− ϵm −Bγn

=

(
n−1∑
i=0

γiR⋆
i

)
+ γnQ(s⋆n, a

⋆
n)− ϵm −Bγn

Invoking again |Q⋆(s⋆n, a
⋆
n)−Q(s⋆n, a

⋆
n)| ≤ B, we get

(
n−1∑
i=0

γiR⋆
i

)
+ γnQ(s⋆n, a

⋆
n)− ϵm −Bγn ≥

(
n−1∑
i=0

γiR⋆
i

)
+ γnQ⋆(s⋆n, a

⋆
n)− ϵm − 2Bγn

= V ⋆(s)− ϵ− 2Bγn.

Putting everything together gives us Q⋆(s, a) ≥ V ⋆(s)− ϵ− 2Bγn. Rearranging this gives us the
desired claim.

With this, we can begin proving the main theorem.
Lemma A.3. (Part 1 of Thm A.1) Under the assumption that Q is ϵ-close to Q⋆, we have
limm→∞RR(π⋆

backup, πdmps) = O(ϵγn) with probability 1.

Proof. In the context of Lemma A.1., we see that B ≤ ϵ. Thus, we conclude that for all states
s ∈ S, we have V ⋆(s) − Q⋆(s, πdmps(s)) ≤ 2ϵγn + ϵm. Since RR is simply an expectation of
V ⋆(s)−Q⋆(s, π⋆

backup(s)) over some state distribution over S, we can conclude RR(π⋆
backup, πdmps) ≤

2ϵγn+ϵm. We know from asymptotic optimality assumption that ϵm decays to 0 as m goes to infinity,
so we get limm→∞ RR(π⋆

backup, πdmps) = O(ϵγn).

Lemma A.4. (Part 2 of Thm A.1) Under the assumption that the maximum reward per
timestep is bounded, that S × A is compact, and that Q is a continuous function, we have
limm→∞ RR(π⋆

backup, πdmps) = O(γn) with probability 1.

Proof. It suffices to show that |Q⋆(s, a)−Q(s, a)| is bounded over all (s, a) ∈ S ×A. We can then
simply apply Lemma A.3 to get the O(γn) bound.

It is known that a continuous function with compact domain has a maximum and minimum value.
Thus, there exists some CQ such that |Q(s, a)| < CQ for all (s, a) ∈ S ×A.

Pick a constant R such that the absolute value of the reward at any timestep is less than R. We see
that Q⋆(s, a) is less than

∑∞
t=0 Rγt = R

1−γ and greater than
∑∞

t=0(−R)γt = −R
1−γ . Consequently,

letting CQ⋆ = R
1−γ , we get |Q⋆(s, a)| < CQ⋆ over all (s, a) ∈ S ×A.

With this, |Q⋆(s, a)−Q(s, a)| ≤ |Q⋆(s, a)|+ |Q(s, a)| < CQ +CQ⋆ over all (s, a) ∈ S ×A. This
shows the boundedness we needed to attain the asymptotic bound.

Lemma A.5. (Part 3 of Thm A.1) Under the assumptions that Q and Q⋆ are both Lipschitz
continuous, that ∥T (s, a)− s∥2 is bounded over all (s, a) ∈ S ×A, and that the initial state space
S0 and the action space A are both bounded, we have limm→∞ RR(π⋆

backup, πdmps) = O(nγn) with
probability 1.

Proof. Suppose that both Q and Q⋆ are K-Lipschitz continuous. Let dA be the diameter of A. Let
dT be the supremum of ∥T (s, a) − s∥2 over (s, a) ∈ S × A. We fix some arbitrary s ∈ S0 and
a ∈ A. Intuitively, this will act as a “central” point upon which we can estimate values for other
states. Let D = |Q(s, a)−Q⋆(s, a)|. Let d0 be the radius of S0 when centered at s.

We first prove a subclaim. Take an arbitrary s′ ∈ S, and let d be the ℓ2 distance between s and s′.
Then,
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V ⋆(s′)−Q⋆(s′, π⋆
backup(s

′)) ≤ 2γn

(
D + 2K

√
d2A + (d+ ndT )2

)
+ ϵm.

The idea is to invoke Lemma A.1. To do so, we need to attain a bound on B as defined by
the Lemma. Consider a state s′′ that is n steps away from s′. The Triangle Inequality lets us
bound the distance between s′ and s′′ to dT . A second application of the Triangle Inequality lets
us bound the distance between s and s′′ to d + dT . We can further use the boundedness of the
action space to note that the maximum distance between the state-action pair (s, a) and (s′′, a′′)

for an arbitrary a′′ ∈ A is d′′ =
√
d2A + (d+ ndT )2. Finally, we use Lischpitz continuity to get

|Q⋆(s, a)−Q⋆(s′′, a′′)| ≤ Kd′′ and |Q(s, a)−Q(s′′, a′′)| ≤ Kd′′. With this,

|Q⋆(s′′, a′′)−Q(s′′, a′′)|
≤ |Q⋆(s′′, a′′)−Q⋆(s, a)|+ |Q(s′′, a′′)−Q(s, a)|+ |Q⋆(s, a)−Q(s, a)|

≤ 2Kd′′ +D.

Using this as a bound on B and invoking Lemma A.1. demonstrates the subclaim.

Now, consider some arbitrary trajectory s0, a0, s1, a2, . . . , sk−1, ak−1, sk, with s0 ∈ S0 and some
fixed non-negative integer k. Via repeated application of the Triangle Inequality, one can bound the
distance between s and sk to at most d0 + kdT . Invoking the subclaim, we see that

V ⋆(sk)−Q⋆(sk, π
⋆
backup(sk)) ≤ 2γn

(
D + 2K

√
d2A + (d0 + kdT + ndT )2

)
+ ϵm.

We can repeatedly use the fact that k + n ≥ 1 to clean up the bound here. Namely, we write

D + 2K
√
d2A + (d0 + kdT + ndT )2

≤ D(k + n) + 2K
√
(k + n)2d2A + ((k + n)d0 + kdT + ndT )2

= (k + n)

[
D + 2K

√
d2A + (d0 + dT )2

]
.

Setting C = D + 2K
√
d2A + (d0 + dT )2, we can sum up the equations above by writing

V ⋆(sk)−Q⋆(sk, π
⋆
backup(sk)) ≤ 2Cγn(k + n) + ϵm.

Now, we can finally bound RR. Let ρπdmps be the discounted state visitation distribution. We define
ρ
πdmps
t to be the state visitation distribution at timestep t. We get

RR(π⋆
backup, πdmps) = Es∼ρ

πdmps [Ibackup · (V ⋆(s)−Q⋆(s, π⋆
backup(s)))]

≤ Es∼ρ
πdmps [V ⋆(s)−Q⋆(s, π⋆

backup(s))]

=

∫
S
[V ⋆(s)−Q⋆(s, π⋆

backup(s))]ρ
πdmps(s)ds

=

∫
S
[V ⋆(s)−Q⋆(s, π⋆

backup(s))]

[
(1− γ)

∞∑
k=0

γkρ
πdmps

k (s)

]
ds

=

∞∑
k=0

(1− γ)γk

∫
S
[V ⋆(s)−Q⋆(s, π⋆

backup)]ρ
πdmps

k (s)ds

=

∞∑
k=0

(1− γ)γkE
s∼ρ

πdmps
k

[V ⋆(s)−Q⋆(s, π⋆
backup(s))]

18



Algorithm 2 Monte Carlo Tree Search (planRec)
1: Inputs: (s1: Start State), (Q: state-action function)
2: Hyper-parameters: (K: Branching Factor), (I: Iteration Count), (L: Maximum Path Length)
3: Q̂ := initHashmap(S × A → R) # Initialize empty data structure for state-action value estimates.
4: N := initHashmap(S × A → N) # Initialize empty data structure for state-action visit counts.
5: T := initTree(s1) # Initialize a tree with start state s0 as the root.
6: res := expand(s1, T, Q̂, N) # Attempt expanding the tree root with actions leading to recoverable states.
7: if ¬res then return ⊥ # Return ⊥ if the root state cannot be expanded.
8: for t ∈ [1, I] do
9: # Select a path of length less than L from the root using the Upper Confidence Bound (UCB) formula.
10: (s1, a1, R1), . . . , (sr−1, ar−1, Rr−1), sr := selectPathUCB(Q̂, L)
11: if isLeaf(sr, T ) then
12: expand(sr, T, Q̂, Q,N) # Expand the leaf state at the end of the path with actions leading to recoverable states.
13: ar := selectAction(sr, Q̂) # Choose the best outgoing action from sr with respect to Q̂.
14: for i ∈ [2, r) do
15: # Update the state-action estimates with rewards collected on the selected path.

16: Q̂(si, ai) := 1
N(si,ai)+1

[
N(si, ai) · Q̂(si, ai) +

((∑r−1
j=i γj−i · Rj

)
+ γr−i · Q̂(sr, ar)

)]
17: for i ∈ [2, r) do
18: N(si, ai) := N(si, ai) + 1 # Increment state-action visit count for the selected path.
19: (s1, a1), (s2, a2), . . . , (sn, an) := selectPathGreedy(Q̂) # Use Q̂ to greedily select the optimal path from root to a leaf.
20: return (a1, . . . , an) # Return the actions on the greedily selected path.

Algorithm 3 Sampling-Based Tree Expansion (expand)
1: Inputs: (s: Expanding State), (T : State-Action Tree), (Q̂: Local Value Estimate), (Q: Long-term Value Function), (N : Visit Count)
2: a1, . . . , aK ∼ A # Sample K actions.
3: success := False
4: for i ∈ [1, K] do
5: if T (s, ai) ∈ Srec then
6: Q̂(s, ai) := Q(s, ai) # Initialize value estimate for (s, ai).
7: N(s, ai) := 1 # Record first visit for (s, ai) pair.
8: updateTree(T, s, ai) # Add (s, ai) to the tree.
9: success := True # Record at least one recoverable action was found.
10: return success

≤
∞∑
k=0

(1− γ)γk[2Cγn(k + n) + ϵm]

=

[
2C(1− γ)γn

∞∑
k=0

γk(k + n)

]
+

∞∑
k=0

(1− γ)γkϵm

= 2C(1− γ)γn

[( ∞∑
k=0

kγk

)
+ n

∞∑
k=0

γk

]
+ ϵm.

We can evaluate the arithmetic-geometric series
∑∞

k=0 kγ
k to equal γ

(1−γ)2 . The geometric sequence∑∞
k=0 γ

k evaluates to 1
1−γ . Thus, our sum becomes

2C(1− γ)γn

[
γ

(1− γ)2
+

n

1− γ

]
+ ϵm = O(nγn) + ϵm.

Due to asymptotic optimality, taking the limit of this as m goes to infinity gives a bound of O(nγn).

A.2 Monte Carlo Tree Search

The planning function planRec used in DMPS is realized via Monte Carlo Tree Search (MCTS) [79],
which facilitates efficient online planning by balancing exploration and exploitation. MCTS has been
shown to be highly effective for planning in large search spaces with either discrete [52, 81, 51] or
continuous [54, 57, 82] states and actions. DMPS utilizes a continuous variant of MCTS that employs
sampling-based methods to manage the exponential increase in search space size as the planning
horizon expands [53]. A high-level overview of this approach follows. Algorithms 2 and 3 present
our implementation of MCTS.
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(a) gate (b) double-gates (c) double-gates+

Figure 6: Visualization of the dynamic environments. The agent is depicted as a red circle. The
direction of rotation of the walls is shown with red arrows. The goal position is shown with ⋆.

Starting from a given state s0 as the root node, the function planRec maintains and iteratively
expands a tree structure, with states as nodes and actions as edges. During each iteration, the
algorithm selects a path from the root to a leaf node. Upon reaching a leaf node, it extends the tree by
sampling a number (k) of actions from the leaf, thereby adding new nodes and edges to the tree. The
path selection process is based on the Upper Confidence Bound (UCB) formula [83], which utilizes
an internal representation of the state-action values at each tree node (denoted by Q̂ : S ×A → R),
to balance exploration of less frequently visited paths with exploitation of paths known to yield
high returns. Once a path is selected, the algorithm updates the value of Q̂ for each node on the
selected path by backpropagating the accumulated rewards from subsequent nodes. These updates
are averaged by each state-action’s visit count to achieve more precise estimates.

After a specified number of iterations (I), the algorithm uses Q̂ to greedily select an optimal path
from the root to a leaf node and returns the corresponding sequence of actions as its final result.

A.3 Additional Experimental Results

A.3.1 Benchmarks

A detailed description of benchmarks used in our evaluation is presented below:

• obstacle: This benchmark involves a robot moving on a 2D plane, aiming to reach a goal
position without colliding with a stationary obstacle. This obstacle is positioned to the side,
impacting the robot only during its exploration phase and not on the direct, shortest route to
the goal.

• obstacle2: This benchmark involves a robot moving on a 2D plane, aiming to reach a goal
position without colliding with a stationary obstacle. This obstacle is positioned between
the starting point and the goal, requiring the robot to learn how to maneuver around it.

• mount-car: This benchmark requires moving an underpowered vehicle up a hill without
falling off the other side.

• road: This benchmark requires controlling an autonomous car to move in one dimension to
a specified end position while obeying a given speed limit.

• road2d: This benchmark requires controlling an autonomous car to move in two dimensions
to a specified end position while obeying a given speed limit.

• dynamic-obs: This benchmark features multiple non-stationary obstacles that move deter-
ministically in small circles on the path from the agent to the goal.

• single-gate: In this benchmark, the goal position is surrounded by a circular wall with a
small opening, allowing the agent to pass through. The position of the opening continuously
rotates around the goal position. This is visualized in Fig. 6a.

• double-gates: This benchmark is similar to single-gate; however, the goal position is
surrounded by two concentric rotating walls. This is visualized in Fig. 6b.

• double-gates+: This benchmark is similar to double-gates; however, the thickness of
the rotating walls is increased. This poses a greater challenge, as the agent has a shorter

20



time window to cross through the opening without colliding with the rotating wall. This is
visualized in Fig. 6c.

For the dynamic benchmarks above (dynamic-obs, single-gate, double-gate, and
double-gate+), the action space of the double integrator agent consists of acceleration in the
x and y directions. The action space for the differential drive agent consists of the torque value on
the left wheel and the torque value on the right wheel.

Additionally, the observation space of benchmarks with a double integrator agent consists of the
position and velocity vectors of the agent, while for a differential drive agent, the observation space
includes position, velocity, and pose angle. The observation space for single-gate, double-gate,
and double-gate+ also contains an angle term for each wall, corresponding to the current rotation
of each wall. The observation space in dynamic-obs additionally includes an angle term for each
obstacle, indicating how far each obstacle has moved along its circular trajectory.

A.3.2 Implementation

We implemented DMPS by modifying the Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm [15], following the description presented in Algorithm 1.

Each of the dynamic benchmarks were trained for 200,000 timesteps with a maximum episode length
of 500. The static environments were trained for the number of timesteps prescribed by the sources
of the environments. Namely, mount-car was trained for 200,000 timesteps with a maximum
episode length of 999 [84], obstacle and obstacle2 were trained for 400,000 timesteps with a
maximum episode length of 200 [16], and road and road2d were trained for 100,000 timesteps
with a maximum episode length of 100 [16]. Each experiment was run on five independent seeds.
We used prior implementations of REVEL [16], PPO-Lag [85], and CPO [85] to run our experiments.
Trained models were test evaluated every 10K timesteps, independently from the training loop. Each
test evaluation consisted of 10 runs. The final test evaluation was used to determine the average
per-episode return and per-episode shield invocation rate for that random seed. These are the values
displayed in the tables from section 6.

The reward functions used in [16] for the static environments are non-standard, and based upon a
cost-based framework of reward. In light of this, we used the canonical reward functions for our
evaluations. For mount-car, we use the original reward function defined in [84]. For obstacle,
obstacle2, road, and road2d, we use the canonical goal environment shaped reward function.

The negative penalty for safety violations in TD3 was taken to be large enough so that the agent
could not move through obstacles and still maintain positive reward. In most cases, the penalty was
simply the negation of the positive reward incurred upon successfully completing the environment.
The episode did not terminate upon the first unsafe action. For CPO, we reduced tolerance for safety
violations by reducing the parameter for number of acceptable violations to 1.

Our experiments were conducted on a server with 64 available Intel Xeon Gold 5218 CPUs
@2.30GHz, 264GB of available memory, and eight NVIDIA GeForce RTX 2080 Ti GPUs. Each
benchmark ran on one CPU thread and on one GPU.

A.4 Analysis of Computational Overhead

As mentioned in the main text, our implementation uses MCTS in an anytime planning setting, where
we devote a fixed number of node expansions to searching for a plan, and we choose the best plan
found at the end of the procedure. This bounds the clock time needed for planning linearly in the
compute budget allocated. However, in the worst case, one may need a compute budget exponential
in size with respect to the planning horizon H if one wishes to explore the planning state densely.
This is common to all general planners.

Here, we try to experimentally evaluate how the required compute budget scales as a function of
the planning horizon. We re-evaluate the double-gates+ environment (under double integrator
dynamics). For each planning horizon H in range [2, 9], we count the average number of node
expansions that MCTS needs before it successfully explores 10 states at depth H. We use this as a
proxy for successful exploration of the horizon H search space. The results of this experiment can be
found in Figure 7. As expected, an exponential relationship emerges.
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Figure 7: Planner Computation Scaling

Figure 8: Multiple Horizons Experiments

A.5 Effect of Planning Horizon

We expand on the question of whether small planning horizons are sufficient to solve tricky planning
problems. Our algorithm is designed to ensure that the planner accounts for both short-term and
long-term objectives. As detailed in section 5, the objective of the planner consists of two terms: 1)
the discounted sum of the first n rewards, and 2) the estimated long-term value of the penultimate
step in the plan horizon, as determined by the agent’s Q function. The second part of the objective
function is specifically included to ensure that the planner does not return myopic plans, and accounts
for progress towards the long-horizon goal. Since the planner optimization objective includes this
second term, even a small-horizon planner can output actions with proper awareness of long-horizon
recovery events. The length of the horizon affects how close to the globally optimal solution the
result is, with a tradeoff of computational cost, as was established in Theorem 5.1.

To see this empirically, we reevaluated the double-gates+ environment (double integrator dynamics)
with horizons of 1, 5, and 9. The graphs of attained reward and shield triggers from this experiment
are shown in Figure 8.

Comparing the H = 1 and H = 5 agents, the H = 5 agent substantially outperforms the H = 1
agent in both shield triggers and reward. Comparing H = 5 and H = 9, the H = 9 agent reached
high performance and low shield triggers faster than the H = 5 agent. However, both the H = 5 and
H = 9 agents converge to the same performance eventually.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim in this paper is that MPS, a state-of-the-art framework for
Provably Safe RL, has a significant shortcoming due to its inability to recover from poten-
tially unsafe situations while making task progress. We introduce a solution for this problem
and claim that it adequately resolves the shortcoming of MPS. Throughout the paper, we
extensively elaborate on the nature of MPS’s shortcoming. We present our solution based
on a local planner and provide a theoretical analysis explaining the asymptotic optimality
of our solution. Our experiments validate our claims that our approach achieves superior
performance compared to MPS. We also show that our approach is superior to several other
well-known SRL and PSRL methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We present a discussion of the limitations of our approach in section 8. In
summary, our approach requires an accurate world model, and the computational overhead
of planning increases exponentially with the planning horizon.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In this paper, we present make theoretical contribution, which is presented in
Theorem 5.1. We have included a complete, correct and detailed proof for this theorem in
Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We formally define all objectives solved by our solution and present detailed
algorithms implementing the main approach in Algorithms 1, 2, and 3. Our submission
also includes the source code of our implementations and scripts for reproducing the results.
We also plan to create an open-source repository and make our implementation publicly
available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code necessary to run our own method (DMPS) and MPS, as
well as implementations of the environments on which the algorithms were run. All other
baselines are publically available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix A.3.2 we present the specifics of our implementation and experi-
mental setup in detail. This includes the hyperparameters, the training and test set details,
the number of runs, and the hardware used for experimentation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance of all presented empirical results is justified. In
particular, we include standard deviation values for all results presented in Table 1 and
Table 2. Additionally, we include confidence belts in all plots presented in Figure 3 and
Figure 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the details of the hardware and other resources used for our
experiments in Appendix A.3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We have reviewed the NeurIPS Code of Ethics carefully and affirm that our
work adheres to all listed requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: To the best of our knowledge, our work cannot be misused in any way to cause
any form of negative social impact. We have included a discussion of the potentially positive
social impacts of our work in section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, our work does not pose a risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have only used publicly available open-source libraries in our implementa-
tion and credited all third-party sources accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets with this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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