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Abstract

Federated learning is a promising distributed ma-
chine learning paradigm that can effectively ex-
ploit large-scale data without exposing users’ pri-
vacy. However, it may incur significant commu-
nication overhead, thereby potentially impairing
the training efficiency. To address this challenge,
numerous studies suggest binarizing the model
updates. Nonetheless, traditional methods usually
binarize model updates in a post-training manner,
resulting in significant approximation errors and
consequent degradation in model accuracy. To
this end, we propose Federated Binarization-
Aware Training (FedBAT), a novel framework
that directly learns binary model updates during
the local training process, thus inherently reduc-
ing the approximation errors. FedBAT incorpo-
rates an innovative binarization operator, along
with meticulously designed derivatives to facili-
tate efficient learning. In addition, we establish
theoretical guarantees regarding the convergence
of FedBAT. Extensive experiments are conducted
on four popular datasets. The results show that
FedBAT significantly accelerates the convergence
and exceeds the accuracy of baselines by up to 9%,
even surpassing that of FedAvg in some cases.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) stands
out as a promising distributed machine learning paradigm
designed to safeguard data privacy. It enables distributed
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clients to collaboratively train a global model without shar-
ing their local data, thus can protect user data privacy. In
the classic FL system, a central server initially broadcasts
the global model to several clients, who then train it using
their respective datasets. After local training, the clients
send their model parameters or model updates back to the
server, who aggregates them to create a new global model
for the next round of training. This process is repeated for
several rounds until the global model converges.

Despite FL’s success in preserving local data privacy, the it-
erative transmission of model parameters introduces consid-
erable communication overhead, adversely affecting train-
ing efficiency. Specifically, the communication occurs in
two stages: the uplink, where clients send model updates to
the server, and the downlink, where the server broadcasts
the global model to clients. As suggested by Hönig et al.
(2022), the uplink typically imposes a tighter bottleneck
than the downlink, particularly due to the global mobile up-
load bandwidth being less than one fourth of the download
bandwidth. Therefore, in this paper, we seek to compress
the uplink communication, as much research (Reisizadeh
et al., 2020; Isik et al., 2023; Tang et al., 2023) has done.

SignSGD (Bernstein et al., 2018) is an effective binarization
technique for reducing communication volume. It was origi-
nally proposed to communicate only the signs of gradients in
distributed training systems. Recently, it has also been natu-
rally applied to binarize model updates in FL (Ferreira et al.,
2021). Specifically, it binarizes model updates m ∈ Rd as
m̂ = α · m̄ = α · sign(m), where α denotes the magnitude
of binary values, termed the step size and typically tuned
as a hyperparameter. SignSGD can efficiently compress
the uplink communication by a factor of 32. However, the
binarized model updates inevitably contains approximation
errors in comparison to the original updates, which affects
both the convergence speed and the model accuracy.

To improve the performance of SignSGD, subsequent re-
search has mainly explored from two aspects, including
error feedback methods (Karimireddy et al., 2019) and
stochastic sign methods (Chen et al., 2020; Safaryan &
Richtárik, 2021). EF-SignSGD (Karimireddy et al., 2019)
aims to compensate for the errors introduced by binariza-
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Figure 1. An illustration of the t-th round within the FedBAT framework. ① downlink: the server sends model parameters wt to clients;
② local training: clients train the model updates (mt+1 and αt+1) via learnable binarization; ③ uplink: clients upload their binary model
updates (m̄t+1 and αt+1) to the server. ④ model aggregation: the server aggregates binary model updates to generate wt+1.

tion. Notably, EF-SignSGD adds the binarized errors from
the previous round onto the current model updates before
conducting another binarization. On the other hand, stochas-
tic sign methods aim to alleviate the bias estimation of
SignSGD, namely E[α · sign(m)] ̸= m. The key idea
here is to perturb local model updates with random noise.
Noisy-SignSGD (Chen et al., 2020) adds Gaussian noise
ζ ∼ N(0, σ2) to the model update and then performs bina-
rization, where σ is an adjustable standard deviation. Sim-
ilarly, for a model update m, Stoc-SignSGD (Safaryan &
Richtárik, 2021) adds uniform noise ζ ∼ U(−∥m∥, ∥m∥)
to m before binarization. In this way, each element mi will
be binarized into +1 with a probability of (1/2 + mi/2∥m∥)
and into -1 with a probability of (1/2 − mi/2∥m∥).

The above research may differ in their motivations and spe-
cific solutions, nevertheless, they share a fundamental simi-
larity. Before binarization, a compensation term or distur-
bance term will be superimposed on the model updates to
be binarized, which is the binarized errors from the previous
round in EF-SignSGD, Gaussian noise in Noisy-SignSGD,
and uniform noise in Stoc-SignSGD. Although applying
these methods in FL can indeed enhance the performance
of SignSGD (see Section 5.2), it is crucial to acknowledge
that they still suffer from two main drawbacks. On one
hand, the above methods still binarize model updates in a
post-training manner as SignSGD does. Binarized errors are
introduced solely after the training phase, depriving them
of the opportunity to be optimized during local training. On
the other hand, the step size is usually kept as a hyperpa-
rameter, necessitating significant human effort to tune it for
various applications. However, even with careful tuning, the
resulting performance may still fall short of the optimum.

In this paper, we aim to solve these two issues by exploiting
the local training process of FL. Specifically, our primary

goal is to equip clients with the capability of directly learn-
ing binary model updates and the corresponding step size.
To this end, we propose a novel training paradigm, termed
Federated Binarization-Aware Training (FedBAT). The
illustration of each round within FedBAT is presented in
Figure 1. The key idea of FedBAT is to binarize the model
update with the step size during the forward propagation.
This entails calculating the output loss based on the bina-
rized model updates. It provides an opportunity to compute
gradients for both the binarized model updates and the step
size, facilitating their subsequent optimization. However,
the derivative of the vanilla binarization operator is always
zero, making the gradient descent algorithm infeasible. To
solve this issue, we further introduce a learnable binarization
operator with well-designed derivatives.

The main contributions can be summarized as follows:

• We analyze that the drawbacks of existing federated
binarization methods lie in their post-training manner.
This opens new avenues for binarization in FL.

• Based on our analysis, we propose FedBAT to learn bi-
nary model updates during the local training process of
FL. For this, a novel binarization operator is employed
with well-designed derivatives.

• Theoretically, we establish convergence guarantees for
FedBAT, demonstrating a comparable convergence rate
to its uncompressed counterpart, the FedAvg.

• Experimentally, we validate FedBAT on four popular
datasets. The experimental results show that FedBAT
can significantly improve the convergence speed and
test accuracy of existing binarization methods, even
surpassing the accuracy of FedAvg in some cases.
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2. Preliminaries
FL involves N clients connecting to a server. The general
goal of FL is to train a global model by multiple rounds
of local training on each client’s local dataset. Denoting
the objective function of the k-th client as Fk, FL can be
formulated as

min
w

F (w) =

N∑
k=1

pkFk(w), (1)

where pk is the proportion of the k-th client’s data to all the
data of the N clients. FedAvg (McMahan et al., 2017) is
a widely used FL algorithm. In the t-th round, the server
sends the model parameters wt to several randomly selected
K clients, denoted as St. Each selected client performs
certain steps of local training and sends the model update
wk

t+1 −wt back to the server. The server aggregates these
updates to generate a new global model as follows:

wt+1 = wt +
∑
k∈St

p′k(w
k
t+1 −wt), (2)

where p′k = pk/
∑

St
pk denotes the proportion of the k-th

client’s data to all the data used in the t-th round.

In this paper, we employ SignSGD and its aforementioned
variants to compress the uplink communication in FL. Each
client only needs to send the signs of its model updates
to the server. Note that the signs undergo a encoding
{−1, 1} → {0, 1} before transmission, and are decoded
back after transmission. For simplicity, we omit this process
in the following pages. Therefore, Eq.2 can be rewritten as

wt+1 = wt +
∑
k∈St

p′kα · sign(wk
t+1 −wt). (3)

3. Methodology
3.1. Motivations and Objectives

In the t-th round, the objective of local training for the k-th
client can be formulated as

min
mk

t+1

Fk(wt +mk
t+1), (4)

where Fk is the loss function of the k-th client. wt is the
global model parameter in the t-th round and mk

t+1 repre-
sents the model updates to be learned. Binarization is not
considered as a constraint during local training but is only
performed after obtaining the final updates mk

t+1.

The binarized updates m̂k
t+1 inevitably contain errors com-

pared to the original updates mk
t+1, thus reducing the model

accuracy and slowing down the convergence speed. A natu-
ral motivation is to correct or compensate for the binarized

errors during the local training process. In light of this, we
try to introduce binarization of model updates into local
training, thereby directly learning binarized model updates
and their corresponding step size. Specifically, the objective
of local training can be formulated as

min
mk

t+1,α
k
t+1

Fk(wt + S(mk
t+1, α

k
t+1)), (5)

where S(mk
t+1, α

k
t+1) are the binary model updates to be

learned. S is a binarization operator. The model updates
mk

t+1 and the step size αk
t+1 are learnable parameters.

Next, we will introduce the learnable binarization operator
S in Section 3.2, and then present the detailed pipeline
of FedBAT in Section 3.3. Theoretical guarantees on the
convergence of FedBAT will be provided in the next section.

3.2. Learnable Binarization

We first define a binarization operator as follows:

S(x, α) =

 α x > α,
S ′(x, α) −α ≤ x ≤ α,
−α x < −α,

(6)

where S ′(x, α) is a stochastic binarization with uniform
noise ζ ∼ U(0, 1) added as follows:

S ′(x, α) = α(2⌊α+x/2α + ζ⌋ − 1)

=

{
α w.p. α+x/2α,
−α w.p. α−x/2α.

(7)

However, the floor function ⌊x⌋ returns the largest integer
not exceeding x, and its derivative is always zero, which
makes gradient descent infeasible. To solve this issue, we
adopt Straight-through Estimator (STE) (Hinton, 2012) to
treat the floor function as an identity map during backpropa-
gation, that is to say its derivative is equal to 1. Recent work
has demonstrated that STE works as a first-order approxi-
mation of the gradient and affirmed its efficacy (Liu et al.,
2023). Therefore, the gradient of x can be estimated by:

∂S/∂x =

 0 x > α,
1 −α ≤ x ≤ α,
0 x < −α,

(8)

and the gradient of α can be estimated by:

∂S/∂α =

 1 x > α,
2⌊α+x/2α + ζ⌋ − x+α/α −α ≤ x ≤ α,
−1 x < −α,

(9)

It is worth noting that α represents the step size and is
supposed to be a positive number, otherwise the meaning of
Eq.6 will be wrong. To restrict the value of α to be positive,
we calculate α as follows:

α = α′eραe , (10)
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where αe becomes the learnable step size, initialized to zero.
α′ is the initial value of α and ρ is a hyperparameter that
regulates the pace of the optimization process for αe.

So far, we have developed a derivable binarization operator,
which can be seamlessly integrated into a neural network.
Let x denotes a layer of parameters within the network, and
α denotes the corresponding step size calculated by Eq.10.
During forward propagation, x will undergo element-wise
binarization using Eq.6, where α is shared by all elements
in x. During backpropagation, x and α will be optimized
by the gradients calculated from Eq.8 and Eq.9.

3.3. Federated Binarization-Aware Training

Here, we integrate the learnable binarization operator into
local training of FL. In contrast to SignSGD, this allows
clients to consider binarized errors and make corrections
when optimizing locally. We refer to the proposed train-
ing framework as Federated Binarization-Aware Training
(FedBAT), and the pipeline is shown in Algorithm 1.

In FedBAT, the operating procedures of the server is the
same as that in FedAvg. As described in lines 4-8, at the
beginning of each round, the server sends global model
parameters to several randomly selected clients. It subse-
quently collects the binarized model updates returned by the
clients to calculate new global model parameters as follows:

wt+1 = wt +
∑
k∈St

p′km̂
k
t+1 = wt +

∑
k∈St

p′kα
k
t+1m̄

k
t+1,

(11)
where m̂k

t+1 and αk
t+1 are the binarized model updates and

the step size of the k-th client. Note that the model update
of each layer within the model has a unique step size, thus,
Eq.11 is actually performed layer-wise. For simplicity, we
omit the representations of the different layers.

Before introducing the local training procedures in FedBAT,
we highlight the variances in the local model architectures.
We reiterate that FedBAT is achieved by performing the
binarization operator defined in Eq.6 on the model updates
during local training. However, there is no explicit represen-
tation of model updates within the vanilla model. Therefore,
we allow local models to maintain an extra copy of model
parameters to represent model updates, denoted as m. In
addition, the step size α of the update within each layer is
also kept as a learnable parameter.

The local training process comprises two distinct stages:
full-precision training and binarization-aware training. In
the t-th round, as depicted in lines 11-12, each client loads
the global model parameters wt and initialize its model
updates mt with zeros. Given that the model updates com-
mence as zeros, learning to binarize them becomes more
challenging. Therefore, to secure more precise initialization
values for the model updates, we initially conduct training

Algorithm 1 Federated Binarization-Aware Training
1: Input: the iteration rounds R; the local steps τ ; the

local warm-up ratio ϕ, the coefficient of the step size ρ.
2: function server(R)
3: Initialize global model parameters with w0.
4: for t = 0 to R− 1 do
5: Send global model parameters wt to clients.
6: Get model updates (m̄t+1, αt+1) from clients.
7: Aggregate binary model updates by Eq.11.
8: end for
9: end function

10: function client(wt, τ , ϕ, ρ)
11: Initialize local model parameters with wt.
12: Initialize local model updates mt with zeros.
13: for s = 0 to τ − 1 do
14: if s < ⌊ϕτ⌋ then
15: Run full-precision training by Eq.12.
16: else if s = ⌊ϕτ⌋ then
17: Initialize the step size layer-wise by Eq.13.
18: Run binarization-aware training by Eq.14.
19: else
20: Run binarization-aware training by Eq.14.
21: end if
22: end for
23: m̄k

t+1, αk
t+1 = m̄k

t,τ−1, αk
t,τ−1.

24: Send binary model updates (m̄k
t+1, αk

t+1) to server.
25: end function

without binarization, that is the full-precision training where
model updates will be optimized as follows:

mk
t,s+1 = mk

t,s − ηt∂Fk(w
k
t +mk

t,s)/∂mk
t,s. (12)

A warm-up ratio ϕ is defined to denote the proportion of
full-precision training to the entire local training. After the
full-precision training, α′ and αe defined in Eq.10 will be
initialized for each layer of the k-th client as follows:

(α′)kl = ∥(m)kl ∥1/dk
l , (αe)

k
l = 0, (13)

where (m)kl ∈ Rdk
l represents the model update of the l-th

layer in the k-th client. Next, FedBAT performs binarization-
aware training, optimizing the step size and the binarized
model update using Eq.8 and Eq.9 as follows:

mk
t,s+1 = mk

t,s − ηt∂Fk(w
k
t +m̂k

t,s)/∂mk
t,s,

αk
t,s+1 = αk

t,s − ηt∂Fk(w
k
t +m̂k

t,s)/∂αk
t,s,

m̂k
t,s+1 = S(mk

t,s+1, α
k
t,s+1).

(14)

After local training, the k-th client will send its binarized
model update m̄k

t+1 and the step size αk
t+1 to the server.
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4. Convergence Analysis
In this section, we provide theoretical guarantees for the con-
vergence of FedBAT, while considering the data heterogene-
ity within FL. For simplicity, we focus on the case where
the warm-up ratio ϕ is zero, meaning that the warm-up train-
ing, as defined by Eq.12, is not performed. Furthermore, to
ensure the unbiased property of the binarization operator
S in Eq.6, we set the step size as αk

t,s = ∥mk
t,s∥∞ in each

step instead of optimizing it during local training. Then we
give the following notations and assumptions.

Notations. Let F ∗ and F ∗
k be the minimum values of F and

Fk, respectively, then Γ = F ∗−
∑N

k=1 pkF
∗
k can be used to

quantify the degree of data heterogeneity. τ is the number of
local steps. In Section 3.3, the subscripts t ∈ [R] and s ∈ [τ ]
are used to represent the serial number of global rounds and
local iterations, respectively. In the following analysis, we
will only use the subscript t to represent the cumulative
number of iteration steps in the sense that t ∈ [T ], T = Rτ .

Assumption 1. F1, ..., FN are all L-smooth: for w and v,
Fk(v) ≤ Fk(w) + (v −w)T∇Fk(w) + L

2 ∥v −w∥2.

Assumption 2. F1, ..., FN are u-strongly convex: for all w
and v, Fk(v) ≥ Fk(w)+(v−w)T∇Fk(w)+ µ

2 ∥v−w∥2.

Assumption 3. Let ξkt be sampled from the k-th client’s
local data uniformly at random. The variance of stochastic
gradients in each device is bounded: E∥∇Fk(w

k
t , ξ

k
t ) −

∇Fk(w
k
t )∥2 ≤ σ2 for all k = 1, ..., N .

Assumption 4. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E∥∇Fk(w

k
t , ξ

k
t )∥2 ≤

G2 for all k = 1, ..., N and t = 1, ..., T .

Assumption 5. The variance of binarization S grows with
the l2-norm of its argument, i.e., E∥S(x)− x∥ ≤ q∥x∥.

Assumptions 1-4 are commonplace in standard optimization
analyses (Stich et al., 2018; Yu et al., 2019; Li et al., 2020).
The condition in Assumption 5 is satisfied with many com-
pression schemes including the binarization operator S as
defined in Eq.6. Assumption 5 is also used in (Karimireddy
et al., 2019; Reisizadeh et al., 2020) to analyze the conver-
gence of federated algorithms. Theorems 1 and 2 show the
convergence of FedBAT under the strongly convex assump-
tion with full and partial device participation, respectively.
The convergence of FedBAT under the non-convex assump-
tion with partial device participation is shown in Theorems
3. All proofs are provided in Appendix.

Theorem 1. Let Assumptions 1-5 hold and L, µ, σ,G, q
be defined therein. Choose κ = L

µ , γ = max{8κ, τ} − 1

and the learning rate ηt =
2

µ(γ+t) . Then FedBAT with full
device participation satisfies

E[F (wT )]− F ∗ ≤ κ

γ + T
(
2B

µ
+

µ(γ + 1)

2
E∥w1 −w∗∥2),

(15)

where B =
∑N

k=1 p
2
kσ

2 + 6LΓ + 8(1 + q2)(τ − 1)2G2 +

4
∑N

k=1 p
2
kq

2τ2G2.
Theorem 2. Let Assumptions 1-5 hold and L, µ, σ,G, q be
defined therein. Let κ, γ, ηt be defined in Theorem 1. As-
suming that K devices are randomly selected to participate
in each round of training and their data is balanced in the
sense that p1 = ... = pN = 1

N . Then the same bound
in Theorem 1 holds if we redefine the value of B to B =
σ2

N +6LΓ+8(1+ q2)(τ − 1)2G2+4 q2(N−1)+N−K
K(N−1) τ2G2.

Remark 1. By setting K = N , Theorem 2 transforms into
Theorem 1. By setting q = 0, Theorem 1 and 2 are equiva-
lent to the analysis of FedAvg in (Li et al., 2020). By setting
K = N and τ = 1, Theorem 1 and 2 recovers the conver-
gence rate of Stoc-SignSGD (Safaryan & Richtárik, 2021)
when used in distributed training. By setting K = N, τ = 1
and q = 0, Theorem 1 and 2 recovers the convergence rate
of vanilla SGD, i.e., O( 1

T ) for strongly-convex losses.
Theorem 3. Let Assumptions 1 and 3-5 hold, i.e., without
the convex assumption, and L, σ, G, q be defined therein.
Assume the learning rate is set to η = 1

L
√
T

and the local
dataset is balanced, then the following first-order stationary
condition holds for FedBAT with partial device participation

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2L(F (w0)− F ∗ + Γ)√
T

+
P√
T
+
Q

T
,

(16)
where P = σ2

N + 4 q2(N−1)+N−K
K(N−1) τ2G2 and Q = 4(1 +

q2)(τ − 1)2G2.
Remark 2. Under the conditions of Theorems 1-3, the
convergence rate of both FedBAT and FedAvg (q = 0) is
O( 1

T ) in the strongly convex setting, and O( 1
T ) +O( 1√

T
)

in the non-convex setting.
Remark 3. For ease of analysis, FedBAT is discussed in the
case where the step size is set as αt,s

i = ∥mt,s
i ∥∞ without

optimization. However, learning the step size shall be able to
achieve smaller value of q and enhance the performance of
FedBAT. Empirically, we show in Section 5 that optimizing
the step size as defined in Eq.13-14 achieves better accuracy.

5. Experiments
5.1. Experimental Setup

Datasets and Models. In this section, we evaluate Fed-
BAT using four widely recognized datasets: FMNIST (Xiao
et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 and
CIFAR-100 (Krizhevsky & Hinton, 2009). To showcase the
versatility of FedBAT, we also assess its performance across
different model architectures. Specifically, we employ a
CNN with four convolution layers and one fully connected
layer for FMNIST and SVHN, and ResNet-10 (He et al.,
2016) for CIFAR-10 and CIFAR-100. Detailed model archi-
tectures are available in Appendix A.1.
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(a) CIFAR-100, IID (b) CIFAR-100, Non-IID-1 (c) CIFAR-100, Non-IID-2

Figure 2. Convergence curves of FedBAT and baselines on CIFAR-100 with 100 clients.

Data Partitioning. We consider both cases of IID and
Non-IID data distribution, referring to the data partitioning
benchmark of FL (Li et al., 2022). Under IID partitioning,
an equal quantity of data is randomly sampled for each client.
The Non-IID scenario further encompasses two distinct
label distributions, termed Non-IID-1 and Non-IID-2. In
Non-IID-1, the proportion of the same label among clients
follows the Dirichlet distribution (Yurochkin et al., 2019),
while in Non-IID-2, each client only contains data of partial
labels. For CIFAR-100, we set the Dirichlet parameter to
0.1 in Non-IID-1 and assign 10 random labels to each client
in Non-IID-2. For the other datasets, we set the Dirichlet
parameter to 0.3 in Non-IID-1 and assign 3 random labels
to each client in Non-IID-2.

Baseline Methods. All experiments are conducted on
Flower (Beutel et al., 2020), an open-source training plat-
form for FL. FedAvg (McMahan et al., 2017) is adopted as
the backbone training algorithm. We compare FedBAT with
the binarization methods discussed in Section 1, including
SignSGD (Bernstein et al., 2018), EF-SignSGD (Karim-
ireddy et al., 2019), Noisy-SignSGD (Chen et al., 2020)
and Stoc-SignSGD (Safaryan & Richtárik, 2021). We also
compare FedBAT with ZeroFL (Qiu et al., 2022), a method
that exploits local sparsity to compress communications. To
ensure similar traffic volume to the binarization methods,
we set the sparsity ratio of ZeroFL to 97%. Details about
the baselines are provided in Appendix A.2.

Hyperparameters. The number of clients is set to 30 and
100, respectively. 10 clients will participate in every round.
The local epoch is set to 10 and the batch size is set to 64.
SGD (Bottou, 2010) is used as the local optimizer. The
learning rate is tuned from (1.0, 0.1, 0.01) and set to 0.1.
The number of rounds are set to 100 for CNN and 200 for
ResNet-10. For the baselines, each hyperparameter is care-
fully tuned among (1.0, 0.1, 0.01, 0.001), including the step
size and the coefficient of noise. Detailed tuning process
and results are provided in Appendix A.2. In FedBAT, the

coefficient ρ is set to 6 and the warm-up ratio ϕ is set to
0.5 by default. Each experiment is run five times on Nvidia
3090 GPUs with Intel Xeon E5-2673 CPUs. Average results
and the standard deviation are reported.

5.2. Overall Performance

In this subsection, we compare the performance of FedBAT
and the baselines by the test accuracy and the convergence
speed. All numerical results are reported in Table 1. The
convergence curves on CIFAR-100 with 100 clients are
shown in Figure 2. The convergence curves on other datasets
are provided in Appendix B.3. In addition, experimental
results of more clients and more related baselines are also
available in Appendix B.

As shown in Table 1, compared with SignSGD, other bina-
rization baselines can indeed improve the test accuracy in
most cases. However, in a few cases, such as CIFAR-10
under the Non-IID-1 data distribution, their accuracy can
be even worse than SignSGD, which reveals the limitations
of existing binarization methods. For ZeroFL, we observe
a generally lower accuracy compared to the binarization
methods. This discrepancy can be attributed to the higher
sparsity ratio, which hinders the update of most parameters.
In addition, all baselines suffer significant accuracy loss
compared to FedAvg, particularly in scenarios involving
high degrees of Non-IID data distribution. On the contrary,
FedBAT can generally achieve comparable or even higher
accuracy than FedAvg, irrespective of data distribution or
the number of clients. In terms of convergence speed, as
shown in the Figure 2, FedBAT can consistently outperform
all binarization baselines and approach that of FedAvg.

5.3. Ablation Studies

In this subsection, we conduct ablation studies to assess
the feasibility and superiority of FedBAT’s design. Specif-
ically, we adjust the coefficient of the step size ρ and the
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Table 1. The test accuracy of all methods on four datasets. The best accuracy is bolded and the next best accuracy is underlined.
N = 30 N = 100

IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2
FMNIST with CNN

FedAvg (McMahan et al., 2017) 92.5 (± 0.1) 90.7 (± 0.1) 88.9 (± 0.2) 92.0 (± 0.1) 90.5 (± 0.2) 88.7 (± 0.2)
SignSGD (Bernstein et al., 2018) 91.3 (± 0.1) 86.5 (± 1.0) 78.9 (± 1.3) 90.3 (± 0.1) 88.2 (± 0.2) 80.5 (± 1.0)
EF-SignSGD (Karimireddy et al., 2019) 92.3 (± 0.1) 90.5 (± 0.1) 88.6 (± 0.2) 91.3 (± 0.1) 89.7 (± 0.1) 87.4 (± 0.1)
Noisy-SignSGD (Chen et al., 2020) 92.1 (± 0.1) 90.3 (± 0.2) 87.6 (± 0.3) 91.0 (± 0.1) 89.4 (± 0.1) 86.9 (± 0.1)
Stoc-SignSGD (Safaryan & Richtárik, 2021) 91.7 (± 0.1) 89.5 (± 0.2) 82.6 (± 0.8) 90.6 (± 0.1) 88.5 (± 0.2) 84.8 (± 0.8)
ZeroFL (Qiu et al., 2022) 91.0 (± 0.1) 89.3 (± 0.3) 87.4 (± 0.2) 90.2 (± 0.1) 88.8 (± 0.2) 86.6 (± 0.1)
FedBAT 92.5 (± 0.1) 90.8 (± 0.2) 89.1 (± 0.3) 91.8 (± 0.1) 90.6 (± 0.1) 89.0 (± 0.4)

SVHN with CNN
FedAvg (McMahan et al., 2017) 92.7 (± 0.1) 90.9 (± 0.1) 89.2 (± 0.2) 92.1 (± 0.1) 89.7 (± 0.3) 88.9 (± 0.2)
SignSGD (Bernstein et al., 2018) 92.3 (± 0.1) 80.1 (± 1.5) 66.1 (± 1.3) 90.7 (± 0.1) 80.4 (± 1.4) 64.7 (± 1.9)
EF-SignSGD (Karimireddy et al., 2019) 92.6 (± 0.2) 90.7 (± 0.1) 88.3 (± 0.1) 91.8 (± 0.1) 89.2 (± 0.2) 86.8 (± 0.4)
Noisy-SignSGD (Chen et al., 2020) 92.2 (± 0.1) 90.3 (± 0.2) 88.2 (± 0.1) 90.9 (± 0.2) 88.7 (± 0.1) 86.9 (± 0.2)
Stoc-SignSGD (Safaryan & Richtárik, 2021) 92.3 (± 0.1) 88.0 (± 0.6) 86.7 (± 0.8) 90.7 (± 0.2) 87.7 (± 0.3) 84.8 (± 0.2)
ZeroFL (Qiu et al., 2022) 91.7 (± 0.1) 90.2 (± 0.1) 87.6 (± 0.3) 90.3 (± 0.1) 88.4 (± 0.3) 87.0 (± 0.2)
FedBAT 92.9 (± 0.1) 91.1 (± 0.1) 89.3 (± 0.2) 92.5 (± 0.1) 90.7 (± 0.1) 89.2 (± 0.2)

CIFAR-10 with ResNet-10
FedAvg (McMahan et al., 2017) 91.5 (± 0.1) 89.0 (± 0.2) 83.7 (± 0.4) 89.3 (± 0.1) 84.6 (± 0.2) 80.9 (± 0.5)
SignSGD (Bernstein et al., 2018) 88.9 (± 0.1) 87.8 (± 0.2) 76.1 (± 1.6) 87.3 (± 0.2) 82.2 (± 0.4) 76.6 (± 0.9)
EF-SignSGD (Karimireddy et al., 2019) 90.8 (± 0.1) 87.4 (± 0.2) 78.3 (± 0.9) 87.4 (± 0.2) 81.8 (± 0.5) 76.6 (± 0.9)
Noisy-SignSGD (Chen et al., 2020) 90.1 (± 0.2) 86.2 (± 0.1) 78.3 (± 0.7) 85.5 (± 0.2) 80.2 (± 0.3) 72.7 (± 0.4)
Stoc-SignSGD (Safaryan & Richtárik, 2021) 88.7 (± 0.2) 86.2 (± 0.2) 77.8 (± 0.4) 85.9 (± 0.2) 80.5 (± 0.3) 74.1 (± 1.0)
ZeroFL (Qiu et al., 2022) 89.0 (± 0.1) 86.3 (± 0.1) 79.0 (± 0.6) 85.2 (± 0.2) 78.4 (± 0.2) 73.8 (± 0.6)
FedBAT 91.2 (± 0.1) 88.6 (± 0.1) 82.8 (± 0.1) 89.2 (± 0.2) 84.9 (± 0.3) 81.0 (± 0.6)

CIFAR-100 with ResNet-10
FedAvg (McMahan et al., 2017) 67.7 (± 0.2) 64.1 (± 0.3) 54.5 (± 0.4) 59.2 (± 0.3) 55.4 (± 0.8) 49.0 (± 0.6)
SignSGD (Bernstein et al., 2018) 58.9 (± 0.6) 53.9 (± 0.2) 34.3 (± 1.5) 54.2 (± 0.3) 39.3 (± 0.4) 32.5 (± 1.7)
EF-SignSGD (Karimireddy et al., 2019) 65.6 (± 0.2) 59.7 (± 0.4) 50.7 (± 0.4) 53.8 (± 0.5) 46.8 (± 0.5) 40.2 (± 0.6)
Noisy-SignSGD (Chen et al., 2020) 65.3 (± 0.2) 58.3 (± 0.2) 46.6 (± 0.2) 52.6 (± 0.6) 46.2 (± 0.5) 38.3 (± 0.3)
Stoc-SignSGD (Safaryan & Richtárik, 2021) 61.1 (± 0.4) 57.8 (± 0.4) 46.2 (± 0.7) 54.2 (± 0.2) 47.2 (± 0.3) 40.1 (± 0.6)
ZeroFL (Qiu et al., 2022) 63.7 (± 0.2) 59.9 (± 0.5) 47.7 (± 0.8) 50.5 (± 0.5) 45.6 (± 0.4) 36.1 (± 0.5)
FedBAT 66.3 (± 0.1) 63.9 (± 0.4) 53.9 (± 0.3) 58.6 (± 0.3) 54.3 (± 0.4) 49.2 (± 0.6)

Table 2. The test accuracy of FedBAT with varying ρ.
ρ = 0 ρ = 2 ρ = 4 ρ = 6 ρ = 8 ρ = 10

FMNIST 87.9 88.2 88.9 89.0 88.7 88.9
SVHN 88.5 89.0 89.2 89.2 89.5 88.7

CIFAR-10 78.3 79.0 80.4 81.0 80.6 80.1
CIFAR-100 41.2 48.0 48.7 49.2 48.8 48.7

local warm-up ratio ϕ in the context of the Non-IID-2 data
distribution with 100 clients. We show in the subsequent
experiments that FedBAT also outperforms the baseline
methods in terms of hyperparameter tuning.

We first explore the FedBAT variant with ρ = 0, where
the step size α remains fixed at its initial value α′ without
undergoing any optimization. Comparing Table 1 and Ta-
ble 2, it can be found that FedBAT (ρ = 0) still achieves
better accuracy than all binarization baselines, which proves
the superiority of binarizing model updates during local
training. Nevertheless, the accuracy of FedBAT (ρ = 0)
remains inferior to FedAvg, which underscores the need for
an adaptive step size. Therefore, we further tune ρ among
{2, 4, 6, 8, 10} to verify the effect and robustness of learn-
ing the step size α. As illustrated in Table 2, setting the
parameter ρ to 2 enhances the accuracy of FedBAT, aligning

Table 3. The test accuracy of FedBAT with varying ϕ.
ϕ = 0.1 ϕ = 0.3 ϕ = 0.5 ϕ = 0.7 ϕ = 0.9

FMNIST 88.6 88.7 89.0 89.0 88.5
SVHN 88.4 88.8 89.2 88.5 88.6

CIFAR-10 75.9 79.9 81.0 80.7 80.3
CIFAR-100 42.9 48.6 49.2 48.9 48.3

it more closely with FedAvg. The gradual increase in the
value of ρ leads to a slight continuous improvement in the
accuracy of FedBAT until ρ reaches 10. It is noteworthy
that for ρ values of 4, 6, and 8, the accuracy difference in
FedBAT is comparatively minimal. This indicates a broad
optimal range for the hyperparameter ρ, highlighting the
robustness of FedBAT to variations in ρ.

Another hyperparameter of FedBAT is the local warm-up
ratio ϕ, which balances the trade-off between the binariza-
tion of model updates and their initialization. Here, we tune
ϕ among {0.1, 0.3, 0.5, 0.7, 0.9}. As shown in the Table 3,
the optimal accuracy for FedBAT is always achieved when
ϕ is set to 0.5, indicating an equilibrium between the signif-
icance of initializing and binarizing model updates. For ϕ
values of 0.3 or 0.7, there is a marginal reduction in accu-
racy, although the variance in accuracy is minimal. Notably,
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further deviation by increasing ϕ to 0.9 or decreasing it to
0.1 leads to more decline in the accuracy.

Following the above ablation studies, we summarize the
essential findings regarding hyperparameter tuning about
FedBAT. It is advisable to set the local warm-up ratio ϕ to
0.5 as a default configuration without necessitating hyper-
parameter tuning. The default setting for ρ in FedBAT is
recommended to be 6, with an option to tune it within the
interval of [4,8] for marginal accuracy enhancements.

6. Related Work
6.1. Communication-Efficient Federated Learning

Existing methods reduce communication costs in FL from
two aspects: model compression and gradient compression.
The proposed FedBAT belongs to the latter paradigm.

Frequently transferring large models between the server and
clients is a significant burden, especially for clients with lim-
ited communication bandwidth. Therefore, researchers have
turned to model compression techniques. Yang et al. (2021)
train and communicate a binary neural network in FL. Dif-
ferent from their motivation, our focus lies in learning binary
model updates rather than binary weights. (Caldas et al.,
2018; Bouacida et al., 2021) enable clients to train randomly
selected sub-models of a larger server model. Hyeon-Woo
et al. (2022) use matrix factorization to reduce the size of the
model that needs to be transferred. (Li et al., 2021; Isik et al.,
2023) transfer a pruned model for efficient communication.
Specifically, FedPM (Isik et al., 2023) trains and communi-
cates only a binary mask for each model parameter, while
keeping the model parameters at their randomly initialized
values. It is worth noting that FedPM has certain similarities
with FedBAT. They both keep the base model parameters
fixed during local training. FedPM trains binary masks to
prune the base model, while FedBAT trains binary model
updates with respect to the base model. The model trained
by FedPM enjoys the advantage of sparsity, however, the
randomly initialized model parameters do not undergo any
updates. Due to the lack of effective training on randomly
initialized parameters, FedPM may not be able to achieve a
satisfactory accuracy as FedAvg (Vallapuram et al., 2022).

Apart from the model compression, another way to reduce
communication costs is gradient compression. It is gener-
ally achieved by pruning (Qiu et al., 2022) or quantization
(including binarization) (Reisizadeh et al., 2020; Bernstein
et al., 2018) on the model updates. To enhance efficiency,
recent quantization methods (Jhunjhunwala et al., 2021; Qu
et al., 2022; Hönig et al., 2022) try to adjust the quantiza-
tion bitwidth used in different rounds adaptively. However,
they suffer from the same post-training manner as existing
binarization methods. We posit that the concept of FedBAT
can be seamlessly applied to federated quantization.

6.2. Binarization
BinaryConnect (Courbariaux et al., 2015) is a pioneering
work on learning binary weights. It binarizes weights into
{−1,+1} to calculate the output loss. During backpropaga-
tion, the full precision weights are optimized by STE (Hin-
ton, 2012). However, BinaryConnect does not involve learn-
ing the step size. Further, BWN and XNOR-Net are pro-
posed to calculate a step size by minimizing the binarized
errors (Rastegari et al., 2016). To be specific, the step size
is set to the average of absolute weight values. Later, Hou
et al. (2017) propose a proximal Newton algorithm with
diagonal Hessian approximation that directly minimizes the
loss with respect to the binarized weights and the step size.
However, it requires the second-order gradient information,
usually not available in SGD. In addition, considering that
binarization is essentially a form of 1-bit quantization, many
quantization-aware training methods are also suitable for
binarization. For example, PACT (Choi et al., 2018) and
LSQ (Esser et al., 2020) achieve end-to-end optimization by
designing reasonable gradient for the step size.

In this paper, we discovered the post-training manner of
model updates compression in FL. We seek to solve this
problem by directly learning binary model updates during
local training. However, the above methods are designed
to learn binarized or quantized weights by a long period of
centralized training. It is difficult for them to learn accurate
binary model updates during a short local training period.
Therefore, after designing the gradient of the step size, we
also introduced a temperature ρ to regulate the pace of its
optimization, along with the implementation of warm-up
training for improved initialization.

7. Conclusion
We analyzed the challenges faced by existing binarization
methods when applied in the context of FL. The analysis
encourages us to leverage the local training process to learn
binary model updates, instead of binarizing them after train-
ing. Therefore, we propose FedBAT, a federated training
framework designed with a focus on binarization awareness.
FedBAT has undergone comprehensive theoretical exam-
ination and experimental validation. It is able to exceed
the binarization baselines in terms of the test accuracy and
convergence speed, and is comparable to FedAvg.

An inherent limitation of FedBAT resides in the requirement
for the client to retain two distinct copies of model parame-
ters: one for the initialization model and another for model
updates. Although only one copy of parameters shall be
trained, this slightly increases the memory overhead of the
local training process in FedBAT. However, by compressing
the initialization model transmitted from the server before
communication, the memory overhead in FedBAT can be
alleviated, as well as the downlink communication can be
further compressed. We leave this as future work.
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Isik, B., Pase, F., Gündüz, D., Weissman, T., and Zorzi, M.
Sparse random networks for communication-efficient fed-
erated learning. In The Eleventh International Conference
on Learning Representations, ICLR. OpenReview.net,
2023.

Jhunjhunwala, D., Gadhikar, A., Joshi, G., and Eldar,
Y. C. Adaptive quantization of model updates for

9



FedBAT: Communication-Efficient Federated Learning via Learnable Binarization

communication-efficient federated learning. In IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, ICASSP, pp. 3110–3114. IEEE, 2021.

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. In Proceedings of the 36th International
Conference on Machine Learning,ICML, volume 97, pp.
3252–3261. PMLR, 2019.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and Chen,
Y. Fedmask: Joint computation and communication-
efficient personalized federated learning via heteroge-
neous masking. In SenSys ’21: The 19th ACM Confer-
ence on Embedded Networked Sensor Systems, pp. 42–55.
ACM, 2021.

Li, Q., Diao, Y., Chen, Q., and He, B. Federated learning on
non-iid data silos: An experimental study. In 38th IEEE
International Conference on Data Engineering, ICDE,
pp. 965–978. IEEE, 2022.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. In 8th Inter-
national Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020.

Liu, L., Dong, C., Liu, X., Yu, B., and Gao, J. Bridging dis-
crete and backpropagation: Straight-through and beyond.
CoRR, abs/2304.08612, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelli-
gence and Statistics, AISTATS, volume 54, pp. 1273–
1282. PMLR, 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. Reading digits in natural images with unsu-
pervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Qiu, X., Fernández-Marqués, J., de Gusmao, P. P. B., Gao,
Y., Parcollet, T., and Lane, N. D. Zerofl: Efficient on-
device training for federated learning with local sparsity.
In The Tenth International Conference on Learning Rep-
resentations, ICLR. OpenReview.net, 2022.

Qu, L., Song, S., and Tsui, C. Feddq: Communication-
efficient federated learning with descending quantization.
In IEEE Global Communications Conference, GLOBE-
COM, pp. 281–286. IEEE, 2022.

Raihan, M. A. and Aamodt, T. M. Sparse weight activation
training. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2020.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, pp. 525–542,
2016.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS, volume
108, pp. 2021–2031. PMLR, 2020.
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A. Detailed Experimental Settings
A.1. Model Architectures

In this paper, we employ a CNN for FMNIST and SVHN, ResNet-10 for CIFAR-10 and CIFAR-100. The detailed model
architectures are shown in Table 4. The BasicBlock used by ResNet is the same as defined in (He et al., 2016). Batch
normalization (BN) (Ioffe & Szegedy, 2015) is used to ensure stable training and ReLU (Glorot et al., 2011) is employed as
the activation function.

Table 4. Model architectures of the CNN, ResNet-10.
CNN (FMNIST) CNN (SVHN) ResNet-10 (CIFAR-10) ResNet-10 (CIFAR-100)

Convd2d(1,32,3) Convd2d(3,32,3) Convd2d(3,32,3) Convd2d(3,32,3)

Convd2d(32,64,3) Convd2d(32,64,3) BasicBlock(32) BasicBlock(32)

Convd2d(64,128,3) Convd2d(64,128,3) BasicBlock(64) BasicBlock(64)

Convd2d(128,256,3) Convd2d(128,256,3) BasicBlock(128) BasicBlock(128)

Linear(256,10) Linear(1024,10) BasicBlock(256) BasicBlock(256)

Linear(256,10) Linear(256,100)

A.2. Baseline Methods

In our experiments, we compare FedBAT with five baselines, including SignSGD (Bernstein et al., 2018), EF-
SignSGD (Karimireddy et al., 2019), Noisy-SignSGD (Chen et al., 2020), Stoc-SignSGD (Safaryan & Richtárik, 2021) and
ZeroFL (Qiu et al., 2022). Here, we introduce each baseline and the hyperparameters involved in detail. We declare that all
hyperparameters are tuned in {1.0, 0.1, 0.01, 0.001} for each dataset. The hyperparameter of SignSGD is the step size α,
which is tuned and set to 0.001 for all datasets. In EF-SignSGD, there is no hyperparameter to tune. Notably, EF-SignSGD
adds the binarization errors from the previous round onto the current model updates before conducting another binarization.
Furthermore, it sets the step size α to ∥m∥1/d for a more precise binarization of m ∈ Rd. Noisy-SignSGD adds Gaussian
noise ξ ∼ N(0, σ2) to the model update and then performs binarization, where σ is an adjustable standard deviation. We
set the step size α and the standard deviation σ to 0.01 and 0.01 for Noisy-SignSGD. Stoc-SignSGD adds uniform noise
ξ ∼ U(−∥m∥, ∥m∥) to a model update m before binarization. In this way, each element mi will be binarized into +1 with
probability (1/2 + mi/2∥m∥) and into -1 with probability (1/2 − mi/2∥m∥). However, we observe that the value of ∥m∥ is so
large that the above two probabilities are both close to 0.5. Therefore, in our experiments, we replaced ∥m∥ with ∥m∥∞ for
a better binarization. Besides, the step size of Stoc-SignSGD is tuned and set to 0.01. ZeroFL performs SWAT (Raihan
& Aamodt, 2020) in local training and prune the model updates after training. The sparsity ratio is set to 97% to ensure a
communication compression ratio similar to the binarization methods.

B. Additional Experiment Results
B.1. Additional Baselines

In this subsection, we test additional baselines on CIFAR-10, including FedPAQ (Reisizadeh et al., 2020) and BiFL (Yang
et al., 2021). FedPAQ quantizes model updates after local training. Table 5 shows that FedPAQ achieve comparable accuracy
to FedBAT with a communication costs ranging from 3 to 4 bits per parameter (bpp). BiFL trains a binary neural network
(BNN) during local training. There are two ways to upload local weights in BiFL, one is to communicate full-precision
weights (BiFL-Full), and the other is to communicate binarized weights (BiFL). BiFL-Full achieves higher accuracy as
communication is uncompressed. However, BiFL directly binarizes model weights rather than binarizing model updates,
resulting in much lower accuracy compared to SignSGD.

Table 5. The test accuracy of additional baselines (including FedPAQ and BiFL) on CIFAR-10 with 100 clients.
FedAvg SignSGD FedPAQ [3-bit] FedPAQ [4-bit] BiFL BiFL-Full FedBAT

IID 89.3 87.3 88.8 89.1 61.8 86.8 89.2
Non-IID-1 84.6 82.2 83.9 84.5 37.4 84.3 84.9
Non-IID-2 80.9 76.6 80.5 80.8 25.1 79.6 81.0
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B.2. More Clients

In Section 5, the number of clients is set to 30 and 100. Now, we expand the number of clients to 200. As shown in Table 6,
despite this increase, FedBAT consistently achieves accuracy comparable to FedAvg and notably surpasses SignSGD.

Table 6. The test accuracy of FedAvg, SignSGD and FedBAT with 200 clients.
FMNIST with CNN SVHN with CNN CIFAR-10 with ResNet-10 CIFAR-100 with ResNet-10

IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2 IID Non-IID-1 Non-IID-2
FedAvg 91.6 90.2 88.4 91.4 88.6 87.8 84.9 81.0 78.2 49.7 48.8 42.9
SignSGD 89.5 87.5 80.2 89.6 79.6 67.6 84.2 77.8 71.0 46.1 34.2 30.8
FedBAT 91.4 89.9 88.1 91.4 89.2 87.8 85.0 80.8 77.8 49.1 48.4 43.2

B.3. Additional Convergence Curves

Due to limited space, we illustrate the convergence curves of various methods for the FMNIST, SVHN and CIFAR-10
datasets in Figure 3. The convergence patterns of the methods closely resemble those observed in Figure 2.

(a) FMNIST, IID (b) FMNIST, Non-IID-1 (c) FMNIST, Non-IID-2

(d) SVHN, IID (e) SVHN, Non-IID-1 (f) SVHN, Non-IID-2

(g) CIFAR-10, IID (h) CIFAR-10, Non-IID-1 (i) CIFAR-10, Non-IID-2

Figure 3. Convergence curves of FedBAT and baselines on FMNIST, SVHN and CIFAR-10 with 100 clients.

12



FedBAT: Communication-Efficient Federated Learning via Learnable Binarization

C. Proof of Theorem 1
In this section, we analyze FedBAT in the setting of full device participation. The theoretical analysis in this paper is rooted
in the findings about FedAvg presented in (Li et al., 2020).

C.1. Additional Notation

Let wk
t be the model parameters maintained in the k-th device at the t-th step. Let Iτ be the set of global synchronization

steps, i.e., Iτ = {nτ |n = 1, 2, ...}. If t+ 1 ∈ Iτ , i.e., the time step to communication, FedBAT activates all devices. Then
the optimization of FedBAT can be described as

vk
t+1 = wk

t − ηt∇Fk(x
k
t , ξ

k
t ) (17)

xk
t = Sm(wk

t ) (18)

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ Iτ ,∑N
k=1 pkSm(vk

t+1) if t+ 1 ∈ Iτ .
(19)

Here, the variable vk
t+1 is introduced to represent the immediate result of one step SGD update from wk

t . We interpret wk
t+1

as the parameters obtained after communication steps (if possible). Also, an additional variable xk
t is introduced to represent

the result of performing binarization on model updates.

In our analysis, we define two virtual sequences v̄t =
∑N

k=1 pkv
k
t and w̄t =

∑N
k=1 pkw

k
t . v̄t+1 results from an single step

of SGD from w̄t. When t+ 1 /∈ Iτ , both are inaccessible. When t+ 1 ∈ Iτ , we can only fetch w̄t+1. For convenience, we
define ḡt =

∑N
k=1 pk∇Fk(x

k
t ) and gt =

∑N
k=1 pk∇Fk(x

k
t , ξ

k
t ). Therefore, v̄t+1 = w̄t − ηtgt and Egt = ḡt. Notably,

for any t ≥ 0, there exists a t0 ≤ t, such that t − t0 ≤ τ − 1 and wk
t0 = w̄t0 for all k = 1, 2, ..., N . In this case,

xk
t = Sm(wk

t ) = S(wk
t − w̄t0) + w̄t0 . Therefore, we have Exk

t = wk
t and E∥xk

t −wk
t ∥2 ≤ q2∥wk

t − w̄t0∥2.

C.2. Key Lemmas

To convey our proof clearly, it would be necessary to prove certain useful lemmas. We defer the proof of these lemmas to
latter section and focus on proving the main theorem.

Lemma 1. (Results of one step SGD). Assume Assumption 1 and 2. If ηt ≤ 1
4L , we have

E∥v̄t+1 −w∗∥2 ≤ (1− ηtµ)E∥w̄t −w∗∥2 + η2tE∥gt − ḡt∥2 + 6Lη2tΓ + 2

N∑
k=1

pkE∥w̄t − xk
t ∥2. (20)

Lemma 2. (Bounding the variance). Assume Assumption 3 holds. It follows that

E∥gt − ḡt∥2 ≤
N∑

k=1

p2kσ
2. (21)

Lemma 3. (Bounding the divergence of xk
t ). Assume Assumption 4, that ηt is non-increasing and ηt ≤ 2ηt+τ for all t ≥ 0.

It follows that
N∑

k=1

pkE∥w̄t − xk
t ∥2 ≤ 4(1 + q2)η2t (τ − 1)2G2. (22)

Lemma 4. (Bounding the divergence of w̄t). Assume Assumption 4 and 5, that ηt is non-increasing and ηt ≤ 2ηt+τ for all
t ≥ 0. It follows that

E∥w̄t+1 − v̄t+1∥2 ≤ 4

N∑
k=1

p2kq
2η2t τ

2G2. (23)
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C.3. Completing the Proof of Theorem 1

Note that Ew̄t = Ev̄t when we take expectation to erase the randomness of stochastic binarization, therefore

E∥w̄t+1 −w∗∥2 = E∥w̄t+1 − v̄t+1 + v̄t+1 −w∗∥2

= E∥w̄t+1 − v̄t+1∥2 + E∥v̄t+1 −w∗∥2.
(24)

Let ∆t = E∥w̄t −w∗∥2. From Lemma 1-4, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB, (25)

where

B =

N∑
k=1

p2kσ
2 + 6LΓ + 8(1 + q2)(τ − 1)2G2 + 4

N∑
k=1

p2kq
2τ2G2. (26)

For a diminishing stepsize, ηt = β
t+γ for some β > 1

µ and γ > 0 such that η1 ≤ min{ 1
µ ,

1
4L} = 1

4L and ηt ≤ 2ηt+τ . We

will prove ∆t ≤ v
t+γ where v = max{ β2B

βµ−1 , (γ + 1)∆1}. We prove it by induction. Firstly, the definition of v ensures that
it holds for t = 1. Assume the conclusion holds for some t, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

≤ (1− βµ

t+ γ
)

v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

≤ v

t+ γ + 1
.

(27)

Then by the L-smoothness of F ,

E[F (w̄t)]− F ∗ ≤ L

2
∆t ≤

L

2

v

γ + t
. (28)

Specifically, if we choose β = 2
µ , γ = max{8L

µ , τ} − 1 and denote κ = L
µ , then ηt =

2
µ

1
γ+t . One can verify that the

choice of ηt satisfies ηt ≤ 2ηt+τ for t ≥ 1. Then, we have

v = max{ β2B

βµ− 1
, (γ + 1)∆1} ≤ β2B

βµ− 1
+ (γ + 1)∆1 ≤ 4B

µ2
+ (γ + 1)∆1, (29)

and

E[F (w̄t)]− F ∗ ≤ L

2

v

γ + t
≤ κ

γ + t
(
2B

µ
+

µ(γ + 1)

2
∆1). (30)

C.4. Deferred Proofs of Key Lemmas

Proof of Lemma 1. Notice that v̄t+1 = w̄t − ηtgt and Egt = ḡt, then

E∥v̄t+1 −w∗∥2 = E∥w̄t − ηtgt −w∗ − ηtḡt + ηtḡt∥2

= E∥w̄t −w∗ − ηtḡt∥2︸ ︷︷ ︸
A1

+η2tE∥gt − ḡt∥2. (31)

We next focus on bounding A1. Again we split A1 into three terms:

∥w̄t −w∗ − ηtḡt∥2 = ∥w̄t −w∗∥2 −2ηt ⟨w̄t −w∗, ḡt⟩︸ ︷︷ ︸
B1

+ η2t ∥ḡt∥2︸ ︷︷ ︸
B2

.
(32)

From the the L-smoothness of Fk, it follows that

∥∇Fk(x
k
t )∥2 ≤ 2L(Fk(x

k
t )− F ∗

k ). (33)
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By the convexity of ∥ · ∥2 and Eq. 33, we have

B2 = η2t ∥ḡt∥2 ≤ η2t

N∑
k=1

pk∥∇Fk(x
k
t )∥2 ≤ 2Lη2t

N∑
k=1

pk(Fk(x
k
t )− F ∗

k ). (34)

Note that

B1 = −2ηt ⟨w̄t −w∗, ḡt⟩ = −2ηt

N∑
k=1

pk
〈
w̄t −w∗,∇Fk(x

k
t )
〉

= −2ηt

N∑
k=1

pk
〈
w̄t − xk

t ,∇Fk(x
k
t )
〉
− 2ηt

N∑
k=1

pk
〈
xk
t −w∗,∇Fk(x

k
t )
〉
.

(35)

By Cauchy-Schwarz inequality and AM-GM inequality, we have

−2
〈
w̄t − xk

t ,∇Fk(x
k
t )
〉
≤ 1

ηt
∥w̄t − xk

t ∥2 + ηt∥∇Fk(x
k
t )∥2. (36)

By the µ-strong convexity of Fk, we have

−
〈
xk
t −w∗,∇Fk(x

k
t )
〉
≤ −(Fk(x

k
t )− Fk(w

∗))− µ

2
∥xk

t −w∗∥2. (37)

Therefore, we have

A1 = E∥w̄t −w∗ − ηtḡt∥2 ≤ E∥w̄t −w∗∥2 + 2Lη2tE
N∑

k=1

pk(Fk(x
k
t )− F ∗

k )

+ ηtE
N∑

k=1

pk(
1

ηt
∥w̄t − xk

t ∥2 + ηt∥∇Fk(x
k
t )∥2)

− 2ηtE
N∑

k=1

pk(Fk(x
k
t )− Fk(w

∗) +
µ

2
∥xk

t −w∗∥2)

≤ (1− µηt)E∥w̄t −w∗∥2 +
N∑

k=1

pkE∥w̄t − xk
t ∥2

+ τ [4Lη2t

N∑
k=1

pk(Fk(x
k
t )− F ∗

k )− 2ηt

N∑
k=1

pk(Fk(x
k
t )− Fk(w

∗))︸ ︷︷ ︸
C

]

(38)

where we use Eq.33 again and the inequality −E∥xk
t −w∗∥2 = −E∥w̄t − xk

t ∥2 − E∥w̄t −w∗∥2 ≤ −E∥w̄t −w∗∥2.

We next aim to bound C. We define γt = 2ηt(1− 2Lηt). Since ηt ≤ 1
4L , ηt ≤ γt ≤ 2ηt. Then we split C into two terms:

C = −2ηt(1− 2Lηt)

N∑
k=1

pk(Fk(x
k
t )− F ∗

k ) + 2ηt

N∑
k=1

pk(Fk(w
∗)− F ∗

k )

= −γt

N∑
k=1

pk(Fk(x
k
t )− F ∗) + (2ηt − γt)

N∑
k=1

pk(F
∗ − F ∗

k )

= −γt

N∑
k=1

pk(Fk(x
k
t )− F ∗)︸ ︷︷ ︸

D

+4Lη2tΓ

(39)

where in the last equation, we use the notation Γ =
∑N

k=1 pk(F
∗ − F ∗

k ) = F ∗ −
∑N

k=1 pkF
∗
k .
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To bound D, we have
N∑

k=1

pk(Fk(x
k
t )− F ∗) =

N∑
k=1

pk(Fk(x
k
t )− Fk(w̄t)) +

N∑
k=1

pk(Fk(w̄t)− F ∗)

≥
N∑

k=1

pk
〈
∇Fk(w̄t),x

k
t − w̄t

〉
+ F (w̄t)− F ∗

≥ −1

2

N∑
k=1

pk[ηt∥∇Fk(w̄t)∥2 +
1

ηt
∥xk

t − w̄t∥2] + F (w̄t)− F ∗

≥ −
N∑

k=1

pk[ηtL(Fk(w̄t)− F ∗
k ) +

1

2ηt
∥xk

t − w̄t∥2] + F (w̄t)− F ∗

(40)

where the first inequality results from the convexity of Fk, the second inequality from AM-GM inequality and the third
inequality from Eq. 33. Therefore

C = γt

N∑
k=1

pk[ηtL(Fk(w̄t)− F ∗
k ) +

1

2ηt
∥xk

t − w̄t∥2]− γt(F (w̄t)− F ∗) + 4Lη2tΓ

= γt(ηtL− 1)

N∑
k=1

pk(Fk(w̄t)− F ∗
k ) + (4Lη2t + γtηtL)Γ +

γt
2ηt

N∑
k=1

pk∥xk
t − w̄t∥2

≤ 6Lη2tΓ +

N∑
k=1

pk∥xk
t − w̄t∥2

(41)

where in the last inequality, we use the following facts: (1)ηtL−1 ≤ − 3
4 ≤ 0 and

∑N
k=1 pk(Fk(w̄t)−F ∗) = F (w̄t)−F ∗ ≥

0 (2) Γ ≥ 0 and 4Lη2t + γtηtL ≤ 6η2tL and (3) γt

2ηt
≤ 1.

Recalling the expression of A1 and plugging C into it, we have

A1 = E∥w̄t −w∗ − ηtḡt∥2 ≤ (1− µηt)E∥w̄t −w∗∥2 + 2

N∑
k=1

pkE∥w̄t − xk
t ∥2 + 6Lη2tΓ. (42)

Plugging A1 into Eq. 31, we have the result in Lemma 1

E∥v̄t+1 −w∗∥2 ≤ (1− ηtµ)E∥w̄t −w∗∥2 + η2tE∥gt − ḡt∥2 + 6Lη2tΓ + 2

N∑
k=1

pkE∥w̄t − xk
t ∥2. (43)

Proof of Lemma 2. From Assumption 3, the variance of the stochastic gradients in device k is bounded by σ2, then

E∥gt − ḡt∥2 = E∥
N∑

k=1

pk(∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))∥2

=

N∑
k=1

p2kE∥∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t )∥2

≤
N∑

k=1

p2kσ
2

(44)

Proof of Lemma 3. Considering that Exk
t = wk

t , we have
N∑

k=1

pkE∥w̄t − xk
t ∥2 =

N∑
k=1

pkE∥(w̄t −wk
t )− (wk

t − xk
t )∥2

=

N∑
k=1

pkE∥w̄t −wk
t ∥2 +

N∑
k=1

pkE∥wk
t − xk

t ∥2
(45)
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Since FedBAT requires a communication each τ steps. Therefore, for any t ≥ 0, there exists a t0 ≤ t, such that t−t0 ≤ τ−1
and wk

t0 = w̄t0 for all k = 1, 2, ..., N . Also, we use the fact that ηt is non-increasing and ηt0 ≤ 2ηt for all t− t0 ≤ τ − 1,
then

N∑
k=1

pkE∥w̄t −wk
t ∥2 =

N∑
k=1

pkE∥(wk
t − w̄t0)− (w̄t − w̄t0)∥2

≤
N∑

k=1

pkE∥wk
t − w̄t0∥2

≤
N∑

k=1

pkE
t−1∑
t=t0

(τ − 1)η2t ∥∇Fk(x
k
t , ξ

k
t )∥2

≤
N∑

k=1

pk

t−1∑
t=t0

(τ − 1)η2tG
2

≤
N∑

k=1

pkη
2
t (τ − 1)2G2

≤ 4η2t (τ − 1)2G2

(46)

Here in the first inequality, we use E∥X − EX∥2 ≤ E∥X∥2 where X = wk
t − w̄t0 with probability pk. In the second

inequality, we use Jensen inequality:

∥wk
t − w̄t0∥2 = ∥

t−1∑
t=t0

ηt∇Fk(w
k
t , ξ

k
t )∥2 ≤ (t− t0)

t−1∑
t=t0

η2t ∥∇Fk(w
k
t , ξ

k
t )∥2. (47)

In the third inequality, we use ηt ≤ ηt0 for t ≥ t0 and E∥∇Fk(w
k
t , ξ

k
t )∥2 ≤ G2 for k = 1, 2, ..., N and t ≥ 1. In the last

inequality, we use ηt0 ≤ 2ηt0+τ ≤ 2ηt for t0 ≤ t ≤ t0 + τ .

According to Assumption 5, we have E∥wk
t − xk

t ∥2 ≤ q2E∥wk
t − w̄t0∥2 as discussed in Section C.1. Then the second term

in Eq. 45 can be bounded by reusing the result in Eq. 46 as

N∑
k=1

pkE∥wk
t − xk

t ∥2 ≤ q2
N∑

k=1

pkE∥wk
t − w̄t0∥2 ≤ 4q2η2t (τ − 1)2G2. (48)

Plugging Eq. 46 and Eq. 48 into Eq. 45, we have the result in Lemma 3

N∑
k=1

pkE∥w̄t − xk
t ∥2 ≤ 4(1 + q2)η2t (τ − 1)2G2. (49)

Proof of Lemma 4. Notice that w̄t+1 = v̄t+1 when t + 1 /∈ Iτ and w̄t+1 =
∑N

k=1 pkSm(vt+1), v̄t+1 =
∑N

k=1 pkvt+1

when t+ 1 ∈ Iτ . Hence, if t+ 1 ∈ Iτ , we have

E∥w̄t+1 − v̄t+1∥2 = E∥
N∑

k=1

pk(Sm(vk
t+1)− vk

t+1)∥2

=

N∑
k=1

p2kE∥(Sm(vk
t+1)− vk

t+1)∥2

≤
N∑

k=1

p2kq
2E∥vk

t+1 − w̄t0∥2

≤ 4

N∑
k=1

p2kq
2η2t τ

2G2,

(50)

where the last inequality follows the result in Eq.47.
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D. Proof of Theorem 2
In this section, we analyze FedBAT in the setting of partial device participation.

D.1. Additional Notation

Recall that wk
t is the model parameter maintained in the k-th device at the t-th step. Iτ = {nτ |n = 1, 2, ..., N} is

the set of global synchronization steps. Again, ḡt =
∑N

k=1 pk∇Fk(x
k
t ) and gt =

∑N
k=1 pk∇Fk(x

k
t , ξ

k
t ). Therefore,

v̄t+1 = w̄t − ηtgt and Egt = ḡt.

Now we consider the case where FedBAT samples a random set St of devices to participate in each round of training. This
make the analysis a little bit intricate, since St varies each τ steps. Following (Li et al., 2020), we assume that FedBAT
always activates all devices at the beginning of each round and then uses the parameters maintained in only a few sampled
devices to produce the next-round parameter. It is clear that this updating scheme is equivalent to the original. As assumed in
Theorem 2 that p1 = ... = pN = 1

N , the update of FedBAT with partial devices active can be described as: for all k ∈ [N ],

vk
t+1 = wk

t − ηt∇Fk(x
k
t , ξ

k
t ) (51)

xk
t = Sm(wk

t ) (52)

wk
t+1 =

 vk
t+1 if t+ 1 /∈ Iτ ,∑
k∈St+1

pkSm(vk
t )∑

k∈St+1
pk

= 1
K

∑
k∈St+1

Sm(vk
t+1) if t+ 1 ∈ Iτ .

(53)

D.2. Key Lemmas

Lemma 5. (Unbiased sampling scheme). In the case of partial device participation in Theorem 2, we have

Ew̄t+1 = Ev̄t+1. (54)

Lemma 6. (Bounding the variance of w̄t). In the case of partial device participation in Theorem 2, with Assumption 4 and
5, assume that ηt is non-increasing and ηt ≤ ηt+τ for all t ≥ 0. It follows that

E∥w̄t+1 − v̄t+1∥2 ≤ 4
q2(N − 1) +N −K

K(N − 1)
η2t τ

2G2. (55)

D.3. Completing the Proof of Theorem 2

Using Lemma 5, Eq.24 still holds, that is

E∥w̄t+1 −w∗∥2 = E∥w̄t+1 − v̄t+1 + v̄t+1 −w∗∥2

= E∥w̄t+1 − v̄t+1∥2 + E∥v̄t+1 −w∗∥2
(56)

Let ∆t = E∥w̄t −w∗∥2. From Lemma 1, 2, 3 and 6, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB (57)

where

B =
σ2

N
+ 6LΓ + 8(1 + q2)(τ − 1)2G2 + 4

q2(N − 1) +N −K

K(N − 1)
τ2G2 (58)

The only difference between Eq.57 and Eq.25 is the value of constant B. Following the same process, we can get the result
of Theorem 2

E[F (w̄t)]− F ∗ ≤ L

2

v

γ + t
≤ κ

γ + t
(
2B

µ
+

µ(γ + 1)

2
∥w1 −w∗∥2), (59)

where γ = max{8L
µ , τ} − 1 and κ = L

µ .
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D.4. Deferred Proofs of Key Lemmas

Proof of Lemma 5. Considering the partial device participation in Theorem 2, w̄t+1 = v̄t+1 when t + 1 /∈ Iτ and
w̄t+1 = 1

K

∑
k∈St+1

Sm(vk
t+1), v̄t+1 = 1

N

∑N
k=1 v

k
t+1 when t + 1 ∈ Iτ . In the latter case, there are two kinds of

randomness between w̄t+1 and v̄t+1, respectively from the client’s random selection and stochastic binarization. To
distinguish them, we use the notation ESt when we take expectation to erase the randomness of device selection, and use the
notation ES when we take expectation to erase the randomness of binarization. Therefore, when t+ 1 ∈ Iτ , we have

Ew̄t+1 = ESt [ESw̄t+1] = ESt [ES
1

K

∑
k∈St+1

Sm(vk
t+1)] = ESt [

1

K

∑
k∈St+1

vk
t+1] = v̄t+1 (60)

Proof of Lemma 6. Notice that w̄t+1 = v̄t+1 when t+ 1 /∈ Iτ and w̄t+1 = 1
K

∑
k∈St+1

Sm(vk
t+1), v̄t+1 =

∑N
k=1 pkvt+1

when t+ 1 ∈ Iτ . Hence, we have

E∥w̄t+1 − v̄t+1∥2 = E∥ 1

K

∑
k∈St+1

Sm(vk
t+1)− v̄t+1∥2

= E∥ 1

K

∑
k∈St+1

(Sm(vk
t+1)− vk

t+1) +
1

K

∑
k∈St+1

vk
t+1 − v̄t+1∥2

= E∥ 1

K

∑
k∈St+1

(Sm(vk
t+1)− vk

t+1)∥2︸ ︷︷ ︸
A1

+E∥ 1

K

∑
k∈St+1

vk
t+1 − v̄t+1∥2︸ ︷︷ ︸

A2

(61)

To bound A1, we have

A1 = E∥ 1

K

∑
k∈St+1

(Sm(vk
t+1)− vk

t+1)∥2

=
1

K2

∑
k∈St+1

E∥(Sm(vk
t+1)− vk

t+1)∥2

≤ 1

K2

∑
k∈St+1

4q2η2t τ
2G2

=
4

K
q2η2t τ

2G2,

(62)

where in the inequality we use the result of Eq.50. Then, to bound A2, we have

A2 = E∥ 1

K

∑
k∈St+1

vk
t+1 − v̄t+1∥2

=
1

K2
E∥

N∑
i=1

I{i ∈ St+1}(vi
t+1 − v̄t+1)∥2

=
1

K2
E[

N∑
i=1

P(i ∈ St+1)∥vi
t+1 − v̄t+1∥2 +

∑
i ̸=j

P(i, j ∈ St+1)
〈
vi
t+1 − v̄t+1,v

j
t+1 − v̄t+1

〉
]

=
1

KN
E

N∑
i=1

∥vi
t+1 − v̄t+1∥2 +

K − 1

KN(N − 1)
E
∑
i ̸=j

〈
vi
t+1 − v̄t+1,v

j
t+1 − v̄t+1

〉

=
N −K

KN(N − 1)

N∑
i=1

E∥vi
t+1 − v̄t+1∥2

(63)

where we use the following equalities: (1) P(i ∈ St+1) = K
N and P(i, j ∈ St+1) = K(K−1)

N(N−1) for all i ̸= j and (2)
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i=1 ∥vi

t+1 − v̄t+1∥2 +
∑

i ̸=j

〈
vi
t+1 − v̄t+1,v

j
t+1 − v̄t+1

〉
= 0. Also using the result of Eq.50, we have

A2 =
N −K

KN(N − 1)

N∑
i=1

E∥vi
t+1 − v̄t+1∥2

≤ N −K

K(N − 1)
4η2t τ

2G2

(64)

Plugging A1 and A2, we have the result in Lemma 6

E∥w̄t+1 − v̄t+1∥2 ≤ 4
q2(N − 1) +N −K

K(N − 1)
η2t τ

2G2. (65)

E. Proof of Theorem 3
In this section, we proof the convergence of FedBAT under non-convex settings. We only use Assumptions 1, 3, 4, 5. Note
that Assumptions 2 is about the strongly convex, which we do not use in this case.

E.1. Additional Notation

Let us review the notations in Section D.1. wk
t is the model parameters maintained in the k-th device at the t-th step. Let Iτ

be the set of global synchronization steps, i.e., Iτ = {nτ |n = 1, 2, ...}. If t+ 1 ∈ Iτ , i.e., the time step to communication,
FedBAT activates all devices. Then the update of FedBAT can be described as

vk
t+1 = wk

t − ηt∇Fk(x
k
t , ξ

k
t ) (66)

xk
t = Sm(wk

t ) (67)

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ Iτ ,∑N
k=1 pkSm(vk

t+1) if t+ 1 ∈ Iτ .
(68)

Here, the variable vk
t+1 is introduced to represent the immediate result of one step SGD update from wk

t . We interpret wk
t+1

as the parameter obtained after communication steps (if possible). Also, an additional variable xk
t is introduced to represent

the result of binarization on model update.

In our analysis, we define two virtual sequences v̄t =
∑N

k=1 pkv
k
t and w̄t =

∑N
k=1 pkw

k
t . It is obviously that Ev̄t = Ew̄t.

v̄t+1 results from an single step of SGD from w̄t. When t + 1 /∈ Iτ , both are inaccessible. When t + 1 ∈ Iτ , we
can only fetch w̄t+1. For convenience, we define ḡt = ∇F (xk

t ) =
∑N

k=1 pk∇Fk(x
k
t ) and gt =

∑N
k=1 pk∇Fk(x

k
t , ξ

k
t ).

Therefore, v̄t+1 = w̄t − ηtgt and Egt = ḡt. Notably, for any t ≥ 0, there exists a t0 ≤ t, such that t − t0 ≤ τ − 1 and
wk

t0 = w̄t0 for all k = 1, 2, ..., N . In this case, xk
t = Sm(wk

t ) = S(wk
t − w̄t0) + w̄t0 . Therefore, we have Exk

t = wk
t and

E∥xk
t −wk

t ∥2 ≤ q2∥wk
t − w̄t0∥2.

E.2. Key Lemmas

Lemma 7. Assume Assumption 1 and 3, we have

EF (w̄t+1) ≤ EF (w̄t)−
η

2
E∥∇F (w̄t)∥2 +

Lη2 − η

2
E∥ḡt∥2

+
η

2
L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 +

Lη2

2
E∥ḡt − gt∥2 +

L

2
E∥w̄t+1 − v̄t+1∥2

(69)

E.3. Completing the Proof of Theorem 3

Since η = 1
L
√
T

, we have Lη2−η
2 ≤ 0, then Eq.(69) can be rewritten as

EF (w̄t+1) ≤ EF (w̄t)−
η

2
E∥∇F (w̄t)∥2 +

η

2
L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 +

Lη2

2
E∥ḡt − gt∥2 +

L

2
E∥w̄t+1 − v̄t+1∥2

(70)
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The last three terms can be bounded by Lemmas 2, 3 and 6. Note that these lemmas require no convex assumption. Therefore,

EF (w̄t+1) ≤ EF (w̄t)−
η

2
E∥∇F (w̄t)∥2

+
η

2
L24(1 + q2)η2(τ − 1)2G2 +

Lη2

2

σ2

N
+

L

2
4
q2(N − 1) +N −K

K(N − 1)
η2t τ

2G2
(71)

Now rearranging the terms and summing over t = 0, ..., T − 1 yield that

1

2
η
1

T

T−1∑
t=0

E∥∇F (w̄t)∥2 ≤ F (w0)− F (wT )

T

+
η

2
L24(1 + q2)η2(τ − 1)2G2 +

Lη2

2

σ2

N
+

L

2
4
q2(N − 1) +N −K

K(N − 1)
η2t τ

2G2

(72)

Picking the learning rate η = 1
L
√
T

, and with F (wT ) ≥ 1
N

∑N
k=1 F

∗
k = F ∗ − Γ, we have

1

T

T−1∑
t=0

E∥∇F (w̄t)∥2 ≤ 2L(F (w̄0)− F ∗ + Γ)√
T

+
P√
T

+
Q

T
, (73)

where P = σ2

N + 4 q2(N−1)+N−K
K(N−1) τ2G2 and Q = 4(1 + q2)(τ − 1)2G2.

E.4. Deferred Proofs of Key Lemmas

Proof of Lemma 7. For any L-smooth function F , we have

F (w̄t+1) ≤ F (v̄t+1) + ⟨∇F (v̄t+1), w̄t+1 − v̄t+1⟩+
L

2
∥w̄t+1 − v̄t+1∥2 (74)

As Ew̄t+1 = Ev̄t+1, taking expectations for the randomness of stochastic binarization and client selection yields that

EF (w̄t+1) ≤ EF (v̄t+1) +
L

2
E∥w̄t+1 − v̄t+1∥2 (75)

Since v̄t+1 = w̄t − ηgt, with L-smoothness, we have

F (v̄t+1) ≤ F (w̄t)− η ⟨∇F (w̄t),gt⟩+
Lη2

2
∥gt∥2 (76)

The inner product term above can be written in expectation as follows:

2E ⟨∇F (w̄t),gt⟩ = E∥∇F (w̄t)∥2 + E∥gt∥2 − E∥∇F (w̄t)− gt∥2 (77)

Now, we consider the last term in Eq.77 with the fact that Egt = Eḡt

E∥∇F (w̄t)− gt∥2 = E∥∇F (w̄t)− ḡt + ḡt − gt∥2

= E∥∇F (w̄t)− ḡt∥2 + E∥ḡt − gt∥2

= E∥ 1

N

N∑
k=1

(∇Fk(w̄t)−∇Fk(x
k
t ))∥2 + E∥ḡt − gt∥2

≤ L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 + E∥ḡt − gt∥2

(78)

Further, we have

−ηE ⟨∇F (w̄t),gt⟩ ≤ −η

2
E∥∇F (w̄t)∥2 −

η

2
E∥gt∥2 +

η

2
L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 +

η

2
E∥ḡt − gt∥2 (79)
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Summing Eq.79 into Eq.77, we have

EF (v̄t+1) ≤ EF (w̄t)−
η

2
E∥∇F (w̄t)∥2 + (

Lη2

2
− η

2
)E∥gt∥2 +

η

2
L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 +

η

2
E∥ḡt − gt∥2 (80)

E∥gt∥2 can be expanded as follows:

E∥gt∥2 = E∥gt − ḡt + ḡt∥2 = E∥ḡt∥2 + E∥gt − ḡt∥2 (81)

Therefore, we have

EF (v̄t+1) ≤ EF (w̄t)−
η

2
E∥∇F (w̄t)∥2 + (

Lη2

2
− η

2
)E∥ḡt∥2 +

η

2
L2 1

N

N∑
k=1

E∥w̄t − xk
t ∥2 +

Lη2

2
E∥ḡt − gt∥2 (82)

Finally, summing Eq.82 into Eq.75 yields the result in Lemma 7.
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