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ABSTRACT

Conventional image compression methods are inadequate for intelligent analysis,
as they overemphasize pixel-level precision while neglecting semantic significance
and the interaction among multiple tasks. This paper introduces a Taskonomy-
Aware Multi-Task Compression framework comprising (1) inter-coherent task
grouping, which organizes synergistic tasks into shared representations to improve
multi-task accuracy and reduce encoding volume, and (2) a conditional entropy-
based directed acyclic graph (DAG) that captures causal dependencies among
grouped representations. By leveraging parent representations as contextual priors
for child representations, the framework effectively utilizes cross-task information
to improve entropy model accuracy. Experiments on diverse vision tasks, including
Keypoint 2D, Depth Z-buffer, Semantic Segmentation, Surface Normal, Edge
Texture, and Autoencoder, demonstrate significant bitrate-performance gains, vali-
dating the method’s capability to reduce system entropy uncertainty. These findings
underscore the potential of leveraging representation disentanglement, synergy, and
causal modeling to learn compact representations, which enable efficient multi-task
compression in intelligent systems.

1 INTRODUCTION

Multimodal models like CLIP (Radford et al., 2021), GPT-4 (Achiam et al., 2023), and Sora (Liu
et al., 2024a) exhibit human-level comprehension and reasoning (Achiam et al., 2023; Chang et al.,
2024; Zheng et al., 2023; Laskar et al., 2023), making them potential consumers of visual and
multimedia content. This highlights the need for semantic representation compression to support
efficient multi-task processing. However, current compression techniques, including both handcrafted
video codecs (Bross et al., 2021; Pennebaker & Mitchell, 1992; Si & Shen, 2016) and end-to-
end learning-based approaches (Jiang et al., 2023; He et al., 2022; Zou et al., 2022; Chen et al.,
2021; Ballé et al., 2017), primarily focus on rate-distortion optimization (Shannon et al., 1959).
Handcrafted methods typically rely on traditional techniques to minimize redundancy and maintain
visual quality, whereas end-to-end learning-based methods often involve constraining the entropy
model to accurately estimate the probability distribution of latent space symbols while simultaneously
maximizing the pixel-level likelihood between the reconstructed and original images. Nevertheless,
conventional compression methods lack semantic representation constraints, limiting their ability to
preserve task-relevant information while reducing redundancy. As illustrated in Fig. 1a, assessment
on MS-COCO (Lin et al., 2014) tasks with images compressed at 0.15 bpp shows learning-based
methods MLIC++ (Jiang et al., 2023) and ELIC (He et al., 2022) exhibit a notable superiority
compared to the handcrafted WebP (Si & Shen, 2016) and VTM-17.0 (Bross et al., 2021), particularly
in multimodal tasks like Video Question Answering (Zhang et al., 2023). This advantage can be
further enhanced by task-specific auxiliary loss functions, highlighting the necessity to capture richer
semantics for intelligent multimedia analysis.
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Figure 1: Motivation of Taskonomy-Aware Multi-Task Compression. (a) Multi-task Compression
Performance: Normalized performance (0=worst, 1=best for clarity) of compressors in diverse tasks.
(b) Necessity of Task Grouping: Relative performance (%) when compressors are trained on one task
and tested on another. Positive values indicate collaboration, and negative values highlight conflicts,
underscoring the need for task grouping. (c) Necessity of Taskonomy-Aware Causal Modeling:
Semantic Seg. and Surface Normal tasks’ local context correlation (middle) and global channel-wise
correlation (right) are visualized, showing the potential for capturing redundancy and achieving bit
savings through task-aware causal modeling. The ■ indicates the current decoding point, while the ▲
indicates the most similar reference positions.

In response to these limitations, the paradigm of Video Coding for Machines (VCM) (Yang et al.,
2024; Choi & Bajić, 2022; Duan et al., 2020) has emerged as a promising solution. VCM integrates
image compression with feature representation to achieve both compactness and efficiency, aiming to
meet the dual objectives of high-fidelity human vision and high-precision machine vision (Ge et al.,
2024; Li et al., 2024; Liu et al., 2023; Bai et al., 2022).

Despite advances in VCM, most methods still treat tasks in isolation (Liu et al., 2021; Bai et al.,
2022) or focus only on predefined tasks (Liu et al., 2023; Li et al., 2024), overlooking the benefits
of grouping supportive tasks or complex relationships between feature spaces of tasks. Preliminary
studies (Shi et al., 2023; Fifty et al., 2021; Standley et al., 2020; Zamir et al., 2018) and our findings
in Fig. 1b reveal statistically significant correlations among tasks, both positive and negative. These
correlations highlight the synergies and conflicts in multi-task compression. Therefore, identifying
task groups that leverage synergies and reduce conflicts is essential for improved multi-task learning
and optimized compression performance. Furthermore, Fig. 1c demonstrates the existence of local and
global causal contextual relationships across tasks with different semantic granularities. Exploiting
conditional relationships in representations enables more accurate prediction of symbol distributions
through conditional entropy, thereby improving compression efficiency. Conventional methods,
however, process tasks independently, ignoring inter-task dependencies, which leads to redundancy.

Thus, an essential question arises: How can we discern and exploit the interdependencies among
tasks to achieve efficient multi-task representation compression? Addressing this question requires
models that can (1) discern mutually beneficial and conflicting tasks to group them effectively, and
(2) dynamically decouple and model the dependencies between sub-tasks, enabling independent
optimization of each sub-task while preserving the hierarchical task relationships.

To address this challenge, we propose a paradigm shift with Taskonomy-Aware Multi-Task Com-
pression (TAMC), which integrates task grouping and causal discovery for compact multi-task
representation compression. By leveraging causal relationships between tasks, TAMC enhances
task performance and improves overall compression efficiency. Our approach consists of two key
components. First, we cluster inter-coherent tasks into groups that share a universal representation,
leveraging synergies among mutually beneficial tasks to improve accuracy and reduce encoding
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volume. This is the first work to systematically group tasks for compression, mitigating conflicts and
preventing performance degradation. Second, we construct a directed acyclic graph (DAG) based
on conditional entropy to capture causal relationships among task representations. This approach
identifies task dependencies across different abstraction levels, uncovering inter-task relationships
and mapping information flow through directed graphs. By traversing causal paths, parent task
representations provide informative cross-task contexts for child tasks, thus reducing uncertainty and
enhancing compression efficiency and scalability.

Our contributions: 1. We demonstrate that leveraging intricate inter-task relationships significantly
improves rate-performance efficiency by clustering tasks for collective compression and establishing
causal links between clusters. 2. We introduce a DAG-based causal discovery framework via
conditional entropy, which captures semantic dependencies across abstraction levels to enhance
system certainty and reduce information entropy, thereby improving compression compactness. 3.
The proposed TAMC achieves superior performance across diverse downstream task benchmarks
while remaining competitive in universal image reconstruction. Extensive experiments on key
computer vision tasks using the Taskonomy dataset validate the effectiveness of our approach.

2 RELATED WORK

Multi-Task Learning. Multi-task learning (MTL) improves performance by introducing inductive
biases and emphasizing relevant features (Zhang & Yang, 2021). However, task competition for
model capacity and ineffective shared representations often hinder MTL. Grouping compatible tasks
is crucial for reducing conflicts and boosting performance (Lu et al., 2020; Yu et al., 2020; Chen
et al., 2020; Kendall et al., 2018), yet current approaches often rely on human intuition (Zhang &
Yang, 2021). Recent studies (Fifty et al., 2021; Wu et al., 2020; Standley et al., 2020) highlight the
need for systematic task grouping to advance the field.

End-to-End Image Compression for Human and Machine Tasks. In E2E-learned image compres-
sion (Ballé et al., 2017), an image x is first encoded into latent representations y using an analysis
transform ga(x;θe), then quantized to discrete values ŷ. With a learned probability model pŷ(ŷ), ŷ
can be losslessly coded using arithmetic coding. On the decoder side, a synthesis transform gs(ŷ;θd)
reconstructs the image x̂ from ŷ:

y = ga(x;θe), ŷ = Q(y), x̂ = gs(ŷ;θd). (1)

To improve compression efficiency by decorrelating the latent space and estimating symbol proba-
bilities, Ballé et al. (2018) introduces a hyperprior model that reduces spatial redundancies among
latent variables, adding a few extra bits to convey spatial structure. This hyperprior model enables a
more accurate entropy model and better estimation of pŷ(ŷ). It can be divided into a hyper analysis
transform ha(y;θhe) and a synthesis transform hs(ẑ;θhd):

z = ha(y;θhe), ẑ = Q(z), pŷ|ẑ(ŷ|ẑ) = hs(ẑ;θhd). (2)

Minnen et al. (2018) proposed a more accurate entropy model which jointly utilizes an autoregressive
context model gcm. The predicted Gaussian parameters N(µ, σ) of the distribution pŷ(ŷ) are
functions of the learned parameters of the hyper-decoder, context model, and entropy parameter
networks (θhd, θcm, and θep, respectively):

pŷ(ŷ | ẑ,θhd,θcm,θep) =
∏
i

(
N (µi, σ

2
i ) ∗ U

(
−1

2
,
1

2

))
(ŷi), (3)

with µi, σi = gep(ψ, ϕi;θep), ψ = gh(ẑ;θhd), and ϕi = gcm(ŷ<i;θcm), U
(
− 1

2 ,
1
2

)
is a uniform

noise to approximate quantization during training. The overall loss function is:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂) = E
[
− log2(pŷ|ẑ(ŷ|ẑ))

]︸ ︷︷ ︸
rate(latents)

+E [− log2(pẑ(ẑ))]︸ ︷︷ ︸
rate(hyper-latents)

+λ · D(x, x̂︸ ︷︷ ︸
distortion

),

(4)
where λ controls the rate-distortion tradeoff. The first term is the rate that corresponds to the cross
entropy between the natural (marginal) distribution and the learned entropy model. The second term
is the rate to transmit hyperprior. The third term measures the reconstruction quality according to the
given distortion metric d (e.g., PSNR or MS-SSIM). Recent advancements with improved entropy
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Figure 2: Overview of TAMC. Given a series of tasks, how can we effectively cluster them in
the latent semantic space and construct a causal graph to optimize bitrate-performance? To
find a feasible solution, we follow these steps: (I): Group tasks based on inter-task coherence under
bitrate constraints. (II): Construct a DAG via conditional entropy to capture causal relationships.
(III): Compress grouped representations according to DAG in a scalable manner.

models (e.g., hierarchical (Ballé et al., 2018), auto-regressive (Minnen et al., 2018; He et al., 2021;
Xiang et al., 2022)), multireference entropy (Qian et al., 2020), and innovations such as channel-wise
and spatial-wise acceleration (Minnen & Singh, 2020; He et al., 2021; Jiang et al., 2023; He et al.,
2022), codebooks and vector quantization (Zhu et al., 2022), and hierarchical VAEs (Duan et al.,
2023), have significantly improved compression performance. Many existing techniques overlook
their impact on downstream tasks like classification, detection, and segmentation, which require task-
specific feature retention. Task-aware paradigms such as Video Coding for Machines (VCM) (Yang
et al., 2024; Choi & Bajić, 2022) focus on machine vision-targeted compression(Li et al., 2024; Liu
et al., 2023), including feature-assisted coding (Liu et al., 2024b), scalable coding(Liu et al., 2021),
and intermediate feature compression(Kim et al., 2023; Chen et al., 2021). While these methods are
effective for individual tasks(Liu et al., 2021; Li et al., 2024; Liu et al., 2023), they often fall short in
capturing the full complexity of multi-task relationships, highlighting the need for more effective
multi-task compression strategies.

3 APPROACH

3.1 ARCHITECTURE

An overview of TAMC is provided in Fig. 2. It comprises three key components: (1) a inter-
coherent task cluster that groups mutually coherent tasks into a shared representation space; (2) a
conditional entropy graph, constructed using causal discovery to reveal dependencies; and (3) a
scalable compressor, which compresses multiple feature layers along graph paths.

Components (1) and (2) draw inspiration from the lookahead stage in traditional video encoding (Li,
2003; He & Mitra, 2002; Wang & Kwong, 2008; Ma et al., 2005), which performs preliminary
analysis to optimize the encoding performance of Component (3) under bitrate constraints. In
Component (1), 2× downsampled low-resolution images are used as inputs, combined with a low-
complexity feature extraction and decoding backbone (Standley et al., 2020), to efficiently pre-analyze
task grouping performance under the constraint of bitrate consumption. The task grouping strategy
leverages gradient coherence to cluster tasks, maximizing shared information while minimizing
redundancy. In Component (2), a conditional entropy graph organizes the grouped tasks hierarchically,
facilitating information transfer from parent tasks to child tasks. This hierarchical structure improves
representation certainty and encoding efficiency by providing a more precise cross-task entropy
estimation model.

3.2 GROUP INTER-COHERENT TASKS

The objective of task grouping is to cluster tasks that can share representations, thereby optimizing
the performance of multiple tasks under a given bitrate budget b. As task grouping is conducted in
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the pre-analysis module, the bitrate budget b is loosely approximated ∝ the number of task groups.1.
Formally, a set of n tasks T = {τ1, . . . , τn}, which is partitioned into k subgroups C = {c1, . . . , ck},
where each task τi ∈ T belongs to at least one subgroup, i.e., ∀τ ∈ T ,∃cg ∈ C | τ ∈ cg2. k ≤ n
and each subgroup cg ⊆ T shares a feature extractor (encoder) ga(x;θe), as defined in Eq. 1. To
distinguish between the lookahead and formal encoding stages, the set of shared feature extractors
is denoted as E = {la1

, . . . , lak
}. For a raw image x, the encoder lag

in subgroup cg generates a
shared representation yg = lag (x;θeg ). Each task τi is associated with a unique decoder lsi(y;θdi),
corresponding to the synthesis transform gs(ŷ;θd) in Eq. 1. The decoders D = {ls1 , ls2 , . . . , lsn}
map the latent feature yg(i) into task space, where g(i) denotes the subgroup index for τi. The
predicted output x̂i = lsi(yg(i);θdi

) is then compared with the ground truth for evaluation.

Task performance of τi is measured using task-specific loss functions Li, e.g., PSNR/MS-SSIM
for pixel reconstruction and cross-entropy loss for segmentation. For a given grouping strategy
C = {c1, . . . , ck}, the overall performance of the task grouping is aggregated as

∑n
i=1 ming

(
I(τi ∈

cg)Li

)
.The bitrate R required to transmit the latent feature yg for each group cg is approximated

by bg = B(yg), where B is ∝ the amount of data transmitted, with each shared representation
consuming a unit cost of 1. Our goal is to minimize the total loss subject to the total bitrate constraint
b:

L =

n∑
i=1

λi min
g

(
I(τi ∈ cg)Li

)
+

k∑
j=1

B(yj), s.t.
k∑

j=1

B(yj) ≤ b. (5)

To achieve this, we first analyze the influence of task gradients on each other to determine the subgroup
formation. Task grouping is then guided by gradient consistency, ensuring effective collaboration
among tasks. By sharing gradient updates, encoding parameters, and feature representations, tasks
within the same group enhance mutual learning. The specific methodology is as follows:

Consider a multi-task model that trains all tasks together with parameters Θg ∪ {Θi|i ∈ T }, where
Θg = {θeg} denotes shared parameters for all tasks, and Θi = {θdi} represents task-specific
parameters for τi. Given input images X , we optimize the overall task performance by following the
total loss Ltotal:

Ltotal =
∑
i∈T

Li(X ; Θg,Θi). (6)

At the time step t, for the input batch xt, the gradient descent update for the shared parameters Θg

with respect to τu at step t+ 1 is denoted as Θt+1
g|u , and is computed as follows:

Θt+1
g|u ← Θt

g − η∇Θt
g
Lu(x

t; Θt
g,Θ

t
u). (7)

Using these updated shared parameters Θt+1
g|u , we calculate the forecast loss for other tasks τv while

keeping task-specific parameters Θt
v and inputs xt unchanged. Gradient coherence between tasks τu

and τv is then measured as:

Ct
u→v = 1−

Lv(x
t; Θt+1

g|u ,Θ
t
v)

Lv(xt; Θt
g,Θ

t
v)

. (8)

A positive Ct
u→v indicates that the update from τu reduces the loss for τv, while a negative value

Ct
u→v value indicates conflicting parameter update directions. Tasks with high gradient coherence are

grouped to share encoders and representations. After T timesteps, the cumulative coherent measure
is calculated as: Ĉu→v = 1

T

∑T
t=1 C

t
u→v . After obtaining the gradient coherence measures between

all pairs of tasks, the number of possible grouping for n tasks is 2n − 1, which grows exponentially
with n. To address this computational complexity, we apply relaxed estimates for higher-order cluster
coherent measures. Specifically, for a triplet of tasks {τu, τv, τw}, the triplet cost is estimated as the
average of pairwise coherence measures Ĉu→v and Ĉw→v . Assuming each cluster has a unit bitrate
cost, we adopt a branch-and-bound method, as in prior works (Fifty et al., 2021; Standley et al., 2020;
Zamir et al., 2018), to search for optimal grouping strategies under the given bitrate budget b.
1Note: In the E2E compression training phase, bitrate consumption is defined as Ex∼px [− log2 pŷ(ŷ)] . During
deployment, the cumulative distribution function (CDF) of Pŷ(ŷ) is used for arithmetic coding to determine
the final bitrate.

2As shown in Fig. 2, tasks may belong to multiple groups. Transparent tasks are used during training to boost
group performance but are discarded during inference.
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3.3 CAUSAL GRAPH-BASED COMPRESSION METHOD

Building upon the task grouping strategies Algorithm 1 : DAG Construction via Conditional
Entropy

Require: Latents set Y = {Y1, . . . , Yk}, conditional
entropy oracle H

Ensure: Returns the causal DAG G = (V,E)
1: Initialize V = Y and E = ∅
2: Y = Sort(Y, key = H(Y ), reverse = True)
3: for each latent Yc ∈ Y do
4: Initialize minH(Yc|·)←∞, Yp ← None
5: for each latent Yj ∈ Y \ {Yc}, j > c do
6: Look up H(Yc|Yj) from H
7: if H(Yc|Yj) < minH(Yc|·) then
8: Update minH(Yc|·)← H(Yc|Yj)
9: Update Yp ← Yj

10: end if
11: end for
12: if Yp ̸= None then
13: Add edge Yp → Yc to E
14: end if
15: end for
16: return G = (V,E)

and the group-shared variables Y , we now fo-
cus on how to construct the directed acyclic
graph (DAG) that represents the causal rela-
tionships among these variables. Let Y =
{Y1, Y2, . . . , Yk} be a set of group-shared ran-
dom variables, where each Yi corresponds to
the shared representation yi for task group ci.
We say that Yi causes Yj if there exists a func-
tion fj such that Yj = f(Yi, Cj), where Cj

represents the contextual information influenc-
ing Yj , including both observable and latent
factors. This causal relationship is represented
by the edge Yi → Yj in a directed acyclic graph
(DAG) G = (V,E), where V denotes the ver-
tex (i.e., Y in our context) and E denotes the
set of edges.

Identifying the true causal graph without ex-
periments or strong assumptions is generally
infeasible. To efficiently compress the repre-
sentations Y , we approximate causal relationships by minimizing the conditional entropy, which
quantifies the uncertainty of one variable given another. Specifically, given Yi and Yj with domains
Yi and Yj respectively, the pair-wise conditional entropy H(Yi|Yj) (also denoted as the conditional
entropy oracle H in Algorithm 1) is obtained using the Kernel Density Estimator (KDE) from (Choi
& Bajić, 2022; Saxe et al., 2019), and defined as:

H(Yi|Yj) = H(Yi)− I(Yi;Yj) = −
∑
yi

p(yi) log p(yi)−
∑
yi,yj

p(yi,yj) log
p(yi,yj)

p(yi)p(yj)
. (9)

We define the parent Yp of the children variable Yc as the one that minimizes the conditional entropy:

Yp = arg min
Yj∈Y\{Yc},H(Yj)<H(Yc)

H(Yc|Yj). (10)

By applying this criterion iteratively to all representations in Y , we construct the edges E of the
causal graph G. The causal discovery process is detailed in Algorithm 1.

Scalable Compression Using the Causal DAG. After constructing the directed acyclic graph (DAG)
G, inspired by the causal context entropy model Guo et al. (2021) and MLIC++ (Jiang et al., 2023),
we perform compression by traversing the graph in topological order. The parent representation
yp serves as an additional cross-task context for the child representation yc, thereby improving
compression efficiency. Specifically, when the parent latent representation yp is assumed to cause
the child representation yc, the distribution of yp is modeled using the prior framework in Eq. 3.
The estimation of pŷp

(ŷp) is performed using a masked convolution ϕp,i = gcm(ŷp < i;θcm),
which extracts the local context ϕp,i. This context is then integrated with the hyperpriors zp to
estimate the Gaussian distribution parameters for ŷp. When it comes to ecoding ŷc, we aggregate
both the decoded latent ŷp and the first half latent in the current spatial location ŷc, generating more
informative contexts ϕc,i. As shown in Fig. 3a, the whole process can be extended from Eq.3 and
formulated as:

pŷc
(ŷc | ẑc,θhd,θcm+,θep) =

∏
i

(
N (µc,i, σ

2
c,i) ∗ U

(
−1

2
,
1

2

))
(ŷc,i), (11)

with µc,i, σc,i = gep(ψc,ϕc,i;θep),ψc = gh(ẑc;θhd) , and ϕc,i = gcm+(ŷc < i, ŷp;θcm+). The
differences from Eq. 3 are highlighted in blue.

The above causal context model primarily captures local correlations while ignoring long-range
dependencies. To address this limitation, we utilized a causal global prediction model, which
leverages long-range correlations between the parent ŷp and child ŷc. The overall process shown in
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Figure 3: The structure of proposed cross-task causal context compression: (a) Cross-task local
causal context mask convolution. (b) The parent ŷp provides a global causal context for the child ŷc.

Fig.3b and is formulated as:

ŷattn
c,i = softmax2

(
ŷq
p < i

)
softmax1

(
ŷk
p < i

)⊤︸ ︷︷ ︸
non-negative

ŷv
c < i, ŷconv

c,i = convK×K(ŷattn
c,i ),ϕgc,i = DepthRB(ŷconv

c,i ),

(12)
where ŷq

p < i, ŷk
p < i = Embedding(ŷp < i), ŷv

c < i = Embedding(ŷc < i). The Embedding
layer consists of a 1× 1 convolutional layer and a 3× 3 depth-wise convolutional layer. The 3× 3
depth-wise convolutional layer is employed for learnable position embedding. DepthRB is proposed
by (Jiang et al., 2023) to enhance the non-linearity. Denoting the trainable parameters in the causal
global prediction model as θgc, Eq.3 is extended as:

pŷc
(ŷc | ẑc,θhd,θcm,θgc,θep) =

∏
i

(
N (µc,i, σ

2
c,i) ∗ U

(
−1

2
,
1

2

))
(ŷc,i), (13)

with µc,i, σc,i = gep(ψc,ϕc,i;ϕgc,i;θep), ψc = gh(ẑc;θhd), and ϕc,i = gcm(ŷc <
i, ŷp;θcm),ϕgc,i = ggc(ŷc < i, ŷp;θgc). The differences from Eq. 11 are highlighted in green.

4 EXPERIMENTS

4.1 TASKS AND DATASETS

To quantify the performance across diverse downstream tasks, we evaluate on the Taskonomy
dataset (Zamir et al., 2018) across 6 tasks. Taskonomy is a large-scale computer vision dataset that
includes over 4.5 million images from more than 500 buildings. Each image has 18 annotations
covering 2D, 3D, and semantic tasks. The total size of the dataset is 11.16 TB. Due to limited
computational and storage resources, we used the Tiny split for our experiments, which consists of
872,517 images in the training set and 16,000 images in the validation set and test set, respectively.
We conducted experiments on 6 tasks selected from the 15 annotated tasks, i.e., Semantic Segment,
Keypoint 2D, Edge Texture, Surface Normal, Depth Z-buffer and Autoencoder. More details of tasks
and loss measurements are provided in A.2.

4.2 BASELINES

Our method is compared against several baselines, including traditional codecs such as JPEG (Pen-
nebaker & Mitchell, 1992), WebP (Si & Shen, 2016), and VTM-17.0 (Bross et al., 2021), as well as
learning-based compression methods, i.e., ELIC (He et al., 2022) and MLIC++ (Jiang et al., 2023).

To evaluate the performance of different compression methods across a variety of tasks, we utilized the
official open-source implementations of these methods to compress input images. The reconstructed
images were then evaluated on multiple downstream tasks by analyzing the features extracted by
pre-trained task models provided by (Standley et al., 2020) 3.
3https://drive.google.com/drive/folders/1XQVpv6Yyz5CRGNxetO0LTXuTvMS_w5R5?
usp=sharing
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For our method, we first employed Xception (Chollet, 2017) as the encoder backbone, and the
task-specific decoder consists of four transposed convolutional layers and four convolutional layers.
Initially, we trained the group-task shared encoder-decoder without compression loss for 60 epochs
using the SGD optimizer (Ruder, 2016), with the learning rate decaying from 0.1 to 1e-4. Then,
based on the conditional entropy of the shared representation, we constructed a directed acyclic graph
(DAG) among the child nodes of the shared representation. Finally, we learned entropy models for
different compression rates by following paths from parent nodes to child nodes. We set the task
learning rate to 1e-4, and the learning rate of the hyperprior entropy model to 1e-4. We continued
training for 50 epochs, adjusting the λ parameter in the distortion-rate trade-off λ × D +R with
values from [0.04, 0.072, 0.14, 1, 1.932] to learn encoder-decoder models parameters and entropy
model parameters for different bitrates.

4.3 RESULTS

4.3.1 PERFORMANCE OF COMPRESSION FOR MULTIPLE TASKS
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Figure 4: Comparison of performance-rate curves for 6 tasksusing baseline compression methods
and our proposed TAMC. "Anchor" refers to the optimal performance of a supervision task obtained
using uncompressed images as input. The area of the shade color visualizes bitrate-performance
gains.

Our results, summarized in Fig. 4, demonstrate that TAMC achieves a new state-of-the-art in
compression for multitask scenarios, significantly outperforming other baselines in 5 out of 6
tasks. In multitask learning and compression, different tasks impose distinct requirements on image
information. For example, Depth Z-buffer in Fig. 4d relies on geometric details. Therefore, effective
compression for Depth Z-buffer must retain global structural cues to preserve depth continuity. In
contrast, Surface Normal estimation in Fig. 4b and Edge Texture detection in Fig. 4c primarily
depend on local sharp edges and fine-grained texture. Consequently, compression strategies for these
tasks should prioritize preserving high-frequency details rather than global structure. Traditional
compression methods (i.e., JPEG, WebP, VTM) and end-to-end deep learning approaches (i.e., ELIC,
MLIC++) typically use a unified compression representation for all tasks, overlooking the uniqueness,
conflicts, and collaboration among multiple tasks. This often results in suboptimal performance
for certain tasks. A more detailed analysis is provided in A.3.1. TAMC addresses this limitation
by first partitioning tasks into complementary groups, ensuring that collaborative tasks within the
same group share representations. We then employ causal discovery through conditional entropy to
identify dependencies among groups. These shared representations are scalably compressed following
parent-child relationships, effectively leveraging the context priors from parent nodes to reduce the
uncertainty of child nodes. A more detailed analysis is provided in A.3.2.

8



Published as a conference paper at ICLR 2025

4.3.2 PERFORMANCE OF IMAGE COMPRESSION
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Figure 5: Comparison of performance-rate curves for image compression on the Taskonomy dataset
using baseline methods and our proposed TAMC.

As shown in Fig. 5, TAMC demonstrates competitive performance compared to the VTM baseline.
For structure- and texture-sensitive metrics, such as MS-SSIM (Wang et al., 2003), TAMC is slightly
inferior to VTM. For semantic-sensitive metrics, including KID (Bińkowski et al., 2018), FID (Heusel
et al., 2017) in Fig. 5, and LPIPS (Zhang et al., 2018) in Fig. 13, TAMC is slightly superior to VTM,
reflecting its strong capacity for semantic understanding and perceptual quality retention. However,
the Peak Signal-to-Noise Ratio (PSNR) results in Fig. 13a are comparatively lower, indicating room
for improvement in pixel-level fidelity. This could be attributed to our choice of Xception (Chollet,
2017) as the encoder backbone and a task-specific decoder consisting of four transposed convolutional
layers and four convolutional layers, which aligns with the architectures pre-trained for machine
tasks (Fifty et al., 2021) but does not yet integrate the full advantages of advanced backbone modules
for image compression, e.g., GDN (Ballé et al., 2018), residual networks (Cheng et al., 2020), and
transformers (Zou et al., 2022; Lu et al., 2022), suggesting potential for further exploration.
5 ANALYSIS

5.1 ABLATION OF GROUP INTER-COHERENT TASKS

Method Bitrate Task Grouping1 Task Grouping2 Task Grouping3
Segment. Depth Normal Normal Keypoint Segment. Normal Texture

JPEG 0.283 44.32% 29.86% -7.05% -14.10% -44.58% 28.40% -17.56% -0.06%
WebP 0.281 3.13% 20.08% -3.69% 2.79% -49.00% -0.91% -5.43% -0.59%
VTM-17.0 0.229 -0.24% -5.28% 8.24% 11.16% -46.65% -1.82% 2.84% -0.37%
ELIC 0.302 -1.50% -0.03% 6.48% 9.69% -39.11% -2.47% 2.27% -0.90%
MLIC++ 0.289 -1.18% -1.05% 6.65% 9.79% -40.40% -2.26% 2.47% -0.93%
TAMC 0.224 -10.08% 3.33% 0.21% 12.43% -45.02% -4.84% 5.38% -1.05%

Table 1: Performance loss reduction of grouped inter-coherent tasks relative to single-task training.

We also conducted ablation to evaluate the effectiveness and generalization of task grouping in the
context of multi-task compression. Given 5 downstream tasks: {Semantic Segmentation, Depth
Z-buffer, Edge Texture, Surface Normal, Keypoints 2D}, our task grouping results based on gradient
coherence between task pairs are as follows: Group 1 {Semantic Segmentation, Depth Z-buffer,
Surface Normal}, Group 2 {Surface Normal, Keypoints 2D} and Group 3 {Semantic Segmentation,
Surface Normal, Edge Texture. During inference, only the tasks marked in green within each group
are decoded and referenced for downstream tasks, while the remaining tasks are solely used to
enhance performance during training and discarded during inference.

For Compress-then-Analyze (CTA) methods, we assess the relative performance improvement of
downstream tasks with vs. without task grouping when compression is performed before feature
extraction. For our Analyze-then-Compress (ATC) paradigm, we evaluate the impact of task grouping
in latent space, comparing performance with vs. without task grouping when feature extraction is
conducted prior to compression. To isolate the effect of task grouping, the causal discovery module is
not employed in this ablation study. The experimental results in Tab. 1 reveal that, for most baseline
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methods, the performance of tasks such as Semantic Segmentation in Group 1, Keypoints 2D in
Group 2, and Edge Texture in Group 3 exhibits loss reductions compared to single-task training,
benefiting from information shared with other tasks. Depth Z-buffer and Surface Normal in Group
1, while not demonstrating significant improvements and even experiencing slight performance
declines, contribute positively to the performance enhancement of other tasks within their respective
groups. JPEG and WebP suffer the most in Semantic Segmentation and Depth Z-buffer, likely due to
pixel-level distortions that introduce deviations in feature distributions, ultimately leading to degraded
performance in task grouping. TAMC does not significantly degrade performance in any task, making
it the most stable method. Furthermore, TAMC outperforms all other methods, demonstrating strong
generalization across different task groups.

5.2 ABLATION OF CAUSAL DISCOVERY TOPOLOGY

To better understand how causal discovery graphs constructed via conditional entropy optimize
both collaborative bitrate and task performance, we analyzed their effectiveness in determining the
optimal trade-off between these factors. As visualized in Fig. 6, different graph construction methods
are compared across various settings. In Setting A, where the graph follows principles of causal
discovery via conditional entropy, the resulting tasks exhibit better coordination, balancing both
bitrate efficiency and task performance. In contrast, Setting B and Setting C represent random graph
constructions that do not adhere to causal discovery principles. The visualized results show that
Setting B requires a higher bitrate to achieve similar performance while Setting C not only consumes
more bitrate but also results in performance degradation. This comparison highlights the importance
of proper graph construction in multi-task compression systems.

Group 1

Setting A
Setting B

Setting C

Group 2

Group 3

Group 2

Group 3

Group 1

Group 2

Group 3

Group 1

Figure 6: Impact of different DAG topologies on bitrate and multi-task performance (lower left
indicates better solutions, where both bitrate and performance loss are minimized). Left: Example
of graph construction methods. Middle: Task performance of graph node and bitrate consumption
of the entire causal graph. Note: Different colors denote different graph topologies, and different
shapes represent different nodes. Right: A more detailed breakdown of the middle, showing bitrate
consumption and performance for different nodes in each causal graph. Note: Different colors
represent different topologies, with varying transparency of the same color indicating different nodes
within the same graph. Different shapes represent different tasks. Red-bordered shapes denote the
best-performing task in each topology (prioritizing task performance over bitrate).

6 CONCLUSION

In this work, we introduced a novel multi-task representation compression framework that leverages
causal discovery via conditional entropy to optimize the trade-off between bitrate efficiency and
task performance. By grouping mutually beneficial tasks and constructing a DAG to characterize
their interdependencies, our method enables efficient compression of disentangled representations.
Through extensive experiments on key computer vision tasks, we demonstrated the effectiveness of
our approach in both bitrate reduction and task accuracy. Our findings highlight the importance of
properly structured task groupings and causal relationships in multi-task compression, offering a
promising direction for future work in video coding for machine learning and multi-task optimization.
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A APPENDIX

A.1 DISCUSSION

While graph models can effectively capture complex relationships between multiple representation
spaces, it is well-known that the computational complexity of adding or removing nodes in graph
structures is high. This becomes especially challenging in open-set scenarios, where tasks or data
points are continuously evolving. Developing efficient methods for dynamically adding and removing
nodes while maintaining the integrity of the graph remains an important research question.

Another critical point is the representation compatibility between different tasks. Ideally, the represen-
tation form and model architecture should be customized to fit the specific requirements of each task
and application scenario. Until a truly unified model emerges, representations and architectures might
not always be fully compatible across tasks. In our current work, we used a shared model architecture
and representations across tasks, which, while ideal for controlled experimentation, may not reflect
the diversity seen in real-world applications. However, our experiments successfully validated the
feasibility and effectiveness of using a causal graph model based on conditional entropy for multi-task
compression under these controlled conditions.

A.2 MORE DETAILS OF EXPERIMENTAL SETTINGS

We applied and measured 6 tasks in Taskonomy4, which is listed below:

• Semantic Segment: The annotations include 18 unique labels, with 16 object classes,
a "background" class, and an "uncertain" class. For this task, we evaluate compression
performance at different compression rates using cross-entropy loss.

• Keypoint 2D: This task involves 2D keypoint heatmaps. We assess compression perfor-
mance at different compression rates using the L1 loss.

• Edge Texture: This task involves detecting 2D edge textures. Similar to Keypoints2D, we
evaluate performance using L1 loss at different compression rates.

• Surface Normal: This task includes surface normal images, centered at 127. To evaluate
performance under different compression rates, we use the rotate_loss, which is
commonly applied in image processing or volume rendering tasks. The loss computes
the L1 difference between the output and target and compares the result across 9 different
orientations to find the minimal loss. This ensures that the model’s depth predictions remain
consistent under rotational and translational transformations, which is crucial when dealing
with real-world noise and variations.

• Depth Z-buffer: This task involves Z-buffer depth images, measured in units of 1/512m
with a maximum range of 128m. Similar to the Normal task, we use rotate_loss at
different compression rates, first calculating the L1 difference between the output and target,
then comparing across 9 orientations to find the minimal loss.

• Autoencoder: This task reconstructs RGB images at a resolution of 512×512. We evaluate
compression performance at different compression rates using the L1 loss. Additionally,
we assess fidelity using PSNR/SSIM (Wang et al., 2003) and perceptual quality using
LPIPS (Zhang et al., 2018) / KID (Bińkowski et al., 2018) / FID (Heusel et al., 2017).

For the compression baselines, we used the open source codes, i.e., JPEG5, WebP 6, VTM-17.07,
ELIC 8, and MLIC++ 9. For downstream tasks, we uniformly used the Taskonomy pre-trained 10

Xception encoder and task-specific decoder. TAMC directly performs coherent task grouping and

4https://github.com/StanfordVL/taskonomy/tree/master/data by (Zamir et al., 2018)
5ftp://ftp.ijg.org/pub/jpeg/
6https://github.com/webmproject/libwebp
7https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
8https://github.com/VincentChandelier/ELiC-ReImplemetation
9https://github.com/JiangWeibeta/MLIC
10https://drive.google.com/drive/folders/1XQVpv6Yyz5CRGNxetO0LTXuTvMS_
w5R5?usp=sharing
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causal graph construction in the latent space, so its encoder and decoder follow the Xception structure
of the pre-trained model. For the image compression task, better model architecture designs are
already available to optimize performance.

A.3 SUPPLEMENTARY ABLATION STUDIES

In this section, we extend our analysis to E2E compression involving multiple supervised tasks as
auxiliary tasks. We also examine single-task groups, where each task is treated as an independent
group rather than grouping tasks together. Additionally, we explore whether the conherence from
Task A to Task B can be used to predict the conherence from Task B to Task A. Furthermore, we
investigate the impact of prohibiting the same task from appearing in multiple clusters and assess
whether this restriction leads to better or worse performance. Finally, we compare our approach with
VQ-GAN-based compression method to evaluate its overall effectiveness.

A.3.1 ADDITIONAL RESULTS OF E2E COMPRESSION WITH MULTIPLE TASK AUXILIARY
LOSS
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Figure 8: Performance-rate curves for 6 tasks: Semantic Segmentation, Depth Z-buffer, Surface
Normal, Keypoint 2D, Edge Texture, and Autoencoder, on the Taskonomy dataset. The comparison
includes baseline compression methods ( MLIC++, Task Auxiliary+MLIC++) and our proposed
TAMC. Results highlight the efficiency of our method in achieving superior task performance at
various bit rates, demonstrating the necessity of task grouping and scalable encoding.
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Figure 7: End-to-end compression with
Multiple Task Auxiliary Loss.

To evaluate the impact of task grouping and the DAG
on performance, we conducted an ablation study where
both components were removed. In this alternative setup,
multiple auxiliary tasks were integrated directly into the
compression framework, as illustrated in Fig. 7, optimiz-
ing the following combined loss function:

L = Lcompression +
∑
i

wi.Ltaski (14)

Here, wi represents the weight assigned to each task, we
set equal weights for tasks in our ablation studies. We
tested this approach on 6 tasks: Semantic Segmentation,
Surface Normal, Edge Texture, Depth Z-buffer, Keypoint
2D, and Autoencoder. Fig. 8 presents the performance-rate
curves for each task, comparing our method to baseline compression methods (e.g., MLIC++) and an
auxiliary task-based variant (Task Auxiliary+MLIC++). The results demonstrate the advantages of
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our approach in both compression efficiency and task performance, as well as the complex interplay
between task collaboration and conflict, which highlights the significance of task grouping and
scalable encoding.

Our method consistently outperforms baseline compression methods, especially for tasks such as
Semantic Segmentation, Surface Normal, Edge Texture, and Depth Z-buffer. Even at lower bit
rates, our framework achieves notable improvements over MLIC++ and Task Auxiliary+MLIC++,
underscoring its robustness and adaptability in multi-task settings. These results confirm the efficacy
of task grouping and the integration of a causal DAG in preserving task performance under constrained
compression conditions.

The Task Auxiliary+MLIC++ variant, which replaces task grouping and DAG with auxiliary tasks,
provides useful insights into task-level interactions. For tasks like Edge Texture, Semantic Seg-
mentation, Surface Normal, and Depth Z-buffer, the auxiliary task approach yields substantial
improvements compared to end-to-end compression methods, suggesting enhanced task collaboration
and feature sharing. However, for Autoencoder, the auxiliary task approach performs similarly to
end-to-end methods, indicating limited benefits for tasks with strong self-supervised structures.

In contrast, the Keypoint 2D task experiences performance degradation with the auxiliary task ap-
proach, likely due to task interference. This highlights the potential conflicts between task objectives,
emphasizing the importance of careful task grouping to mitigate such issues.

The observed interplay of task collaboration and conflict further validates the need for task grouping.
By grouping tasks based on gradient coherence, our framework minimizes inter-task interference and
promotes effective task collaboration, explaining its superior performance relative to the auxiliary
task-based approach. Moreover, these results show that uncoordinated task interactions can negatively
impact specific tasks, such as Keypoint 2D.

Fig. 9 also reveals variations in bit-rate efficiency across tasks. For instance, Semantic Segmentation
and Surface Normal maintain strong performance even at lower bit rates, while tasks like Edge
Texture require higher bit rates due to the need for detailed feature representation. These findings
highlight the importance of scalable encoding to accommodate the varying bit-rate needs of different
tasks. By enabling task grouping and scalable encoding, our method addresses these challenges while
optimizing compression efficiency.

A.3.2 PERFORMANCE COMPARISON OF SINGLE TASK VS. GROUPED TASKS

Method Semantic Seg. Depth Z-buffer Surface Normal Keypoint 2D
BitrateTest Loss BitrateTest Loss Bitrate Test Loss BitrateTest Loss

Single Task
0.0014 0.0852 0.0008 0.2925 0.0006 0.1315 0.0017 0.2439
0.0055 0.0680 0.0051 0.2648 0.0052 0.0963 0.0645 0.1115
0.0069 0.0674 0.0063 0.2643 0.0069 0.0938 0.0940 0.0954

Group 1
0.0015 0.0704 0.0015 0.2615 0.0015 0.1378 - -
0.0096 0.0598 0.0096 0.2419 0.0096 0.1079 - -
0.0139 0.0574 0.0139 0.2385 0.0139 0.1045 - -

Group 2
- - - - 0.0018 0.1528 0.0018 0.2412
- - - - 0.0623 0.1103 0.0623 0.0944
- - - - 0.0843 0.1080 0.0843 0.0936

Table 2: Performance-Bitrate comparing task grouping with single task. Group 1 represents the task
grouping of Semantic Segmentation, Depth Z-buffer, and Surface Normal. Group 2 represents the
task grouping of Surface Normal and Keypoint 2D.

To further examine the effectiveness of task groups, we trained a model based on single-task com-
pression, where each task is treated as an independent group rather than grouping tasks together.
Additionally, we set up a Grouping 1 compression model that jointly optimizes the task grouping of
Semantic Segmentation, Depth Z-buffer, and Surface Normal, and a Group 2 compression model
that jointly optimizes the task grouping of Surface Normal and Keypoint 2D. The results are shown
in Tab.2, and further visualized in the performance curves in Fig. 9. As observed, Semantic Seg-
mentation and Depth Z-buffer benefit from a more compact and high-precision representation when
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Figure 9: Performance-Bitrate curves comparing task grouping with single task. The purple curves
represent the bitrate-performance performance of task grouping, while the red curves represent the
performance of the single-task model.

Method Semantic Seg. Depth Z-buffer Surface Normal Edge Texture Keypoint 2D Total Test Loss

Setting 1 Group 1 0.0535 0.2515 0.1070 — — 0.5279Group 2 — — — 0.0234 0.0925

Setting 2 Group 1 0.0535 0.2515 0.1070 — —
0.5223Group 2 — — 0.1086 0.0274 0.0743

Table 3: Number of Task Grouping=2. Tasks are not allowed to appear in multiple groups in Setting
1. Tasks can appear in multiple groups in Setting 2.

Method Semantic Seg. Depth Z-buffer Surface Normal Edge Texture Keypoint 2D Total Test Loss

Setting 1
Group 1 0.0531 0.2624 — — —

0.5298Group 2 — — — 0.0234 0.0925
Group 3 — — 0.0984 — —

Setting 2
Group 1 0.0535 0.2515 0.1070 — —

0.4866Group 2 0.0495 — 0.1034 0.0244 —
Group 3 — — 0.1100 — 0.0573

Table 4: Number of Task Groupings=3.

grouped in Group 1. Similarly, Keypoint 2D shows improved representation with higher compactness
and precision in Group 2. Surface Normal’s performance remains comparable between task grouping
and the single-task approach.

One additional benefit of task grouping is the shared encoder and shared representations across
multiple tasks. For example, in Group 1, a single encoder feature extraction is used for inference,
consuming 0.0015 bpp for Semantic Segmentation, Depth Z-buffer, and Surface Normal. In contrast,
treating each task independently requires three separate feature extraction inferences, with a total
bitrate of 0.0014 bpp + 0.0008 bpp + 0.0006 bpp = 0.0028 bpp to serve the three tasks.

A.3.3 IMPACT OF TASK EXCLUSIVITY ACROSS GROUPS ON PERFORMANCE

From a performance ceiling perspective, allowing the same task to appear in different clusters
maximizes the potential for task collaboration. As shown in Tab. 3 and 4, we conducted experiments
under two settings: Setting 1, where tasks are not allowed to appear in multiple clusters, and Setting
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2, where tasks can appear in multiple clusters. Setting 2 achieves a superior performance ceiling,
demonstrating the advantages of task interdependence. Notably, since each task is only inferred
once, Setting 2 does not introduce additional inference complexity. However, it does result in a
significant increase in GPU memory consumption during training. This highlights the trade-off
between performance and resource utilization when task exclusivity is relaxed.

A.3.4 IMPACT OF TASK ORDER ON TASK GROUPING AND ADDRESSING VARIABILITY

Figure 10: Inter-task coherence on
Taskonomy. Red color signify higher
inter-task affinities.

Regarding whether the order of tasks affects the cost cal-
culation and how to address potential variability in the
method using coherence scores: In Sec. 3.2, the number
of possible groupings for n tasks is given by the Bell num-
bers. To quickly estimate the similarity between tasks,
after calculating Ĉu→v, Ĉw→v, we estimate the higher-
order costs for {τu, τv, τw} which significantly reduces
the computational complexity. We mitigate the impact of
task order with the following operations:

1. The coherence score is a measure based on the impact of
gradient updates between tasks on the loss function. It is
a relative measure that reduces the impact of the absolute
order of task execution. 2. By calculating the coherence
scores throughout the entire training process and taking
the average, we can mitigate the impact caused by specific
stages of training, thus reducing the potential variability
brought about by changes in the order of tasks. 3. To
validate the reasonableness of this operation, in Fig.10,
we experimentally demonstrate that although the coherence score between task pairs is not strictly
symmetric (Ĉu→v ̸= Ĉv→u), it exhibits a strong symmetry trend in practice. This allows us to
approximate the values while maintaining accuracy and efficiency.

A.3.5 COMPARISON WITH VQ-GAN COMPRESSION
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Figure 11: Comparison with VQGAN (Mao et al., 2024) in multi-task compression: Our method
outperforms VQGAN in compression efficiency at low bitrates and closely matches the supervision
anchor at higher bitrates, particularly in tasks like Keypoint 2D, Semantic Segmentation, and Depth
Z-buffer. VQGAN, however, shows performance degradation in fine-grained tasks, highlighting the
advantages of our task-aware semantic compression approach.
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While VQGAN-based compression methods (Esser et al., 2021; Mao et al., 2024) achieve perceptual
compression at low bitrates through discretized codebooks, our optimization goal diverges signifi-
cantly. Unlike VQGAN (Mao et al., 2024), which prioritizes image reconstruction and perceptual
quality, our approach focuses on compact, multi-task semantic compression. Specifically, we opti-
mize for efficient semantic representation sharing across tasks, reducing redundancy in encoding.
This contrasts with VQGAN’s generative approach. Comparative experiments in Fig. 11 reveal key
differences in performance and efficiency.

Although VQGAN (Mao et al., 2024) demonstrates significant improvements in compression rates
over VAE backbone models, especially for perceptual tasks, it still introduces bias compared to the
optimal supervision anchor, even with sufficient bitrate. This is due to its generative nature, which
cannot fully eliminate reconstruction errors, leading to discrepancies from the ground truth. Moreover,
VQGAN struggles with tasks requiring precise, sparse local feature detection (e.g., Keypoint 2D),
a limitation common in generative models that fail to capture fine-scale features. In contrast, our
method is specifically designed to encode and preserve task-specific features, achieving superior
performance in these tasks.

In multi-task settings (e.g., Semantic Segmentation, Surface Normal, Edge Texture, Depth Z-buffer),
our approach demonstrates superior compression efficiency at low bitrates and near-optimal per-
formance at higher bitrates, closely matching the supervision anchor. VQGAN, while effective for
perceptual compression, struggles to leverage task-specific semantic information, leading to inferior
performance, particularly at low bitrates.

A.4 COMPLEXITY ANALYSIS

A.4.1 COMPLEXITY ANALYSIS OF COMPRESSION FOR MULTIPLE TASKS: ATC VS. CTA
PARADIGMS

MLIC++ Encoder/Decoder Module ga gs

KParams 12033.6 4396.3

MMACs 194556.9 296377.9

Table 5: Parameters and Forward Macs of Encoder/Decoder of MLIC++ on 512 × 512 images.

Task Xception Encoder/Decoder Module la ls

KParams 16467.2 525.1

MMACs 25708.0 4968.1

Table 6: Parameters and Forward Macs of Task Encoder/Decoder of Xception on 512 × 512 images.

In the task of compression for multiple downstream tasks, we investigate two compression paradigms:
Analysis and Then Compression (ATC) and Compression and Then Analysis (CTA). ATC pipeline
consists of two main phases: the downstream task analysis phase, where the input image is used
for specific tasks such as keypoint detection, segmentation, and depth estimation, and the feature
compression phase, which includes the encoding and decoding steps. The CTA pipeline also consists
of two main phases: the image compression phase, which includes encoding and decoding, and the
downstream task analysis phase, where the compressed image is used for tasks such as keypoint
detection, segmentation, and depth estimation. To better understand the computational costs involved
in each module, we summarize the parameters and forward MACs (Multiply-Accumulate Operations)
of the different components in the ATC and CTA pipelines. These values are presented in the tables 5,
6, 7. Below, we present the complexity analysis for both approaches.

Our proposed method belongs to ATC paradigm, and the total computational complexity of this
pipeline results from both the downstream task analysis and the feature compression phases. The
number of downstream tasks N and the number of task groups K directly affect the computational
cost of the task analysis phase. The overall complexity is expressed as:

Total Complexity of ATC = N · ls +K · (la + θhd + θcm+ + θgc)

= N · 4968.1 +K · 40088.0, (15)
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Context Module θhd θcm θcm+ θgc

KParams 5810.1 755.2 1487.7 2264.4

MMACs 8925.1 1148.2 2264.4 7100.5

Table 7: Parameters and Forward Macs of entropy context modules on 512 × 512 images.

where θhd, θcm+, and θgc represent the complexities of the context modules. N is the number of
downstream tasks, K is the number of task groups, la and ls represent the complexities of the Task
Xception Encoder/Decoder for each individual task.

This formulation indicates that the task analysis phase (which involves both la and ls) and the context
module complexities contribute to the total computational cost.

The total computational complexity in the CTA pipeline arises from both the compression and the
downstream task analysis phases. The number of tasks N directly affects the computational cost of
the task analysis phase. The overall complexity is expressed as:

Total Complexity of CTA = ga + gs + θhd + θcm + θgc +N · (la + ls)

= 500008.6 +N · 30676.1, (16)

where ga and gs are the complexities of the MLIC++ Encoder/Decoder. θhd, θcm, and θgc represent
the complexities of the context modules. N is the number of downstream tasks. la and ls represent
the complexities of the Task Xception Encoder/Decoder for each individual task.

This formulation emphasizes the contribution of the encoding/decoding processes (represented by ga
and gs) as well as the task-specific encoding/decoding complexities la and ls in the CTA pipeline.

A.4.2 COMPLEXITY ANALYSIS OF OUR LOOKAHEAD MODULE

Our Lookahead module consists of two steps: task grouping and DAG construction. In the task
grouping step, we first compute the coherence score between tasks using joint training on N ×N
task pairs. Then, we use pairwise coherence scores to estimate the coherence scores of higher-order
task groupings. Finally, based on all task groups, task coherence scores and budget b, we select k
multitask networks to maximize the overall task performance. This is an NP-hard problem. A brute

force approach would take O(|T | · |C0|
b

minn∈C0
cn ), which is exponential in the maximum number

of groups that fit within the budget. Here, |T | is the number of tasks, |C0| is the number of candidate
networks, b is the budget, and minn∈C0

cn is the smallest cost among the networks. This can be
solved using the branch-and-bound-like algorithm provided in prior work (Zamir et al., 2018) as
detailed in Sec.A.5.
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Algorithm 2 Get Task Grouping Strategy

Input: Cr, a running set of candidate groups, each with an associated cost c ∈ R and a performance
score for each task the network solves. Initially, Cr = C0

Input: Sr ⊆ C0, a running solution, initially
Input: br ∈ R, the remaining budget, initially b

1: function GETBESTNETWORKS(Cr,Sr, br)
2: Cr ← FILTER(Cr,Sr, br)
3: Cr ← SORT(Cr) ▷ Most promising groups first
4: Best← Sr

5: for n ∈ Cr do
6: Cr ← Cr \ n ▷ \ is set subtraction.
7: Si ← Sr ∪ {n}
8: bi← br − cn
9: Child← GETBESTNETWORKS(Cr,Si, bi)

10: Best← BETTER(Best,Child)
11: end for
12: returnBest
13: end function

14: function FILTER(Cr,Sr, br)
15: Remove groups from Cr with cn > br.
16: Remove groups from Cr that cannot improve Sr’s performance on any task.
17: return Cr

18: end function

19: function BETTER(S1,S2)
20: if C(S1) < C(S2) then
21: return S1

22: else
23: return S2

24: end if
25: end function

The overall time complexity of the DAG construction algorithm 1 is dominated by the nested loops
that compute conditional and independent entropies for each latent group. The algorithm iterates
over all K groups, leading to an outer loop complexity of O(K). For each group, the algorithm
computes the conditional entropy between pairs of latent variables. This operation takes O(n) time,
where n is the size of the dataset (number of samples). Additionally, the algorithm computes the
independent entropy for each group, which takes O(m) time, where m represents the complexity of
entropy calculation for a single group Thus, the overall time complexity is:

O(K2 · n) +O(K ·m),

where K is the number of groups, n is the time complexity for calculating conditional entropy, m is
the time complexity for calculating independent entropy for a group.

The process of computing task coherence scores, grouping tasks, and constructing the corresponding
Directed Acyclic Graph (DAG) is computationally intensive. These steps share a conceptual similarity
with the lookahead stage in traditional video encoding (Li, 2003; He & Mitra, 2002; Wang & Kwong,
2008; Ma et al., 2005). In video encoding, the lookahead stage performs a preliminary analysis of the
video content to optimize the encoding process, ensuring that the final compression achieves the best
trade-off between quality and bitrate. Specifically, it evaluates potential encoding decisions ahead of
time to minimize redundancies and improve efficiency, all while adhering to bitrate constraints.

Similarly, in multi-task compression, the task grouping and causal relationship modeling steps aim
to optimize the encoding of multiple tasks by leveraging the inherent interdependencies among
them. However, due to the high computational complexity of calculating coherence scores between
tasks and determining the optimal task groupings, an efficient pre-analysis phase is essential. Our
contribution lies in exploring the effectiveness of task grouping and cross-task causal relationship
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modeling, demonstrating that these techniques can significantly enhance the performance of multi-task
compression.

To make this process feasible and scalable, further exploration can involve using downsampled
low-resolution images as inputs for the pre-analysis phase. This strategy, when combined with a
low-complexity feature extraction backbone (Iandola, 2016), provides an efficient means of assessing
task grouping performance under bitrate consumption constraints.

A.5 IMPLEMENTATION DETAILS OF TASK GROUPING

As mentioned in Sec. 3.2, we adopt a branch-and-bound method, as in prior works (Standley et al.,
2020; Zamir et al., 2018), to search for locally optimal grouping strategies under the given bitrate
budget b. Here we provide a pseudo-algorithm for clarity, and the implementation is provided in
Github11. Consider the situation in which we have an initial candidate set C0 = {n1, n2, ..., nm} of
fully trained networks that each solve some subset of our task set T . Our goal is to choose a subset
of C0 that solves all tasks in budget b and the lowest overall loss. More formally, we want to find a
solution Sb = argminS⊆C0:cost(S)≤b L(S). It can be shown that solving this problem is NP-hard in

general (reduction from SET-COVER). A brute-force approach would take O(|T | · |C0|
b

minn∈C0
cn ),

which is exponential in the maximum number of groups that fit in our budget. This would be
computationally challenging even for small problems.

However, many techniques exist that can optimally solve most instances of problems like these in
reasonable amounts of time. All of these techniques produce solutions that perform equally well.
We chose to use a branch-and-bound-like algorithm for finding this optimal solution (shown in
Algorithm 2), but in principle the same solution could be achieved by other optimization methods,
such as encoding the problem as a binary integer program (BIP) and solving it in a way similar to
Taskonomy(Zamir et al., 2018). Algorithm 2 chooses the best subset of groups in our collection,
subject to the inference time budget constraint. The algorithm recursively explores the space of
solutions and prunes branches that cannot lead to optimal solutions. The recursion terminates when
the budget is exhausted, at which point Cr becomes empty and the loop body does not execute. The
sorting step on line 3 requires a heuristic upon which to sort. We found that ranking models based on
how much they improve the current solution, S, works well. It should be noted that this algorithm
always produces an optimal solution, regardless of which sorting heuristic is used. However, better
sorting heuristics reduce the running time because subsequent iterations will more readily detect and
prune portions of the search space that cannot contain an optimal solution.

A.6 MORE EXPERIMENTAL RESULTS

In Fig. 12, we present examples showing competitive qualitative results from our method compared to
VTM and end-to-end compression methods. Fig. 13 provides a detailed comparison of PSNR-Bitrate
and LPIPS-Bitrate performance.

11https://github.com/tstandley/taskgrouping/
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Ground Truth JPEG
0.359 bpp, 33.01dB, 0.9624

VTM
0.282 bpp, 38.42dB, 0.9903

ELIC
0.370 bpp, 40.98dB, 0.9932

MLIC
0.352 bpp, 41.12dB, 0.9946

Ours
0.346 bpp, 37.851dB, 0.9890

Ground Truth JPEG
0.479 bpp, 33.60dB, 0.9753

VTM
0.389 bpp, 37.24dB, 0.9888

ELIC
0.370 bpp, 40.98dB, 0.9978

MLIC
0.472 bpp, 39.65dB, 0.9934

Ours
0.436 bpp, 36.013dB, 0.9840

Figure 12: Subjective comparisons.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bit-Rate (bpp)

28

30

32

34

36

38

40

42

PS
NR

 [
]

ELIC
JPEG
MLIC++
VTM
WEBP
Ours

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bit-Rate (bpp)

0.05

0.10

0.15

0.20

0.25

0.30

LP
IP

S 
[

]

ELIC
JPEG
MLIC++
VTM
WEBP
Ours

(b)

Figure 13: Comparison of PSNR-Bitrate performance and LPIPS (Zhang et al., 2018)-Bitrate
performance for image compression on the Taskonomy dataset, using baseline methods and our
proposed TAMC.
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