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ABSTRACT

The problem of two-player zero-sum Markov games has recently attracted increas-
ing interests in theoretical studies of multi-agent reinforcement learning (RL). In
particular, for finite-horizon episodic Markov decision processes (MDPs), it has
been shown that model-based algorithms can find an ϵ-optimal Nash Equilibrium
(NE) with the sample complexity of O(H3SAB/ϵ2), which is optimal in the de-
pendence of the horizon H and the number of states S (where A and B denote the
number of actions of the two players, respectively). However, none of the existing
model-free algorithms can achieve such an optimality. In this work, we propose a
model-free stage-based algorithm and show that it achieves the same sample com-
plexity as the best model-based algorithm, and hence for the first time demonstrate
that model-free algorithms can enjoy the same optimality in the H dependence as
model-based algorithms. The main improvement of the dependency on H arises
by leveraging the popular variance reduction technique based on the reference-
advantage decomposition previously used only for single-agent RL. However, such
a technique relies on a critical monotonicity property of the value function, which
does not hold in Markov games due to the update of the policy via the coarse
correlated equilibrium (CCE) oracle. Thus, to extend such a technique to Markov
games, our algorithm features a key novel design of updating the reference value
functions as the pair of optimistic and pessimistic value functions whose value
difference is the smallest in the history in order to achieve the desired improvement
in the sample efficiency.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) commonly refers to the sequential decision making
framework, in which more than one agent learn to make decisions in an unknown shared environment
to maximize their cumulative rewards. MARL has achieved great success in a variety of practical
applications, including the game of GO [29; 30], real-time strategy games involving team play [32],
autonomous driving [26], and behavior learning in complex social scenarios [6]. Despite the great
empirical success, one major bottleneck for many RL algorithms is that they require enormous
samples. For example, in many practical MARL scenarios, a large number of samples are often
required to achieve human-like performance due to the necessity of exploration. It is thus important
to understand how to design sample-efficient algorithms.

As a prevalent approach to the MARL, model-based methods use the existing visitation data to
estimate the model, run a planning algorithm on the estimated model to obtain the policy, and
execute the policy in the environment. In two-player zero-sum Markov games, an extensive series
of studies [3; 39; 22] have shown that model-based algorithms are provably efficient in MARL, and
can achieve minimax-optimal sample complexity O(H3SAB/ϵ2) except for the term AB [39; 22],
where H denotes the horizon, S denotes the number of states, and A and B denote the numbers of
actions of the two players, respectively. On the other hand, model-free methods directly estimate
the (action-)value functions at the equilibrium policies instead of estimating the model. However,
none of the existing model-free algorithms can achieve the aforementioned optimality (attained
by model-based algorithms) [5; 23; 31; 18; 24]. Specifically, the number of episodes required for
model-free algorithms scales sub-optimally in step H , which naturally motivates the following open
question:
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Can we design model-free algorithms with the optimal sample dependence on the time horizon
for learning two-player zero-sum Markov games?

In this paper, we give an affirmative answer to the above question. We highlight our main contributions
as follows.

Algorithm design. We design a new model-free algorithm of Q-learning with min-gap based
reference-advantage decomposition. In particular, we extend the reference-advantage decomposition
technique [40] proposed for single-agent RL to zero-sum Markov games with the following key novel
design. Unlike the single-agent scenario, the optimistic (or pessimistic) value function in Markov
games does not necessarily preserve the monotone property due to the nature of the CCE oracle. In
order to obtain the “best" optimistic and pessimistic value function pair, we update the reference
value functions as the pair of optimistic and pessimistic value functions whose value difference is the
smallest (i.e., with the minimal gap) in the history. Moreover, our algorithm relies on the stage-based
approach, which simplifies the algorithm design and subsequent analysis.

Sample complexity bound. We show that our algorithm provably finds an ϵ-optimal Nash equilibrium
for the two-player zero-sum Markov game in Õ(H3SAB/ϵ2) episodes, which improves upon the
sample complexity of all existing model-free algorithms for zero-sum Markov game. Further,
comparison to the existing lower bound shows that it is minimax-optimal on the dependence of H ,
S and ϵ. This is the first result that establishes such optimality for model-free algorithms, although
model-based algorithms have been shown to achieve such optimality in the past [22].

Technical analysis. We establish a few new properties on the cumulative occurrence of the large
V-gap and the cumulative bonus term to enable the upper-bounding of several new error terms arising
due to the incorporation of the new min-gap based reference-advantage decomposition technique.
These properties have not been established for the single-agent RL with such a technique, because
our properties are established for policies generated by the CCE oracle in zero-sum Markov games.
Further, the analysis of both the optimistic and pessimistic accumulative bonus terms requires a more
refined analysis compared to their counterparts in single-agent RL [40].

1.1 RELATED WORK

Markov games. The Markov game, also known as the stochastic game, was first proposed in
[27] to model the multi-agent RL. Early attempts to find the Nash equilibra of Markov games
include [21; 14; 13; 35]. However, they often relied on strong assumptions such as known transition
matrix and reward, or focused on the asymptotic setting. Thus, these results do not apply to the
non-asymptotic setting where the transition and reward are unknown and only limited data is available.

There is a line of works focusing on non-asymptotic guarantees with certain reachability assumptions.
A popular approach is to assume access to simulators, which enables the agent to sample transition
and reward directly for any state-action pair [16; 28; 39; 20]. Alternatively, [34] studied the Markov
game under the assumption that one player can always reach all states by playing certain policy no
matter what strategy the other player sticks to.

Two-player zero-sum games. [3; 36] initialized the study of non-asymptotic guarantee for two-player
zero-sum Markov games without reachability assumptions. [3] proposed a model-based algorithm
for tabular Markov game while [36] considered linear function approximation in game and adopted a
model-free approach. [22] proposed a model-based algorithm which achieves the minimax-optimal
samples complexity O(H3SAB/ϵ) except for the AB term. For the discounted setting and having
access to a generative model, [39] developed a model-based algorithm that achieves the minimax-
optimal sample complexity except for the AB term. Then, model-free Nash Q-learning and Nash
V-learning were proposed in [5] for two-player zero-sum game to achieve optimal dependence on
actions (i.e., (A+B) instead of AB). Further, [8; 15] studied the two-player zero-sum game under
linear and general function approximation.

Multi-player general-sum games. [22] developed model-free algorithm in episodic setting, which
suffers from the curse of multi-agent. To alleviate this issue, [23; 31; 18; 24] proposed V-learning
algorithm, coupled with the adversarial bandit subroutine, to break the curse of multi-agent. [23]
considered learning an ϵ-optimal CCE and used V-learning with stabilized online mirror descent
as the adversarial bandit subroutine. Both [31; 18] utilized the weighted follow the regularized
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leader (FTRL) algorithm as the adversarial subroutine, and considered ϵ-optimal CCE and ϵ-optimal
correalted equilibrium (CE). The work [24] featured the standard uniform weighted FTRL and
staged-based design, both of which simplifies the algorithm design and the corresponding analysis.
While the V-learning algorithms generate non-Markov, history dependent policies, [11; 33] learned
an approximate CCEs that is guaranteed to be Markov.

Markov games with function approximation. Recently, a few works considered learning in
Markov games with linear function approximation [36; 8] and general function approximation
[19; 15; 38; 37; 7; 25]. While all of the works require centralized function classes and suffer from the
curse of multi-agency, [9; 33] proposed decentralized MARL algorithms to resolve the issue under
linear and general function approximation.

Single-agent RL. Broadly speaking, our work is also related to single-agent RL [1; 2; 10; 17; 40].
As a special case of Markov games, only one agent interacts with the environment in single-agent RL.
For tabular episodic setting, the minimax-optimal sample complexity is Õ(H3SA/ϵ2), achieved by a
model-based algorithm in [2] and a model-free algorithm in [40]. Technically, the reference-advantage
decomposition used in our algorithm is similar to that of [40], as both employ variance reduction
techniques for faster convergence. However, our approaches differ significantly, particularly in the
way of handling the interplay between the CCE oracle and the reference-advantage decomposition in
the context of two-player zero-sum Markov game.

2 PRELIMINARIES

We consider the tabular episodic two-player zero-sum Markov game MG(H,S,A,B, P, r), where H
is the number of steps in each episode, S is the set of states with |S| = S, (A,B) are the sets of actions
of the max-player and the min-player respectively with |A| = A and |B| = B, P = {Ph}h∈[H] is
the collection of the transition matrices with Ph : S ×A× B 7→ S, r = {rh}h∈[H] is the collection
of deterministic reward functions with rh : S ×A× B 7→ [0, 1]. Here the reward represents both the
gain of the max-player and the loss of the min-player. We assume each episode starts with a fixed
initial state s1.

Suppose the max-player and the min-player interact with the environment sequentially captured
by the Markov game MG(H,S,A,B, P, r). At each step h ∈ [H], both players observe the state
sh ∈ S , take their actions ah ∈ A and bh ∈ B simultaneously, receive the reward rh(sh, ah, bh), and
then the Markov game evolves into the next state sh+1 ∼ Ph(·|sh, ah, bh). The episode ends when
sH+1 is reached.

Markov policy, value function. A Markov policy µ of the max-player is the collection of the
functions {µh : S 7→ ∆A}h∈[H], each of which maps from a state to a distribution over actions.
Similarly, a policy ν of the min-player is the collection of functions {νh : S 7→ ∆B}h∈[H]. We use
µh(a|s) and νh(b|s) to denote the probability of taking actions a and b given the state s under the
Markov policies µ and ν at step h, respectively.

Given a max-player policy µ, a min-player policy ν, and a state s at step h, the value function is
defined as

V µ,ν
h (s) = E

(sh′ ,ah′ ,bh′ )∼(µ,ν)

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh = s

]
.

For a given (s, a, b) ∈ S ×A× B under a max-player policy µ and a min-player policy ν at step h,
we define

Qµ,ν
h (s, a, b) = E

(sh′ ,ah′ ,bh′ )∼(µ,ν)

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh = s, ah = a, bh = b

]
.

For ease of exposition, we define (Phf)(s, a, b) = Es′∼Ph(·|s,a,b)[f(s
′)] for any function f : S 7→ R,

and (Dπg)(s) = E(a,b)∼π(·,·|s)[g(s, a, b)] for any function g : S × A × B. Then, the following
Bellman equations hold for all (s, a, b, h) ∈ S ×A× B × [H]:

Qµ,ν
h (s, a, b) = (rh + PhV

µ,ν
h+1)(s, a, b), V µ,ν

h (s) = (Dµh×νh
Qµ,ν

h )(s), V µ,ν
H+1(s) = 0.
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Best response, Nash equilibrium (NE). For any Markov policy µ of the max-player, there exists
a best response of the min-player, which is a policy ν†(µ) satisfying V µ,ν†(µ)

h (s) = infν V
µ,ν
h for

any (s, h)× S × [H]. We denote V µ,†
h = V

µ,ν†(µ)
h . Similarly, the best response of the max-player

with respect to the Markov policy ν of the min-player is a policy µ†(ν) satisfying V µ†(ν),ν
h (s) =

supµ V
µ,ν
h for any (s, h)×S× [H], and we use V †,ν

h to denote V µ†(ν),ν
h . Further, there exists Markov

policies µ∗, ν∗, which are optimal against the best responses of the other player [12], i.e.,

V µ∗,†
h (s) = sup

µ
V µ,†
h (s), V †,ν

h (s) = inf
ν
V †,ν
h ,

for all (s, h) ∈ S × [H]. We call the strategies (µ∗, ν∗) the Nash equilibrium of a Markov game, if
they satisfy the following minimax equation

sup
µ

inf
ν
V µ,ν
h (s) = V µ∗,ν∗

h (s) = inf
ν
sup
µ
V µ,ν
h (s).

Learning objective. We consider the Nash equilibrium of Markov games. We measure the sub-
optimality of any pair of general policies (µ, ν) using the following gap between their performance
and the performance of the optimal strategy (i.e., Nash equilibrium) when playing against the best
responses respectively:

V †,ν
1 (s1)− V µ,†

1 (s1) =
(
V †,ν
1 (s1)− V ∗

1 (s1)
)
+
(
V ∗
1 (s1)− V

µ,†
1 (s1)

)
.

Definition 2.1 (ϵ-optimal Nash equilibrium (NE)). A pair of general policies (µ, ν) is an ϵ-optimal
Nash equilibrium if V †,ν

1 (s1)− V µ,†
1 (s1) ≤ ϵ.

Our goal is to design algorithms for two-player zero-sum Markov games that can find an ϵ-optimal
NE using a number episodes that is small in its dependency on S,A,B,H as well as 1/ϵ.

3 ALGORITHM DESIGN

In this section, we propose an algorithm called Q-learning with min-gap based reference-advantage
decomposition (Algorithm 1), for learning ϵ-optimal NE in two-player zero-sum Markov games. Our
algorithm builds upon the Nash Q-learning framework [5] but incorporates a novel min-gap based
reference-advantage decomposition technique and stage-based update design. We start by reviewing
the algorithm with reference-advantage decomposition in single agent RL [40].

Reference-advantage decomposition in single-agent RL. In single-agent RL, we greedily se-
lect and action to maximize the action value function Qh(s, a) to obtain the optimistic value
function V h(s) = maxaQh(s, a), and the action-value function update follows Qh(s, a) ←
min{Q(1)

h (s, a), Q
(2)

h (s, a), Qh(s, a)}, where Q
(1)

h , Q
(2)

h represent the standard update rule and the
advantage-based update rule

Q
(1)

h ← rh(s, a) +
̂PhV h+1(s, a) + bonus1,

Q
(2)

h ← rh(s, a) +
̂

PhV
ref
h+1(s, a) +

̂
Ph(V h+1 − V

ref
h+1)(s, a) + bonus2.

In standard update rule, one major drawback is that the early samples collected for estimating V h+1

at that moment deviates from the true value of V h+1, and we have to only use the latest samples to

estimate ̂PhV h+1(s, a) in order not to ruin the whole estimate, which leads to the suboptimal sample
complexity of such an algorithm. To achieve the optimal sample complexity, reference-advantage
decomposition was introduced. At high level, we first learn an accurate estimation V

ref

h of the optimal
value function V ∗

h satisfying V ∗
h (s) ≤ V ref

h (s) ≤ V ∗
h (s) + β, where the accuracy is controlled by

parameter β independent of the number of episodes K. For the second term, since V
ref

h+1 is almost
fixed, we are able to conduct the estimate using all collected samples. For the third term, we still
have to only use the latest samples to limit the deviation error. Thanks to the reference-advantage
decomposition, and since V h+1 is learned based on V

ref

h+1, and V
ref

h+1 is already an accurate estimate
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of V ∗
h+1, it turns out that estimating V h+1 − V

ref

h+1 instead of directly estimating V h+1 offsets the
weakness of using the latest samples.

In single-agent RL, one key design to facilitate the reference-advantage decomposition is to ensure
that the action-value function Qh(s, a) is non-increasing. Observe that the optimistic value function
V h(s) preserves the monotonic structure as long as the optimistic action-value function Qh(s) is
non-increasing, since V

k+1

h (s) = maxaQ
k+1

h (s, a) ≤ maxaQ
k

h(s, a) = V
k

h(s). When enough
samples are collected, the reference value V

ref
is then updated as the latest optimistic value function,

which we remark is also the smallest optimistic value function in the up-to-date learning history.

Min-gap1 based reference-advantage decomposition. In the two-player zero-sum game, we keep
track of both the optimistic and the pessimistic action-value functions, and update the value functions
using the CCE oracle at the end of each stage. Unlike the single-agent scenario, the optimistic (or
pessimistic) value function does not necessarily preserve the monotone property even if the optimistic
(or pessimistic) action-value function is non-increasing (or non-decreasing) due to the nature of
the CCE oracle. In order to obtain the “best” optimistic and pessimistic value function pair, we
come up with the key novel “min-gap" design where we update the reference value functions as
the pair of optimistic and pessimistic value functions whose value difference is the smallest in the
history (line 12-15). Formally, we define the min-gap ∆(s, h) for a state s at step h to keep track
of the smallest value difference between optimistic and pessimistic value functions in the history,
and the corresponding pair of value functions are recorded (line 12-13). When enough samples are
collected (line 14-15), the pair of reference value functions is then set to be the pair of optimistic and
pessimistic value functions whose value difference is the smallest in the history.

Algorithm 1 Q-learning with min-gap based reference-advantage decomposition (Algorithm 3 sketch)
1: Set accumulators and (action)-value functions properly, and initialize the gap ∆(s, h) = H .
2: for episodes k ← 1, 2, . . . ,K do
3: for h← 1, 2, . . . ,H do
4: Take action (ah, bh)← πh(sh), receive rh(sh, ah, bh), and observe sh+1.
5: Update accumulators.
6: if n ∈ L then
7: Qh(sh, ah, bh)← min{Q(1)

h (sh, ah, bh), Q
(2)

h (sh, ah, bh), Qh(sh, ah, bh)}.
8: Q

h
(sh, ah, bh)← max{Q(1)

h
(sh, ah, bh), Q

(2)

h
(sh, ah, bh), Q

h
(sh, ah, bh)}.

9: πh(sh)← CCE(Q(sh, ·, ·), Qh
(sh, ·, ·)).

10: V h(sh)← E(a,b)∼πh(sh)Qh(sh, a, b), and V h(sh)← E(a,b)∼πh(sh)Qh
(sh, a, b).

11: Reset all intra-stage accumulators to 0.
12: if V h(sh)− V h(sh) < ∆(s, h) then
13: ∆(s, h) = V h(sh)− V h(sh), Ṽ h(sh) = V h(sh), and Ṽ h(sh) = V h(sh).
14: if

∑
a,bNh(sh, a, b) = N0 then

15: V
ref

h (sh)← Ṽ h(sh), V ref
h (sh)← Ṽ h(sh).

Now we introduce reference-advantage decomposition to the two-player zero-sum game. For ease of
exposition, we use bonusi to represent different exploration bonus, which is specified in line 9-11 of
Algorithm 3. In standard update rule, we have

Q
(1)

h (s, a, b)← rh(s, a, b) +
̂PhV h+1(s, a, b) + bonus3, (1)

Q(1)

h
(s, a, b)← rh(s, a, b) + ̂PhV h+1(s, a, b) + bonus4, (2)

where ̂PhV h+1, ̂PhV h+1 are the empirical estimate of PhV h+1, PhV h+1. Similar to the single-agent
RL, the standard update rule suffers from the large deviation between V h+1 learned by the early
samples and the value of Nash equilibrium. As a result, we have to use only the samples from the
last stage (i.e., the latest O(1/H) fraction of samples, see stage-based update approach below) to
estimate PhV h+1. In order to improve the horizon dependence, we incorporate the advantage-based

1We remark that min-gap has nothing to do with the notion of gap in gap-dependent RL.
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update rule

Q
(2)

h (s, a, b)← rh(s, a, b) +
̂
PhV

ref

h+1(s, a, b) +
̂

Ph(V h+1 − V
ref

h+1)(s, a, b) + bonus5, (3)

Q(2)

h
(s, a, b)← rh(s, a, b) +

̂PhV
ref
h+1(s, a, b) +

̂Ph(V h+1 − V
ref
h+1)(s, a, b) + bonus6, (4)

where the middle terms in (3) are the empirical estimates of PhV
ref

h+1 and Ph(V h+1 − V
ref

h+1), and

the middle terms in (4) are the empirical estimates of PhV
ref
h+1 and Ph(V h+1 − V

ref

h+1). We still need
to use only the samples from the last stage to limit the deviation for the third terms in both (3) and
(4). For ease of exposition, assume we have access to a β-optimal V

ref
, V ref . Thanks to the min-gap

based reference-advantage decomposition, the learned V h+1 (or V h+1) is learned based on V
ref

h+1

(or V ref
h+1), and V

ref
(or V ref ) is already an accurate estimate of V ∗

h+1, it turns out that estimating

V h+1 − V
ref

h+1 (or V h+1 − V ref
h+1) instead of directly estimating V (or V ) offsets the weakness

of using only O(1/H) fraction of data. Further, since V
ref
, V ref is fixed, we are able to use all

samples collected to estimate the second term, without suffering any deviation. Now we remove the
assumption that V

ref
, V ref is fixed. Note that β is selected independently of K. Therefore, learning a

β-optimal reference value function V
ref
, V ref only incurs lower order terms in our final result.

Stage-based update approach. For each tuple (s, a, b, h) ∈ S × A × B × [H], we divide the
visitations for the tuple into consecutive stages. The length of each stage increases exponentially with
a growth rate (1 + 1/H). Specifically, we define e1 = H , and ei+1 = ⌊(1 + 1/H)ei⌋ for all i ≥ 1,
to denote the lengths of stages. Further, we also define L = {

∑j
i=1 ei|j = 1, 2, 3, . . .} to denote

the the set of ending indices of the stages. For each (s, a, b, h) tuple, we update both the optimistic
and pessimistic value estimates at the end of each stage (i.e., when the total number of visitations of
(s, a, b, h) lies in L), using samples only from this single stage (line 6-15). This updating rule ensures
that only the last O(1/H) fraction of the collected samples are used to estimate the value estimates.

Coarse correlated equilibrium (CCE). We use the CCE oracle to update the policy (line 14). The
CCE oracle was first introduced in [36] and an ϵ-optimal CCE is shown to be a O(ϵ)-optimal Nash
equilibrium in two-player zero-sum Markov games [36]. For any pair of matrices Q,Q ∈ [0, H]A×B ,
CCE(Q,Q) returns a distribution π ∈ ∆A×B such that

E(a,b)∼πQ(a, b) ≥ sup
a∗

E(a,b)∼πQ(a∗, b), E(a,b)∼πQ(a, b) ≤ inf
b∗

E(a,b)∼πQ(a, b∗).

The players choose their actions in a potentially correlated way so that no one can benefit from
unilateral unconditional deviation. Since Nash equilibrium is also a CCE and a Nash equilibrium
always exists, a CCE therefore always exist. Moreover, CCE can be efficiently implemented by linear
programming in polynomial time. We remark that the policies generated by CCE are in general
correlated, and executing such policies requires the cooperation of the two players (line 6).

Algorithm description. For clarity, we provide a schematic algorithm here (Algorithm 1) and
defer the detail to the appendix (Algorithm 3). Besides the standard optimistic and pessimistic
value estimates Qh(s, a, b), V h(s), Qh

(s, a, b), V h(s), and the reference value functions V
ref

h (s),
V ref

h (s), the algorithm keeps multiple different accumulators to facilitate the update: 1) Nh(s, a, b)
and Ňh(s, a, b) are used to keep the total visit number and the visits counting for the current stage
with respect to (s, a, b, h), respectively. 2) Intra-stage accumulators are used in the latest stage and
are reset at the beginning of each stage. 3) The global accumulators are used for the samples in all
stages: All accumulators are initialized to 0 at the beginning of the algorithm. The details of the
accumulators are deferred to Appendix A.

The algorithm set ι = log(2/δ), β = O(1/H) and N0 = c4SABH
5ι/β2 for some sufficiently large

universal constant c4, denoting the number of visits required to learn β-accurate pair of reference
value functions.

Certified policy. Based on the policy trajectories collected from Algorithm 3, we construct an output
policy profile (µout, νout) that we will show is an approximate NE. For any step h ∈ [H], an episode
k ∈ [K] and any state, we let µk

h(·|s) ∈ ∆(A) and νkh(·|s) ∈ ∆(B) be the distribution prescribed by
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Algorithm 3 at this step. Let Ňk
h (s) be the value Ňk

h (s) at the beginning of the k-th episode. Our
construction of the output policy µout is presented in Algorithm 2 (whereas the certified policy νout
of the min-player can be obtained similarly), which follows the “certified policies” introduced in
[3]. We remark that the episode index from the previous stage is uniformly sampled in our algorithm
while the certified policies in [3] uses a weighted mixture.

Algorithm 2 Certified policy µout (max-player version)
1: Sample k ← Unif([K]).
2: for step h← 1, . . . ,H do
3: Receive sh, and take action ah ∼ µk

h(·|sh).
4: Observe bh, and sample j ← Unif([Nk

h (sh, ah, bh)]).
5: Set k ← ℓ̌kh,j .

4 THEORETICAL ANALYSIS

4.1 MAIN RESULT

In this subsection, we present the main theoretical result for Algorithm 3. The following theorem
presents the sample complexity guarantee for Algorithm 3 to learn a near-optimal Nash equilibrium
policy in two-player zero-sum Markov games, which improves the best-known model-free algorithms
in the same setting.

Theorem 4.1. For any δ ∈ (0, 1), let the agents run Algorithm 3 for K episodes with K ≥
Õ(H3SAB/ϵ2). Then, with probability at least 1− δ, the output policy (µout, νout) of Algorithm 2
is an ϵ-approximate Nash equilibrium.

Compared to the lower bound Ω(H3S(A+B)/ϵ2) on the sample complexity to find a near-optimal
Nash equilibrium [4], the sample complexity in Theorem 4.1 is minimax-optimal on the dependence
of H , S and ϵ. This is the first result that establishes such optimality for model-free algorithms,
although model-based algorithms have been shown to achieve such optimality in the past [22].

We also note that the result in Theorem 4.1 is not tight on the dependence on the cardinality of actions
A,B. Such a gap has been closed by popular V-learning algorithms [22; 24], which achieve the
sample complexity of O(H5S(A+B)/ϵ2) [24]. Clearly, V-learning achieves a tight dependence on
A,B, but suffers from worse horizon dependence on H . More specifically, one H factor is due to the
nature of implementing the adversarial bandit subroutine in exchange for a better action dependence
A+B. The other H factor could potentially be improved via the reference-advantage decomposition
technique that we adopt here for our Q-learning algorithm. We leave this promising yet challenging
direction as a future study.

4.2 PROOF OUTLINE

In this section, we present the proof sketch of Theorem 4.1, and defer all the details to the appendix.

Our main technical development lies in establishing a few new properties on the cumulative occurrence
of the large V-gap and the cumulative bonus term, which enable the upper-bounding of several
new error terms arising due to the incorporation of the new min-gap based reference-advantage
decomposition technique. These properties have not been established for the single-agent RL with
such a technique, because our properties are established for policies generated by the CCE oracle in
zero-sum Markov games. Further, we perform a more refined analysis for both the optimistic and
pessimistic accumulative bonus terms in order to obtain the desired result.

For certain functions, we use the superscript k to denote the value of the function at the beginning
of the k-th episode, and use the superscript K + 1 to denote the value of the function after all K
episodes are played. For instance, we denote Nk

h (s, a, b) as the value of Nh(s, a, b) at the beginning
of the k-th episode, and NK+1

h (s, a, b) to denote the total number of visits of (s, a, b) at step h after
K episodes. When h and k are clear from the context, we omit the subscript h and superscript k

7
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for notational convenience. For example, we use ℓi and ℓ̌i to denote ℓkh,i and ℓ̌kh,i when h and k are
obvious.

Preliminary step. We build connection between the certified policy generated by Algorithm 2, and
the difference between the optimistic and pessimistic value functions.
Lemma 4.2. Let (µout, νout) be the output policy induced by the certified policy algorithm (Algo-
rithm 2), then, we have V †,νout

1 (s1)− V µout,†
1 (s1) ≤ 1

K

∑K
k=1(V

k

1 − V
k
1)(s1).

In the remaining steps, we aim to bound
∑K

k=1(V
k

1 − V
k
1)(s1).

Step I: We show that the Nash equilibrium (action-)value functions are always bounded between the
optimistic and pessimistic (action-)value functions.
Lemma 4.3. With high probability, it holds that for any s, a, b, k, h,

Qk

h
(s, a, b) ≤ Q∗

h(s, a, b) ≤ Q
k

h(s, a, b), V k
h(s) ≤ V ∗

h (s) ≤ V
k

h(s).

Our new technical development lies in proving the inequality with respect to the action-value function,
whose update rule features the min-gap reference-advantage decomposition.

The proof is by induction. We will focus on the optimistic (action-)value function and the other
direction can be proved similarly. Suppose the two inequalities hold in episode k. We first establish
the inequality for action-value function, and then prove the inequality for value functions. Based on
the update rule of the optimistic action-value functions (line 12 in Algorithm 3), the action-value
function is determined by the first two non-trial terms and last trivial term. While the first term is
shown to upper bound the action-value function at Nash equilibrium Q∗

h(s, a, b), we make the effort
to showcase that the second term involving the min-gap based reference-advantage decomposition
also upper bounds Q∗

h(s, a, b). Since the optimistic action-value function takes the minimum of
the three terms, we conclude that the optimistic action-value function in episode k + 1 satisfy the
inequality. The proof of the inequality for value function (second inequality in Lemma 4.3) is based
on the property of the policy distribution output by the CCE oracle.

Note that the optimistic (or pessimistic) action-value function is non-increasing (or non-decreasing).
However, the optimistic and the pessimistic value functions do not preserve such monotonic property
due to the nature of the CCE oracle. This motivates our design of the min-gap based reference-
advantage decomposition.

Step II: We show that the reference value can be learned with bounded sample complexity in the
following lemma.

Lemma 4.4. With high probability, it holds that
∑K

k=1 1{V
k

h(s
k
h) − V k

h(s
k
h) ≥ ϵ} ≤

O(SABH5ι/ϵ2).

We show that in the two-player zero-sum Markov game, the occurrence of the large V-gap, induced
by the policy generated by the CCE oracle, is bounded independent of the number of episodes K.
Our new development in proving this lemma lies in handling an additional martingale difference
arising due to the CCE oracle.

In order to extract the best pair of optimistic and pessimistic value functions, a key novel min-gap
based reference-advantage decomposition is proposed (see Section 3), based on which we pick up the
pair of optimistic and pessimistic value functions whose gap is the smallest in the history (line 17-20
in Algorithm 3). By the selection of the reference value functions, Lemma 4.4 with ϵ set to β, and the
definition of N0, we have the following corollary.
Corollary 4.5. Conditioned on the successful events of Proposition 4.3 and Lemma 4.4, for every
state s, we have nkh(s) ≥ N0 =⇒ V

ref,k

h (s)− V ref,k
h (s) ≤ β.

Step III: We bound
∑K

k=1(V
k

1 − V
k
1)(s1). Compared to single-agent RL, the CCE oracle leads to a

possibly mixed policy and we need to bound the additional term due to the CCE oracle.

For ease of exposition, define ∆k
h = (V

k

h − V
k
h)(s

k
h), and martingale difference ζkh = ∆k

h − (Q
k

h −
Qk

h
)(skh, a

k
h, b

k
h). Note that nkh = Nk

h (s
k
h, a

k
h, b

k
h) and ňkh = Ňk

h (s
k
h, a

k
h, b

k
h) when Nk

h (s
k
h, a

k
h, b

k
h) ∈

8
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L. Following the update rule, we have (omitting the detail)

∆k
h = ζkh + (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h) ≤ ζkh +H1{nkh = 0}+ 1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 + Λk

h+1,

where the definition of Λk
h+1 is provided in the appendix.

Summing over k ∈ [K], we have
K∑

k=1

∆k
h ≤

K∑
k=1

ζkh +

K∑
k=1

H1{nkh = 0}+
K∑

k=1

1

ňkh

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 +

K∑
k=1

Λk
h+1

≤
K∑

k=1

ζkh + SABH2 + (1 +
1

H
)

K∑
k=1

∆k
h+1 +

K∑
k=1

Λk
h+1,

where in the last inequality, we use the pigeon-hole argument for the second term, and the third term
is due to the (1 + 1/H) growth rate of the length of the stages.

Iterating over h = H,H − 1, . . . , 1 gives
K∑

k=1

∆k
1 ≤ O

(
SABH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
.

The additional term
∑H

h=1

∑K
k=1(1 +

1
H )h−1ζkh is new in the two-player zero-sum Markov game,

which can be bounded by Azuma-Hoeffding’s inequality. I.e., it holds that with probability at least
1− Tδ,

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh ≤ O(

√
H2Tι),

which turns out to be a lower-order term compared to
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1.

Step IV: We bound
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1 in the following lemma.
Lemma 4.6. With high probability, it holds that∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1 = O
(√

SABH2ι+H
√
Tι log T + S2(AB)

3
2H8ιT

1
4

)
.

We capture the accumulative error of the bonus terms
∑H

h=1

∑K
k=1(1 +

1
H )h−1(β

k

h+1 + βk

h+1
) in

the expression
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1. Since we first implement the reference-advantage
decomposition technique in the two-player zero-sum game, our accumulative bonus term is much
more challenging to analyze than the existing Q-learning algorithms for games. Compared to the
analysis for the model-free algorithm with reference-advantage decomposition in single-RL [40],
our analysis features the following new developments. First, we need to bound both the optimistic
and pessimistic accumulative bonus terms, and the analysis is not identical. Second, the analysis
of the optimistic accumulative bonus term differs due to the CCE oracle and the new min-gap base
reference-advantage decomposition for two-player zero-sum Markov game.

Finally, combining all steps, we conclude that with high probability,

V †,νout

1 (s1)− V µout,†
1 (s1) ≤ 1

K

∑K
k=1 ∆

k
h = O

(
H3SAB

ϵ2

)
.

5 CONCLUSION

In this paper, we proposed a new model-free algorithm Q-learning with min-gap based reference-
advantage decomposition for two-player zero-sum Markov games, which improved the existing
results and achieved a near-optimal sample complexity O(H3SAB/ϵ2) except for the AB term.
Due to the nature of the CCE oracle employed in the algorithm, we designed a novel min-gap
based reference-advantage decomposition to learn the pair of optimistic and pessimistic reference
value functions whose value difference has the minimum gap in the history. An interesting future
direction would be to study whether the horizon dependence could be further tightened in model-free
V-learning.
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