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Abstract

Recently, multimodal fact verification tasks aim001
to assess the truthfulness of multimodal claims002
by the retrieved evidence through textual and003
visual content. In contrast, the multimodal in-004
formation may be incomplete in original posts005
or missing during the data collection. How-006
ever, recent missing-modality studies still can-007
not properly handle the above complex miss-008
ing situations of claim-evidence input pairs in009
multimodal fact verification, as they fail to cap-010
ture complicated relations between claims and011
evidence. To solve these problems, we pro-012
pose a novel model named Missing Modality-013
Simulated Network (MMSN) for more robust014
and adaptive multimodal fact verification. We015
design a novel dual-channel soft simulation016
module to use both cross-modal information017
and claim-evidence correlations to simulate018
missing features with a soft-weighted method.019
Besides, MMSN exploits fine-grained textual020
key information and designs coarse-grained021
and fine-grained fusions to fuse multimodal022
information and capture their interactions ex-023
haustively. The experimental results on three024
real-world public datasets show the superiority025
and effectiveness of MMSN for robust multi-026
modal fact verification.027

1 Introduction028

Fact verification, aiming to assess the truthfulness029

of claims by the retrieved evidence, has attracted030

a great amount of attention in research fields (Mu-031

rayama, 2021; Varnosfaderani et al., 2024; Kanaani,032

2024; Zhang et al., 2024; Si et al., 2023; Kim et al.,033

2023; He et al., 2021). With the rapid develop-034

ment of social platforms, the dissemination of mis-035

information becomes easier in a multimodal way036

with textual and visual content. Traditional meth-037

ods, only leveraging textual information to verify038

claims, fail to detect fake news and claims with039

multimodal content. Therefore, multimodal fact040

verification has become a research hotspot.041

Figure 1: The comparison of the hypothesis of complete
modality, the real-world scenario of incomplete modal-
ity, and the common framework of traditional methods.
Because of the limited collection methods, claims and
evidence may miss some information about texts and
images in the real world.

Traditional multimodal studies extract textual 042

and visual features and leverage several modality 043

fusion mechanisms to learn multimodal represen- 044

tations and predict the verdict, such as attention- 045

based methods (Mishra et al., 2022; Wang and 046

Peng, 2022; Gao et al., 2022; Zhang et al., 047

2023) and graph-based methods (Cao et al., 2024; 048

Dhawan et al., 2023; Zhao et al., 2023; Qi et al., 049

2023). 050

Recent multimodal fact verification models fail 051

to resolve the real-world data which commonly 052

comes with incomplete information. They are de- 053

signed based on the hypothesis that both textual 054

and visual modalities are accessible, as Figure 1 (a) 055

shows. However, because of the collection of data 056

which leads to incomplete data (Sun et al., 2023), 057

like Figure 1 (b), textual and visual information 058

may be incomplete in the real world. The aforemen- 059

tioned methods would struggle to make accurate 060

predictions due to the missing patterns. There are 061
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some methods of learning high-quality multimodal062

representations to solve the incompleteness prob-063

lem (Wen et al., 2023; Sun et al., 2023; Ji et al.,064

2019; Liu et al., 2024; Yuan et al., 2024; Wang065

et al., 2023). However, multimodal fact verification066

entails cross-modal understandability as well as067

insightful comprehension between claims and068

evidence as shown in Figure 1, which makes these069

methods unsuitable to solve this problem. Specif-070

ically, claims and evidence are highly correlated,071

thus there must be some explicit content overlaps or072

writing style similarities, which benefits the simu-073

lation of missing parts of both claims and evidence.074

These relations are crucial to multimodal fact veri-075

fication as well as to simulate missing parts of the076

evidence, for they can help the model better un-077

derstand how the evidence supports or refutes the078

claim (Akhtar et al., 2023; Yao et al., 2023).079

To solve the aforementioned problems, we pro-080

pose a novel model named Missing Modality-081

Simulated Network (MMSN) for robust multi-082

modal fact verification tasks under missing modal-083

ity situations. We design a novel Dual-Channel084

Soft Simulation (DCSS) module to simulate the085

missing features using multimodal information and086

claim-evidence relations. It emphasizes insight-087

ful comprehension between claims and evidence088

which is significant and beneficial for multimodal089

fact verification. Instead of using a hard zero-filling090

or one-filling way, we utilize a soft weighted fill-091

ing and simulation method to capture more corre-092

lations within and between modalities. Simulta-093

neously, we extract valuable key phrases of tex-094

tual content as complementary knowledge via a095

large language model, since fine-grained knowl-096

edge enables the model to capture more comprehen-097

sive features. Then, we design a Multi-granularity098

Multimodal Fusion (MMF) module based on at-099

tention mechanisms to integrate multimodal and100

multi-granularity features comprehensively for the101

prediction of each claim-evidence pair. The DCSS102

and MMF modules ensure the model learns a robust103

multimodal representation even the data informa-104

tion is incomplete.105

To investigate the performance of our proposed106

model, we conduct extensive experiments on three107

commonly used datasets, FACTIFY (Mishra et al.,108

2022), MOCHEG (Yao et al., 2023), and Fin-Fact109

(Rangapur et al., 2023). The experimental results110

show the effectiveness and superiority of our pro-111

posed model. We further demonstrate the efficacy112

of the DCSS and the MMF modules compared with113

other simulation and fusion methods through sev- 114

eral experiments. 115

Our main contributions are as follows: (1) We 116

propose a novel Missing Modality-Simulated Net- 117

work for robust multimodal fact verification tasks 118

with incomplete data, enhancing the robustness of 119

the multimodal fact verification model; (2) We pro- 120

pose a novel Dual-Channel Soft Simulation module 121

to comprehensively simulate missing features con- 122

sidering both cross-modal information and claim- 123

evidence correlations with a soft-weighted method, 124

emphasizing the importance of cross-modal cor- 125

relations and obtaining comprehensive simulated 126

representations; (3) To evaluate the performance 127

of our proposed method, we carry out experiments 128

on three commonly used multimodal datasets. Our 129

model outperforms the comparison methods, which 130

demonstrates the effectiveness and superiority of 131

the proposed model. 132

2 Methodology 133

In this section, we present the Missing Modality- 134

Simulated Network (MMSN) in detail for multi- 135

modal fact verification with missing visual modal- 136

ity. We begin by providing the problem definition 137

and feature extraction, after which we introduce 138

the overall framework of MMSN. Subsequently, 139

we describe the details of the proposed method. 140

2.1 Problem definition 141

Multimodal fact verification aims to verify the 142

given claim with textual and visual contents, us- 143

ing retrieved multimodal evidence from databases, 144

such as Wikipedia and fact-checking websites. Let 145

P = {CT , CI , ET , EI}|P| be the corpus of the 146

dataset, where CT and CI denote the text and im- 147

age of the claim, and ET and EI denote the text 148

and image of the evidence. Each claim-evidence 149

pair may have complete information or missing text 150

or image information of claim or evidence1. Specif- 151

ically, for each claim-evidence pair p, we manually 152

set 3 flags f I
C , fT

E , and f I
E to indicate whether the 153

text or image of the claim and evidence are missing. 154

If the evidence text is missing, fT
E is set to 1, other- 155

wise fT
E is set to 0. Each claim-evidence pair will 156

not simultaneously miss 2 modalities of evidence, 157

that is, fT
E ⊕ f I

E = 1. The target y ∈ Y . The goal 158

1Here we do not consider the circumstance that both text
and image of evidence are missing or claim text is missing,
because this kind of data will be regarded as less check-worthy
claims and be filtered at the beginning of fact-checking proce-
dure.
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Figure 2: The overall architecture of MMSN. Firstly, given the text and image of the claim and evidence, we
leverage pre-trained models (e.g., DeBERTa and SWIN) to extract textual and visual embeddings respectively. Then
we enhance the embeddings by extracting key phrases using large language models, to improve the modeling of
fine-grained semantics. Based on enhanced textual and visual embeddings, we fill in the missing modality features
through the soft simulation module by considering both cross-modal information and claim-evidence correlations.
Thirdly, we employ a multi-granularity multimodal fusion module to obtain the multimodal representation and
finally make predictions. G, S, K denote document-level representations of claim and evidence, sentence-level
representations of claim and evidence, and representations of key information, respectively.

is to find a function F : P → Y that maps the data159

to the label set and makes predictions.160

2.2 Overall architecture of MMSN161

Our objective is to learn fine-grained multimodal162

representations by capturing more granular infor-163

mation in textual and visual content with missing164

visual modality. To this end, we propose a novel165

Missing Modality-Simulated Network for robust166

multimodal fact verification. Figure 2 illustrates167

the overall architecture of MMSN, which mainly168

consists of the following components: (1) Feature169

Extraction and Key Phrase Capture, (2) Dual-170

Channel Soft Simulation, (3) Multi-granularity171

Multimodal Fusion, and (4) Classifier.172

2.3 Feature extraction and key phrase capture173

First, we extract raw features of both claim and174

evidence by textual and visual encoders and capture175

key information of claim texts through key phrase176

extraction for fine-grained information integration.177

Feature extraction Following previous works178

(Cao et al., 2024), we extract raw sentence-level179

features of textual content by DeBERTa (He et al.,180

2021). For the visual modality, following previous181

works (Cao et al., 2024; Wang and Peng, 2022),182

we leverage a pre-trained model SWIN (Liu et al.,183

2021) to get raw visual embeddings. Specifically,184

we mean-pool the last hidden state of all tokens185

as the final raw embeddings for both textual and 186

visual embeddings. To integrate the calculation 187

process, we initialize the missing embeddings as 0. 188

tC , vC , tE ,and vE denote the final initialized em- 189

beddings of the claim-evidence pair p from textual 190

and visual modality, respectively. 191

Key phrase capture For fine-grained key 192

phrases, we resort to ChatGPT2 to extract fine- 193

grained key phrases and obtain fine-grained knowl- 194

edge. We use the following prompt to extract key 195

phrases: 196

Please return a list containing key 197

phrases that help verify the claim’s truth- 198

fulness. Let’s think step by step. Please 199

return in this form: Key phrases: [key 200

phrases]. Here is the text: [TEXT]. 201

Then we also utilize DeBERTa to extract raw fea- 202

tures and mean-pool the hidden state of all tokens 203

as embeddings of key phrases kC for claims and 204

evidence, respectively. 205

2.4 Dual-channel soft simulation 206

Our objective is to learn comprehensive multimodal 207

representations to verify the truthfulness with miss- 208

ing modalities. These missing contents are crucial 209

to make more accurate predictions and promote the 210

accuracy of detection. Hence, we attempt to utilize 211

2https://openai.com/chatgpt/
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a Dual-Channel Soft Simulation (DCSS) to learn212

and imitate the missing features from available tex-213

tual and visual features, capturing both intra-modal214

and inter-modal correlations that simulate the miss-215

ing representation to the greatest extent.216

2.4.1 Modality channel simulation217

Considering the real-world scenario, claim text is218

always available, otherwise it cannot be detected.219

Hence, we only simulate textual representations of220

evidence and visual representations of both claims221

and evidence.222

Textual-specific feature simulation For claim-223

evidence pairs without evidence textual content,224

we leverage available textual information to extract225

unique textual features t
′
C and t

′
E by:226

t
′
M = σ(tMW1 + b1),M ∈ {C,E}, (1)227

where W1 and b1 are learnable parameters, and σ228

denotes the activation function.229

Visual-specific feature simulation For visual230

content simulation, we first utilize available visual231

representations of both claims and evidence to ob-232

tain Visual-specific feature representation v
′
C and233

v
′
E by:234

v
′
M = σ(vMW2 + b2),M ∈ {C,E}, (2)235

where W2 and b2 are learnable parameters.236

Cross-modal correlated representation To cap-237

ture cross-modal correlations and avoid the distur-238

bance of raw embeddings, we utilize textual and239

visual unique features to calculate correlated rep-240

resentation for claim-evidence channel simulation241

Corr by:242

tU =

[
t
′
C ,

t
′
E

]
, vU =

[
v
′
C ,

v
′
E

]
,

Corr = σ((tUvU
T )W3 + b3),

(3)243

where tU and vU denote textual- and visual-specific244

representations respectively.245

2.4.2 Claim-evidence channel simulation246

We leverage the modality-specific features and247

cross-modal correlated representations to calculate248

the simulated textual and visual representations.249

First we calculate the simulated textual representa-250

tion by:251

t̂E = t
′
E + wTCorrvU ,

t∗E = tE + fT
E t̂E ,

(4)252

where fT
E is the flag that demonstrates whether the 253

textual evidence is missing and wT is the weight 254

calculated by: 255

wT = softmax(
t
′
EtU

T

√
d

), (5) 256

where d denotes the dimension of textual embed- 257

dings. 258

Similarly, we simulate the missing visual repre- 259

sentations by: 260

v̂M = v
′
M + wMCorr

T tU ,M ∈ {C,E}
v∗M = vM + f I

M v̂M ,
(6) 261

where fT
M is the flag that demonstrates whether 262

the visual representation is missing and wM is the 263

weight calculated by: 264

wM = softmax(
v
′
MvU

T

√
d

),M ∈ {C,E}. (7) 265

Through the above operations, we leverage cross- 266

modal and claim-evidence features to simulate the 267

missing textual and visual representation and ob- 268

tain the simulated representations tC , t∗E , v
∗
C , and 269

v∗E . To restrain the quality of simulated represen- 270

tations, we utilize the similarity loss Lf to restrain 271

the quality of simulated representations (see details 272

in section 2.7). 273

2.5 Multi-granularity multimodal fusion 274

Through the above procedures, we obtain the avail- 275

able textual representations cT and eT , the avail- 276

able visual representations cI and eI , the simu- 277

lated representation of missing modalities T̂E , V̂C , 278

andV̂E , and the representations kpC and kpE . In- 279

spired by Zhang et al. (2023), to take full advan- 280

tage of these features and comprehensively fuse the 281

multimodal representations, we design two kinds 282

of fusion methods to deal with multi-granular fea- 283

tures. 284

We propose a coarse-grained attention fu- 285

sion module for the coarse-grained data, such 286

as document-level and image-level representa- 287

tions, to capture coarse-grained multimodal in- 288

teractions. For a claim-evidence pair C = 289

{cT , ciI(V̂C), eT (T̂E), eI(V̂E)}, the fusion repre- 290

sentations m̃caf are calculated by 3: 291

m̃caf = concat(α1Θ1c+ e, α2Θ2e+ c), (8) 292

3Here we only demonstrate the calculation process of cross-
modal representation, actually m̃caf also contains intra-modal
fused representation, and so does m̃faf
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where Θ1 and Θ2 denote learnable parameters, and293

c ∈ {cT , cI(V̂C)} and e ∈ {e,T eI(V̂E)}. α1 and294

α2 denote the attention scores between claim and295

evidence:296

α1 = softmax(
ecT√
d
), (9)297

298

α2 = softmax(
ceT√
d
). (10)299

We also propose a fine-grained attention fusion300

module to capture fine-grained semantics and rela-301

tions between key phrases and textual representa-302

tions. Specifically, for key phrases from the claim303

text, we divide the evidence document into sen-304

tences and obtain the sentence representation set305

esent
4. Then we regard each key information repre-306

sentation as a Query to calculate the attention score307

and obtain fine-grained multimodal representations308

m̃faf through a sliding window whose length is l:309

m̃faf
i,j = mean(kpiC + α3Θ3e

lj
sent), (11)310

where Θ3 is a learnable parameter and α3 denotes311

the attention scores between textual content and312

key information, calculated the same as α1 and α2,313

and lj denotes the j-th time that the window slides.314

Then we mean-pool the coarse-grained multi-315

modal features m̃caf and the fine-grained multi-316

modal features m̃faf and concatenate them to get317

the comprehensive multimodal representations m̃318

for label prediction.319

2.6 Classifier320

To predict the label of the given claim-evidence321

pair, we use the multimodal representation m̃ as322

input to the category classifier, which consists of a323

2-layered fully connected network. The prediction324

process is carried out as follows:325

ŷ = softmax(W 1σ(W 0m̃)), (12)326

where W 0 and W 1 are learnable parameters and ŷ327

is the predicted label.328

2.7 Training loss329

During the training stage, we calculate two loss330

functions to restrain the quality of simulated repre-331

sentations and classification accuracy.332

4Here we only extract entities from claim-evidence pairs
with available textual evidence. For those pairs missing evi-
dence text we set the entite set as 0.

First, we design a similarity loss Lf to calculate 333

the similarity of simulated representations and their 334

origin representations: 335

Lf =

|C|∑
i=1

(D(ciI , V̂
i
C)f

I
C +D(eiT , T̂

I
E)f

T
E

+D(eiI , V̂
i
E)f

I
E),

(13) 336

where f I
C , fT

E , and f I
E are flags to mark whether 337

textual or visual modality is missing (as mentioned 338

in section 2.1), |C| denotes the length of the dataset, 339

and D denotes the distance function. Here we use 340

the cosine similarity as the distance function. 341

Then we utilize cross-entropy loss Lce as the 342

classification loss to restrain the model from ob- 343

taining a higher performance: 344

Lcls = −
|C|∑
i=1

yilog(ŷi), (14) 345

where |C| is the length of the dataset. 346

Overall, to train our model, we use the following 347

loss function L: 348

L = Lcls + γLf , (15) 349

where γ is a trade-off to balance the importance of 350

the simulation task in the training stage. 351

3 Experiment setting 352

Datasets To evaluate the effectiveness of our pro- 353

posed MMSN for multimodal fact verification with 354

incomplete modality, we choose three public bench- 355

mark datasets, FACTIFY (Mishra et al., 2022), 356

MOCHEG (Yao et al., 2023), and Fin-Fact (Ran- 357

gapur et al., 2023), to conduct experiments. The 358

detailed information on these three datasets can be 359

found in Appendix C. 360

To imitate real-world scenarios, we mask the tex- 361

tual content of evidence and the visual content of 362

claim and evidence in different proportions, specif- 363

ically from 0% to 100%5. We ensure that at least 364

one of the textual and visual content of evidence 365

is available and manually remove those claim- 366

evidence pairs without both textual and visual con- 367

tent which are regarded as less check-worthy. 368

5For example, for the 50%-masking setting, we randomly
sample 50% claim-evidence pairs and discard some of their
modality information adhering to the aforementioned require-
ments in section 2.1.
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Model
FACTIFY MOCHEG Fin-Fact

0% 50% 100% 0% 50% 100% 0% 50% 100%
Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w

DeBERTa (He et al., 2021) 63.61 63.60 58.79 58.77 56.48 56.60 40.74 40.55 35.69 35.86 32.85 32.88 67.32 67.30 64.01 64.00 61.34 61.33
CLIP (Radford et al., 2021) 70.36 70.36 66.23 66.23 63.73 63.71 49.43 49.20 47.88 47.89 44.96 44.89 68.27 68.22 65.73 65.74 62.82 62.82
ConcatNet (Mishra et al., 2022) 73.71 73.64 68.95 68.95 65.45 65.50 50.48 50.12 48.57 48.59 45.56 45.56 68.97 69.02 66.43 66.45 63.03 63.05
PreCoFact (Wang and Peng, 2022) 75.61 75.74 69.53 69.56 66.92 66.91 68.47 68.45 64.38 64.40 60.66 60.66 75.22 75.20 72.79 72.77 69.50 69.50
Logically (Gao et al., 2022) 77.03 77.00 71.35 71.35 67.33 67.30 67.78 67.78 64.98 64.99 61.76 61.74 74.85 74.81 73.14 73.16 70.64 70.68
ECENet (Zhang et al., 2023) 81.48 81.50 71.45 71.46 68.83 68.82 69.40 69.42 66.42 66.49 63.59 63.61 76.15 76.15 73.41 73.43 71.77 71.77
Multi-KE GAT (Cao et al., 2024) 79.64 79.64 71.38 71.38 68.97 68.97 70.10 70.14 66.53 66.49 63.48 63.47 76.33 76.33 73.66 73.62 71.55 71.57
DD-IMvMLC-net (Wen et al., 2023) 79.24 79.25 71.65 71.63 69.90 69.94 68.98 68.96 66.54 66.51 64.72 64.71 74.76 74.75 72.36 72.37 70.46 70.46
KDCN (Sun et al., 2023) 80.08 80.08 71.57 71.58 68.87 68.89 68.80 68.83 66.36 66.34 64.46 64.44 76.24 76.27 73.75 73.78 72.06 72.05
MMSN (Ours) 80.73 80.77 73.60 73.61 70.98 70.99 70.05 70.09 66.93 66.94 65.81 65.94 77.01 77.00 74.41 74.44 73.51 73.50

Table 1: Result of fact verification task with missing modality with different proportions of missing modality. We
use weighted F1 (F1w, %) and Accuracy (Acc, %) to evaluate the performance. Bold denotes the best performance
and underline denotes the second best performance. 50% and 100% denote the proportion of missing modality. In
Appendix A, we report the full result in Table 2, 3, and 4.

Baselines To assess the performance of our pro-369

posed model, we compare it to several multimodal370

fact verification approaches. DeBERTa (He et al.,371

2021) leverage the pre-trained model DeBERTa ex-372

tract textual features to make predictions. CLIP373

(Radford et al., 2021) learns multimodal represen-374

tations and concatenates them to predict the label.375

ConcatNet (Mishra et al., 2022) utilizes cosine376

similarity to fuse inner-modal features and concate-377

nates textual and visual representations to obtain378

multimodal features. PreCoFact (Wang and Peng,379

2022) uses the co-attention layers to fuse multi-380

modal contents and predict the label. Logically381

(Gao et al., 2022) uses a decision tree classifier with382

several multimodal features to make predictions.383

ECENet (Zhang et al., 2023) introduces textual384

and visual entities as external knowledge helping385

to predict the label. Multi-KE GAT (Cao et al.,386

2024) leverages multi-source knowledge and het-387

erogeneous fusion methods to perform multimodal388

interactions and make predictions.389

Besides, we compare several multimodal repre-390

sentation learning methods with incomplete modal-391

ity to investigate the effectiveness of our proposed392

model. DD-IMvMLC-net (Wen et al., 2023) uses393

an encoder-decoder framework to learn compre-394

hensive multimodal representations with missing395

modality. KDCN (Sun et al., 2023) capture the396

inconsistent information at the cross-modal level397

and the content-knowledge level to learn a compre-398

hensive multimodal representation with incomplete399

modality. More detailed descriptions on related400

work can be found in Appendix D.401

Implementation details We use a Tesla V100-402

PCIE GPU with 32GB memory for all experiments403

and implement our model via the Pytorch frame-404

work. The seed is set to 43. The number of atten-405

tion heads is set to 4. The batch size is 32. We406

set the learning rate as 2e-5. For each claim or evi- 407

dence, we extract at most 5 key phrases. We employ 408

DeBERTa (He et al., 2021) and Swin Transformer 409

(Liu et al., 2021) as the pre-trained language and vi- 410

sual models. We employ GPT-3.5 as the key-phrase 411

extractor. For γ, we adaptively set to 0.6-0.8 adher- 412

ing to emperical results. More detailed information 413

is demonstrated in Appendix B. 414

Evaluation metrics To evaluate the performance 415

of the proposed model, the Accuracy score and 416

the weighted F1 score are used as the evaluation 417

metrics for all three datasets. 418

4 Result and discussion 419

4.1 Overall performance 420

We conduct the experiments on three datasets and 421

the experimental results are shown in Table 1. Our 422

MMSN achieves comparable performance on all 423

datasets for verification with complete modality 424

information. Here we only report 0%, 50%, and 425

100% settings, and more specific results are demon- 426

strated in Appendix A. It can be observed that 427

MMSN outperforms other methods in most settings. 428

Traditional multimodal fact verification methods 429

(e.g., ECENet, and MultiKE-GAT) lack flexibility 430

and adaptability to handle the modality-missing 431

scenarios completeness hypothesis. Approaches fo- 432

cusing on multimodal representation learning with 433

missing modalities (e.g., DD-IMvMLC-net and 434

KDCN) improve the capability of generalization 435

but neglect task-specific feature extraction, which 436

leads to low performance. Furthermore, focusing 437

on the 0% setting, the performance of MMSN is 438

comparable to traditional methods. It demonstrates 439

that MMSN can solve data with complete informa- 440

tion as well, which further proves the robustness of 441

our model. 442
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(a) FACTIFY (b) MOCHEG (c) Fin-Fact

Figure 3: The result of ablation studies on 3 datasets. We use weighted F1 (F1w, %) to evaluate the performance.
50% and 100% denote the proportion of missing modality. DCSS, KP, MMF, CMC, IMC, and CEC denote
dual-channel soft simulation, fine-grained key phrases, multi-granularity multimodal fusion, cross-modal correlation,
intra-modal correlation, and claim-evidence correlation respectively.

(a) FACTIFY (b) MOCHEG (c) Fin-Fact

Figure 4: Experimental results of the analysis of simula-
tion methods on three datasets. We use a weighted F1
score to evaluate the performance.

(a) FACTIFY (b) MOCHEG (c) Fin-Fact

Figure 5: Experimental results of the analysis of fusion
methods on three datasets. We use a weighted F1 score
to evaluate the performance.

Overall, the experimental results demonstrate443

that MMSN has the outstanding capability of han-444

dling multimodal fact verification tasks. It is more445

flexible and robust to the real-world circumstances446

in which news content is missing.447

4.2 Ablation study448

We conduct the ablation study to analyze key449

components of MMSN. We remove each compo-450

nent including the dual-channel soft simulation451

(DCSS), fine-grained key phrases (KP), and multi-452

granularity multimodal fusion(MMF), respectively.453

For the DCSS module, we further investigate the454

importance of cross-modal (CMC), intra-modal455

(IMC), and claim-evidence (CEC) correlation. The 456

ablation results are shown in Figure 3. 457

Specifically, intra-modal features are more sig- 458

nificant compared to cross-modal simulation, for it 459

contains more crucial features to simulate missing 460

representations. It demonstrates that using only 461

one modality to simulate features is impractical. 462

It can be observed that introducing CMC, IMC, 463

and CEC can also improve the 0% setting perfor- 464

mance, which indicates that these fine-grained in- 465

formation and correlations are also crucial to the 466

multimodal fact verification with complete data. 467

Besides, compared to other correlations, claim- 468

evidence correlations have a more crucial impact 469

on the model, which further proves the hypothesis 470

we mention in section 1. Furthermore, the per- 471

formance degrades the performance significantly 472

on these three datasets in both the 50%-missing 473

and 100%-missing setting, which further indicates 474

that external fine-grained knowledge is beneficial 475

to the label prediction and LLMs are capable of 476

understanding the extraction task and discovering 477

key phrases useful to fact verification. We remove 478

the multi-granularity multimodal fusion module 479

as well. The performance drops rapidly and dra- 480

matically, which elucidates that fusion modules 481

are critical to obtaining comprehensive multimodal 482

representations for prediction-making procedures. 483

Overall, these results of different proportion set- 484

tings demonstrate the robustness and effectiveness 485

of each component in MMSN. 486

4.3 Module analysis 487

We further conduct several experiments to investi- 488

gate the usefulness of each proposed module, com- 489
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pared to other available approaches.490

Modality simulation We analyze the impact of491

different simulation methods. We replace the492

DCSS module with different simulation methods493

and intend to probe its effectiveness and how better494

its simulated representations are. We use 3 methods495

to replace DCSS: (1) zero-filling, which utilizes496

a zero tensor as a substitution; (2) white-filling,497

which regards the missing image as a pure white498

picture; and (3) concatenation, which concatenates499

the cross-modal and claim-evidence simulated rep-500

resentation rather than in a weighted way. Fig-501

ure 4 demonstrates the experimental results lever-502

aging these simulation methods. Our model out-503

performs these simulation methods in weighted F1504

scores. It indicates that these approaches omit the505

significant semantic information contained in vi-506

sual modalities, which degrades the performance in507

multimodal tasks. Besides, compared to DCSS, the508

concatenation method performs worse, which eluci-509

dates that simply concatenation cannot capture the510

comprehensive information between modalities.511

Multi-granularity fusion Then, we explore the512

capability and effectiveness of our proposed multi-513

granularity multimodal fusion module. We com-514

pare our module with two representative-used fu-515

sion methods: (1) concatenation-based fusion, sim-516

ply concatenating all of the multimodal represen-517

tations; and (2) attention-based fusion, applying518

the cross-attention mechanism without considering519

different granularities. Figure 5 shows the experi-520

mental results using these three fusion methods. It521

can be observed that our multi-granularity fusion522

module outperforms other approaches. It indicates523

that the main content and the fine-grained knowl-524

edge should be treated and operated distinctively525

to capture both coarse-grained and fine-grained se-526

mantic information that is essential to predict the527

verdict of a claim.528

4.4 Simulation analysis529

We further compare the quality of simulated fea-530

tures obtained by the dual-channel soft simulation531

module with the concatenation method and show532

the result in Figure 6. We can obtain a similar dis-533

tribution compared to original representations of534

both textual and visual features, and it illustrates535

the importance and advantages that cross-modal536

and claim-evidence correlations are taken into ac-537

count when we deal with tasks with incomplete538

modalities.539

(a) Simulated textual rep-
resentation by Concat

(b) Simulated textual rep-
resentation by MMSN

(c) Simulated visual rep-
resentation by Concat

(d) Simulated visual rep-
resentation by MMSN

Figure 6: The comparison of the simulated features
and original representations of different methods. The
blue dots demonstrate the original representations of
evidence images, and the red dots demonstrate the sim-
ulated features.

5 Conclusion 540

This work has investigated the real-world scenario 541

in which multimodal data for fact verification may 542

be incomplete during the limited collection proce- 543

dure, missing some important multimodal content. 544

We propose a novel Missing Modality-Simulated 545

Network (MMSN) for robust verification. Besides, 546

we design a novel soft simulation module to imi- 547

tate the missing visual features and eliminate the 548

noise and duplicates by utilizing both intra-modal 549

and inter-modal correlations instead of using only 550

one modality. Moreover, we propose a multi- 551

granular multimodal fusion module to integrate 552

coarse-grained and fine-grained data respectively. 553

The experimental results on three commonly used 554

datasets show that MMSN has been proven to be ca- 555

pable of effectively dealing with modality-missing 556

multimodal fact verification tasks in comparison 557

with other competitive methods. 558

Limitation 559

In this paper, there are some limitations that can 560

be improved in future research. First, we do not 561

take LLM-as-verifiers into account. LLMs demon- 562

strate significant performance in NLP tasks, while 563

we only leverage a small part of their capabilities 564

to extract key phrases. How to directly utilize the 565

verification capability of LLMs is still uncovered. 566

Second, we focus on how to simulate the missing 567

8



information, while there are some approaches to568

leverage retrieval models to obtain more evidence.569

They make a compromise between correlations of570

claim and evidence and information missing prob-571

lems. This may be one of the future research direc-572

tions.573
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A Overall results710

To further analyse the effectiveness of our pro-711

posed model, we also conduct extensive experi-712

ments to substantiate our conclusion on FACTIFY,713

MOCHEG, and Fin-Fact. We examine the differ-714

ent proportions of missing information from 0% to715

100%. The results are demonstrated in Table 2, 3,716

and 4.717

B Parameter analysis718

To further study the impact of the hyper-parameter719

γ, we conduct several experiments with different720

settings of γ and report the results in Figure 7.721

From Figure 7, at the onset, the model’s per- 722

formance exhibited a positive correlation with γ; 723

however, as the magnitude of a continued to es- 724

calate, the model’s efficacy showed a subsequent 725

decline. For example, the best performance on 726

FACTIFY is gained when γ is set to 0.6 for 20% 727

percentage of missing modality, and 0.5 for 50%, 728

suggesting the importance of striking a balance be- 729

tween the simulation and prediction objectives to 730

optimize the model’s effectiveness. Besides, the 731

different performances between different settings 732

further indicate that MMSN is sensitive to the hy- 733

perparameter γ and it is crucial to choose a proper 734

setting for different datasets. 735

C Dataset statistics 736

FACTIFY collects multimodal claim-evidence 737

pairs from handles of Indian and US news sources. 738

Each pair in this dataset is classified into five cat- 739

egories, Support Multimodal, Support Text, Insuf- 740

ficient Multimodal, Insufficient Text, and Refute. 741

MOCHEG contains claims associated with poli- 742

tics. Each claim is annotated into three categories, 743

Supported, Refuted, and NEI. Fin-Fact contains 744

claims relevant to financial issues and each claim is 745

categorized into three labels, True, False, and NEI. 746

The number of these datasets are shown in Table 5. 747

748

D Related work 749

Fact verification aims to predict the verdicts of 750

check-worthy claims with several retrieved evi- 751

dence. Traditional fact verification approaches 752

only utilize textual information to make predic- 753

tions (Zhang et al., 2024; Kim et al., 2023; He et al., 754

2021), which fails to deal with claims with multi- 755

modal content. Hence, multimodal fact verification 756

has become a research hotspot. This paper mainly 757

focuses on multimodal fact verification tasks, un- 758

der the real-world challenge of missing modality. 759

In this section, we will report on the related work 760

in these two research fields. 761

D.1 Multimodal fact verification 762

Vo and Lee (2020) draw significant attention to 763

using multimodal content for fact verification by 764

considering both textual and visual content. In re- 765

cent years, there has been a significant increase in 766

research focusing on multimodal fact verification 767

tasks (Sahar Abdelnabi and Fritz, 2022; Mishra 768

et al., 2022; Wang and Peng, 2022; Zhang et al., 769
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Model
FACTIFY

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w

DeBERTa (He et al., 2021) 63.61 63.60 62.60 62.56 61.74 61.70 60.88 60.85 59.67 59.67 58.79 58.77 58.31 58.33 58.02 58.00 57.59 57.59 57.05 57.05 56.48 56.60
CLIP (Radford et al., 2021) 70.36 70.36 69.84 69.86 68.92 68.90 68.07 68.07 67.38 67.39 66.23 66.23 65.87 65.60 65.23 65.40 64.95 64.92 64.14 64.33 63.73 63.71
ConcatNet (Mishra et al., 2022) 73.71 73.64 72.96 72.84 71.78 71.50 70.58 70.55 69.66 69.66 68.95 68.95 68.29 68.18 67.73 67.79 66.88 66.80 66.02 66.13 65.45 65.50
PreCoFact (Wang and Peng, 2022) 75.61 75.74 74.64 74.66 73.58 73.40 72.19 72.13 71.00 70.85 69.53 69.56 68.89 68.89 68.32 68.37 67.70 67.75 67.24 67.36 66.92 66.91
Logically (Gao et al., 2022) 77.03 77.00 75.85 75.87 74.69 74.60 73.63 73.44 72.28 72.29 71.35 71.35 70.65 70.61 69.83 69.83 68.94 68.77 68.34 68.33 67.33 67.30
ECENet (Zhang et al., 2023) 81.48 81.50 78.48 78.46 76.30 76.30 74.12 74.19 73.47 73.49 71.45 71.46 70.35 70.33 69.91 69.93 69.50 69.50 69.04 69.00 68.83 68.82
Multi-KE GAT (Cao et al., 2024) 79.64 79.64 77.88 77.88 75.79 75.75 73.60 73.55 72.18 72.14 71.38 71.38 70.86 70.85 70.11 70.11 69.60 69.57 69.14 69.14 68.97 68.97
DD-IMvMLC-net (Wen et al., 2023) 79.24 79.25 78.40 78.33 76.96 76.93 74.40 74.41 72.45 72.44 71.65 71.63 71.28 71.25 70.86 70.81 70.51 70.50 70.00 70.04 69.90 69.94
KDCN (Sun et al., 2023) 80.08 80.08 78.77 78.78 76.67 76.62 74.26 74.26 72.58 72.58 71.57 71.58 70.94 70.99 70.20 70.20 69.75 69.77 69.17 69.33 68.87 68.89
MMSN (Ours) 80.73 80.77 78.62 78.61 77.28 77.27 75.65 75.65 74.86 74.86 73.60 73.61 72.91 72.90 72.31 72.30 71.95 71.90 71.38 71.36 70.98 70.99

Table 2: Result of fact verification task with missing modality with different proportions of missing modality
on FACTIFY dataset. We use weighted F1 (F1w, %) and Accuracy (Acc, %) to evaluate the performance. Bold
denotes the best performance and underline denotes the second best performance.

Model
MOCHEG

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w

DeBERTa (He et al., 2021) 40.74 40.55 39.70 39.70 38.78 38.78 37.39 37.33 36.65 36.65 35.69 35.86 34.73 34.71 34.14 34.14 33.81 33.86 33.24 33.20 32.85 32.88
CLIP (Radford et al., 2021) 49.43 49.20 48.90 48.89 48.52 48.52 48.29 48.27 48.00 48.00 47.88 47.89 47.38 47.29 46.86 46.82 46.44 46.43 45.71 45.70 44.96 44.89
ConcatNet (Mishra et al., 2022) 50.48 50.12 49.92 49.92 49.67 49.74 49.30 49.26 48.80 48.66 48.57 48.59 48.08 48.08 47.50 47.52 46.94 46.94 46.41 46.38 45.56 45.56
PreCoFact (Wang and Peng, 2022) 68.47 68.45 67.83 67.80 67.04 66.93 66.33 66.32 65.61 65.65 64.38 64.40 63.80 63.87 63.25 63.28 62.40 62.40 61.59 61.58 60.66 60.66
Logically (Gao et al., 2022) 67.78 67.78 66.99 66.93 66.30 66.25 65.89 65.88 65.21 65.20 64.98 64.99 64.00 64.02 63.58 63.58 62.95 62.95 62.47 62.40 61.76 61.74
ECENet (Zhang et al., 2023) 69.40 69.42 68.69 68.69 68.14 68.12 67.85 67.81 67.23 67.22 66.42 66.49 65.60 65.50 65.05 65.03 64.67 64.66 64.29 64.29 63.59 63.61
Multi-KE GAT (Cao et al., 2024) 70.10 70.14 69.63 69.52 68.98 68.90 68.07 68.06 67.21 67.20 66.53 66.49 65.62 65.60 64.99 64.97 64.56 64.56 63.95 63.90 63.48 63.47
DD-IMvMLC-net (Wen et al., 2023) 68.98 68.96 68.42 68.43 68.20 68.20 67.98 67.98 67.30 67.37 66.54 66.51 66.29 66.29 65.89 65.90 65.52 65.52 65.06 65.02 64.72 64.71
KDCN (Sun et al., 2023) 68.80 68.83 68.45 68.45 68.17 68.11 67.90 67.92 67.20 67.20 66.36 66.34 66.23 66.23 65.90 65.87 65.50 65.41 64.87 64.89 64.46 64.44
MMSN (Ours) 70.05 70.09 69.89 69.82 69.17 69.17 68.66 68.73 67.68 67.68 66.93 66.94 66.30 66.30 66.19 66.22 66.07 66.07 65.96 65.99 65.81 65.94

Table 3: Result of fact verification task with missing modality with different proportions of missing modality on
MOCHEG dataset. We use weighted F1 (F1w, %) and Accuracy (Acc, %) to evaluate the performance. Bold
denotes the best performance and underline denotes the second best performance.

Model
MOCHEG

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w Acc F1w

DeBERTa (He et al., 2021) 67.32 67.30 66.66 66.67 66.12 66.10 65.54 65.53 64.68 64.65 64.01 64.00 63.58 63.57 62.95 62.96 62.47 62.60 61.89 61.85 61.34 61.33
CLIP (Radford et al., 2021) 68.27 68.22 67.43 67.44 67.15 67.15 66.78 66.74 66.23 66.15 65.73 65.74 65.26 65.27 64.87 64.87 63.99 64.93 63.11 63.1 62.82 62.82
ConcatNet (Mishra et al., 2022) 68.97 69.02 68.50 68.50 67.94 67.98 67.26 67.35 66.84 66.80 66.43 66.45 65.86 65.75 65.27 65.22 64.39 64.39 63.77 63.71 63.03 63.05
PreCoFact (Wang and Peng, 2022) 75.22 75.20 74.83 74.72 74.28 74.26 73.86 73.88 73.17 73.10 72.79 72.77 72.20 72.21 71.77 71.77 71.09 71.04 70.65 70.47 69.50 69.60
Logically (Gao et al., 2022) 74.85 74.81 74.38 74.30 74.12 74.11 73.89 73.84 73.46 73.42 73.14 73.16 72.88 72.88 72.53 72.48 71.95 71.99 71.36 71.35 70.64 70.68
ECENet (Zhang et al., 2023) 76.15 76.15 75.64 75.68 75.00 74.98 74.73 74.73 74.22 74.28 73.41 73.43 73.18 73.15 72.87 72.88 72.54 72.5 72.06 72.01 71.77 71.77
Multi-KE GAT (Cao et al., 2024) 76.33 76.33 75.98 75.98 75.49 75.42 74.37 74.36 73.98 73.86 73.66 73.62 73.14 73.06 72.77 72.75 72.49 72.48 71.96 71.90 71.55 71.57
DD-IMvMLC-net (Wen et al., 2023) 74.76 74.75 74.50 74.50 74.09 74.03 73.82 73.80 73.27 73.26 72.36 72.37 72.05 72.05 71.89 71.83 71.54 71.55 71.00 70.85 70.46 70.46
KDCN (Sun et al., 2023) 76.24 76.27 75.94 75.93 75.68 75.64 75.17 75.17 74.69 74.62 73.75 73.78 73.18 73.06 72.97 72.95 72.68 72.68 72.33 72.33 72.06 72.05
MMSN (Ours) 77.01 77.00 76.59 76.58 76.23 76.22 75.67 75.67 75.33 75.26 74.41 74.44 74.18 74.11 73.99 73.96 73.85 73.84 73.74 73.66 73.51 73.50

Table 4: Result of fact verification task with missing modality with different proportions of missing modality on
Fin-Fact dataset. We use weighted F1 (F1w, %) and Accuracy (Acc, %) to evaluate the performance. Bold denotes
the best performance and underline denotes the second best performance.
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(a) FACTIFY (b) MOCHEG (c) Fin-Fact

Figure 7: Experimental results of the analysis of parameter γ on MOCHEG and Fin-Fact datasets. We use a
weighted F1 score to evaluate the performance.

Dataset Train Dev Test
FACTIFY 28,000 7,000 7,500
MOCHEG 11,669 1,490 2,442
Fin-Fact 2,358 336 675

Table 5: The statistics of three datasets.

2023; Cao et al., 2024; Yu et al., 2022; Chen et al.,770

2022; Dhankar et al., 2022; Aggarwal et al., 2022).771

By incorporating visual cues, these approaches aim772

to capture better the semantic meaning of the claim773

and its supporting evidence, thereby improving the774

performance of multimodal fact verification sys-775

tems.776

Sahar Abdelnabi and Fritz (2022) used the co-777

attention mechanism to capture inner-modal fea-778

tures and the CLIP model to obtain inter-modal fea-779

tures. Mishra et al. (2022) introduced a fine-grained780

fact categorization and an attention-based encoder781

to extract multimodal representations. Wang and782

Peng (2022) utilized a co-attention mechanism783

to integrate textual and visual features. ECENet784

(Zhang et al., 2023) introduced textual and vi-785

sual entities as external knowledge helping to pre-786

dict the label. Cao et al. (2024) introduced multi-787

source knowledge and constructed a heterogeneous788

graph for each claim-evidence pair to perform fine-789

grained and comprehensive multimodal interac-790

tions. Yu et al. (2022) considered text-to-image and791

image-to-text fusion simultaneously and designed792

a bidirectional fusion network utilizing two sepa-793

rated gating mechanisms to fuse multimodal fea-794

tures bidirectionally. Chen et al. (2022) observed795

the cross-modal ambiguity in fake statements to796

learn the ambiguity and difference between modal-797

ities, serving as a gating mechanism to control the798

multimodal fusion level. Dhankar et al. (2022) used799

cosine similarity to capture inner-modal relations 800

and concatenated representations of both modal- 801

ities to obtain multimodal features. Due to the 802

satisfactory performance of pre-trained language 803

models like GPT, Aggarwal et al. (2022) leveraged 804

the GPT model and tried to design suitable prompts 805

and verification methods to deal with multimodal 806

fact verification. 807

D.2 Multimodal representation learning with 808

missing modality 809

Recent studies on learning high-quality multimodal 810

representation with missing modality tend to utilize 811

simulation-based methods (Qian and Wang, 2023; 812

Zeng et al., 2023; Huan et al., 2024), or to leverage 813

available features to learn modal-invariant repre- 814

sentations without simulation (Lian et al., 2023; Xu 815

et al., 2023; Wei et al., 2023). 816

Qian and Wang (2023) utilized contrastive learn- 817

ing methods to capture shared cross-modal features 818

to learn a better representation of missing modality. 819

Zeng et al. (2023) utilized extra information such 820

as tags to simulate the missing textual and visual in- 821

formation to solve multimodal sentiment classifica- 822

tion. UniMF (Huan et al., 2024) introduced a trans- 823

lation module to leverage available information to 824

simulate the missing part for sentiment prediction. 825

Lian et al. (2023) focused on multimodal dialogue 826

systems and utilized a graph-based method to fuse 827

multimodal features and deal with the problem of 828

missing modality. Xu et al. (2023) introduced a 829

bipartite graph structure to capture modal-invariant 830

features. Moreover, Wei et al. (2023) leveraged a 831

teacher model trained with complete data to guide 832

the student model, making predictions with incom- 833

plete data. 834
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