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Abstract

Recently, multimodal fact verification tasks aim
to assess the truthfulness of multimodal claims
by the retrieved evidence through textual and
visual content. In contrast, the multimodal in-
formation may be incomplete in original posts
or missing during the data collection. How-
ever, recent missing-modality studies still can-
not properly handle the above complex miss-
ing situations of claim-evidence input pairs in
multimodal fact verification, as they fail to cap-
ture complicated relations between claims and
evidence. To solve these problems, we pro-
pose a novel model named Missing Modality-
Simulated Network (MMSN) for more robust
and adaptive multimodal fact verification. We
design a novel dual-channel soft simulation
module to use both cross-modal information
and claim-evidence correlations to simulate
missing features with a soft-weighted method.
Besides, MMSN exploits fine-grained textual
key information and designs coarse-grained
and fine-grained fusions to fuse multimodal
information and capture their interactions ex-
haustively. The experimental results on three
real-world public datasets show the superiority
and effectiveness of MMSN for robust multi-
modal fact verification.

1 Introduction

Fact verification, aiming to assess the truthfulness
of claims by the retrieved evidence, has attracted
a great amount of attention in research fields (Mu-
rayama, 2021; Varnosfaderani et al., 2024; Kanaani,
2024; Zhang et al., 2024; Si et al., 2023; Kim et al.,
2023; He et al., 2021). With the rapid develop-
ment of social platforms, the dissemination of mis-
information becomes easier in a multimodal way
with textual and visual content. Traditional meth-
ods, only leveraging textual information to verify
claims, fail to detect fake news and claims with
multimodal content. Therefore, multimodal fact
verification has become a research hotspot.
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Figure 1: The comparison of the hypothesis of complete
modality, the real-world scenario of incomplete modal-
ity, and the common framework of traditional methods.
Because of the limited collection methods, claims and
evidence may miss some information about texts and
images in the real world.

Traditional multimodal studies extract textual
and visual features and leverage several modality
fusion mechanisms to learn multimodal represen-
tations and predict the verdict, such as attention-
based methods (Mishra et al., 2022; Wang and
Peng, 2022; Gao et al., 2022; Zhang et al.,
2023) and graph-based methods (Cao et al., 2024;
Dhawan et al., 2023; Zhao et al., 2023; Qi et al.,
2023).

Recent multimodal fact verification models fail
to resolve the real-world data which commonly
comes with incomplete information. They are de-
signed based on the hypothesis that both textual
and visual modalities are accessible, as Figure 1 (a)
shows. However, because of the collection of data
which leads to incomplete data (Sun et al., 2023),
like Figure 1 (b), textual and visual information
may be incomplete in the real world. The aforemen-
tioned methods would struggle to make accurate
predictions due to the missing patterns. There are



some methods of learning high-quality multimodal
representations to solve the incompleteness prob-
lem (Wen et al., 2023; Sun et al., 2023; Ji et al.,
2019; Liu et al., 2024; Yuan et al., 2024; Wang
et al., 2023). However, multimodal fact verification
entails cross-modal understandability as well as
insightful comprehension between claims and
evidence as shown in Figure 1, which makes these
methods unsuitable to solve this problem. Specif-
ically, claims and evidence are highly correlated,
thus there must be some explicit content overlaps or
writing style similarities, which benefits the simu-
lation of missing parts of both claims and evidence.
These relations are crucial to multimodal fact veri-
fication as well as to simulate missing parts of the
evidence, for they can help the model better un-
derstand how the evidence supports or refutes the
claim (Akhtar et al., 2023; Yao et al., 2023).

To solve the aforementioned problems, we pro-
pose a novel model named Missing Modality-
Simulated Network (MMSN) for robust multi-
modal fact verification tasks under missing modal-
ity situations. We design a novel Dual-Channel
Soft Simulation (DCSS) module to simulate the
missing features using multimodal information and
claim-evidence relations. It emphasizes insight-
ful comprehension between claims and evidence
which is significant and beneficial for multimodal
fact verification. Instead of using a hard zero-filling
or one-filling way, we utilize a soft weighted fill-
ing and simulation method to capture more corre-
lations within and between modalities. Simulta-
neously, we extract valuable key phrases of tex-
tual content as complementary knowledge via a
large language model, since fine-grained knowl-
edge enables the model to capture more comprehen-
sive features. Then, we design a Multi-granularity
Multimodal Fusion (MMF) module based on at-
tention mechanisms to integrate multimodal and
multi-granularity features comprehensively for the
prediction of each claim-evidence pair. The DCSS
and MMF modules ensure the model learns a robust
multimodal representation even the data informa-
tion is incomplete.

To investigate the performance of our proposed
model, we conduct extensive experiments on three
commonly used datasets, FACTIFY (Mishra et al.,
2022), MOCHEG (Yao et al., 2023), and Fin-Fact
(Rangapur et al., 2023). The experimental results
show the effectiveness and superiority of our pro-
posed model. We further demonstrate the efficacy
of the DCSS and the MMF modules compared with

other simulation and fusion methods through sev-
eral experiments.

Our main contributions are as follows: (1) We
propose a novel Missing Modality-Simulated Net-
work for robust multimodal fact verification tasks
with incomplete data, enhancing the robustness of
the multimodal fact verification model; (2) We pro-
pose a novel Dual-Channel Soft Simulation module
to comprehensively simulate missing features con-
sidering both cross-modal information and claim-
evidence correlations with a soft-weighted method,
emphasizing the importance of cross-modal cor-
relations and obtaining comprehensive simulated
representations; (3) To evaluate the performance
of our proposed method, we carry out experiments
on three commonly used multimodal datasets. Our
model outperforms the comparison methods, which
demonstrates the effectiveness and superiority of
the proposed model.

2 Methodology

In this section, we present the Missing Modality-
Simulated Network (MMSN) in detail for multi-
modal fact verification with missing visual modal-
ity. We begin by providing the problem definition
and feature extraction, after which we introduce
the overall framework of MMSN. Subsequently,
we describe the details of the proposed method.

2.1 Problem definition

Multimodal fact verification aims to verify the
given claim with textual and visual contents, us-
ing retrieved multimodal evidence from databases,
such as Wikipedia and fact-checking websites. Let
P = {Cr,Cy, Er, Er}P! be the corpus of the
dataset, where C7 and C denote the text and im-
age of the claim, and Er and E; denote the text
and image of the evidence. Each claim-evidence
pair may have complete information or missing text
or image information of claim or evidence'. Specif-
ically, for each claim-evidence pair p, we manually
set 3 flags fé, fg, and f é to indicate whether the
text or image of the claim and evidence are missing.
If the evidence text is missing, fg is set to 1, other-
wise fg is set to 0. Each claim-evidence pair will
not simultaneously miss 2 modalities of evidence,
that is, fg <) fé = 1. The target y € Y. The goal

"Here we do not consider the circumstance that both text
and image of evidence are missing or claim text is missing,
because this kind of data will be regarded as less check-worthy
claims and be filtered at the beginning of fact-checking proce-
dure.
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Figure 2: The overall architecture of MMSN. Firstly, given the text and image of the claim and evidence, we
leverage pre-trained models (e.g., DeBERTa and SWIN) to extract textual and visual embeddings respectively. Then
we enhance the embeddings by extracting key phrases using large language models, to improve the modeling of
fine-grained semantics. Based on enhanced textual and visual embeddings, we fill in the missing modality features
through the soft simulation module by considering both cross-modal information and claim-evidence correlations.
Thirdly, we employ a multi-granularity multimodal fusion module to obtain the multimodal representation and
finally make predictions. G, S, K denote document-level representations of claim and evidence, sentence-level
representations of claim and evidence, and representations of key information, respectively.

is to find a function F' : P — Y that maps the data
to the label set and makes predictions.

2.2 Overall architecture of MMSN

Our objective is to learn fine-grained multimodal
representations by capturing more granular infor-
mation in textual and visual content with missing
visual modality. To this end, we propose a novel
Missing Modality-Simulated Network for robust
multimodal fact verification. Figure 2 illustrates
the overall architecture of MMSN, which mainly
consists of the following components: (1) Feature
Extraction and Key Phrase Capture, (2) Dual-
Channel Soft Simulation, (3) Multi-granularity
Multimodal Fusion, and (4) Classifier.

2.3 Feature extraction and key phrase capture

First, we extract raw features of both claim and
evidence by textual and visual encoders and capture
key information of claim texts through key phrase
extraction for fine-grained information integration.

Feature extraction Following previous works
(Cao et al., 2024), we extract raw sentence-level
features of textual content by DeBERTa (He et al.,
2021). For the visual modality, following previous
works (Cao et al., 2024; Wang and Peng, 2022),
we leverage a pre-trained model SWIN (Liu et al.,
2021) to get raw visual embeddings. Specifically,
we mean-pool the last hidden state of all tokens

as the final raw embeddings for both textual and
visual embeddings. To integrate the calculation
process, we initialize the missing embeddings as 0.
tc, v, tg,and vy denote the final initialized em-
beddings of the claim-evidence pair p from textual
and visual modality, respectively.

Key phrase capture For fine-grained key
phrases, we resort to ChatGPT? to extract fine-
grained key phrases and obtain fine-grained knowl-
edge. We use the following prompt to extract key
phrases:

Please return a list containing key
phrases that help verify the claim’s truth-
fulness. Let’s think step by step. Please
return in this form: Key phrases: [key
phrases]. Here is the text: [TEXT].

Then we also utilize DeBERTa to extract raw fea-
tures and mean-pool the hidden state of all tokens
as embeddings of key phrases k¢ for claims and
evidence, respectively.

2.4 Dual-channel soft simulation

Our objective is to learn comprehensive multimodal
representations to verify the truthfulness with miss-
ing modalities. These missing contents are crucial
to make more accurate predictions and promote the
accuracy of detection. Hence, we attempt to utilize

Zhttps://openai.com/chatgpt/



a Dual-Channel Soft Simulation (DCSS) to learn
and imitate the missing features from available tex-
tual and visual features, capturing both intra-modal
and inter-modal correlations that simulate the miss-
ing representation to the greatest extent.

2.4.1 Modality channel simulation

Considering the real-world scenario, claim text is
always available, otherwise it cannot be detected.
Hence, we only simulate textual representations of
evidence and visual representations of both claims
and evidence.

Textual-specific feature simulation For claim-
evidence pairs without evidence textual content,
we leverage available textual information to extract
unique textual features t/C and ¢, by:

ty = o(tuWi +b), M € {C,E}, (1)

where W1 and b; are learnable parameters, and o
denotes the activation function.

Visual-specific feature simulation For visual
content simulation, we first utilize available visual
representations of both claims and evidence to ob-
tain Visual-specific feature representation Ulc and

U/E by:
vy = o(vaWa + ba), M € {C,E}, (2
where W5 and b, are learnable parameters.

Cross-modal correlated representation To cap-
ture cross-modal correlations and avoid the distur-
bance of raw embeddings, we utilize textual and
visual unique features to calculate correlated rep-
resentation for claim-evidence channel simulation

Cor, by:
t v,
ty = |:Q7:|,UU: |: qj:|,
tp Vg (3)
COTT = O'((tUUUT)W3 + b3),

where tyy and vy denote textual- and visual-specific
representations respectively.

2.4.2 Claim-evidence channel simulation

We leverage the modality-specific features and
cross-modal correlated representations to calculate
the simulated textual and visual representations.
First we calculate the simulated textual representa-
tion by:

tp = tlE + wrCorvy,

th=tg + fhie,

4

where fg is the flag that demonstrates whether the
textual evidence is missing and wr is the weight
calculated by:

tpty”

Vd
where d denotes the dimension of textual embed-
dings.

Similarly, we simulate the missing visual repre-
sentations by:

); Q)

wp = softmax(

’lA)M = U;\/[ + U]MCOT‘TTtU,M € {C, E} (6)

I ~
v + farOms

Ui

where f]\:C[ is the flag that demonstrates whether
the visual representation is missing and wy is the
weight calculated by:

v}vaT

Vd

Through the above operations, we leverage cross-
modal and claim-evidence features to simulate the
missing textual and visual representation and ob-
tain the simulated representations t¢, t7;, v, and
vy. To restrain the quality of simulated represen-
tations, we utilize the similarity loss L to restrain
the quality of simulated representations (see details
in section 2.7).

), M e{C,E}. (7)

wyr = softmax(

2.5 Multi-granularity multimodal fusion

Through the above procedures, we obtain the avail-
able textual representations cr and er, the avail-
able visual representations ¢y and ey, the simu-
lated representation of missing modalities Tg, Ve,
andVj, and the representations kp. and kpp. In-
spired by Zhang et al. (2023), to take full advan-
tage of these features and comprehensively fuse the
multimodal representations, we design two kinds
of fusion methods to deal with multi-granular fea-
tures.

We propose a coarse-grained attention fu-
sion module for the coarse-grained data, such
as document-level and image-level representa-
tions, to capture coarse-grained multimodal in-
teractions. For a claim-evidence pair C =
{er, (Vo) er(Tk), er(Vg)}, the fusion repre-
sentations m°*/ are calculated by 3:

meaf = concat(a101c + e, a202¢ +¢),  (8)

Here we only demonstrate the calculation process of cross-

modal representation, actually /1% also contains intra-modal

fused representation, and so does 7’/



where ©1 and ©4 denote learnable parameters, and
¢ € {er,cr(Vo)} and e € {eper(Vp)}. ap and
a9 denote the attention scores between claim and
evidence:

€CT

a1 = softmaxr(——= )

\/g)7

T
ay = softmax(g).

Vd
We also propose a fine-grained attention fusion
module to capture fine-grained semantics and rela-
tions between key phrases and textual representa-
tions. Specifically, for key phrases from the claim
text, we divide the evidence document into sen-
tences and obtain the sentence representation set
€sent *. Then we regard each key information repre-
sentation as a Query to calculate the attention score
and obtain fine-grained multimodal representations
mf through a sliding window whose length is I:

(10)

ﬁz{?f = mean(kpl, + asOs3e?, ), (11)
where O3 is a learnable parameter and 3 denotes
the attention scores between textual content and
key information, calculated the same as a;; and a,
and [; denotes the j-th time that the window slides.

Then we mean-pool the coarse-grained multi-
modal features m° and the fine-grained multi-
modal features /% and concatenate them to get
the comprehensive multimodal representations m
for label prediction.

2.6 Classifier

To predict the label of the given claim-evidence
pair, we use the multimodal representation m as
input to the category classifier, which consists of a
2-layered fully connected network. The prediction
process is carried out as follows:

§ = softmax(W'e(Wom)), (12)
where W0 and W' are learnable parameters and
is the predicted label.

2.7 Training loss

During the training stage, we calculate two loss
functions to restrain the quality of simulated repre-
sentations and classification accuracy.

“Here we only extract entities from claim-evidence pairs
with available textual evidence. For those pairs missing evi-
dence text we set the entite set as 0.

First, we design a similarity loss £ ¢ to calculate
the similarity of simulated representations and their
origin representations:

|C]

Ly =Y (D(ch, Vi) &+ D(ekr, Th)
=1
+ D(e}, VE) fE),

(13)

where fé, fg, and f{; are flags to mark whether
textual or visual modality is missing (as mentioned
in section 2.1), |C'| denotes the length of the dataset,
and D denotes the distance function. Here we use
the cosine similarity as the distance function.

Then we utilize cross-entropy loss L. as the
classification loss to restrain the model from ob-
taining a higher performance:

C]

Las=—>_yilog(§), (14)
=1

where |C| is the length of the dataset.
Opverall, to train our model, we use the following
loss function L:
E:Ecl5+7£f7 (15)

where -y is a trade-off to balance the importance of
the simulation task in the training stage.

3 Experiment setting

Datasets To evaluate the effectiveness of our pro-
posed MMSN for multimodal fact verification with
incomplete modality, we choose three public bench-
mark datasets, FACTIFY (Mishra et al., 2022),
MOCHEG (Yao et al., 2023), and Fin-Fact (Ran-
gapur et al., 2023), to conduct experiments. The
detailed information on these three datasets can be
found in Appendix C.

To imitate real-world scenarios, we mask the tex-
tual content of evidence and the visual content of
claim and evidence in different proportions, specif-
ically from 0% to 100%>. We ensure that at least
one of the textual and visual content of evidence
is available and manually remove those claim-
evidence pairs without both textual and visual con-
tent which are regarded as less check-worthy.

SFor example, for the 50%-masking setting, we randomly
sample 50% claim-evidence pairs and discard some of their
modality information adhering to the aforementioned require-
ments in section 2.1.



FACTIFY MOCHEG Fin-Fact

Model 0% 50% 100% 0% 50% 100% 0% 50% 100%

Acc  Fl, Acc Fl, Acc Fly Acc  F1l, Acc F1, Acc F1, Acc  Fl, Acc Fl, Acc Fly
DeBERTa (He et al., 2021) 63.61 63.60 5879 58.77 5648 56.60 | 40.74 40.55 35.69 35.86 32.85 32.88 | 67.32 67.30 64.01 64.00 61.34 6133
CLIP (Radford et al., 2021) 70.36 7036 6623 66.23 63.73 63.71 | 49.43 4920 47.88 47.89 4496 44.89 | 68.27 68.22 6573 6574 62.82 62.82
ConcatNet (Mishra et al., 2022) 7371 73.64 6895 6895 6545 6550 | 5048 50.12 48.57 4859 4556 45.56 | 68.97 69.02 6643 6645 63.03 63.05
PreCoFact (Wang and Peng, 2022) 75.61 7574 69.53 69.56 66.92 6691 | 68.47 6845 64.38 64.40 60.66 60.66 | 7522 7520 72.79 72.77 69.50 69.50
Logically (Gao et al., 2022) 77.03 77.00 7135 7135 67.33 67.30 | 67.78 67.78 6498 6499 61.76 61.74 | 7485 74.81 73.14 73.16 70.64 70.68
ECENet (Zhang et al., 2023) 81.48 81.50 7145 71.46 68.83 68.82 | 69.40 6942 6642 6649 63.59 63.61 | 76.15 76.15 7341 7343 7177 71.77
Multi-KE GAT (Cao et al., 2024) 79.64 79.64 7138 71.38 68.97 6897 | 70.10 70.14 66.53 6649 6348 6347 | 7633 76.33 73.66 73.62 71.55 71.57
DD-IMVMLC-net (Wen et al., 2023) | 79.24 79.25 71.65 71.63 69.90 69.94 | 68.98 68.96 66.54 66.51 6472 6471 | 7476 7475 7236 7237 70.46 70.46
KDCN (Sun et al., 2023) 80.08 80.08 71.57 71.58 68.87 68.89 | 68.80 68.83 66.36 66.34 6446 64.44 | 7624 7627 7375 73.78 72.06 72.05
MMSN (Ours) 80.73 80.77 73.60 73.61 70.98 70.99 | 70.05 70.09 66.93 6694 6581 6594 |77.01 77.00 7441 74.44 7351 73.50

Table 1: Result of fact verification task with missing modality with different proportions of missing modality. We
use weighted F1 (F'1,,, %) and Accuracy (Acc, %) to evaluate the performance. Bold denotes the best performance
and underline denotes the second best performance. 50% and 100% denote the proportion of missing modality. In
Appendix A, we report the full result in Table 2, 3, and 4.

Baselines To assess the performance of our pro-
posed model, we compare it to several multimodal
fact verification approaches. DeBERTa (He et al.,
2021) leverage the pre-trained model DeBERTa ex-
tract textual features to make predictions. CLIP
(Radford et al., 2021) learns multimodal represen-
tations and concatenates them to predict the label.
ConcatNet (Mishra et al., 2022) utilizes cosine
similarity to fuse inner-modal features and concate-
nates textual and visual representations to obtain
multimodal features. PreCoFact (Wang and Peng,
2022) uses the co-attention layers to fuse multi-
modal contents and predict the label. Logically
(Gao et al., 2022) uses a decision tree classifier with
several multimodal features to make predictions.
ECENet (Zhang et al., 2023) introduces textual
and visual entities as external knowledge helping
to predict the label. Multi-KE GAT (Cao et al.,
2024) leverages multi-source knowledge and het-
erogeneous fusion methods to perform multimodal
interactions and make predictions.

Besides, we compare several multimodal repre-
sentation learning methods with incomplete modal-
ity to investigate the effectiveness of our proposed
model. DD-IMvMLC-net (Wen et al., 2023) uses
an encoder-decoder framework to learn compre-
hensive multimodal representations with missing
modality. KDCN (Sun et al., 2023) capture the
inconsistent information at the cross-modal level
and the content-knowledge level to learn a compre-
hensive multimodal representation with incomplete
modality. More detailed descriptions on related
work can be found in Appendix D.

Implementation details We use a Tesla V100-
PCIE GPU with 32GB memory for all experiments
and implement our model via the Pytorch frame-
work. The seed is set to 43. The number of atten-
tion heads is set to 4. The batch size is 32. We

set the learning rate as 2e-5. For each claim or evi-
dence, we extract at most 5 key phrases. We employ
DeBERTa (He et al., 2021) and Swin Transformer
(Liu et al., 2021) as the pre-trained language and vi-
sual models. We employ GPT-3.5 as the key-phrase
extractor. For -, we adaptively set to 0.6-0.8 adher-
ing to emperical results. More detailed information
is demonstrated in Appendix B.

Evaluation metrics To evaluate the performance
of the proposed model, the Accuracy score and
the weighted F1 score are used as the evaluation
metrics for all three datasets.

4 Result and discussion

4.1 Overall performance

We conduct the experiments on three datasets and
the experimental results are shown in Table 1. Our
MMSN achieves comparable performance on all
datasets for verification with complete modality
information. Here we only report 0%, 50%, and
100% settings, and more specific results are demon-
strated in Appendix A. It can be observed that
MMNSN outperforms other methods in most settings.
Traditional multimodal fact verification methods
(e.g., ECENet, and MultiKE-GAT) lack flexibility
and adaptability to handle the modality-missing
scenarios completeness hypothesis. Approaches fo-
cusing on multimodal representation learning with
missing modalities (e.g., DD-IMvMLC-net and
KDCN) improve the capability of generalization
but neglect task-specific feature extraction, which
leads to low performance. Furthermore, focusing
on the 0% setting, the performance of MMSN is
comparable to traditional methods. It demonstrates
that MMSN can solve data with complete informa-
tion as well, which further proves the robustness of
our model.



MMSN
- w/o KP

- w/o DCSS

- w/o MMF

——-w/o CMC —<—-w/o IMC 704
—— - w/o CEC

F1

—— - w/0 CMC —<—-w/o IMC 774
——- w/o CEC

MMSN
- w/o KP

- w/o DCSS
- w/o MMF

MMSN - w/o DCSS

- w/o KP v— - w/o MMF
——-w/o CMC —<—- w/o IMC
——-w/o CEC

T T T
0 50 100

Proportion of missing modality

(a) FACTIFY

Proportion of missing modality

(b) MOCHEG

T T T T T
50 100 0 50 100

Proportion of missing modality

(c) Fin-Fact

Figure 3: The result of ablation studies on 3 datasets. We use weighted F1 (£'1,,, %) to evaluate the performance.
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dual-channel soft simulation, fine-grained key phrases, multi-granularity multimodal fusion, cross-modal correlation,
intra-modal correlation, and claim-evidence correlation respectively.
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Figure 4: Experimental results of the analysis of simula-
tion methods on three datasets. We use a weighted F1

score to evaluate the performance.
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Figure 5: Experimental results of the analysis of fusion
methods on three datasets. We use a weighted F1 score
to evaluate the performance.

Overall, the experimental results demonstrate
that MMSN has the outstanding capability of han-
dling multimodal fact verification tasks. It is more
flexible and robust to the real-world circumstances
in which news content is missing.

4.2 Ablation study

We conduct the ablation study to analyze key
components of MMSN. We remove each compo-
nent including the dual-channel soft simulation
(DCSS), fine-grained key phrases (KP), and multi-
granularity multimodal fusion(MMF), respectively.
For the DCSS module, we further investigate the
importance of cross-modal (CMC), intra-modal

(IMC), and claim-evidence (CEC) correlation. The
ablation results are shown in Figure 3.

Specifically, intra-modal features are more sig-
nificant compared to cross-modal simulation, for it
contains more crucial features to simulate missing
representations. It demonstrates that using only
one modality to simulate features is impractical.
It can be observed that introducing CMC, IMC,
and CEC can also improve the 0% setting perfor-
mance, which indicates that these fine-grained in-
formation and correlations are also crucial to the
multimodal fact verification with complete data.
Besides, compared to other correlations, claim-
evidence correlations have a more crucial impact
on the model, which further proves the hypothesis
we mention in section 1. Furthermore, the per-
formance degrades the performance significantly
on these three datasets in both the 50%-missing
and 100%-missing setting, which further indicates
that external fine-grained knowledge is beneficial
to the label prediction and LL.Ms are capable of
understanding the extraction task and discovering
key phrases useful to fact verification. We remove
the multi-granularity multimodal fusion module
as well. The performance drops rapidly and dra-
matically, which elucidates that fusion modules
are critical to obtaining comprehensive multimodal
representations for prediction-making procedures.

Overall, these results of different proportion set-
tings demonstrate the robustness and effectiveness
of each component in MMSN.

4.3 Module analysis

We further conduct several experiments to investi-
gate the usefulness of each proposed module, com-



pared to other available approaches.

Modality simulation We analyze the impact of
different simulation methods. We replace the
DCSS module with different simulation methods
and intend to probe its effectiveness and how better
its simulated representations are. We use 3 methods
to replace DCSS: (1) zero-filling, which utilizes
a zero tensor as a substitution; (2) white-filling,
which regards the missing image as a pure white
picture; and (3) concatenation, which concatenates
the cross-modal and claim-evidence simulated rep-
resentation rather than in a weighted way. Fig-
ure 4 demonstrates the experimental results lever-
aging these simulation methods. Our model out-
performs these simulation methods in weighted F1
scores. It indicates that these approaches omit the
significant semantic information contained in vi-
sual modalities, which degrades the performance in
multimodal tasks. Besides, compared to DCSS, the
concatenation method performs worse, which eluci-
dates that simply concatenation cannot capture the
comprehensive information between modalities.

Multi-granularity fusion Then, we explore the
capability and effectiveness of our proposed multi-
granularity multimodal fusion module. We com-
pare our module with two representative-used fu-
sion methods: (1) concatenation-based fusion, sim-
ply concatenating all of the multimodal represen-
tations; and (2) attention-based fusion, applying
the cross-attention mechanism without considering
different granularities. Figure 5 shows the experi-
mental results using these three fusion methods. It
can be observed that our multi-granularity fusion
module outperforms other approaches. It indicates
that the main content and the fine-grained knowl-
edge should be treated and operated distinctively
to capture both coarse-grained and fine-grained se-
mantic information that is essential to predict the
verdict of a claim.

4.4 Simulation analysis

We further compare the quality of simulated fea-
tures obtained by the dual-channel soft simulation
module with the concatenation method and show
the result in Figure 6. We can obtain a similar dis-
tribution compared to original representations of
both textual and visual features, and it illustrates
the importance and advantages that cross-modal
and claim-evidence correlations are taken into ac-
count when we deal with tasks with incomplete
modalities.

(a) Simulated textual rep-(b) Simulated textual rep-
resentation by Concat  resentation by MMSN

(c) Simulated visual rep-(d) Simulated visual rep-
resentation by Concat  resentation by MMSN

Figure 6: The comparison of the simulated features
and original representations of different methods. The
blue dots demonstrate the original representations of
evidence images, and the red dots demonstrate the sim-
ulated features.

5 Conclusion

This work has investigated the real-world scenario
in which multimodal data for fact verification may
be incomplete during the limited collection proce-
dure, missing some important multimodal content.
We propose a novel Missing Modality-Simulated
Network (MMSN) for robust verification. Besides,
we design a novel soft simulation module to imi-
tate the missing visual features and eliminate the
noise and duplicates by utilizing both intra-modal
and inter-modal correlations instead of using only
one modality. Moreover, we propose a multi-
granular multimodal fusion module to integrate
coarse-grained and fine-grained data respectively.
The experimental results on three commonly used
datasets show that MMSN has been proven to be ca-
pable of effectively dealing with modality-missing
multimodal fact verification tasks in comparison
with other competitive methods.

Limitation

In this paper, there are some limitations that can
be improved in future research. First, we do not
take LLM-as-verifiers into account. LLMs demon-
strate significant performance in NLP tasks, while
we only leverage a small part of their capabilities
to extract key phrases. How to directly utilize the
verification capability of LLMs is still uncovered.
Second, we focus on how to simulate the missing



information, while there are some approaches to
leverage retrieval models to obtain more evidence.
They make a compromise between correlations of
claim and evidence and information missing prob-
lems. This may be one of the future research direc-
tions.
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A Overall results

To further analyse the effectiveness of our pro-
posed model, we also conduct extensive experi-
ments to substantiate our conclusion on FACTIFY,
MOCHEG, and Fin-Fact. We examine the differ-
ent proportions of missing information from 0% to
100%. The results are demonstrated in Table 2, 3,
and 4.

B Parameter analysis

To further study the impact of the hyper-parameter
v, we conduct several experiments with different
settings of y and report the results in Figure 7.
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From Figure 7, at the onset, the model’s per-
formance exhibited a positive correlation with ~y;
however, as the magnitude of a continued to es-
calate, the model’s efficacy showed a subsequent
decline. For example, the best performance on
FACTIFY is gained when 7y is set to 0.6 for 20%
percentage of missing modality, and 0.5 for 50%,
suggesting the importance of striking a balance be-
tween the simulation and prediction objectives to
optimize the model’s effectiveness. Besides, the
different performances between different settings
further indicate that MMSN is sensitive to the hy-
perparameter y and it is crucial to choose a proper
setting for different datasets.

C Dataset statistics

FACTIFY collects multimodal claim-evidence
pairs from handles of Indian and US news sources.
Each pair in this dataset is classified into five cat-
egories, Support Multimodal, Support Text, Insuf-
ficient Multimodal, Insufficient Text, and Refute.
MOCHEG contains claims associated with poli-
tics. Each claim is annotated into three categories,
Supported, Refuted, and NEI. Fin-Fact contains
claims relevant to financial issues and each claim is
categorized into three labels, True, False, and NEI.
The number of these datasets are shown in Table 5.

D Related work

Fact verification aims to predict the verdicts of
check-worthy claims with several retrieved evi-
dence. Traditional fact verification approaches
only utilize textual information to make predic-
tions (Zhang et al., 2024; Kim et al., 2023; He et al.,
2021), which fails to deal with claims with multi-
modal content. Hence, multimodal fact verification
has become a research hotspot. This paper mainly
focuses on multimodal fact verification tasks, un-
der the real-world challenge of missing modality.
In this section, we will report on the related work
in these two research fields.

D.1 Multimodal fact verification

Vo and Lee (2020) draw significant attention to
using multimodal content for fact verification by
considering both textual and visual content. In re-
cent years, there has been a significant increase in
research focusing on multimodal fact verification
tasks (Sahar Abdelnabi and Fritz, 2022; Mishra
et al., 2022; Wang and Peng, 2022; Zhang et al.,



FACTIFY

Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Acc  Fl, Acc Fl, Acc Fl,, Acc Fl, Acc  F1,, Acc F1,, Acc F1l,, Acc Fl, Acc Fl, Acc Fl, Acc Fly
DeBERTa (He et al., 2021) 63.61 63.60 62.60 6256 61.74 61.70 60.88 60.85 59.67 59.67 58.79 5877 5831 5833 58.02 58.00 57.59 57.59 57.05 57.05 56.48 56.60
CLIP (Radford et al., 2021) 70.36 7036 69.84 69.86 6892 6890 68.07 68.07 6738 67.39 6623 6623 6587 65.60 6523 6540 6495 6492 64.14 6433 6373 63.71
ConcatNet (Mishra et al., 2022) 7371 73.64 7296 7284 7178 71.50 70.58 70.55 69.66 69.66 6895 6895 6829 68.18 67.73 67.79 66.88 66.80 66.02 66.13 6545 65.50
PreCoFact (Wang and Peng, 2022) 75.61 7574 74.64 7466 7358 7340 7219 7213 71.00 7085 69.53 69.56 6889 68.89 6832 6837 67.70 67.75 6724 67.36 6692 6691
Logically (Gao et al., 2022) 77.03 77.00 7585 7587 74.69 74.60 73.63 7344 7228 7229 7135 7135 70.65 70.61 69.83 69.83 6894 6877 6834 6833 6733 67.30
ECENet (Zhang et al., 2023) 81.48 81.50 7848 7846 7630 7630 74.12 7419 7347 7349 7145 7146 7035 7033 69.91 6993 69.50 69.50 69.04 69.00 68.83 68.82

Multi-KE GAT (Cao et al., 2024) 79.64 79.64 7188 7788 7579 7575 73.60 7355 7218 72.14 7138 7138 70.86 70.85 70.11 70.11 69.60 69.57 69.14 69.14 6897 68.97
DD-IMvMLC-net (Wen et al., 2023) | 79.24 79.25 7840 7833 76.96 7693 7440 7441 7245 7244 7165 71.63 71.28 71.25 70.86 70.81 70.51 70.50 70.00 70.04 69.90 69.94
KDCN (Sun et al., 2023) 80.08 80.08 78.77 78.78 76.67 76.62 7426 7426 72.58 72.58 71.57 71.58 70.94 70.99 7020 70.20 69.75 69.77 69.17 69.33 68.87 68.89
MMSN (Ours) 80.73 80.77 78.62 78.61 77.28 7727 75.65 75.65 74.86 74.86 73.60 73.61 7291 7290 7231 7230 7195 7190 7138 7136 70.98 70.99

Table 2: Result of fact verification task with missing modality with different proportions of missing modality
on FACTIFY dataset. We use weighted F1 (F'1,,, %) and Accuracy (Acc, %) to evaluate the performance. Bold
denotes the best performance and underline denotes the second best performance.

MOCHEG

Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acc  F1, Acc F1l, Acc Fl, Acc Fl, Acc  F1,, Acc F1,, Acc F1,, Acc Fl, Acc Fl, Acc Fl, Acc Fl,
DeBERTa (He et al., 2021) 40.74 40.55 39.70 39.70 38.78 38.78 37.39 37.33 36.65 36.65 35.69 3586 3473 3471 34.14 34.14 33.81 3386 3324 3320 3285 32.88
CLIP (Radford et al., 2021) 49.43 4920 4890 4889 4852 4852 4829 4827 48.00 48.00 47.88 4789 4738 4729 46.86 4682 4644 4643 4571 4570 4496 44.89
ConcatNet (Mishra et al., 2022) 50.48 50.12 49.92 4992 49.67 49.74 4930 4926 48.80 48.66 48.57 4859 48.08 48.08 47.50 47.52 46.94 4694 4641 4638 4556 45.56
PreCoFact (Wang and Peng, 2022) 68.47 6845 67.83 6780 67.04 6693 6633 6632 6561 65.65 6438 6440 6380 63.87 63.25 6328 6240 6240 61.59 61.58 60.66 60.66
Logically (Gao et al., 2022) 67.78 6778 6699 6693 66.30 66.25 6589 6588 6521 6520 6498 6499 64.00 64.02 63.58 6358 6295 6295 6247 6240 6176 61.74
ECENet (Zhang et al., 2023) 69.40 69.42 68.69 68.69 68.14 68.12 67.85 6781 6723 6722 6642 6649 6560 6550 6505 6503 64.67 64.66 6429 6429 6359 63.61
Multi-KE GAT (Cao et al., 2024) 70.10 70.14 69.63 69.52 68.98 68.90 6807 68.06 6721 6720 66.53 66.49 65.62 6560 64.99 6497 6456 64.56 63.95 63.90 6348 6347
DD-IMvMLC-net (Wen et al., 2023) | 68.98 68.96 6842 6843 6820 6820 6798 6798 6730 67.37 66.54 6651 6629 6629 6589 6590 6552 6552 65.06 65.02 6472 64.71
KDCN (Sun et al., 2023) 68.80 68.83 6845 6845 68.17 68.11 6790 6792 67.20 6720 66.36 66.34 6623 66.23 6590 6587 6550 6541 6487 64.89 6446 6444
MMSN (Ours) 70.05 70.09 69.89 69.82 69.17 69.17 68.66 68.73 67.68 67.68 66.93 66.94 66.30 66.30 66.19 66.22 66.07 66.07 6596 6599 6581 65.94

Table 3: Result of fact verification task with missing modality with different proportions of missing modality on
MOCHEG dataset. We use weighted F1 (F'1,,, %) and Accuracy (Acc, %) to evaluate the performance. Bold
denotes the best performance and underline denotes the second best performance.

MOCHEG

Model 0% 10% 20% 30% 0% 50% 60% 70% 80% 90% 100%

Acc  Fl, Acc Fl, Acc Fl, Acc Fl, Acc FI, Acc Fl, Acc FIl, Acc FI, Acc Fl, Acc FI, Acc Fl,
DeBERTa (He et al., 2021) 6732 6730 66.66 66.67 66.12 66.10 6554 6553 6468 6465 6401 6400 63.58 63.57 6295 6296 6247 6260 6189 6185 6134 6133
CLIP (Radford et al., 2021) 6827 6822 6743 6744 6715 6715 6678 6674 66.23 66.15 6573 65.74 6526 6527 6487 6487 6399 6493 63.11 63.1 6282 6282
ConcatNet (Mishra et al., 2022) 68.97 69.02 68.50 6850 67.94 6798 6726 6735 66.84 66.80 6643 6645 6586 6575 6527 6522 6439 6439 6377 6371 6303 63.05
PreCoFact (Wang and Peng, 2022) | 75.22 7520 74.83 7472 7428 7426 7386 73.88 73.17 73.10 7279 7277 7220 7221 7177 7177 7109 71.04 7065 7047 69.50 69.60
Logically (Gao et al., 2022) 7485 7481 7438 7430 7412 7411 7389 7384 7346 7342 7314 73.16 7288 72.88 7253 7248 7195 7199 7136 71.35 70.64 70.68
ECENet (Zhang et al., 2023) 76.15 76.15 75.64 7568 7500 7498 7473 7473 7422 7428 7341 7343 7318 73.15 7287 7288 7254 725 7206 7201 7177 7177
Multi-KE GAT (Caoetal,, 2024) | 7633 7633 7598 7598 7549 7542 7437 7436 7398 73.86 73.66 73.62 73.14 73.06 7277 7275 7249 7248 7196 7190 7155 71.57
DD-IMvMLC-net (Wen etal., 2023) | 74.76 7475 7450 7450 7409 7403 7382 73.80 7327 73.26 7236 7237 7205 7205 7189 7183 70154 7155 71.00 7085 7046 70.46
KDCN (Sun et al., 2023) 7624 7627 7594 7593 7568 7564 757 75.07 7469 7462 7375 7378 73.18 73.06 7297 7295 7268 72.68 7233 7233 7206 7205
MMSN (Ours) 7701 7700 7659 7658 7623 7622 75.67 75.67 7533 7526 7441 7444 74.18 7411 7399 7396 73.85 73.84 73.74 73.66 7351 7350

Table 4: Result of fact verification task with missing modality with different proportions of missing modality on
Fin-Fact dataset. We use weighted F1 (F'1,,, %) and Accuracy (Acc, %) to evaluate the performance. Bold denotes
the best performance and underline denotes the second best performance.
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Figure 7: Experimental results of the analysis of parameter v on MOCHEG and Fin-Fact datasets. We use a

weighted F1 score to evaluate the performance.

Dataset Train Dev Test
FACTIFY | 28,000 7,000 7,500
MOCHEG | 11,669 1,490 2,442
Fin-Fact 2,358 336 675

Table 5: The statistics of three datasets.

2023; Cao et al., 2024; Yu et al., 2022; Chen et al.,
2022; Dhankar et al., 2022; Aggarwal et al., 2022).
By incorporating visual cues, these approaches aim
to capture better the semantic meaning of the claim
and its supporting evidence, thereby improving the
performance of multimodal fact verification sys-
tems.

Sahar Abdelnabi and Fritz (2022) used the co-
attention mechanism to capture inner-modal fea-
tures and the CLIP model to obtain inter-modal fea-
tures. Mishra et al. (2022) introduced a fine-grained
fact categorization and an attention-based encoder
to extract multimodal representations. Wang and
Peng (2022) utilized a co-attention mechanism
to integrate textual and visual features. ECENet
(Zhang et al., 2023) introduced textual and vi-
sual entities as external knowledge helping to pre-
dict the label. Cao et al. (2024) introduced multi-
source knowledge and constructed a heterogeneous
graph for each claim-evidence pair to perform fine-
grained and comprehensive multimodal interac-
tions. Yu et al. (2022) considered text-to-image and
image-to-text fusion simultaneously and designed
a bidirectional fusion network utilizing two sepa-
rated gating mechanisms to fuse multimodal fea-
tures bidirectionally. Chen et al. (2022) observed
the cross-modal ambiguity in fake statements to
learn the ambiguity and difference between modal-
ities, serving as a gating mechanism to control the
multimodal fusion level. Dhankar et al. (2022) used
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cosine similarity to capture inner-modal relations
and concatenated representations of both modal-
ities to obtain multimodal features. Due to the
satisfactory performance of pre-trained language
models like GPT, Aggarwal et al. (2022) leveraged
the GPT model and tried to design suitable prompts
and verification methods to deal with multimodal
fact verification.

D.2 Multimodal representation learning with
missing modality

Recent studies on learning high-quality multimodal
representation with missing modality tend to utilize
simulation-based methods (Qian and Wang, 2023;
Zeng et al., 2023; Huan et al., 2024), or to leverage
available features to learn modal-invariant repre-
sentations without simulation (Lian et al., 2023; Xu
et al., 2023; Wei et al., 2023).

Qian and Wang (2023) utilized contrastive learn-
ing methods to capture shared cross-modal features
to learn a better representation of missing modality.
Zeng et al. (2023) utilized extra information such
as tags to simulate the missing textual and visual in-
formation to solve multimodal sentiment classifica-
tion. UniMF (Huan et al., 2024) introduced a trans-
lation module to leverage available information to
simulate the missing part for sentiment prediction.
Lian et al. (2023) focused on multimodal dialogue
systems and utilized a graph-based method to fuse
multimodal features and deal with the problem of
missing modality. Xu et al. (2023) introduced a
bipartite graph structure to capture modal-invariant
features. Moreover, Wei et al. (2023) leveraged a
teacher model trained with complete data to guide
the student model, making predictions with incom-
plete data.
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