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ABSTRACT

We propose a novel deep learning framework for fast prediction of boundaries
of two-dimensional simply connected domains using wavelets and Multi Resolu-
tion Analysis (MRA). The boundaries are modelled as (piecewise) smooth closed
curves using wavelets and the so-called Pyramid Algorithm. Our network ar-
chitecture is a hybrid analog of the U-Net, where the down-sampling path is a
two-dimensional encoder with learnable filters, and the upsampling path is a one-
dimensional decoder, which builds curves up from low to high resolution levels.
Any wavelet basis induced by a MRA can be used. This flexibility allows for
incorporation of priors on the smoothness of curves. The effectiveness of the
proposed method is demonstrated by delineating boundaries of simply connected
domains (organs) in medical images using Debauches wavelets and comparing
performance with a U-Net baseline. Our model demonstrates up to 5x faster in-
ference speed compared to the U-Net, while maintaining similar performance in
terms of Dice score and Hausdorff distance.

1 INTRODUCTION

Semantic image segmentation is a core component of many medical imaging related tasks. Both as
part of a pipeline to find a region of interest, or a task by itself, e.g., for measuring tumor volume.
Nowadays, almost all segmentation algorithms in medical imaging are replaced by U-Net-like ar-
chitectures Ronneberger et al.| (2015) combining an encoder and decoder. Typically, the decoder is
an upsampling path, and additional skip connections between the encoding and decoding part are
added to recover the image’s spatial information. While many variants or more exotics methods,
such as multi-scale and pyramid based approaches, recurrent networks or generative techniques, can
be designed, all of these still yield per-pixel classifications. In these settings an image is interpreted
as a discrete collection of ordered pixels (or voxels in the three-dimensional case), where the task
is to assign an appropriate class to each pixel using a probabilistic model. Typically, the pixels are
assumed to be independent so that the joint-likelihood is tractable.

In practice, e.g., in medical imaging, the boundary of a region is annotated and not the region it-
self. Hence the raw ground-truth data is a discretization of a closed curve. The main motivation
of our paper is to construct a deep learning model which (i) may directly use such raw ground-
truth data if available (i¢) is guaranteed to predict smooth planar curves (ii¢) improves inference
speed by predicting 1d objects (curves) instead of 2d objects. We argue that in traditional pipelines,
where pixel-based predictions are constructed, smooth boundaries are not faithfully represented. In
particular, no prior information about the geometry of planar curves is incorporated. In this paper,
we present a hybrid analog of the U-Net, where the down-sampling path is a two-dimensional en-
coder with learnable filters, and the upsampling path is an one-dimensional decoder, which predicts
(smooth) representations of curves.

A fundamental component in the setup of our framework is the decision on how to represent (closed)
curves. While the Fourier basis is a natural candidate at first glance, its global nature may hamper
accurate predictions of curves which exhibit highly localized behavior, requiring accurate estimates
of small noisy high-frequency modes. For this reason, we have chosen to represent contours using
wavelets and Multi Resolution Analysis (MRA) instead. The main idea is to choose a single map ¢,
the so-called scaling function or father wavelet, and to construct subspaces of functions associated
to prescribed resolution levels by taking the span of appropriate dilations and translations of . This
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setup provides an efficient way to decompose and reconstruct contours, from low to high resolution
level, using the classical Pyramid Algorithm Mallat| (2008)) as a decoder. The filters in the decoder
are not learned but uniquely determined by the chosen wavelet basis. Any wavelet basis induced by
a MRA can be used. This flexibility allows for incorporation of priors on the smoothness of curves.

Related work Previous work by |Chen et al. (2019); Marcos et al.| (2018)); |[Hatamizadeh et al.
(2020) also proposed models to predict contours by combining Active Contour Models (ACM) with
a CNN into an end-to-end model. In these papers the representation of curves is ultimately still based
on pixel-based computations. For instance, in|Hatamizadeh et al.|(2020) curves are modelled as level
sets of distance maps defined on a discretization of the domain of the image. In|Chen et al.|(2019) a
similar approach is followed, but a smoothed approximation of an indicator function is used instead
of a distance map. The work in |Marcos et al.[|(2018)) is perhaps most closely related to ours; they
directly construct polygonal approximations of curves and represent them using (pixel) coordinates
of the nodes. The objectives minimized in the cited papers are based on a careful consideration of
mean pixel intensities and geometric properties such as area and arc length. These properties are
implicitly encoded in an objective function (energy-functional) defined on a space of distance maps
Hatamizadeh et al.| (2020), suitable approximations of indicator functions |Chen et al.| (2019), or
family of polygons Marcos et al.| (2018). However, in contrast to our approach, the above methods
all provide pixel-based output. To the best of our knowledge, our work is the first to use MRA and
wavelet analysis to construct pixel-independent representations of (closed) curves.

This paper is organized as follows. In Section 2| we review the mathematical background needed to
construct our model. We explain how contours can be decomposed and reconstructed on different
resolution levels. The reconstruction algorithm, the Pyramid Algorithm, forms a core component
of our network architecture. In Section |3| we set up the model architecture and loss. Subsequently
the datasets, training method and performance measures are described in Section [df We end the
paper with results and a discussion in Section[5] Further mathematical details are provided in the
appendix.

2 BACKGROUND AND MATHEMATICAL SETUP

In this section we describe our mathematical setup and review the theory needed to construct our
model. We consider two dimensional gray-valued images = € X := [0,1]"*", e.g., slices of MRI
scans of size n X n, where n € N. We assume that each image contains a (uniquely identifiable)
simply connected region R(x) C R2?, e.g., an organ, with boundary OR(z). It is assumed that
OR(x) can be parameterized by a simple closed continuous curve y(z). We will develop a deep
learning framework for computing such parameterizations ~(z) using Multi Resolution Analysis
(MRA). Since wavelets play a seminal role in our set up, we first review the necessary theory in
Sections[2.T]and [2.2] as a subject in its own right in the context of general scalar-valued signals . In
the remainder of the paper, we return to the context in which v = ~(x) is interpreted as a periodic
(planar) curve parameterizing the boundary of a region.

2.1 MULTI RESOLUTION ANALYSIS

In this section we briefly review wavelet theory using the framework of a multi resolution analysis
(MRA). We closely follow the exposition in [Pereyra & Ward| (2012) and [Montefusco & Puccio
(2014). Throughout this section we denote the space of square integrable functions on R, equipped
with standard inner product, by L?(RR).

The uncertainty principle in Fourier analysis dictates that a signal v € L?(R) cannot be simulta-
neously localized in the time and frequency domain, see |[Pereyra & Ward (2012). Multi resolution
analysis aims to address this shortcoming by decomposing a signal on different discrete resolution
levels. The idea is to construct subspaces V; C LQ(R), associated to various resolution levels j € Z,
spanned by integer shifts of a localized mapping ;. The level of localization associated to V} is
determined by taking an appropriate dilation of a prescribed map ¢; the so-called scaling function.
In the MRA framework the dilation factors are chosen to be powers of two. Formally, we uire

that (1, )kez is an orthonormal basis for V;, where ;4 () := 23 ¢(2/t — k), see Figures |la/and
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Figure 1: Example of the Haar MRA: Dilated translation of the Haar scaling map ¢ = 1| ﬁ
(c)

The approximation subspace at level j consists of all step-functions with step-size 277.
Dilated translation of the mother wavelet ¢ = 1;g 1) — 11 ;). Example of a function in the

detail subspace at level j.

Altogether, this yields an increasing sequence of closed subspaces V; C V;41 C L?*(R) dense
in L?(R), where V1 is the next level up in resolution after V.

The representation of v at resolution level j, denoted by ~; := P;v, is its orthogonal projection
onto V;. Here P; denotes the orthogonal projection onto V. The coefficients of y; with respect to
the basis for V;, denoted by a;(v) = (a;x(7))rez. are called the approximation coefficients. The
associated subspaces V; are referred to as the approximation subspaces (see Figure . To study
the information that is lost when a signal in V;; is projected onto V;, we consider the operator
Q; = Pj41 — P;. The range of ();, denoted by W, is referred to as the detail subspace at level j;
it is the orthogonal complement of V; in Vj ;. The detail subspaces (W) <z are mutually disjoint
and orthogonal by construction. A fundamental result, known as Mallat’s Theorem, states that the
subspaces W; can too be spanned by dilating and shifting a single map. More precisely, there
exists a map ¢ € Wy, the so-called mother wavelet, such that (Q/ij) kez 1S an orthonormal basis
for W;, see |Pereyra & Ward|(2012)). The coefficients of () with respect to this basis, denoted by
d;(7y) := (d;x(7))kez, are referred to as the detail coefficients of -y at resolution level j. The detail
coefficients store the information needed to go back one level up in resolution, since Pj 1 = P;j+Q);
by construction. We often write a;(y) = a; and d;(y) = d; for brevity. In practice, we only
approximate a finite number of approximation and detail coefficients, see Section [2.3]

2.2 THE DISCRETE WAVELET TRANSFORM

In this section we describe how to compute the approximation and detail coefficients given a pre-
scribed scaling function . Many fundamental aspects of MRA’s, both theoretical and compu-
tational, can be traced back to the following key observation. Since V; C Vi, there must exist
coefficients h = (hy)rez such that ¢ = >, ., hyo1y. This equation is referred to as the scaling
equation; one of the fundamental properties of a scaling function. The sequence h, the so-called low-
pass filter, completely characterizes the scaling function. Similarly, since v € Wy C V3, there exist
coefficients g = (gx)rez. the so-called high-pass filter associated to h, such that ¢ = >,/ gr1x.

For Mallat’s mother wavelet, we have g;, = (—l)kflhl_ k. Altogether, in order to define a MRA,
one only needs to specify an appropriate low-pass filter h.

The scaling equations can be used to derive an efficient scheme for computing lower order approx-
imation coefficients (of any order) given an initial approximation a ;1. Conversely, the orthogonal
decomposition V; 1 = V; @ W, can be used to reconstruct a;; given the approximation and de-
tail coefficients a; and d;, respectively, at resolution level j. The computations are summarized in
Figure 2] The reconstruction and decomposition formulae together form the well-known Pyramid
Algorithm Mallat| (2008).

In practice, our signals are periodic and do not directly fit into the MRA framework, since non-zero
periodic signals are not elements in L?(IR). We will address this issue in the next section by using
an appropriate cut-off. Here we only remark that the periodicity needs to be carefully taken into
account in the decomposition and reconstruction formulae, see Appendix
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Figure 2: Decomposing approximation coefficients at level 7 + 1 into approximation and detail
coefficients at level j. Here h and § are defined by hy, := h_j, and g := G_, respectively, * is
the two-sided discrete convolution and | downsamples a sequence by discarding all terms with odd
index. Reconstructing approximation coefficients at level j + 1 from the approximation and
detail coefficients at level j. Here 1 samples a sequence up by putting zeros in between every term.

2.3  WAVELET REPRESENTATION OF PERIODIC CURVES
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In this section we explain how a scalar-valued periodic signal v with period [ > 0 can be approxi-
mated using a MRA. Let j; € N be a desired resolution-level. First, we re-parameterize -y to have
period 1. The reason for this is rather technical and we refer the reader to Appendix[A.T] In essence,
we require the number of approximation coefficients to be a power of two and this parameterization
fits nicely with this requirement. Next, to address the issue that periodic signals are not contained
in L*(R), we restrict the re-parameterized curve to [—1,1], i.e., set v*(t) := y(It)1;_1 1)(¢). In
general, this will introduce discontinuities at the boundary points —1 and 1. This is, however, not an
issue, since we only need information about v* on a strict subset [lo, I;] C [—1, 1] of length 1.

It is shown in Lemma how (and which) approximation coefficients can be related to the sam-

ple values of . In particular, if j; is sufficiently large, the approximation coefficients needed to
18

(approximately) cover [—1, 1] are (a;,x(7")) ]Lf:]iwﬂ Here 8 > 0 is the support of the underlying

wavelet. These coefficients will be close to the (scaled) sample values of v on {k277t : —271 <

k < [27* — B]}. Motivated by this observation, and the fact that we only need v on [—2, 1], we

_ 272
2i1—1_1 1 1-2'"71

use the coefficients (aj,x(7*));__,;,~1 only, which cover [, ~=5——] approximately, see Figure

To ensure that 271~ — 1 < [271 — 3], we require that j; > [% + 1—‘. This quantity is

well-defined for all bases considered in this paper, except the Haar-basis.

3 MODEL

In this section we formulate our objective and network architecture. Henceforth v = ~(x) is asso-
ciated to an image « and has two components [y(x)]; and [y(z)]2. All operations from the previous
sections are understood to be carried out component-wise.



Under review as a conference paper at ICLR 2022

soauapiog [l

youelq uondipaid I:I

T X Z 10043y

soolqnuos enpisayy [l

B Reconstruct (Pyramid algorithm) 1 x 1 conv (4 filters)

uonuL0d diyg

Figure 4: A schematic picture of our network. Here a “residual block™ corresponds to a standard
residual convolutional layer. The first residual conv-block uses 32 filters and is doubled after every
two residual conv-blocks. Each green block corresponds to the operation depicted in Figure [2b] In
the decoder, we only predict detail coefficients up to level 7;. No detail coefficients are used at levels
71 +1 < 7 < jo. In this example, we have set j; = jo + 2 and jo2 = jo + 3. In reality, the decoder
consists of two upsampling paths, one for each spatial component of the curve. We have only drawn
one for notational convenience. During training, only the approximation coefficients at the lowest
and highest resolution levels (most right curves in blue) are supervised.

3.1 NETWORK ARCHITECTURE

To formulate our objective, consider an image © € X with an associated boundary OR(x) of a
simply connected region R(x). We assume that OR(x) is parameterized by a closed continuous
curve y(x) of length [(x) > 0. The objective is to compute the relevant approximation coefficients
of v*(x), see the explanation in Section [2.3] where v*(z) denotes the cut-off re-parameterization of
~(x), using a suitable neural network.

Our network is a hybrid analog of the U-net. It consists of an encoder, bottleneck and decoder with
skip-connections in between. Only the approximation coefficients at the lowest resolution-level jg
are “directly” computed by the network (in the bottleneck). Afterwards, the Pyramid Algorithm
takes over to compute approximation coefficients on higher resolution levels (the decoder). In prac-
tice, the detail coefficients are negligible on sufficiently high resolution levels. For this reason, we
only predict detail coefficients up to a prescribed level j;. The predictions at higher resolution levels
71 < j < jo are computed without detail coefficients. The full architecture is summarized in Figure

3.2 Loss

The loss £ consists of two parts: ordinary cross-entropy for optimizing the likelihood of p(z)
and a part corresponding to the L2-error between observed and predicted curves on different res-
olution levels. More precisely, set 7(x) = 1 if R(z) # 0 and r(z) = 0O otherwise, then
Lee(pla),r(2)) == r(z)logp(a) + (1 = r(z))log(l — p(z)). Next, suppose a([y*(z)]) =
(ajo ([Y*(@)]), - .., a;,([v*(x)])) are the approximation coefficients of «*(x) on resolution levels
Jo < j < jo Define L;u(fi(x),a;(v*(x))) = [|[f;(@)]s — a;([7*(@)].)]f2 for s € {1,2} and
j € {Jjo, jo}. Here f;(x) are the network predictions of the relevant approximation coefficients at
level j. This loss-term corresponds to the L?-error on resolution level j between the curves with
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approximation coefficients [f;(z)]s and a;([y*(x)]s). Finally, define the total loss by

L(F(x),a) = wlee(p(z),r(2)) + () Y Ljs(fi(@),a;(v"(x))),
se{1,2}
j€{jo.g2}
where w > 0 is a weight. Notice that £ measures the discrepancies between observed and predicted
curves on the lowest and highest resolution levels only. In practice, this enforces the approximation
and detail coefficients at intermediate levels to agree as well; see the experiments in Section E}

4 TRAINING

In this section we describe the dataset on which we test our method. In addition, we provide details
about preprocessing steps and model development (training).

4.1 DATASETS

Toy dataset The main purpose of the toy-example is to create a setting in which the annotated
contours differ substantially from annotations confined to a grid. For this purpose, we consider
piecewise smooth curves having a finite number of non-differentiable points. The toy-dataset con-
sists of hypocycloids, up to an Euclidian motion and scaling, defined by

— Ty

T
n(t) := |(r1 — r2) cost + rq cos <r1 t> (r1 —rg)sint — rysin <r1 2 t)] ,
T2 T2

where 11 > rgand ¢t € R. If ;—; € N, then 7 is closed and has exactly ;—; cusps (non-differentiable
points). To easily control the number of cusps, we fix 7o = 1 and vary r;. Note that in this case
has 1 cusps and period 27.

We construct curves and binary masks of various sizes, orientation and positions, by sampling a
radius 71 € {3,4,5,6} from U/({3,4,5,6}), angle 0 from U([—7F, T]), components ¢, gz from
U([—80,80]) for a shift, and a scaling factor x from #/([10,20]). Here U/(I) denotes a random
variable uniformly distributed on I, where I is an interval of finite length or a discrete finite set.

Next, we evaluate the curve k (R(@)n +[160 +¢1 160 + qg]T

of size 512. Here R(#) corresponds to an anti-clockwise rotation around the origin with angle 6.
Finally, the discretized curve is used to construct a binary mask of size 320 x 320 using SKIMAGE.

) on an equispaced grid of [0, 27]

Medical decathlon The data used to evaluate the performance of our model consists of MRI
images of the prostate central gland, henceforth abbreviated as just the prostate, and CT scans of the
spleen. The datasets are part of a public dataset made available for the Medical Decathlon Contest
Simpson et al.[(2019) . The dataset for the prostate consists of T2-weighted MRI images of size
320 x 320, which were cropped to size 224 x 224. The dataset for the spleen consists of CT scans
of size 512 x 512 and was cropped to size 256 x 256. The cropping was based on constructing
bounding boxes of the form [tmin — 6p, Umax + Op] X [Umin — Op, Umax + ] for the training set, where
Umin, Umins Umax and vnmax are the minimal and maximal coordinates of the segmentation in each
direction, respectively, using an offset of §, = 65 pixels. A residual CNN (encoder of five blocks)
was trained (and validated) on the training set to regress the corner and center points of the bounding
boxes using a RMSE-loss. This rather crude approach is not meant to produce tight bounding boxes,
but serves as a rough necessary localization step to improve performance, and allows us to focus on
the task of shape-prediction only.

4.2 CONSTRUCTION GROUND-TRUTH

In this section we describe how the ground-truth data is generated using the Pyramid Algorithm and
Lemma Let (xz,u) € X x R™*"r be an image (slice) - contour pair, where z is a slice of the
CT or MRI scan, u is a finite sequence of points approximating a closed curve and n, = 2 is the
number of spatial components. Since we only have access to binary masks (for the public datasets),
and not to the raw annotations themselves, we extract v using OPENCV. While not ideal, we stress
that u contains “subpixel” information and is not constrainted to an integer-valued grid.
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Fourier coefficients To initialize the Pyramid Algorithm, we compute the approximation coeffi-
cients at level j; using Lemma[A.T] To accomplish this, we need to compute a Fourier expansion for
u. First, we parameterize the contour by arc length. The arc length [ is approximated by summing up
the Euclidian distances between subsequent points in u. The Fourier coefficients are then computed
by evaluating the contour on an equispaced grid of [0, [] of size 2N — 1, where N € N, using linear
interpolation and the Discrete Fourier Transform. Since the contours are real-valued, we only store
the Fourier coefficients (3,,,)Y_5 € (C™)N. Fourier coefficients that are too small, i.e., have no
relevant contribution, are set to zero; see Appendix [B.T|for the details.

Consistency To have consistent parameterizations for all slices, we ensure that u is always tra-
versed anti clock-wise (using opencv). Furthermore, since the parameterization is only determined
up to a translation in time, we need to pick out a specific one. We choose the unique parameteriza-
tion such that the contour starts at angle zero at time zero relative to the midpoint ¢ = (cg, c2) € R?
of R. The implementation details are provided in Appendix [B.2]

Approximation and detail coefficients Altogether, the above steps yield a contour ~ with Fourier
coefficients (*ym)fx;%_ ~ and period [. We reparameterize -y to have period 1, as explained in Section
[2.3] and “center” the contour using the average midpoint computed over the training-set. The initial
approximation coefficients at level j, are then computed using Lemma [A.T] Next, the Pyramid
Algorithm is used to compute approximation and detail coefficients at levels jo < 7 < jo — 1.
We set the detail coefficients which are in absolute value below ¢ = 5 - 1073 to zero to reduce
noise. Subsequently, we reconstruct the approximation coefficients at levels jo + 1 < 7 < j3
using the thresholded detail coefficients. No detail coefficients are used to compute approximation
coefficients at levels j; + 1 < j < jo. The final approximation and (thresholded) detail coefficients
a and d , respectively, are used as ground-truth.

The resulting dataset D thus consists of tuples (x, a,d). The training and validation set Dy, and
Dia, respectively, are obtained by randomly omitting subjects from the the full dataset D. For
the toy-example, spleen and prostate we have (|Dyain|, |Dval]) = (1650, 250), (|Dyainls |Dvall) =
(527,75), and (|Dyainl, |Dval]) = (3148, 502), respectively. Before feeding the images x into the
model, we linearly rescale the image intensities at each instance to [0,1]. Furthermore, for the
spleen and prostate, we use extensive data augmentation: we use random shifts, random rotations,
random scaling, elastic deformations, horizontal shearing and random cropping.

4.3 MODEL TRAINING

We use the Adam optimizer |Kingma & Bal (2015)) to train our network for 150 epochs. In the first
five epochs, we use a linearly increasing learning rate from 5 - 10~ to 103, which is subsequently
decayed by a factor of 0.5 each time the loss does not significantly decrease for 10 subsequent
epochs (for the remaining 145 epochs). A batch size of 16 samples is used in each descent step.
Finally, the model with the lowest loss is selected. The computations were performed in PYTORCH
on a Geforce RTX 2080 Ti.

5 RESULTS

In this section we examine the performance of our method and its dependence on the choice of
basis. We fix all other hyper-parameters (as much as possible). We consider the Debauches wavelets
dbp with p € {1,2,4, 8,16} vanishing moments. Roughly speaking, dbp corresponds to the unique
MRA for which the mother wavelet has minimal support and p vanishing moments. For each basis,
we fix appropriate resolution levels jg, j1 and jo as follows. We fix jo as the smallest possible
resolution level for which the length of our signal (27°) still exceeds the length of the low-pass filter.
Since dbp has a low-pass filter of length 27, this forces jo(p) = p. The choice for j; > jg is
based on the observations that the norm of d; decreases as j increases and small detail coefficients
have no significant impact anymore (see Figure [[T). We fix j; > jo as the smallest level for which
|[dj,k]s| < 51073 for all samples in the training set (also see the discussion in Section . The
final resolution level j; and the support of the mother wavelet determine how much of the contour is
covered, see Figure[3] We therefore fix jo > j; as the smallest resolution level for which the distance
between the end-points of the curves are within 1 pixel distance for all samples in the training set.
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Figure 5: Predicted and observed boundaries colored in red and orange, respectively, for the spleen
and prostate for the best models (db8). The last two columns correspond to “hard” examples. Pre-
dictions for the other wavelet bases, as well as the toy-example, can be found in Appendix P}

We use 64 Fourier coefficients for the the toy-problem, spleen and prostate, respectively to initialize
the approximation coefficients.

Baseline For the prostate and spleen we use the U-Net in[Ronneberger et al.|(2015)) and a recently
developed variant in [Nikolov et al.| (2018) for comparison. We have modified the network archi-
tectures to match the parameter count with our networks (approximately), while maintaining the
structure and idea’s presented in the original papers as much as possible, see Appendix[C] We stress,
however, that our objective, i.e., parameterizing contours, is different from the U-Net’s objective.
The binary ground-truth matched by a U-Net is a fundamentally different (often easier) object than
the continuous representation of a curve matched by our networks. Subtle curvature and geometry
may be accurately presented using our ground-truth curves, e.g., by using a sufficiently large number
of Fourier coefficients to compute approximation coefficients. Binary ground-truth masks, however,
cannot capture such subtle geometry due to their discrete nature.

Performance measures We evaluate accuracy using two-dimensional quantities only, since our
models are 2d. We compute the component-wise L?-errors between observed and predicted curves
on the highest resolution level jo by taking the £2-norm of the approximation coefficients. Further-
more, we compute the dice score and Haussdorf distance between curves using the implementation
in SHAPELY. This requires a polygonal approximation of the contour, which is easily obtained us-
ing the approximation coefficients at level jo. Note that the Hausdorff distance between subsets of
a general metric space may differ from the Hausdorff distance between the associated boundaries
(wavelet models), but coincide for (compact) simply connected subsets of R™. The results are shown
in Table [I] The predictions for the best performing wavelet models with respect to the Hausdorff-
score are shown in Figure [5] Predictions for other bases, corresponding wavelet decompositions,
and detailed visualization of statistics (violin plots) can be found in Appendix [D]

Toy problem We observe that all models perform well and are capable of accurately parameter-
izing piecewise smooth curves. For dbl, however, we observe relatively large gaps between the
end-points, since its support is relatively small. In addition, db1 has difficulty with accurately pre-
dicting small “densely” sampled cycloids. In general, the predictions associated to the less regular
wavelets dbl and db2 sometimes exhibit “small” oscillatory behavior. We found that the latter two
issues were caused by a too large resolution level jo. To see why, note that the features extracted
from the images only contain information up to a certain resolution level. The subpixel information
needed to “fill in the blanks”, so to speak, is in part provided by the ground-truth data and in part by
the chosen wavelet basis. The regularity and support of the wavelet determines to which extent, i.e.,
up to which resolution level, subpixel information can be “filled in”. As the regularity (and support)
of the wavelet decreases, the maximal achievable resolution level decreases as well.

Spleen The predictions of our models are accurate and on par with the baseline U-Nets. The more
advanced U-Net in|Nikolov et al.|(2018) performs slightly better; this is mostly due to “edge” cases
where the boundary of the spleen is small and about to disappear from our two-dimensional sliced-
view. In such cases it may sometimes be ambiguous to define an accurate ground-truth contour,
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Table 1: Mean and standard deviation of various performance measures for the toy example, spleen
and prostate. The standard deviation is reported in parentheses. The column N, is the approximate
number of model parameters in millions, 7" is the inference time per image in milliseconds, and dbp-
refers to a network trained without detail coefficients. The length of the encoder for the toy-example
is six and five for the prostate and spleen.

Model (o, J1+ J2) Dice Hausdorff L?(s=1) L?(s=2) N, T
dbl (1,6,8) 0.962 (0.028)  3.520 (1.804)  0.846 (0.317)  0.830(0.281) 7.70 15.6
db2 (2,6,8) 0.971 (0.021)  2.330(0.889)  0.377 (0.172)  0.373 (0.161) 5.96 15.1
db4 (3,6,8) 0.980 (0.014)  1.317(0.509)  0.264 (0.122)  0.267 (0.124) 5.45 14.5
dbs (4,6,8)  0.978 (0.016)  1.287 (0. 520) 0.276 (0.149)  0.281 (0.162) 525 14.1
z db16 (5,6,8)  0.978(0.018)  1.469 (0.503) 0.252 (0.104) 0.254 (0.111) 526 14.0
& db2- (2,—,8)  0.787(0.036) 13.623 (4.868) 2.968 (0.758)  3.015(0.916) 5.11 14.9
db4- (3,—.8)  0.873(0.165) 7.222(6.699)  1.239 (0.569) 1.213 (0.541) 5.11 143
dbs- (4,—,8) 0967 (0.013) 2.215(0.845)  0.432 (0.170)  0.430 (0.177) 5.11 14.0
db16- (5,—,8)  0.977(0.018) 1.525(0.516) 0.264 (0.104)  0.264 (0.110) 5.11 14.0
dbl (1,5,8) 0.926 (0.034) 5.203 (2.040)  2.543 (0.997) 2.0915(1.276) 9.92 116
db2 (2,5,8)  0.943(0.030)  4.200 (1.680) 1.798 (1.170) 2.113(1.322) 5.62 10.5
db4 (3,5,8) 0.939 (0.039)  4.102 (1.637)  1.904 (1.096)  2.135(1.086) 4.48 9.92
- db8 (4,5,8)  0.940 (0.036)  4.107 (1.572)  1.821 (1.073) 2.058 (1.272) 4.11 9.26
8 db16 (5,5,8)  0.940 (0.037) 4.175(1.371)  1.880 (1.025) 1.968 (1.183) 3.98 9.92
= db2- (2,-,8)  0.761(0.032) 14.611 (4.810) 7.344 (2.609) 6.511 (1.864) 3.97 9.77
dbd- (3,—,8)  0.930 (0.041)  4.661 (1.592)  2.050 (0. 768) 2429 (1.129)  3.97 9.35
dbs- (4,-,8)  0.938(0.042) 4.205(2.303)  1.990 (1.455) 2.155(1.315) 3.98 8.9
db16- (5,—,8)  0.939(0.035) 4.058 (1.517)  1.798 (0 881) 1.960 (1 007) 398 8.79
Ronneberger et al.|(2015) - 0.952 (0.040)  4.369 (4.913) - 776 38.9
Nikolov et al.[(2018) - 0.948 (0.038)  3.584 (1.397) - 6.16  40.7
dbl (1,5,6) 0.931(0.032) b5.328 (2.687) 2.360 (1.260) 2.407 (0 303) 838 112
db2 (2,5,6)  0.930(0.035)  5.450 (2.647)  2.148 (1.360)  2.120 (0.788) 5.07  9.66
db4 (3,5,6)  0.935(0.032) 5.333(2.572) 2.026 (1.242) 2.005 (0.894) 4.17 8.64
o dbs (4,5,6)  0.931(0.032) 5.323(2.584) 2.147 (1.381)  2.019 (0.873) 3.87 7.59
= db16 (5,5,6) 0.924 (0.040)  5.583 (2.665)  2.218 (1.280)  2.197 (0.994) 3.74 7.65
B db2- (2,—,6)  0.779(0.025) 14.584 (4. 487) 6.072 (1.937)  6.577(1.998) 3.73 8.22
A db4- (3,—,6) 0.921 (0.037)  6.040 (3.264)  2.353 (1.316)  2.328 (1.046) 3.73 7.84
db8- (4,—,6) 0.923 (0.041)  6.082 (3. 380) 2.334 (1.485)  2.328 (1.008) 3.73 7.79
db16- (5,—,6) 0.928 (0.032)  5.499 (2.901)  2.177(1.273) 2.078 (0.784) 3.74 17.56
Ronneberger et al.|(2015) - 0.932 (0.047)  5.673 (2.402) - - 7.76  37.2
Nikolov et al.|(2018) — 0.937 (0.030)  5.475 (2.380) - - 549 324

resulting in curves with subtle spurious curvature. Such geometry is not (and cannot be) present in
the binary ground-truth mask due its discrete nature.

Prostate central gland The wavelet models produce accurate predictions and are on par with
the U-Nets. Our models perform slightly better in terms of Hausdorff distance. While all models
produce accurate predictions for most examples, there are instances where both the wavelet models
and the baseline U-Nets fail to produce accurate predictions; see the last two columns of Figure [3
In these examples, the detail coefficients associated to parts of the curve with high curvature are too
small in magnitude to be accurately predicted. While detail coefficients of such small magnitude
were less relevant in the latter two examples, they are important for the prostate.

Ablation study (no detail coefficients) To demonstrate the importance of the detail coefficients,
we have trained models without them, i.e., without the skip-connections. In this set up, we do not
supervise the predictions on the lowest resolution level during training. The results demonstrate, as
expected, that the lower-order wavelets dbl, db2 perform significantly worse without detail coeffi-
cients. In fact, for db1 our model failed to produce any sensible approximations that can be evaluated
and were therefore omitted. A small drop in performance is observed for db4. In general, for db16
there is not much gain, with respect to accuracy, memory-footprint and inference time, to explicitly
model the detail coefficients.

6 CONCLUSION

We have introduced a novel method to model boundaries of two dimensional simply connected
domains using wavelets and MRAs. In effect this allows for subpixel segmentations. The efficacy of
the method has been demonstrated by modeling the boundaries of hypercloids (toy-example), spleen
and prostate, demonstrating that the results are on par with typical U-Nets, yielding up to five times
faster inference speed.
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A THEORETICAL RESULTS

In this section we prove theoretical results regarding the computation of wavelet decompositions. In
addition, we provide all the implementation details.

A.1 EXPLICIT EXPRESSION FOR @y,

To address the issue that periodic signals are not contained in L?(R), we consider the cut-off 7 :=
Y¥1j—;y. In this section we derive an explicit formula for (¥, @;x) by exploiting the periodicity
of . In particular, we will quantify the claim that (scaled) sample values of v may be used as
approximation coefficients. For this purpose, we first review some facts about the scaling equation.
If we take the Fourier transform of both sides of the scaling equation, we obtain the relation ¢(§) =

H(%)cf:(g) for ¢ € R, where H(§) = % > pez e ™k, The map H is referred to as the

refinement mask associated to h. Throughout this paper we assume that h is finite, in which case
 has compact support and H is a trigonometric polynomial of period 1. It is beyond the scope of
this paper to discuss the properties of H in detail and refer the reader to [Pereyra & Ward| (2012);
Montefusco & Puccio| (2014). Here we only need the following result. Under suitable conditions,

one may iterate the equation for ¢ and show that p(§) = [[,—, H (2%) for all £ € R.
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Lemma A.1 (Initialization approximation coefficients). Let h € ¢?(Z) be a low-pass-filter defining
a MRA on L?(R) and H the associated refinement mask. Assume h is non-zero for only a finite
number of coefficients, supp(go) C [0, B] for some § > 0, and ¢ is bounded. Furthermore, suppose

that $(&) = [, H(2w ) forall ¢ € R. If v € CZ,([0,1]) is a l-periodic map with Fourier
coefficients (Ym),,, ez, then

=2 505 T ().

mEZ n=1

where w(l) := 2T is the angular frequency of v, for any j € Zand k € {[—271],...,|271 — B]}.
Proof. Letj € Zand k € {[—271],...,[27] — 3]} be arbitrary. A change of variables shows that
(A, o) =27% / F (27t + k) p(t)dt, k€ Z,

[0,8]

since supp(y) C [0,(]. In particular, note that 277 (t + k) € [~1,l] for t € [0, 0], since k €

{[=271],...,|27l — B]}. Therefore, we may plug in the Fourier expansion for vy and compute
/ F (279 (t+k)) p(t) dt = / > Ame’ wmSE (1) dt.
[0,8] 0,6] mEZ

Next, note that that series inside the integral converges pointwise to v (277 (t + k)) ¢(t) on
[O, B]. Furthermore, the partial sums can be bounded from above on [0, 5] by a constant, since

C’per([ {]) and ¢ is bounded. Therefore, we may interchange the order of summation and
mtegratlon by the Dominated Convergence Theorem:

/ Z 'Ymeiw(l)mt;ijk@(t) dt = Z ’Ymeiw(l)mﬁ / eiw(l)m§§0(t) dt.
[0,8] (0,8]

meZ mEZ

Finally, changing the domain of integration to R again, we see that

Z ,ymeiw(l)mﬁ / ezw(l)mé(p(t) dt — Z ’ymeiw(l)mz%sb (_%) )

meZ [O,B} meZL

The stated result now follows from the assumption that $(¢) = [[,—, H (2%) for any £ € R. O
Remark A.2. The bounds [—271] and |21 — 3| are the smallest and largest integer, respectively,
for which 273 (t + k) € [—1,1] for all t € [0, 8]. The bounds on k are somewhat artificial, however,
since the argument may be repeated for any truncation of v on [—nl,nl], where n € N. This
observation is reflected in the righthand-side of (1)), which is well-defined for all k € Z (but not
squared-summable). The reason for choosing this particular truncation is to identify a minimal
number of approximation coefficients needed to cover the full signal ~y.

The requirement that ¢(£) = [[,=, H (2%) for £ € R is satisfied for all MRA’s considered in this
paper. In particular, we remark that ¢ is continuous at { = 0 and »(0) = 1. It follows from these

observations and Lemma that ajx(7) = ajx(y) ~ 27 3y(k277) for j sufficiently large and k
constrained to {[—271],..., 271 — B]}.

A.2 PYRAMID ALGORITHM - IMPLEMENTATION DETAILS

In this section we provide the computational details for how to compute approximation and detail
coefficients using the Discrete Fourier Transform (DFT). In the following arguments all sequences
are assumed to be two-sided. We will frequently abuse notation and write that a finite sequence is an
element in C" or R™. What we actually mean by this, is that we have a two-sided sequence of length
n which can be embedded in ¢?(Z) by appropriately padding with zeros. In such a situation we will
explicitly specify the indices of the sequence so that the intended ordering is clear. Similarly, all
operators in this section are implicitly assumed to be defined on the associated (two-sided) sequence
spaces, even though we may write that they are defined on C™ or R™.
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Leta = (ap)h 'y € R?N and g = (gx) 0ty € R?M 1 be arbitrary. Here g may be interpreted

as a high-pass-filter of length M with N > M > 2. Similarly, we may think of a as the approxima-
tion coefficients of a 1-periodic signal at a specific resolution level j, with N = 2771, as explained
in Section@ In this section, however, we will not emphasize these interpretations, e.g., write a
instead of a, to avoid clutter in the notation. Observe that the righthand-side of (T) is a 27-periodic
sequence for 1-periodic signals. Therefore, to properly deal with “boundary terms”, we will use the
2N -periodic extension @ € R” of a to evaluate discrete convolutions.

Convolution and multiplication of trigonometric polynomials To compute the detail and ap-
proximation coefficients, we need to evaluate expressions of the form

(ax*g) = E Aty Ghy = E Ak —ky I (2)
k1+ko=k ‘kf_)‘SM_l
[k2| <M —1
k1EZ

for —N < k < N — 1. Note that although a is an infinite 2/N-periodic sequence, the series in
@]) contains only a finite number of nonzero-terms, since g, = 0 for |ky| > M. Furthermore, for
—N < k < N —1, we do not need the full periodic extension a, but only a partial (finite) extension
Pk (a), where Py : C2V — C¥ is defined by

agton 1—N-M<k<-N-1,
(Pr(a))y == < ax ~N<k<N-1,

ap_oan N<ESN+M-2
and K :=2(N + M — 1). Thatis, (@ * g)r = (Px(a) * g)x for —-N <k < N — 1.

We use standard arguments to compute Pk (a) * g. Namely, we interpret Pk (a) * g as the Fourier
coefficients of uv, where u,v : R — C are the trigonometric polynomials defined by

M-1
w@)= Y (Px(a)ee™, @)= Y gue™

k=— K k=1-M

The product uv is a trigonometric polynomial with K := K 4 2(M — 1) non-zero coefficients

corresponding to terms of order f% <k< % — 1. The coefficients of uv can be characterized

by evaluating it on K distinct points in C. After fixing K such points, we may go back and forth
between value and coefficient representations of u, v and uwv using the isomorphism defined by the
evaluation operator.

Evaluation at the roots of unity We evaluate v and v, in the complex variable z = e at the K-
th roots of unity. To do this, we first extend Pk (a) and g to sequences in CK by padding with zeros.
More premsely, define Z&°" : (CK — CK by (Z2e(b))r = by, for =& < k < & — 1 and zero for
E<k<-%and& <k < X Similarly, define Z"Cld CcM=1 (CK by (Z}’\gd(b));€ = by, for
|k| < M and zero for — & < k < —M and M < k < £ We can now evaluate u and v at the K -th
roots of unity by computmg DFT; 0 Sg o Z%"o PK( )and G := DFT: o Sz o Z9(g),
respectively, where Sz : cK (CR is defined by
by, O0<k<E_1,
(S[(b)k = ~ ~
bz S<k<K-1

Consequently, uv can be evaluated at the K-th roots of unity by taking the element-wise product of
the latter two vectors. Finally, the desired coefficients (P (a) * g) N are obtained by going back
to coefficient space using the inverse DFT , i.e.,

(Px(a) + )"y = TINSF'DFTL! (G © DFT 0 Sy 0 Z8™ 0 Pic(a))
Here © denotes the Hadamard-product and I1 : CK — C2N is the truncation operator defined by

Iy (b) == ()= x

14
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B PREPROCESSING
In this section we provide the details of our preprocessing steps.

B.1 TRUNCATION FOURIER COEFFICIENTS

The magnitude of the approximated Fourier coefficients will typically stagnate and stay con-
stant (approximately) beyond some critical order, since all computations are performed in finite
(single) precision. We locate this critical order mf(s) € N for each component s € {1,2},
if present, by iteratively fitting the best line, in the least squares sense, through the points

{(m, ’(|[’ym]s|)§=mo 1) img <m< N — 1} for 1 < my < N — 1. We iterate this process

until the residual is below a prescribed threshold é ;v > 0. In practice, we set 6 = 0.1. The Fourier
coefficients with index strictly larger than mf(s) are set to zero.

B.2 CONSISTENT PARAMETERIZATIONS

To have consistent parameterizations we enforce that all contours start at angle zero at time zero rela-
tive to the midpoint ¢ = (cy, c2) € R? of the region of interest R. This is accomplished by exploiting
the Fourier representation of the curve. More precisely, let ¥ := ¢ +— Zlml <N_17Tm e Mmt where

w(l) = 27, be the contour with Fourier coefficients I' := (7,,,) N=1 - The midpoint c of the region

enclosed by 7 is given by

U vy — (e T T s D)
Cs = A(R)/R Sd>‘( 1 2) ( 1) ([F]l*[FI]Q)O ’ € {172} (3)

by Green’s Theorem. Here \ denotes the Lebesgue measure on R?, [I'], are the Fourier coefficients
of [7]s, and (I"),, := imw(l)7y, for |m| < N — 1. We can now compute the desired parameteriza-

[((=7) = ch ) : -
——————— | = 0and defining y(¢) := ¥(t—71).
. . . 15(=7) —cll2 ) o

While 7 can be easily found using Newton’s method, it suffices in practice to simply re-order y from
the start, before computing the Fourier coefficients. More precisely, we first define a shift § of y by

tion by determining 7 € [0, [] such that arccos (

B np—1
Uk = Yk + k* mod n,, T0r 0 < k < my, — 1, where k* := argmin {arccos (H)} .
k=0

C U-NET ARCHITECTURES (BASELINES)

In this section we describe our modifications to the networks presented in Ronneberger et al.|(2015)
and Nikolov et al| (2018). The goal of the modifications is to match the parameter count with
our networks (approximately), while maintaining the structure and idea’s presented in the original
papers as much as possible. Our modifications to the original U-Net in |Ronneberger et al.| (2015)
is minimal: we use 32 filters in the first layer instead of 64 and use group normalization with four
groups. Our modifications to the network in [Nikolov et al.| (2018)) are as follows. We use residual
blocks of length two (instead of three), we use a bottleneck with 256 channels (instead of 1024), and
we do not use 1d convolutions in the “third” direction (to keep our model 2d). Furthermore, we use
an encoder and decoder of length six. The number of filters used in the encoder, from top to bottom,
is 32, 32, 64, 64, 128, and 128, respectively. The number of filters used in the decoder, from bottom
to top, is 128, 128, 64, 64, 64 and 64, respectively.

15
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D FIGURES

In this section we provide additional visualizations of the statistics, wavelet decompositions and

predicted contours.

D.1 ToOY EXAMPLE
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Figure 6: Boxplots and visualization of approximate
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(b) Hausdorff
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densities for the dice scores and Hausdorff

distances for the toy problem.

N . . n

—~
8
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Figure 7: Predicted curve (in red) for a binary mask (in white). In order to visualize the predicted
curve without too much clutter we have not depicted the ground-truth contour.
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Figure 8: Predicted and observed wavelet decompositions of the first component of the contour
depicted in the fourth column in Figure [7}
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D.1.1 SPLEEN
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Figure 9: Boxplots and visualization of approximate densities for the dice scores and Hausdorff
distances for the spleen.
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Figure 10: Predicted and observed boundaries colored in red and orange, respectively, of the spleen.
The last two columns correspond to a few “hard” examples.
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Figure 11: Predicted and observed wavelet decompositions of the first component of the contour
depicted in the first column in Figure[T0] For db4 and db8 the detail coefficients on higher resolution
levels are too small to be accurately predicted, but have little impact on the accuracy of the final
approximation.
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D.1.2 PROSTATE
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Figure 12: Boxplots and visualization of approximate densities for the dice scores and Hausdorff
distances for the prostate.
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Figure 13: Predicted and observed boundaries colored in red and orange, respectively, of the
prostate. The last two columns correspond to “hard” examples.
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Figure 14: Predicted and observed wavelet decompositions of the first component of the hard exam-
ples depicted in [(a)] [(b)|the fifth column and [(d)]|the sixth column of Figure[T3]
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